Palladium-Mediated Fluorination of Arylboronic Acids

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1002/anie.200802164</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:8301598</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Fluorinated organic molecules have become increasingly important as pharmaceuticals and tracers for positron-emission tomography (PET), a powerful technology for non-invasive molecular imaging. The nucleus of choice for PET is fluorine-18 (^{18}F), which is typically introduced into PET tracers through the formation of carbon–fluorine bonds using nucleophilic fluoride ($^{18}\text{F}^-$) under harsh reaction conditions. The short half-life of ^{18}F of 109 minutes requires that carbon–fluorine bond formation occur at a late stage of the PET tracer synthesis, ideally as the last step. Many promising PET tracers for imaging are currently inaccessible due to the lack of suitable chemistry for the general, late-stage introduction of fluorine into complex, functionalized molecules. Here, we present a new strategy for carbon–fluorine bond formation that relies on the fluorination of arylboronic acids via palladium complexes (eq 1).

The reaction permits a general, regiospecific late-stage formation of carbon–fluorine bonds in the presence of a large variety of functional groups found in medicinally active molecules. Ultimately, we anticipate our new fluorination reaction will provide a chemical solution for the synthesis of currently inaccessible PET tracers to increase both knowledge and understanding of basic, biomedical, and pharmaceutical research through molecular imaging.

Carbon–fluorine bond formation is a challenging chemical transformation, and no general, functional-group-tolerant fluorination reaction of arenes is currently available for the synthesis of complex molecules. Simple fluoroarenes are typically synthesized by pyrolysis of diazonium tetrafluoroborates, direct fluorination using highly reactive elemental fluorine, or nucleophilic aromatic substitution reactions of electron-poor aromatic molecules. Common aromatic organometalllics, such as aryllithiums and aryl Grignard reagents can afford arylfluorides when using electrophilic fluorine sources; however, neither aryllithiums nor aryl Grignard reagents can be used for the late-stage fluorination of arenes bearing electrophiles such as aldehydes or protic functionalities such as alcohols, limiting their general utility. Organometalllics with lower basicity such as alylzine halides, alysilanes, alystannanes, and alyboronic acids afford the formation of fluoroarenes in less than 10% yield (see Supporting Information). The electrophilic fluorination of specific carbon–hydrogen bonds of phenylpyridine derivatives and related structures was reported in 2006 by Sanford, and uses catalytic palladium (II) acetate and N-fluoropyridinium salts. The reaction takes advantage of a covalently attached pyridine directing group and affords fluorinated arylypyridine derivatives using microwave irradiation (100–150 °C, 1–4 h, 33–75% yield). A different approach, the reductive elimination of arylfluorides from palladium (II) fluoride complexes, would obviate the use of directing groups and has been investigated over the past decade by Grushin and Yandulov. Carbon–fluorine bond formation to form aryl fluorides by reductive elimination from a Pd (II) fluoride complex has not yet been substantiated. In general, all methods mentioned above cannot be employed for late-stage fluorination of structurally complex molecules due to either harsh reaction conditions or limited substrate scope.

We have sought a new regiospecific, late-stage fluorination reaction of arenes that encompasses a larger substrate scope than currently accessible, tolerates the presence of a variety of functional groups, is not limited to a particular class of arenes, and is not dependent on a directing group. Our strategy is illustrated in equation 1, and consists of the synthesis of new aryl palladium complexes that react with the electrophilic fluorination reagent Selectfluor to afford fluoroarenes. Our initial investigations for the design of transition-metal complexes that afford efficient fluorination was guided by the observation that palladium has been successfully employed in several carbon-heteroatom bond formations, including carbon–fluorine bonds for specific substrates. Additionally, the development of our methodology was directed by the necessity to predict and control the exact location of fluorination and the need to introduce fluorine at any desired aromatic position. Therefore, the target molecules for fluorination are pre-functionalized with boronic acids at the position where fluorine is desired. Boronic acids are readily accessible, compatible with a variety of functional groups present in PET tracers, competent nucleophiles for transmetallation to palladium, and can be introduced into complex molecules.

Several aryl palladium complexes based on ligands that are commonly used for palladium chemistry did not yield carbon–fluorine bond formation when evaluated for fluorination. We therefore designed new aryl palladium complexes that are derived from a bidentate nitrogenous ligand that contains a neutral and an anionic nitrogen donor atom for coordination to palladium. Our design was based on the assumptions that nitrogenous ligands resist oxidation by electrophilic fluorination reagents, can support high-valent aryl palladium fluorides for subsequent carbon–fluorine reductive elimination, and do not induce competing nitrogen–fluorine reductive elimination. We prepared the new palladium acetate complex 1 by known sulfonamide insertion into the...

[+] Takeru Furuya, Hanns Martin Kaiser, Prof. Tobias Ritter
Department of Chemistry and Chemical Biology
Harvard University
12 Oxford Street, Cambridge, MA 02138 (USA)
Fax: (+1) 617 496 4591
E-mail: ritter@chemistry.harvard.edu
Homepage (optional):

[**] We thank Merck & Co. and Amgen Inc. for unrestricted support, Eli Lilly & Co. for a Graduate Fellowship for T.F., and the Degussa Foundation for a fellowship for H.M.K. We thank Dr. Douglas M. Ho for X-ray crystallographic analysis.

[Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.]
palladium–carbon bond of benzoquinoline-derived palladacycle 3, followed by chloride-acetate ligand exchange (eq 2). The aryl palladium complexes 4a–m were prepared by transmetallation using 12 different arylboronic acids (Table 1). Transmetallation proceeded at 23 °C in a basic methanol/benzene solution and afforded the palladium complexes as moisture and air stable yellow solids in 65–91% yield on a 400 mg scale after purification by chromatography on silica gel. The aryl palladium complexes derived from 1 are tolerant toward the presence of a variety of functional groups found in medicinally active compounds, including alcohols, an indole, and a primary amide. The phenyl palladium sulfonamide 4a (R = H) crystallized in a square planar geometry with the aryl group trans to the κ¹-sulfonamide ligand (Figure 1). The trans relationship may be crucial to prevent undesired carbon–nitrogen bond formation through reductive elimination of the aryl and sulfonamide substituents.

\[\text{N\textsubscript{N}-p-Ns} \text{Pd} \text{py} \text{OAc} \]

Table 1. Transmetallation to form arylpalladium (II) complexes.

