Analysis of Mice Lacking DNaseI Hypersensitive Sites at the 5' End of the IgH Locus

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1371/journal.pone.0013992</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:8231691</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Analysis of Mice Lacking DNaseI Hypersensitive Sites at the 5′ End of the IgH Locus

Thomas Perlot1,9,a, Inka Pawlitzky2,9,b, John P. Manis3, Ali A. Zarrin1,9,c, Peter H. Brodeur2, Frederick W. Alt1,*

1The Howard Hughes Medical Institute, The Children’s Hospital, Immune Disease Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 2Immunology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America, 3Children’s Hospital Boston and Joint Program in Transfusion Medicine, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

The 5′ end of the IgH locus contains a cluster of DNaseI hypersensitive sites, one of which (HS1) was shown to be pro-B cell specific and to contain binding sites for the transcription factors PU.1, E2A, and Pax5. These data as well as the location of the hypersensitive sites at the 5′ border of the IgH locus suggested a possible regulatory function for these elements with respect to the IgH locus. To test this notion, we generated mice carrying targeted deletions of either the pro-B cell specific site HS1 or the whole cluster of DNaseI hypersensitive sites. Lymphocytes carrying these deletions appear to undergo normal development, and mutant B cells do not exhibit any obvious defects in V(D)J recombination, allelic exclusion, or class switch recombination. We conclude that deletion of these DNaseI hypersensitive sites does not have an obvious impact on the IgH locus or B cell development.

Introduction

The variable region of an immunoglobulin heavy chain (IgH) is assembled from V (variable), D (diversity), and J (joining) gene segments that lie upstream of several IgH constant (C) region exons in a process called V(D)J recombination [1]. The mouse IgH locus contains large numbers of VH segments and multiple D and JH segments but an individual IgH V(D)J exon is assembled from only one VH, one D, and one JH segment.

V(D)J recombination of the IgH locus takes place in pro-B cells in an ordered way such that D to JH recombination precedes VH to DJH recombination [2]. In this regard, activation of the IgH locus is thought to progress in a stepwise manner [3]. D to JH rearrangement efficiently occurs on both alleles, however, allelic exclusion ensures that VH to DJH recombination results in expression of a functional heavy chain (HC) from only one of the two alleles [4].

Mature B-cells can undergo further alterations of their HCs. IgH class switch recombination (CSR) causes expression of different immunoglobulin isotypes which confer different effector functions. During this recombination process one of several sets of downstream C′H exons replaces the C′4 exons and the intervening sequence is deleted from the chromosome, which results in expression of a new C region without changing the specificity of the IgH variable region [5].

A large effort has been made to elucidate mechanisms of IgH locus regulation and a number of cis-regulatory elements have been described and characterized. The IgH intronic enhancer (Ei) resides in the JH – C′H intron and was shown to be necessary for efficient V(D)J recombination by promoting both D to JH and VH to DJH recombination [6,7]. Downstream of the C′H genes at the very 3′ end of the IgH locus a cluster of DNaseI hypersensitive sites was described, termed 3′ IgH regulatory region (3′IgH RR). So far two main functions have been assigned to this regulatory region: the 3′ IgH RR plays an important role in promoting CSR to most IgH isotypes, and the 3′IgH RR was shown to be necessary for high level expression of the functionally assembled HC gene from the promoter 5′ of the VHDJH exon [8].

An additional potential regulatory region was identified at the 5′ end of the IgH locus, consisting of four DNaseI hypersensitive sites [9]. One of these sites, HS1, was shown to be pro-B cell specific, the stage during which IgH V(D)J recombination takes place, and was suggested to include binding sites for the transcription factors PU.1, Pax5 and E2A [9]. These observations led to the suggestion that this region might represent a new regulatory region for IgH rearrangements. In this regard, the 5′ end of the IgH locus is an attractive location for a regulatory element because it would not be deleted during the course of V(D)J recombination, and it might explain control of several unresolved phenomena in the IgH locus. Among these is the regulation of VH germline transcripts as so far...
no cis-regulatory element has been identified that controls activity of the bulk of unarranged V_{H} promoters. Furthermore, it is not known how it is achieved that proximal and distal V_{H} segments are activated independently or why usage of distal versus proximal V_{H} gene families varies significantly.

Here we report the targeted deletion of the pro-B cell specific 5’IgH HS1 as well as combined deletion of HS1, HS2, HS3a, b in mice. We analyzed potential implications on B cell development, V(D)J recombination, and IgH CSR.