<table>
<thead>
<tr>
<th>Boronic acid</th>
<th>Yield</th>
<th>Boronic acid</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{B(OH)}\text{₂})</td>
<td>76%</td>
<td>(\text{B(OH)}\text{₂})</td>
<td>70%</td>
</tr>
<tr>
<td>(\text{tBu} \text{B(OH)}\text{₂})</td>
<td>85%</td>
<td>(\text{MeO} \text{B(OH)}\text{₂})</td>
<td>79%</td>
</tr>
<tr>
<td>(\text{Ph} \text{B(OH)}\text{₂})</td>
<td>91%</td>
<td>(\text{Br} \text{B(OH)}\text{₂})</td>
<td>65%</td>
</tr>
<tr>
<td>(\text{HO} \text{B(OH)}\text{₂})</td>
<td>80%</td>
<td>(\text{Me} \text{B(OH)}\text{₂})</td>
<td>90%</td>
</tr>
<tr>
<td>(\text{B(OH)}\text{₂})</td>
<td>71%</td>
<td>(\text{Cl} \text{B(OH)}\text{₂})</td>
<td>88%</td>
</tr>
<tr>
<td>(\text{B(OH)}\text{₂})</td>
<td>73%</td>
<td>(\text{Br} \text{B(OH)}\text{₂})</td>
<td>82%</td>
</tr>
</tbody>
</table>

Figure 1. ORTEP diagrams of 1 and 4a with thermal ellipsoids at 50% probability showing the trans relationship of the sulfonamide nitrogen atom to the acetate and aryl ligand, respectively.

Fluorination of the aryl palladium complexes 4a–m using the electrophilic reagent Selectfluor™ (2) afforded the arylfluorides 5a–m regiospecifically in 31–82% isolated yield (Table 2). Our fluorination reaction tolerates the presence of a variety of functional-groups, most notably protic functionalities that are not typically compatible with nucleophilic aromatic substitution methods due to the high basicity of fluoride ion in anhydrous solvents suitable for nucleophilic displacement. Additionally, electron-rich fluoroa renes (5b, 5g, 5h), which cannot be synthesized through late-stage fluorination using nucleophilic displacement, are accessible regiospecifically. The scope of the reaction was further extended to electron-poor (5e, 5i), hetero (5m), and ortho-substituted arenes (5k). Fluorination proceeds in 30 minutes when performed in acetonitrile or acetone at 50 °C. While fluorination

\[\text{MeCN, 50 °C, 30 min} \]

Table 2. Electrophilic fluorination of arylpalladium complexes.

<table>
<thead>
<tr>
<th>Product</th>
<th>Yield</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>81%</td>
<td>4g</td>
<td>31%</td>
</tr>
<tr>
<td>4b</td>
<td>79%</td>
<td>4h</td>
<td>46%</td>
</tr>
<tr>
<td>4c</td>
<td>72%</td>
<td>4i</td>
<td>73%</td>
</tr>
<tr>
<td>4d</td>
<td>70%</td>
<td>4k</td>
<td>82%</td>
</tr>
<tr>
<td>4e</td>
<td>61%</td>
<td>4l</td>
<td>54%</td>
</tr>
<tr>
<td>4f</td>
<td>74%</td>
<td>5m</td>
<td>60%</td>
</tr>
</tbody>
</table>

[a] Yield for this entry determined by \(^{19}\text{F} \text{NMR} \) analysis due to low boiling point of product. [b] Acetone used as solvent.
was observed at 23 °C, the highest yields were obtained at a reaction temperature of 50 °C. Yields of isolated products were identical when the fluorination reactions were performed under rigorous exclusion of air and moisture or open to the atmosphere.

The fate of the palladium after fluorination was determined to be cationic palladium complex 6, which was independently synthesized by treatment of palladium chloride 7 with silver tetrafluoroborate in acetonitrile (Scheme 1). Subsequent reaction of 6 with one equivalent of pyridine afforded the stable palladium tetrafluoroborate salt 8, which was isolated and characterized. Addition of pyridine after termination of the reaction displayed in equation 4, table 2 also afforded 8, which suggests that the pyridine-sulfonamide ligand remained coordinated to palladium throughout the reaction. The stability of the ligand-metal complex is advantageous for a prospective catalytic version of the presented fluorination reaction.

Scheme 1. Independent synthesis of palladium byproduct 6.

Transition-metal catalysis for carbon–fluorine bond formations is a valuable goal in itself. However, for the synthesis of PET tracers, a fluorination reaction using stoichiometric amounts of transition-metal is superior to a catalytic version. Reactions stoichiometric in fluorine for PET imaging because it can be prepared in high specific activity.

Experimental Section

A representative transmetallation/fluorination sequence is described below:

Aryl palladium complex 4c: To acetoacet palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12 mL) and benzene (12 mL) at 23 °C is added 4-biphenyl boronic acid (140 mg, 0.706 mmol, 1.10 equiv) and K2CO3 (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 °C for 11 h, and the solvent is removed in vacuo. To the solid residue is added CHCl3 (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl3 (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na2SO4). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 1:1 (v/v) to afford 418 mg of the title compound as a yellow solid (91% yield).

4-Fluorobiphenyl 5c: To 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo-[2.2.2]octane bis(tetrafluoroborate) (2) (85.0 mg, 0.240 mmol, 1.20 equiv) in acetonitrile (6.0 mL) at 50 °C is added aryl palladium complex 4c as a solid (143 mg, 0.200 mmol, 1.00 equiv) in 10 portions over 10 min. The reaction mixture is subsequently stirred at 50 °C for 20 min. After cooling to 23 °C, pyridine is added to the reaction mixture (8.1 μL, 0.10 mmol, 1.0 equiv), and the reaction mixture is filtered through a plug of celite. The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 99:1 (v/v) to afford 24.8 mg of the title compound as a white solid (72% yield).

Received: (will be filled in by the editorial staff)
Published online on ((will be filled in by the editorial staff))

Keywords: fluorination · PET · palladium · boron · pyridine-sulfonamide

We report a mild, regiospecific, and functional-group-tolerant two-step fluorination reaction of arylboronic acids via novel arylpalladium complexes. The functional-group tolerance, broad substrate scope, and regiospecificity of the fluorination reaction presented herein expand the scope of other fluorination methods previously reported.
Transition-Metal Mediated Carbon-Fluorine Bond Formation

Takeru Furuya, Hanns Martin Kaiser & Tobias Ritter*

Department of Chemistry and Chemical Biology, Harvard University
Cambridge, Massachusetts 02138
E-mail: ritter@chemistry.harvard.edu
Table of Contents

Materials and Methods ... 4
Experimental Data .. 5
Experimental Procedures and Compound Characterization ... 5
 General procedure A for the fluorination of aryllithium, arylmagnesium, and arylzinc substrates: 5
 General procedure B for the fluorination of arylsilane, arylstannate, and arylboronic acid derivatives: 5
Table S1.: Direct synthesis of fluorobenzene derivatives employing electrophilic fluorine sources: 6
[(4-Nitrophenyl)sulfonyl]imino]phenyliodinane, ... 6
Benzo[h]quinolinyl palladium acetate dimer ... 7
Benzo[h]quinolinyl palladium chloro dimer .. 7
Chloro palladium complex 7 .. 8
Acetato palladium complex 1 ... 8
Aryl palladium complex 4a .. 9
Aryl palladium complex 4b .. 10
Aryl palladium complex 4c .. 10
Aryl palladium complex 4d .. 11
Aryl palladium complex 4e .. 12
Aryl palladium complex 4f .. 13
Aryl palladium complex 4g .. 13
Aryl palladium complex 4h .. 14
Aryl palladium complex 4i .. 15
Aryl palladium complex 4k .. 16
Aryl palladium complex 4l .. 16
Aryl palladium complex 4m .. 17
Fluorobenzene 5a ... 18
1-tert-Butyl-4-fluorobenzene 5b ... 18
4-Fluorobiphenyl 5c ... 19
4-Fluorobenzylalcohol 5d ... 20
4-Fluorobenzaldehyde 5e .. 20
4-Fluorobenzamide 5f ... 21
4-Fluorophenol 5g ... 21
4-Fluoroanisole 5h ... 22
1-Bromo-4-fluorobenzene 5i ... 23
4-Chloro-2-fluorotoluene $5k$... 23
4-Fluorobenzotrifluoride $5l$... 24
N-Boc-5-fluoroindole $5m$... 24
Bispyridine palladium tetrafluoroborate salt 8 25

X-ray Crystallographic Analysis ... 26
Figure S1.: acetato palladium complex 1 (CCDC 67599) 26
Table S2.: Crystal data and structure refinement for acetato palladium complex 1 27
Figure S2.: aryl palladium complex $4a$ (CCDC 676000) 28
Table S3.: Crystal data and structure refinement for aryl palladium complex $4a$. 29

Spectroscopic Data .. 30
Materials and Methods

All reactions were carried out under an ambient atmosphere unless otherwise mentioned. Except as indicated otherwise, reactions were magnetically stirred and monitored by thin layer chromatography (TLC) using EMD TLC plates pre-coated with 250 μm thickness silica gel 60 F254 plates and visualized by fluorescence quenching under UV light. In addition, TLC plates were stained using ceric ammonium molybdate or potassium permanganate stain. Flash chromatography was performed on Dynamic Adsorbents Silica Gel 40–63 μm particle size using a forced flow of eluant at 0.3–0.5 bar pressure. Concentration under reduced pressure was performed by rotary evaporation at 25–30 °C at appropriate pressure. Purified compounds were further dried under high vacuum (0.01–0.05 Torr). Yields refer to purified and spectroscopically pure compounds. Melting points were measured on a Büchi 510 apparatus. All melting points were measured in open capillaries and are uncorrected. NMR spectra were recorded on a Varian Unity/Inova 500 spectrometer operating at 500MHz and 125MHz for 1H and 13C acquisitions, respectively, or on a Varian Mercury 400 spectrometer operating at 375 MHz for 19F acquisition. Chemical shifts (δ) of 1H-NMR and 13C-NMR spectra are reported in ppm with the solvent resonance as the internal standard. Chemical shifts (δ) of 19F-NMR measurements are reported relatively to CFCl₃ as the external standard. Data is reported as follows: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constants in Hz; integration. High-resolution mass spectra were obtained on Jeol AX-505 or SX-102 spectrometers at the Harvard University Mass Spectrometry Facilities. THF was distilled from sodium/ benzophenone prior to use. Benzo[h]quinoline was purchased from TCI America. Iodobenzene diacetate, 4-nitrobenzenesulfonyl amide, phenyllithium (1.6 M in dibutylether), phenylmagnesium bromide (1.0 M in THF), 4-chlorophenylmagnesium bromide (1.0 M in Et2O), tributylphenyltin, and N-fluorobenzene-sulfonimide were purchased from Aldrich. Palladium acetate and boronic acids were purchased from Frontier Scientific or Boron Molecular. Phenyltrimethylsilane and 1-chloromethyl-4-fluoro-1,4-diaza[2.2.2]octane bis(tetrafluoroborate) were purchased from VWR and used as received. Phenylzinc chloride² and potassium phenyltrifluoroborate³ were synthesized according to the literature procedures.

Experimental Data

Experimental Procedures and Compound Characterization

General procedure A for the fluorination of aryllithium, arylmagnesium, and arylzinc substrates:

\[
\begin{align*}
\text{M} &\quad \text{N} \\
&\quad \text{F} \\
\text{Cl} &\quad \text{or} \\
&\quad \text{(PhSO}_2)_2\text{NF} \\
\text{THF} \\
\end{align*}
\]

R = H, Cl; M = Li, MgBr, ZnCl

Under nitrogen atmosphere, the main-group organometallic (0.0400 mmol, 1.00 equiv) is added to 1-chloromethyl-4-fluoro-1,4-diaziobicyclo[2.2.2]octane bis(tetrafluoro-borate) (14.2 mg, 0.0400 mmol, 1.00 equiv) or N-fluorobenzenesulfoneimide (12.6 mg, 0.0400 mmol, 1.00 equiv) in THF (0.4 mL) at 23 ºC. The reaction mixture is stirred at 23 ºC for 12 hr and to the reaction mixture is added 3-nitrofluorobenzene (4.00 μL, 0.0376 mmol). The yields are determined by comparing integration of the 19F-NMR (375 MHz, CDCl$_3$, 23 ºC) resonance of fluorobenzene (–115.3 ppm) and that of 3-nitrofluorobenzene (–112.0 ppm). Yields are reported in Table S1.

General procedure B for the fluorination of arylsilane, arylstannate, and arylboronic acid derivatives:

\[
\begin{align*}
\text{M} &\quad \text{N} \\
&\quad \text{F} \\
\text{Cl} &\quad \text{MeCN, 50 °C} \\
&\quad \text{2 BF}_4^- \\
\end{align*}
\]

M = SiMe$_3$, SnBu$_3$, B(OH)$_2$, BF$_3$K

To 1-chloromethyl-4-fluoro-1,4-diaziobicyclo[2.2.2]octane bis(tetrafluoro-borate) (14.2 mg, 0.0400 mmol, 1.00 equiv) in acetonitrile (0.4 mL) at 23 ºC is added the main-group organometallic (0.0400 mmol, 1.00 equiv). The reaction mixture is stirred at 50 ºC for 12 hr and to the reaction mixture is added 3-nitrofluorobenzene (4.00 μL, 0.0376 mmol). The yields are determined by comparing integration of the 19F-NMR (375 MHz, CDCl$_3$, 23 ºC) resonance of fluorobenzene (–115.3 ppm) and that of 3-nitrofluorobenzene (–112.0 ppm). Yields are reported in Table S1.
Table S1.: Direct synthesis of fluorobenzene derivatives employing electrophilic fluorine sources:

<table>
<thead>
<tr>
<th>Organometallic Reagent</th>
<th>Product</th>
<th>Yield [%] (19F-NMR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhLi (PhSO₂)₂NF</td>
<td>PhF<sup>a</sup></td>
<td>39</td>
</tr>
<tr>
<td>PhMgBr (PhSO₂)₂NF</td>
<td>PhF<sup>a</sup></td>
<td>50</td>
</tr>
<tr>
<td>4-Cl-C₆H₄MgBr (PhSO₂)₂NF</td>
<td>4-Cl-C₆H₄F<sup>a</sup></td>
<td>38</td>
</tr>
<tr>
<td>PhZnCl Selectfluor</td>
<td>PhF<sup>a</sup></td>
<td>6</td>
</tr>
<tr>
<td>PhB(OH)₂ Selectfluor</td>
<td>PhF<sup>b</sup></td>
<td>4</td>
</tr>
<tr>
<td>PhSiMe₃ Selectfluor</td>
<td>_<sup>b</sup></td>
<td>0</td>
</tr>
<tr>
<td>PhSnBu₃ Selectfluor</td>
<td>_<sup>b</sup></td>
<td>0</td>
</tr>
</tbody>
</table>

^a following general procedure A
^b following general procedure B

[(4-Nitrophenyl)sulfonyl]imino|phenyliodinane^{4,5}

![Chemical structure of the compound](image)

To 4-nitrobenzenesulfonyl amide (5.00 g, 24.8 mmol, 1.00 equiv) in methanol (100 mL) at 23 °C is added potassium hydroxide (3.48 g, 62.0 mmol, 2.50 equiv). The reaction mixture is stirred at 23 °C for 10 min and cooled to 0 °C. To the reaction mixture at 0 °C is added iodobenzene diacetate (7.98 g, 24.8 mmol, 1.00 equiv). The reaction mixture is stirred at 0 °C for 10 min and further stirred at 23 °C for 2.0 h. The reaction mixture is poured onto cold water (700 mL) and kept at 0 °C for 4 h. The suspension is filtered off and the filter cake is washed with water (2 × 200 mL) and methanol (2 × 200 mL) to afford 8.39 g of the title compound as a white solid (84% yield).

¹H-NMR (500 MHz, DMSO-d-6, 23 °C): δ 8.02 (d, J = 9.0 Hz, 2H), 7.73 (d, J = 9.0 Hz, 2H), 7.71 (d, J = 6.5 Hz, 2H), 7.41 (t, J = 7.0 Hz, 1H), 7.26 (dd, J = 8.0 Hz, J = 7.5 Hz, 2H); ¹³C-NMR (125 MHz, DMSO-d-6, 23 °C): δ 151.7, 148.6, 134.4, 131.4, 130.9, 128.2, 124.3, 117.9. These spectroscopic data correspond to the

reported data in reference 5.

Benzo[h]quinolinyl palladium acetate dimer

![Chemical structure of benzo[h]quinolinyl palladium acetate dimer]

To benzo[h]quinoline (2.60 g, 14.5 mmol, 1.00 equiv) in MeOH (230 mL) at 23 °C is added palladium acetate (3.26 g, 14.5 mmol, 1.00 equiv). After stirring for 3.0 h, the suspension is filtered off and the filter cake is washed with MeOH (100 mL) and Et2O (100 mL) to afford 4.27 g of the title compound as a yellow solid (86% yield).

\[\text{MeOH} \rightarrow \text{Pd(OAc)}_2 \rightarrow \text{MeOH} \]

1H-NMR (500 MHz, CDCl}_3, 23 °C): \[\delta 7.80 \text{ (dd, } J = 5.5 \text{ Hz, 1.5 Hz, 1H)}, 7.43 \text{ (dd, } J = 8.0 \text{ Hz, } J = 1.5 \text{ Hz, 1H)}, 7.24–7.18 \text{ (m, 3H)}, 7.08 \text{ (dd, } J = 7.0 \text{ Hz, } J = 1.5 \text{ Hz, 1H)}, 6.97 \text{ (d, } J = 9.0 \text{ Hz, 1H)}, 6.46 \text{ (dd, } J = 7.5 \text{ Hz, 5.0 Hz, 1H)}, 2.38 \text{ (s, 3H)}; \text{13C-NMR (125 MHz, CDCl}_3, 23 °C): } \delta 182.5, 153.2, 148.9, 148.8, 140.0, 135.3, 132.4, 129.0, 127.9, 127.7, 125.0, 122.9, 122.1, 119.8, 25.2. \]

These spectroscopic data correspond to the reported data in reference 6.

Benzo[h]quinolinyl palladium chloro dimer

![Chemical structure of benzo[h]quinolinyl palladium chloro dimer]

To benzo[h]quinolinyl palladium acetate dimer (4.27 g, 12.4 mmol, 1.00 equiv) in EtOH (100 mL) at 0 °C is added lithium chloride (10.5 g, 24.8 mmol, 20.0 equiv). The reaction mixture is warmed to 23 °C and stirred for 1.0 h. The reaction mixture is filtered off and the filter cake is washed with water (3 × 100 mL), MeOH (2 × 100 mL), and Et2O (100 mL) to afford 3.89 g of the title compound as a pale yellow solid (98% yield).

\[\text{EtOH} \rightarrow \text{LiCl} \rightarrow \text{EtOH} \]

1H-NMR (500 MHz, DMSO-d_6, 23 °C): \[\delta 9.44 \text{ (d, } J = 4.5 \text{ Hz, 1.0 Hz, 1H)}, 8.72 \text{ (br, 1H)}, 8.67 \text{ (d, } J = 7.5 \text{ Hz, 1H)}, 8.61 \text{ (br, 1H)}, 8.22 \text{ (d, } J = 7.0 \text{ Hz, 1H)}, 7.91 \text{ (d, } J = 9.0 \text{ Hz, 1H)}, 7.86–7.74 \text{ (m, 3H)}, 7.73 \text{ (br, 1H)}, 7.60 \text{ (br, 1H)}; \]

(dd, J = 7.5 Hz, J = 7.0 Hz 1H), 7.38 (br); 13C-NMR (125 MHz, DMSO-d6, 23 ºC): δ 153.9, 152.2, 150.7, 150.6, 148.0, 141.7, 139.9, 134.4, 130.8, 129.6, 129.4, 127.5, 125.1, 124.4, 123.0, 122.9. Note: The complicated 1H and 13C-NMR spectra are probably due to the mixture of the title compound and solvent adduct in DMSO-d6. The title compound is not soluble in non-coordinating solvents.