Methods

Targeted deletion of 5’IgH DNaseI hypersensitive sites in ES cells and generation of mutant mice

All mouse were handled in strict accordance with good animal practice as defined by the relevant national and/or local animal welfare bodies, and all animal work was approved by Animal Research of Children’s Hospital Boston (Protocol # 08 11 1253R).

The RHS1 targeting vector was assembled in pLNTK [10]. As a 5’ homology arm a 2.2 kb PCR product was generated with primers 5’ GTGCACGGATATAGGAGATACACACAAC 3’ and 5’ GTGCAGCTTGGATACAACAGAACAGAATCTG 3’ containing a Sall site at their 5’ ends, which facilitate cloning of the PCR product into the Sall site of pLNTK. As a 3’ homology arm a 7.5 kb AatII – ApaI fragment was blunt end cloned into the XhoI site of pLNTK. The R3HS targeting vector was generated by blunt end cloning a 4.4 kb EcoRI fragment into the Sall site of pLNTK as a 5’ homology arm, and a 7.0 kb KpnI fragment into the XhoI site as the 3’ homology arm. Correct targeting events and cre – loxP deletion events were confirmed by Southern blotting (Fig 1). Probe 1 is a 830 bp PCR product amplified with primers 5’ GTCGTCACTTGAGCACTGCACG 3’ and 5’ CACTGTG- GACCTCCATCTTATGTCTG 3’.

Probe 2 is a 2.7 kb Ps I – EcoRI fragment 5’ of HS2. Probe 3 is a 3.0 kb Ps I – XbaI fragment about 11 kb 3’ of HS3b. To confirm single integration of the targeting vectors a 525 bp Neo5 probe was used, amplified with primers 5’ GCAGGCTATGGGATCGGC 3’ and 5’ GTTCGGCTGGCGCGAGCCCC 3’.

PCR assay for V(D)J rearrangements

Pro-B cells (IgM+ B220+ CD43+), pre B-cells (IgM+ B220+ CD43+), and double positive T-cells (B220+ CD4+ CD8+) were isolated by FACS on a FACSaria (BD Biosciences) and genomic DNA was extracted. 30 ng DNA or 3-fold dilutions were analyzed by PCR for Dm-JH, VDJ-JH, Vc-Jc, and Vc-Ja rearrangements with primers listed in Table S1. Input DNA amounts were normalized upon PCR amplification within DLG5. PCR was performed at 95°C for 4’, 30 cycles of 95°C for 30’, 60°C for 90’, and 72°C for 2’, followed by 72°C for 3’. PCR products were transferred from ethidium bromide gels to nylon membranes and visualized with end labeled oligonucleotide probes (Table S1). CDR 3 lengths were generated from IgH VDH rearrangements from mature B cells using oligonucleotides for V558 and JH4 rearrangements. PCR fragments were amplified using iProof (Bio-Rad) polymerase and cloned into Zero Blunt Topo vectors (Invitrogen), and sequenced.

IgH class switch recombination assay

CD43+ splenocytes were isolated by MACS, cultured with LPS or IL4/–αCD40, and analyzed by flow cytometry as described previously [13].

Flow cytometry and cell sorting

Single cell suspensions from spleen, thymus, or bone marrow were stained in PBS 2% FBS with various antibodies: FITC-αIgM, PE-Cy7-αB220, PE-αCD8a, PE-αCD43, FITC-αLy9.1, APC-αIgM, APC-Cy7-αB220 (BD Pharmingen), PE-αAA4.1, FITC-αCD4 (eBioscience). FACS analysis was performed on a FACSCalibur (BD Biosciences) and a FACSaria (BD Biosciences) apparatus. Cell sorts were performed on a FACSaria (BD Biosciences) apparatus.