Chloro palladium complex 7

$$\text{PdCl}_2$$

To chloropalladium dimer 3 (1.60 g, 5.00 mmol, 1.00 equiv) in THF (75.0 mL) at 23 ºC is added pyridine (3.20 mL, 40.0 mmol, 8.00 equiv) and PhI=N-p-Ns (3.00 g, 7.50 mmol, 1.50 equiv). The reaction mixture is stirred at 23 ºC for 17 h. The reaction mixture is filtered off and the filter cake is washed with Et2O (2 × 10 mL) to afford 2.40 g of the title compound as a light brown solid (78% yield).

1H-NMR (500 MHz, CDCl3, 23 ºC): δ 9.20 (dd, J = 4.5 Hz, 1.0 Hz, 1H), 8.97 (d, J = 4.5 Hz, 2H), 8.07 (dd, J = 6.5 Hz, 1.0 Hz, 1H), 7.92–7.82 (m, 5H), 7.53–7.45 (m, 5H), 7.39 (dd, J = 6.5 Hz, 4.5 Hz, 1H), 7.32 (d, J = 6.0 Hz, 2H); 13C-NMR (125 MHz, CDCl3, 23 ºC): δ 154.1, 152.5, 148.3, 147.3, 140.6, 138.9, 137.8, 137.7, 136.1, 130.7, 130.1, 128.3, 127.1, 126.9, 126.8, 126.2, 125.3, 124.5, 122.5, 122.3. These spectroscopic data correspond to the reported data in reference 6.

Acetato palladium complex 1

$$\text{AgOAc}$$

To chloro palladium complex 7 (2.22 g, 3.70 mmol, 1.00 equiv) in CH2Cl2 (74.0 mL) at 23 ºC is added AgOAc (3.09 g, 18.5 mmol, 5.00 equiv). The suspension is stirred at 40 ºC for 2.0 h. After cooling to 23 ºC, the suspension is filtered through a plug of celite. The filtrate is concentrated in vacuo and the residue is

triturated with Et₂O (50 mL). The solids are filtered off and washed with Et₂O (2 × 50 mL) to afford 2.04 g of the title compound as an orange yellow solid (89% yield).

m.p.: 211 °C (decomp.); \(^1\)H-NMR (500 MHz, CDCl₃, 23 °C): \(\delta \) 8.93 (d, \(J = 4.5 \) Hz, 2H), 8.71 (dd, \(J = 4.5 \) Hz, 1.5 Hz, 1H), 8.06 (d, \(J = 6.5 \) Hz, 1H), 7.90–7.76 (m, 5H), 7.52 (d, \(J = 7.0 \) Hz, 2H) 7.48–7.41 (m, 5H), 7.34 (dd, \(J = 6.5 \) Hz, 4.5 Hz, 1H), 1.79 (s, 3H); \(^1^3\)C-NMR (125 MHz, CDCl₃, 23 °C): \(\delta \) 177.8, 152.0, 151.4, 148.4, 147.9, 141.8, 139.0, 138.8, 138.1, 136.2, 130.8, 130.5, 129.1, 127.5, 127.0, 126.8, 126.3, 125.3, 124.5, 122.6, 122.2, 24.0; HRMS-FIA (\(m/z\)): \([\text{M} – \text{OAc} + \text{MeCN}]^{+}\) calcd for \(\text{C}_{26}\text{H}_{20}\text{N}_{4}\text{O}_{6}\text{PdS}\), 604.0265; found, 604.0308. Anal: calcd for \(\text{C}_{26}\text{H}_{20}\text{N}_{4}\text{O}_{6}\text{PdS}\): C, 50.13; H, 3.24; N, 9.00; found: C, 49.93; H, 3.44; N, 8.79. Crystal structure is shown in the X-ray Crystallographic Analysis section.

Aryl palladium complex 4a

To acetato palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12.8 mL) and benzene (12.8 mL) at 23 °C is added phenylboronic acid (86.0 mg, 0.706 mmol, 1.10 equiv) and \(\text{K}_2\text{CO}_3\) (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 °C for 2.5 h, and the solvent is removed in vacuo. To the solid residue is added CHCl₃ (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl₃ (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (\(\text{Na}_2\text{SO}_4\)). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 1:1 (v/v) to afford 314 mg of the title compound as a pale yellow solid (76% yield).

TLC (hexane/EtOAc 1:1, v/v): \(R_f = 0.23\); m.p.: 205 °C (decomp.); \(^1\)H-NMR (500 MHz, CDCl₃, 23 °C): \(\delta \) 9.00 (d, \(J = 6.5 \) Hz, 2H), 8.27 (dd, \(J = 5.5 \) Hz, 1.5 Hz, 1H), 7.93 (dd, \(J = 8.0 \) Hz, 1.5Hz, 1H), 7.79–7.69 (m, 5H), 7.48 (d, \(J = 9.0 \) Hz, 2H), 7.38 (d, \(J = 9.0 \) Hz, 2H), 7.35–7.28 (m, 4H), 7.03 (dd, \(J = 8.0 \) Hz, 6.5 Hz, 1H), 6.84–6.76 (m, 4H); \(^1^3\)C-NMR (125 MHz, CDCl₃, 23 °C): \(\delta \) 155.3, 153.9, 153.3, 149.4, 147.8, 144.6, 144.3, 138.0, 137.9, 136.5, 134.8, 130.5, 130.2, 128.5, 127.6, 127.2, 127.0, 126.8, 125.2, 124.7, 124.4, 123.8, 122.4, 121.5; HRMS-FIA (\(m/z\)): \([\text{M} + \text{H}]^{+}\) calcd for \(\text{C}_{30}\text{H}_{22}\text{N}_{4}\text{O}_{4}\text{PdS}\), 641.0475; found, 641.0475. Anal: calcd for \(\text{C}_{30}\text{H}_{22}\text{N}_{4}\text{O}_{4}\text{PdS}\): C, 56.21; H, 3.46; N, 8.74; found: C, 55.94; H, 3.48; N, 8.40. Crystal structure is shown in the X-ray Crystallographic Analysis section.
To acetato palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12.8 mL) and benzene (12.8 mL) at 23 ºC is added 4-tert-butylphenylboronic acid (126 mg, 0.706 mmol, 1.10 equiv) and K₂CO₃ (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 ºC for 13 h, and the solvent is removed in vacuo. To the solid residue is added CHCl₃ (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl₃ (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na₂SO₄). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 3:2 (v/v) to afford 381 mg of the title compound as a yellow solid (85% yield).