Results

Generation of mice with targeted deletion of 5’IgH DNaseI hypersensitive sites

To determine the in vivo function of the cluster of DNaseI hypersensitive sites described at the 5’ end of the IgH locus [9] we first replaced a ~340 bp BccI – AatII fragment, harboring HS1, with a loxP flanked PGK-Neo5 cassette. All targeting experiments were performed in heterozygous IgH5/6b EF1 ES cells which have the advantage that IgH6 (129 strain) and IgH5 (C57/BL/6 strain) alleles can be distinguished by antibodies against the different allotypes or by detection of restriction fragment length polymorphisms (RFLP). Targeting vector homology arms were cloned from 129 strain genomic DNA, resulting in correct targeting events only on the IgH6 allele. In heterozygous targeted ES cells, the IgH6 allele always remained in the untargeted wildtype configuration. Targetings were performed with the RHS1 targeting vector (Fig. 1A) to obtain the RHS1 allele and, upon cre/loxP deletion,
Figure 1. Targeting strategy for the generation of the RHS1, ΔHS1, and ΔHSs alleles. (A) the wildtype (wt) IgH locus and its 5’ flanking region are shown. V_{H}, D_{H}, J_{H} indicate representative IgH V, D, and J segments. Exons 1, 2, and 3 of Zfp386 are shown as grey rectangles, DNaseI hypersensitive sites HS1, HS2, HS3a, and HS3b are shown as black ovals. Correct targeting events of the RHS1 targeting vector were identified by Southern blotting on BglII digested ES cell DNA using probe 1, which results in a 15.8 kb band (lane 1) in addition to the 14.2 kb wildtype band (lane 2). Cre – loxP (black triangles) mediated deletion of the PGK-Neo^{R} cassette (NeoR) from the RHS1 allele results in the ΔHS1 allele. Deletions were identified by Southern analysis of SacI digested DNA utilizing probe 2. A targeted clone before Cre – mediated deletion exhibits a 6.7 kb RHS1 band and a 5.1 kb wildtype band (lane 3). Upon deletion of the PGK-Neo^{R} cassette, a 4.8 kb ΔHS1 band and a 5.1 kb wildtype band are visible (lane 4). Lane 5 shows untargeted wildtype DNA. (B) The ΔHS1 allele was targeted with the R3′HSs targeting vector to introduce a PGK-Neo^{R} cassette flanked by loxP sites. Correct targeting events were confirmed by Southern blotting on SphI digested ES cell DNA with probe 1, resulting in a 2.6 kb band for the wildtype IgHb allele and a 7.2 kb band for R3′HSs, the targeted IgHa allele (lane 6). Cre – mediated recombination between the first and the third loxP site generates the ΔHSs allele (14.1 kb, lane 8). Homozygous R3′HSs ES cells were generated under increasing concentrations of G418, resulting in a single 7.2 kb R3′HSs band (lane 7). Southern analysis on SphI digested DNA with probe 3 confirms correct targeting events of the R3′HSs targeting vector. ΔHS1 ES cells exhibit a 15.7 kb ΔHS1 band and a 26.3 kb band for the wildtype IgHb allele (lane 9), R3′HSs ES cells show a 11.1 kb ΔHSs band and a 26.3 kb band for the wildtype IgHb allele (lane 10). All targeting events occurred on the IgHa allele, whereas the IgHb allele remained in wildtype configuration. Drawings not to scale. B - BglII; S - SacI; P - SphI.

doi:10.1371/journal.pone.0013992.g001
the ΔHS1 allele. Correct targeting events (Fig S1) and single integration of the targeting vector (Figure S1) were confirmed by Southern blotting. Subsequently, targeted ES cells were injected into Rag2–/– blastocysts to obtain Rag-deficient blastocyst complementation (RDBC) chimeras, and into wildtype blastocysts to generate mice that carry the RHS1 or ΔHS1 allele in their germline. In order to delete all four hypersensitivity sites (HS1, HS2, HS3a, and HS3b), ES cells containing the ΔHS1 allele were targeted with the R3’HSs targeting vector to obtain the R3’HSs allele (Fig. 1B). Cre/loxP recombination between the loxP site originating from the ΔHS1 allele and the loxP site 3′ of the PGK-Neo cassette results in the replacement of a 8.9 kb region, harboring all described 5’ IgH D/Nasel hypersensitive sites, with a single loxP site, referred to as the ΔHS1 allele. Germline transmission could not be achieved for either of the R3’HSs or ΔHS1 heterozygous ES cell lines. Therefore, we placed ES cells containing the R3’HSs allele under increasing concentrations of G418 to select for homozygous mutant ES cells. The homozygous mutant ES cells were subsequently subjected to cre/loxP recombination to delete the Neo gene and generate ES cells homozygous for the ΔHS1 allele. The homozygous mutant ΔHS1 ES cells were injected into Rag2–/– blastocysts, and chimeras generated by RDBC and lymphocytes were analyzed.

Development of homozygous RHS1, ΔHS1, and ΔHSs lymphocytes

Lymphocytes of different developmental stages can be identified by FACS analysis of cells from lymphoid tissues such as bone marrow, thymus, or spleen. We analyzed 8 week old wildtype mice, homozygous RHS1, and homozygous ΔHS1 mice that carry the mutant alleles in their germline, as well as lymphocytes from RDBC chimeras generated from homozygous ΔHS1 ES cells (Fig. 2). In wildtype bone marrow, pro-B cells can be identified as IgM– B220– CD43hi and pre-B cells as IgM– B220– CD43lo populations (lower blots). (A) Bone marrow from wildtype (wt), homozygous ΔHS1, homozygous RHS1 mice, and RDBC chimeras generated from homozygous ΔHSs ES cells was subjected to FACS analysis. Gates were set on the lymphocyte population, Ly9.1 positive population, and on IgM negative population (upper three blots, left to right) to analyze pro-B cell (IgM+ B220+ CD43hi) and pre-B cell (IgM+ B220+ CD43lo) populations (lower blots). (B) FACS analysis of splenocytes from wildtype (wt), homozygous ΔHS1, homozygous RHS1 mice, and RDBC chimeras generated from homozygous ΔHSs ES cells. Gates were set on the lymphocyte population and on the IgM positive population (upper two blots, left to right) to analyze transitional B-cell (IgM+ B220+ AA4.1+) and mature B-cell (IgM+ B220+ AA4.1) populations (lower blots). (C) FACS analysis of thymocytes gated on the lymphocyte population (upper blot) from wildtype (wt), homozygous ΔHS1, homozygous RHS1 mice, and RDBC chimeras generated from homozygous ΔHSs ES cells (lower blots).

The ΔHS1, RHS1, and ΔHSs alleles show no significant defect in V(D)J recombination

The data indicating that HS1 is pro-B cell specific and contains binding sites for the transcription factors PU.1, Pax5, and E2A led to the suggestion that HS1 could be involved in regulation of V(D)J recombination at the IgH locus [9]. We utilized a PCR based assay to assess V(D)J recombination efficiencies in developing lymphocytes from mice with homozygous deletion of HS1. FACs-sorted pro-B cells (IgM+ B220+ CD43hi) and pre-B cells (IgM+ B220+ CD43lo) from bone marrow and double positive (DP) T-cells (B220+ CD43hi) from thymus were analyzed for D to JH, V to DJH, Vκ to Jκ, and Vλ to Jλ rearrangements. Intensities of PCR bands for DgQ52 to Jλ (Fig. 3A) and DSP to Jλ rearrangements (Fig. 3B) were comparable in pro-B cells, pre-B cells, and DP T-cells from wildtype, homozygous RHS1, and homozygous ΔHS1 mice indicating that deletion of the pro-B cell specific HS1 site does not detectably affect the D to Jλ recombination step. DNA input amounts were normalized to the presence of a genomic sequence within the murine Dλ5 gene (Fig. 3H).

It was speculated that HS1 might regulate the differential activation of distal versus proximal V\(\text{H}\) families [9]; therefore, we analyzed the rearrangement efficiencies of the proximal V\(\text{H}\)17/183 family (Fig. 3C), the distal V\(\text{H}\)15/158 family (Fig. 3D), and the distal most V\(\text{H}\)1 segment V\(\text{H}\)558.55 (Fig. 3E). We found that pro-B cells and pre-B cells from wildtype, homozygous RHS1, and homozygous ΔHS1 mice rearrange the proximal V\(\text{H}\)17/183 family at similar levels (Fig. 3C). Also, the distal family V\(\text{H}\)15/158 (Fig. 3D) as well as the distal most V\(\text{H}\)1 segment V\(\text{H}\)558.55 (Fig. 3E) rearranged at comparable efficiencies in pro-B cells and pre-B cells from the three different genotypes. V\(\text{H}\)10 to DJ\(\text{H}\)1 rearrangement was absent in DP T-cells from wildtype, homozygous RHS1, and homozygous ΔHS1 mice as the V\(\text{H}\)10 to DJ\(\text{H}\)1 rearrangement step is restricted to the B-lineage (Fig 3G, D, E). These data show that HS1 is not