TLC (hexane/EtOAc 1:1, v/v): Rₛ = 0.49; m.p.: 171 ºC (decomp.); ¹H-NMR (500 MHz, CDCl₃, 23 ºC): δ 9.00 (d, J = 5.0 Hz, 2H), 8.27 (dd, J = 5.5 Hz 1.5 Hz, 1H), 7.92 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.80–7.70 (m, 5H), 7.48 (d, J = 9.0 Hz, 2H), 7.38 (d, J = 8.5 Hz, 1H), 7.36–7.30 (m, 4H), 7.03 (dd, J = 8.0 Hz, 5.0 Hz, 1H), 6.81 (d, J = 9.0 Hz, 2H), 6.70 (d, J = 8.5 Hz, 2H), 1.19 (s, 9H); ¹³C-NMR (125 MHz, CDCl₃, 23 ºC): δ 154.0, 153.4, 150.5, 149.5, 147.8, 146.4, 144.6, 142.3, 137.9, 137.8, 136.4, 134.0, 130.4, 130.1, 128.5, 127.4, 126.9, 126.8, 125.1, 124.6, 124.4, 124.2, 122.4, 121.4, 34.1, 31.7; HRMS-FIA (m/z): [M + H]+ calc for C₃₄H₃₀N₄O₄PdS, 697.1095; found, 697.1082. Anal: calc for C₃₄H₃₀N₄O₄PdS: C, 58.58; H, 4.34; N, 8.04; found: C, 58.27; H, 4.37; N, 7.84.
mmol, 1.50 equiv). The reaction mixture is stirred at 23 ºC for 11 h, and the solvent is removed in vacuo. To the solid residue is added CHCl₃ (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl₃ (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na₂SO₄). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 1:1 (v/v) to afford 418 mg of the title compound as a yellow solid (91% yield).

TLC (hexane/EtOAc 3:7, v/v): Rᵣ = 0.79; m.p.: 180 ºC (decomp.); ¹H-NMR (500 MHz, CDCl₃, 23 ºC): δ 9.04 (d, J = 6.5 Hz, 2H), 8.32 (dd, J = 5.0 Hz, 2.0 Hz, 1H), 7.95 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.81–7.71 (m, 5H), 7.50–7.45 (m, 4H), 7.40 (d, J = 9.0 Hz, 1H), 7.38–7.29 (m, 6H), 7.24 (t, J = 7.5 Hz, 1H), 7.09–7.05 (m, 3H), 6.88 (d, J = 8.0 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃, 23 ºC): δ 154.6, 154.1, 153.4, 149.3, 147.8, 144.6, 142.2, 141.4, 138.1, 138.0, 136.5, 135.1, 130.5, 130.2, 128.9, 128.6, 127.6, 127.1, 127.0, 126.9, 126.8, 126.7, 125.6, 125.2, 124.7, 124.4, 122.4, 121.6; HRMS-FIA (m/z): [M + H]⁺ calcd for C₃₆H₂₆N₄O₄PdS, 717.0782; found, 717.0786. Anal: calcd for C₃₆H₂₆N₄O₄PdS: C, 60.30; H, 3.65; N, 7.82; found: C, 60.27; H, 3.65; N, 7.60.

Aryl palladium complex 4d

![Aryl palladium complex 4d](image)

To acetato palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12.8 mL) and benzene (12.8 mL) at 23 ºC is added 4-(hydroxymethyl)phenylboronic acid (133 mg, 0.706 mmol, 1.10 equiv) and K₂CO₃ (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 ºC for 11 h, and the solvent is removed in vacuo. To the solid residue is added CHCl₃ (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl₃ (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na₂SO₄). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 1:4 (v/v) to afford 344 mg of the title compound as a yellow solid (80% yield).

TLC (hexane/EtOAc 3:7, v/v): Rᵣ = 0.37; m.p.: 158 ºC (decomp.); ¹H-NMR (500 MHz, CDCl₃, 23 ºC): δ 8.99 (d, J = 6.5 Hz, 2H), 8.25 (dd, J = 5.5 Hz, 1.5 Hz, 1H), 7.94 (dd, J = 8.5Hz, 2.0 Hz, 1H), 7.80–7.69 (m, 4H), 7.47 (d, J = 9.0 Hz, 2H), 7.39 (d, J = 9.0 Hz, 1H), 7.36–7.27 (m, 4H), 7.04 (dd, J = 8.5 Hz, 6.5 Hz, 1H), 6.81 (m, 4H), 4.50 (d, J = 4.0 Hz, 2H), 1.49 (t, J = 4.0 Hz, 1H); ¹³C-NMR (125 MHz, CDCl₃, 23 ºC): δ 154.6, 153.9, 153.3, 149.3, 147.8, 144.5, 142.2, 138.0, 137.9, 136.5, 136.2, 134.8, 130.5, 130.2, 128.5, 127.5, 126.9, 126.8, 126.2, 125.2, 124.7, 124.4, 121.5, 122.4, 65.5; HRMS-FIA (m/z): [M + H]⁺ calcd for C₃₆H₂₆N₄O₅PdS, 719.0786; found, 719.0786. Anal: calcd for C₃₆H₂₆N₄O₅PdS: C, 60.30; H, 3.65; N, 7.82; found: C, 60.30; H, 3.65; N, 7.82.
Aryl palladium complex 4e

To acetato palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12.8 mL) and benzene (12.8 mL) at 23 °C is added 4-formylphenylboronic acid (133 mg, 0.706 mmol, 1.10 equiv) and K2CO3 (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 °C for 18 h, and the solvent is removed in vacuo. To the solid residue is added CHCl3 (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl3 (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na2SO4). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 1:1 (v/v) to afford 304 mg of the title compound as a yellow solid (71% yield).

TLC (hexane/EtOAc 3:7, v/v): Rf = 0.40; m.p.: 166 °C (decomp.); 1H-NMR (500 MHz, CDCl3, 23 °C): δ 9.77 (s, 1H), 8.97 (d, J = 6.0 Hz, 2H), 8.17 (dd, J = 6.5 Hz, 1.5 Hz, 1H), 7.98 (dd, J = 7.5 Hz, 1.5Hz, 1H), 7.84–7.79 (m, 2H), 7.61–7.71 (m, 3H), 7.48 (d, J = 8.0 Hz, 2H), 7.44–7.36 (m, 3H), 7.31–7.25 (m, 4H), 7.12 (d, J = 7.5 Hz, 2H), 7.07 (dd, J = 8.0 Hz, 5.5 Hz, 1H); 13C-NMR (125 MHz, CDCl3, 23 °C): δ 192.9, 169.1, 153.7, 148.9, 149.0, 144.4, 141.9, 138.4, 138.3, 136.5, 135.5, 133.2, 130.7, 130.4, 128.5, 127.7, 127.6, 126.9, 126.8, 125.4, 124.8, 124.4, 122.4, 121.7; HRMS-FIA (m/z): [M + H]+ calcd for C31H22N4O5PdS, 669.0419; found, 669.0426. Anal: calcd for C31H22N4O5PdS: C, 55.65; H, 3.31; N, 8.38; found: C, 55.43; H, 3.58; N, 8.09.
Aryl palladium complex 4f

To acetato palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12.8 mL) and benzene (12.8 mL) at 23 °C is added 4-aminocarbonylphenylboronic acid (116 mg, 0.706 mmol, 1.10 equiv) and K$_2$CO$_3$ (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 °C for 11 h, and the solvent is removed in vacuo. To the solid residue is added CHCl$_3$ (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl$_3$ (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na$_2$SO$_4$). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with EtOAc to afford 319 mg of the title compound as a yellow solid (73% yield).