Figure 2. Development of homozygous ΔHS1, RHS1, and ΔHSs lymphocytes. (A) Bone marrow from wildtype (wt), homozygous ΔHS1, homozygous RHS1 mice, and RDBC chimeras generated from homozygous ΔHSs ES cells was subjected to FACS analysis. Gates were set on the lymphocyte population, Ly9.1 positive population, and on IgM negative population (upper three blots, left to right) to analyze pro-B cell (IgM+ B220+ CD43hi) and pre-B cell (IgM+ B220+ CD43lo) populations (lower blots). (B) FACS analysis of splenocytes from wildtype (wt), homozygous ΔHS1, homozygous RHS1 mice, and RDBC chimeras generated from homozygous ΔHSs ES cells. Gates were set on the lymphocyte population and on the IgM positive population (upper two blots, left to right) to analyze transitional B-cell (IgM+ B220+ AA4.1+) and mature B-cell (IgM+ B220+ AA4.1) populations (lower blots). (C) FACS analysis of thymocytes gated on the lymphocyte population (upper blot) from wildtype (wt), homozygous ΔHS1, homozygous RHS1 mice, and RDBC chimeras generated from homozygous ΔHSs ES cells (lower blots).
Figure 3. V(D)J recombination in ΔHS1 and RHS1 mice. Pro-B cells, pre-B cells and double positive (DP) T-cells from wildtype 129 mice, from homozygous ΔHS1, and homozygous RHS1 mice were sorted by FACS. 5-fold dilutions of genomic DNA were subjected to PCR analysis. IgH V(D)J recombination efficiencies were assessed using a reverse primer downstream of JH4 and a forward primer recognizing DQ52 (A), DSPs (B), the V_{\gamma}7183 family (C), the V_{\gamma}J558 family (D), or the V_{\gamma}J558.55 segment (E). Rearrangements can occur to J_{\gamma}1, J_{\gamma}2, J_{\gamma}3, or J_{\gamma}4 as indicated. GL indicates PCR product from germline configuration. Igk rearrangements were quantified (F), rearrangements can occur to J_{k}1, J_{k}2, J_{k}4, or J_{k}5 as indicated. Igλ rearrangement efficiency was analyzed (G). Bands correspond to V_{\lambda}2 - J_{\lambda}2, V_{\lambda}3 - J_{\lambda}3, or V_{\lambda}1 - J_{\lambda}1 rearrangements as indicated. DNA input was normalized to DLG5 PCR products (H).

doi:10.1371/journal.pone.0013992.g003
necessary for rendering the distal part of the VH cluster accessible and, therefore, suggest that HS1 does not play a major role in regulation of usage or accessibility of distal versus proximal VH families.

Recently, it has been shown that IgH and Igk loci can colocalize during B-cell development, mainly at the pre-B cell stage, and it was suggested that this colocalization induces decontraction of the IgH locus [14]. We therefore performed an assay to evaluate Igk (Fig. 3F) and Igλ (Fig. 3G) V(D)J recombination efficiencies. Both Igk and Igλ loci show similar V(D)J recombination levels in the analyzed developing B cells from wildtype, homozygous RHS1, and homozygous DHS1 mice, while light chain rearrangements were absent in DP T-cells from the three different genotypes. Therefore, we conclude that deletion of HS1 does not markedly affect Ig light chain gene rearrangements.

As an independent method to evaluate D to JH and VH to DJH recombination efficiencies, we generated clonal hybridoma lines from splenic B-cells of IgH^{+/-} heterozygous RHS1, AHS1 mice carrying the mutant allele in their germline and of RDBC chimeras generated from heterozygous AHSs ES cells (Table 1). In each case the IgH⁺ allele was the mutant allele while the IgH⁻ allele was the wildtype allele. In splenic B-cells, one allele exists as a functional V_HD_JH rearrangement, while the second allele can either be in germline configuration, or it exists as a D_JH or a nonproductive V_HD_JH rearrangement. The rearrangement status of the second IgH allele was assessed by Southern blot analysis. Consequently, hybridomas expressing the mutant IgH⁺ allele can be analyzed for rearrangement efficiency of the wildtype IgH⁻ allele, and vice versa, in hybridomas expressing the wildtype IgH⁺ allele, the rearrangement status of the mutant IgH⁻ allele can be assessed.