TLC (EtOAc): $R_F = 0.21$; m.p.: 175 °C (decomp.); 1H-NMR (500 MHz, CDCl$_3$, 23 °C): δ 8.97 (d, $J = 5.5$ Hz, 2H), 8.19 (dd, $J = 6.5$ Hz, 1.5 Hz, 1H), 7.97 (dd, $J = 7.5$ Hz, 1.5Hz, 1H), 7.83–7.70 (m, 5H), 7.47 (d, $J = 7.0$ Hz, 2H), 7.43–7.30 (m, 3H), 7.28 (dd, $J = 9.0$ Hz, 1.5 Hz, 2H), 7.23 (d, $J = 8.5$ Hz, 2H), 7.06 (dd, $J = 8.5$ Hz, 5.5Hz, 1H), 6.89 (d, $J = 7.5$ Hz, 2H), 5.88 (br, 1H), 5.40 (br, 1H); 13CNMR (125 MHz, CDCl$_3$, 23 °C): δ 163.3, 153.8, 153.3, 149.0, 144.4, 143.1, 142.0, 138.3, 138.2, 136.5, 135.1, 130.6, 130.3, 129.0, 128.5, 127.6, 126.9, 126.8, 126.0, 125.5, 125.4, 124.8, 124.4, 122.4, 121.6; HRMS-FIA (m/z): [M + H]$^+$ calcd for C$_{31}$H$_{23}$N$_5$O$_5$PdS, 684.0528; found, 684.0537. Anal: calcd for C$_{31}$H$_{23}$N$_5$O$_5$PdS: C, 54.43; H, 3.39; N, 10.24; found: C, 54.43; H, 3.67; N, 9.95.

Aryl palladium complex 4g
To acetato palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12.8 mL) and benzene (12.8 mL) at 23 °C is added 4-hydroxyphenylboronic acid (97 mg, 0.706 mmol, 1.10 equiv) and K$_2$CO$_3$ (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 °C for 15 h, and the solvent is removed in vacuo. To the solid residue is added CHCl$_3$ (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl$_3$ (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na$_2$SO$_4$). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 2:3 (v/v) to afford 295 mg of the title compound as a yellow solid (70% yield).

TLC (hexane/EtOAc, 1:1 v/v): \(R_f = 0.17\); m.p.: 174 °C (decomp.); 1H-NMR (500 MHz, CDCl$_3$, 23 °C): \(\delta 8.99\) (d, \(J = 6.5\) Hz, 2H), 8.27 (dd, \(J = 5.0\) Hz, 1.5 Hz, 1H), 7.94 (dd, \(J = 7.5\) Hz, 1.5Hz, 1H), 7.79–7.68 (m, 5H), 7.47 (d, \(J = 9.0\) Hz, 2H), 7.40–7.27 (m, 5H), 7.04 (dd, \(J = 7.5\) Hz, 5.5 Hz, 1H), 6.60 (d, \(J = 8.0\) Hz, 2H), 6.38 (d, \(J = 8.0\) Hz, 2H), 4.40 (s, 1H); 13C-NMR (125 MHz, CDCl$_3$, 23 °C): \(\delta 154.1, 153.4, 152.7, 149.2, 147.8, 147.4, 144.6, 143.4, 142.2, 137.9, 136.4, 134.8, 130.5, 130.1, 128.5, 127.5, 127.0, 126.8, 125.1, 124.7, 124.3, 122.4, 121.4, 114.5\); HRMS-FIA (m/z): [M + H]$^+$ caleld for C$_{30}$H$_{22}$N$_4$O$_5$PdS, 657.0419; found, 657.0433. Anal: caleld for C$_{30}$H$_{22}$N$_4$O$_5$PdS: C, 54.84; H, 3.38; N, 8.53; found: C, 54.56; H, 3.53; N, 8.26.

Aryl palladium complex 4h

To acetato palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12.8 mL) and benzene (12.8 mL) at 23 °C is added 4-methoxyphenylboronic acid (107 mg, 0.706 mmol, 1.10 equiv) and K$_2$CO$_3$ (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 °C for 3.0 h, and the solvent is removed in vacuo. To the solid residue is added CHCl$_3$ (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl$_3$ (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na$_2$SO$_4$). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 1:1 (v/v) to afford 340 mg of the title compound as a yellow solid (79% yield).

TLC (hexane/EtOAc, 1:1 v/v): \(R_f = 0.17\); m.p.: 174 °C (decomp.); 1H-NMR (500 MHz, CDCl$_3$, 23 °C): \(\delta 8.99\) (d, \(J = 6.5\) Hz, 2H), 8.27 (dd, \(J = 5.0\) Hz, 1.5 Hz, 1H), 7.94 (dd, \(J = 7.5\) Hz, 1.5Hz, 1H), 7.79–7.68 (m, 5H), 7.47 (d, \(J = 9.0\) Hz, 2H), 7.40–7.27 (m, 5H), 7.04 (dd, \(J = 7.5\) Hz, 5.5 Hz, 1H), 6.60 (d, \(J = 8.0\) Hz, 2H), 6.38 (d, \(J = 8.0\) Hz, 2H), 4.40 (s, 1H); 13C-NMR (125 MHz, CDCl$_3$, 23 °C): \(\delta 154.1, 153.4, 152.7, 149.2, 147.8, 147.4, 144.6, 143.4, 142.2, 137.9, 136.4, 134.8, 130.5, 130.1, 128.5, 127.5, 127.0, 126.8, 125.1, 124.7, 124.3, 122.4, 121.4, 114.5\); HRMS-FIA (m/z): [M + H]$^+$ caleld for C$_{30}$H$_{22}$N$_4$O$_5$PdS, 657.0419; found, 657.0433. Anal: caleld for C$_{30}$H$_{22}$N$_4$O$_5$PdS: C, 54.84; H, 3.38; N, 8.53; found: C, 54.56; H, 3.53; N, 8.26.
149.3, 147.8, 144.6, 143.5, 142.3, 137.9, 137.9, 136.5, 134.7, 130.5, 128.6, 127.5, 127.0, 126.8, 125.1, 124.7, 124.3, 122.4, 121.5, 113.1, 55.1; HRMS-FIA (m/z): [M + H]⁺ calcd for C₃₁H₂₄N₄O₅PdS, 671.0575; found, 671.0598. Anal: calcd for C₃₁H₂₄N₄O₅PdS: C, 55.49; H, 3.61; N, 8.35; found: C, 55.71; H, 3.37; N, 8.12.