Wildtype B cells undergo D to JH rearrangements on both alleles; but still, consistent with earlier studies, about 5% of hybridomas harbor an IgH allele in germline configuration which presumably originates from tripartite fusions involving non-B-cells [12] (not shown). The number of mutant alleles in germline configuration was not increased compared to wildtype indicating that RHS1, AHS1, and DHSs alleles can undergo efficient D to JH recombination (not shown). In 30–60% of wildtype B-cells the nonproductive allele is in D_JH configuration; whereas in 40–50% the nonproductive allele is in V_HD_JH configuration [15]. An increased percentage of D_JH alleles could indicate less efficient VH to DJH recombination: in contrast, an increased percentage of V_HD_JH alleles might indicate a break in allelic exclusion. IgMa expressing hybridomas generated from B-cells heterozygous for RHS1, AHS1, and DHSs were analyzed for their rearrangement status of the wildtype IgMb allele and show ratios of DJH (56%–61%), and V_HD_JH alleles (39%–44%) in the expected range (Table 1). IgM⁺ expressing hybridomas were analyzed for the

Table 1. AHS1, RHS1, and DHSs hybridoma analysis.

<table>
<thead>
<tr>
<th></th>
<th>DJ</th>
<th>VDJ-</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHS1 IgM<sup>+</sup></td>
<td>66 (61%)</td>
<td>43 (39%)</td>
</tr>
<tr>
<td>AHS1 IgM<sup>-</sup></td>
<td>52 (57%)</td>
<td>39 (43%)</td>
</tr>
<tr>
<td>RHS1 IgM<sup>+</sup></td>
<td>62 (56%)</td>
<td>49 (44%)</td>
</tr>
<tr>
<td>RHS1 IgM<sup>-</sup></td>
<td>45 (52%)</td>
<td>41 (48%)</td>
</tr>
<tr>
<td>DHSs IgM<sup>+</sup></td>
<td>51 (61%)</td>
<td>32 (39%)</td>
</tr>
<tr>
<td>DHSs IgM<sup>-</sup></td>
<td>55 (69%)</td>
<td>25 (31%)</td>
</tr>
</tbody>
</table>

Hybridomas were generated from heterozygous IgM⁺/AHS1, RHS1, and DHSs splenic B-cells. In each case, IgM⁺ is the wildtype allele and IgM⁻ is the mutant allele, IgM⁺ expressing hybridomas (IgM⁺) and IgM⁻ expressing hybridomas (IgM⁻) of each genotype were analyzed for the rearrangement status of their nonproductive allele. Numbers for D to J_H rearranged alleles (DJ) and nonproductive V_H to D_H rearranged alleles (VDJ-) are shown.

doi:10.1371/journal.pone.0013992.t001

Figure 4. IgM⁺ versus IgM⁻ expression in AHS1, RHS1, and DHSs B cells. Heterozygous IgM⁺/B-cells from spleen (A) and bone marrow (B) of 129 wildtype (wt) or AHS1, RHS1, and DHSs RDBC chimeras were analyzed IgM⁺ and IgM⁻ expression. In AHS1, RHS1, and DHSs B-cells the IgM⁺ allele is in wildtype configuration whereas the IgM⁻ allele is the mutant allele.
doi:10.1371/journal.pone.0013992.g004
rearrangement status of their mutant IgM\(^+\) allele. \textit{RHS1}, \textit{AHS1}, and \textit{AHSs} alleles do not show significantly increased or decreased (Fisher’s exact test) rearrangement ratios compared to wt alleles, as 52\%-69\% of mutant alleles were in DJ\(_H\) configuration while 31\%-48\% were in \(\text{V}_H\text{DJ}_H\) configuration.

FACS analysis was performed on B-cells from spleens (Fig. 4A) and bone marrow (Fig. 4B) of RDBC chimeras generated from heterozygous \textit{RHS1}, \textit{AHS1}, and \textit{AHSs} ES cells. IgM\(^+\) expressing populations, representing the targeted allele, and IgM\(^-\) expressing populations, representing the wildtype allele, were of similar size both in bone marrow and in spleen from \textit{RHS1}, \textit{AHS1}, and \textit{AHSs} chimeras, suggesting that the \textit{RHS1}, \textit{AHS1}, and \textit{AHSs} alleles can undergo V(D)J recombination at the IgH locus at similar efficiencies as wildtype alleles.

The \textit{AHS1}, \textit{RHS1}, and \textit{AHSs} alleles do not affect allelic exclusion

FACS analysis of wt B cells from spleen (Fig. 4A) and bone marrow (Fig. 4B) shows distinct populations of similar size for B cells that are single positive for either IgH\(^+\) or IgH\(^-\), but intact allelic exclusion prevents the appearance of an obvious IgH\(^+\), IgH\(^-\) double producing population. Similarly, RDBG chimeras generated from heterozygous \textit{RHS1}, \textit{AHS1}, and \textit{AHSs} ES cells exhibited IgH\(^+\) or IgH\(^-\) single positive B-cell populations of similar size in spleen (Fig. 4A) and bone marrow (Fig. 4B) but no IgH\(^+\), IgH\(^-\) double producing population. These data indicate that the deleted sequences of the targeted alleles do not contain a regulatory element that is necessary for implementation of allelic exclusion.

Furthermore, data from hybridoma analysis (Tab. 1) support this notion as in the case of a break in allelic exclusion increased numbers of hybridomas with \(\text{V}_H\) to \(\text{DJ}_H\) rearrangements on both alleles would be expected. Such an increase compared to wildtype alleles could not be observed (Tab. 1), which indicates intact allelic exclusion of \textit{RHS1}, \textit{AHS1}, and \textit{AHSs} alleles.

The 5’IgH Dnasel hypersensitive sites are not required for efficient class switch recombination

To assess a potential effect of the 5’IgH Dnasel hypersensitive sites on CSR, B-cells were stimulated to undergo CSR and analyzed by FACS (Fig. 5). Stimulation with LPS induces IgH isotype switching to \(\gamma3\), while stimulation with IL4+\(\alpha\text{CD}40\) promotes switching to \(\gamma1\). B-cells from AID/- mice served as negative controls, while wildtype B-cells represented a positive control and therefore switched to the appropriate isotypes under LPS or IL4+\(\alpha\text{CD}40\) stimulation. CSR in homozygous \textit{AHSs} B-cells occurs at similar levels as in wildtype B-cells implying that the cluster of 5’IgH Dnasel hypersensitive sites is not required for efficient CSR to \(\gamma1\) (Fig. 5A) and \(\gamma3\) (Fig. 5B).

Complex phenotypes without an obvious relation to the IgH locus in \textit{AHS1} mice

We performed targeted deletion experiments of the 5’IgH Dnasel hypersensitive sites to test their suggested function in IgH locus regulation. So far no major IgH related phenotype was identified. However, about 20% of homozygous \textit{AHS1} mice develop a complex neurological phenotype and die at 3–5 weeks of age.

Figure 5. Ig class switch recombination in absence of the 5’IgH Dnasel hypersensitive sites. MACS purified splenic B-cells were stimulated in culture with LPS or IL4+\(\alpha\text{CD}40\) as indicated. FACS analysis shows B-cells that underwent CSR as B220\(^+\) IgG1\(^+\) or B220\(^+\) IgG3\(^+\) cells, respectively. AID-/- B-cells served as negative controls, wildtype (wt) 129 B-cells as positive controls. Homozygous \textit{AHSs} B-cells were isolated from RDBC chimeras.

doi:10.1371/journal.pone.0013992.g005
age, likely due to a lack of food intake. These mice exhibit an abnormal limp grasping phenotype, i.e. mice clasp their front and hind feet almost immediately upon being lifted by their tail (Fig. 6A, B). Furthermore these mice develop a hydrocephalus, which is already visible at about one week of age and is enlarged over the following weeks (Fig. 6C, D). Histological analysis confirmed the presence of a hydrocephalus, revealed abnormal hindbrain development, and revealed retinal abnormalities (Fig. 6E, F, G). The wildtype retina is organized in a delicate layer system (Fig. 6E): stratum opticum and ganglionic layer (1), inner plexiform layer (2), inner nuclear layer (3), outer plexiform layer (4), outer nuclear layer (5), layer of rods and cones (6), pigment layer (7). In the ΔHS1 mutant mice, the organization of retinal layers is impaired in such a way that nuclei from the outer nuclear layer are aberrantly located in the layer of rods and cones (Fig. 6F). In some more severe cases rosette formation in the outer nuclear layer is evident (Fig. 6G). Currently, we do not know what causes these phenotypes, but we exclude that this phenotype is caused by a second integration of the targeting vector at an undefined site in the genome (Figure S1). The deletion in the ΔHS1 allele deletes 340 bp within intron 1 of Zfp386. Therefore, misregulation of that poorly described gene might cause the described phenotypes although other possibilities are conceivable.

Discussion

This study aimed for elucidating the potential regulatory functions of a cluster of recently described DNaseI hypersensitive sites at the 5’ end of the IgH locus [9]. We performed targeted deletion of either the pro-B cell specific site HS1 (ΔHS1) or deletion of the entire cluster of hypersensitive sites (ΔHSs) in mice or in their lymphocytes, respectively. A potential regulatory element at the 5’ end of the IgH locus was speculated to regulate processes such as IgH allelic exclusion, VH germline transcription, differential accessibility or usage of distal versus proximal VH gene families. Furthermore, it was suggested that the 5’ end of the IgH locus might play a role in positioning the IgH locus in distinct subnuclear compartments [16,17,18], and it was suggested to harbor insulator or boundary capacity [19].

B- and T-lymphocytes homozygous for the ΔHS1, RHS1, and ΔHSs alleles appear to proceed through lymphocyte development in an unimpaired way. Data from RDBC chimeras generated from

Figure 6. Complex phenotypes of homozygous ΔHS1 mice. Homozygous ΔHS1 mice exhibit an abnormal limp grasping phenotype (B) whereas wildtype (wt) mice do not (A). ΔHS1 mice can develop severe hydrocephalus as indicated by arrows in (C) and (D). A wildtype mouse without hydrocephalus is shown in (C). The wildtype retina is organized in distinct layers (E): Stratum opticum and ganglionic layer (1), inner plexiform layer (2), inner nuclear layer (3), outer plexiform layer (4), outer nuclear layer (5), layer of rods and cones (6), pigment layer (7). The retina of homozygous ΔHS1 mice shows external nuclei from the outer nuclear layer (5) in the layer of rods and cones (6) indicated by arrows in (F), or rosette formation of the outer nuclear layer (5) indicated by arrows in (G).

doi:10.1371/journal.pone.0013992.g006
heterozygous \(\textit{HS1}, \textit{RHS1}, \) and \(\textit{HSs} \) ES cells indicated that allelic exclusion is not affected in mutant B-cells and that mutant IgH alleles can undergo efficient V(D)J recombination of their IgH locus. Furthermore, data from PCR assays to analyze V(D)J recombination efficiency in mice with HS1 deleted on both alleles supports the notion that HS1 is not necessary for either the D to JH nor the VH to DJH recombination step. Both proximal and distal VH families as well as the distal most VH segment V\(_i\)J550.55 rearrange as efficiently as on wildtype alleles. Similarly, IgL loci in HS1 deleted B-cells rearrange at the same efficiency as wildtype IgL loci. Analysis of IgH V(D)J rearrangement status in hybridomas generated from heterozygous \(\textit{HS1}, \textit{RHS1}, \) and \(\textit{HSs} \) B-cells also strengthens the idea that the deleted DNsase1 hypersensitive sites would not regulate IgH V(D)J recombination. We tested for potential alterations associated with DNA end processing during V(D)J recombination by examining the CDR3 sequence obtained from heterozygous \(\textit{HS1} \) B cells and found a distribution in length that was similar to wildtype B cells [20] (Figure S2). We tested a potential effect of the cluster of DNsase1 hypersensitive site on the process of IgH CSR. Assaying class switching upon different in vitro stimulations in wildtype and homozygous \(\textit{HSs} \) B-cells let us conclude that the cluster of 5'IgH DNsase1 hypersensitive sites does not play a crucial role in CSR.

The only observed phenotypes so far occurred in homozygous \(\textit{HS1} \) mice and seem to be independent of the IgH locus. \(\textit{HS1} \) mice show abnormal limp grasping indicating a neurological abnormality, \(\textit{HS1} \) mice can develop severe hydrocephalus and exhibit retinal impairments. A possible explanation for these phenotypes is a potential defect in regulation of the zinc finger protein Zfp386. \(\textit{HS1} \) deletes a 340 bp region from intron 1 of Zfp386. \(\textit{HS1} \) deletes a 340 bp region from intron 1 of Zfp386 which might result in different splice forms, impaired expression levels, or expression patterns of this gene.

Overall, our analysis of the deletion of the pro-B cell specific site HS1 or the whole cluster of 5'IgH DNsase1 hypersensitive sites did not support the existence of a cis-regulatory function of these elements regarding the IgH locus.

References