Aryl palladium complex 4i

To acetato palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12.8 mL) and benzene (12.8 mL) at 23 ºC is added 4-bromophenylboronic acid (142 mg, 0.706 mmol, 1.10 equiv) and K₂CO₃ (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 ºC for 3.5 h, and the solvent is removed in vacuo. To the solid residue is added CHCl₃ (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl₃ (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na₂SO₄). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 3:2 (v/v) to afford 300 mg of the title compound as a yellow solid (65% yield).

TLC (hexane/EtOAc, 1:1 v/v): Rₚ = 0.79; m.p.: 201 ºC (decomp); ¹H-NMR (500 MHz, CDCl₃, 23 ºC): δ 8.96 (d, J = 5.0 Hz, 2H), 8.22 (d, J = 5.0 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.82–7.68 (m, 5H), 7.47 (d, J = 9.0 Hz, 2H) 7.42–7.26 (m, 5H), 7.09 (dd, J = 7.5 Hz, 5.0 Hz, 1H), 6.92 (d, J = 8.0 Hz, 2H), 6.70 (d, J = 8.0 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃, 23 ºC): δ 154.0, 153.5, 153.3, 149.1, 147.9, 142.0, 138.2, 138.1, 136.5, 136.3, 130.6, 130.3, 129.9, 128.5, 127.6, 126.9, 126.8, 125.3, 124.8, 124.4, 122.8, 122.4, 121.7, 118.3; HRMS-FIA (m/z): [M + H]⁺ calcd for C₃₀H₂₁BrN₄O₄PdS, 718.9575; found, 718.9578. Anal: calcd for C₃₀H₂₁BrN₄O₄PdS: C, 50.05; H, 2.94; N, 7.78; found: C, 50.03; H, 2.91; N, 7.51.
Aryl palladium complex 4k

![Diagram of Aryl palladium complex 4k](image)

To acetato palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12.8 mL) and benzene (12.8 mL) at 23 °C is added 5-chloro-2-methylphenylboronic acid (120 mg, 0.706 mmol, 1.10 equiv) and K$_2$CO$_3$ (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 °C for 10 h, and the solvent is removed in vacuo. To the solid residue is added CHCl$_3$ (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl$_3$ (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na$_2$SO$_4$). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 3:2 (v/v) to afford 398 mg of the title compound as a yellow solid (90% yield, 1:1.3 atropisomeric mixture with respect to the palladium–carbon bond).

TLC (hexane/EtOAc, 1:1 v/v): $R_F = 0.37$; m.p.: 178 °C (decomp.); 1H-NMR, both rotamers (500 MHz, CDCl$_3$, 23 °C): δ 8.98 (d, $J = 5.5$ Hz), 8.91 (d, $J = 5.5$ Hz), 8.28 (d, $J = 5.0$ Hz), 7.96–7.90 (m), 7.81–7.66 (m), 7.55–7.46 (m), 7.40–7.28 (m), 7.08–6.98 (m), 6.81 (d, $J = 8.0$ Hz), 6.74 (dd, $J = 8.0$ Hz, 2.0 Hz), 6.62 (d, $J = 2.0$ Hz), 6.44 (d, $J = 8.0$ Hz), 2.99 (s), 1.69 (s); 13C-NMR, both rotamers (125 MHz, CDCl$_3$, 23 °C): δ 159.6, 159.1, 153.6, 153.4, 152.9, 152.8, 149.4, 147.9, 144.7, 144.6, 142.0, 141.8, 140.1, 139.1, 138.2, 138.1, 138.0, 136.5, 133.4, 132.8, 130.7, 130.6, 130.4, 130.3, 130.2, 129.9, 129.2, 129.0, 128.5, 128.4, 127.8, 127.3, 127.0, 126.8, 126.7, 125.4, 125.2, 125.0, 124.8, 124.5, 124.3, 123.9, 123.8, 122.5, 122.4, 121.6, 24.5, 24.2; HRMS-FIA (m/z): [M + H]$^+$ calcd for C$_{31}$H$_{23}$ClN$_4$O$_4$PdS, 689.0236; found, 689.0251. Anal: calcd for C$_{31}$H$_{23}$ClN$_4$O$_4$PdS: C, 54.00; H, 3.36; N, 8.13; found: C, 53.72; H, 3.10; N, 8.03.

Aryl palladium complex 4i

![Diagram of Aryl palladium complex 4i](image)
To acetato palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12.8 mL) and benzene (12.8 mL) at 23 ºC is added 4-(trifluoromethyl)phenylboronic acid (134 mg, 0.706 mmol, 1.10 equiv) and K2CO3 (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 ºC for 10 h, and the solvent is removed in vacuo. To the solid residue is added CHCl3 (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl3 (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na2SO4). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 3:2 (v/v) to afford 400 mg of the title compound as a yellow solid (88% yield).

TLC (hexane/EtOAc, 1:1 v/v): Rf = 0.43; m.p.: 171 ºC (decomp.); 1H-NMR (500 MHz, CDCl3, 23 ºC): δ 8.97 (d, J = 5.5 Hz, 2H), 8.18 (dd, J = 4.5 Hz, 1.5 Hz, 1H), 7.97 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.82–7.70 (m, 5H), 7.48 (d, J = 7.0 Hz, 2H), 7.42–7.26 (m, 5H), 7.09 (dd, J = 8.0 Hz, 5.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H); 13C-NMR (125 MHz, CDCl3, 23 ºC): δ 161.3, 153.9, 153.3, 149.0, 147.9, 144.4, 141.9, 138.3, 138.2, 136.5, 135.0, 130.6, 129.5 (q, J = 238 Hz), 127.6, 126.9, 126.8, 126.2 (q, J = 23 Hz), 125.4, 124.8, 124.4, 123.9, 123.2, 122.4, 121.7; 19F-NMR (375 MHz, CDCl3, 23 ºC): 6 –62.5; HRMS-FIA (m/z): [M + H]+ calcd for C31H21F3N4O4PdS, 709.0343; found, 709.0321. Anal: calcd for C31H21F3N4O4PdS: C, 52.51; H, 2.99; N, 7.90; found: C, 52.29; H, 2.98; N, 7.78.

Aryl palladium complex 4m

![Complex 4m](image)

To acetato palladium complex 1 (400 mg, 0.642 mmol, 1.00 equiv) in MeOH (12.8 mL) and benzene (12.8 mL) at 23 ºC is added 1-Boc-indole-5-boronic acid pinacol ester (242 mg, 0.706 mmol, 1.10 equiv) and K2CO3 (133 mg, 0.963 mmol, 1.50 equiv). The reaction mixture is stirred at 23 ºC for 6.0 h. After filtered through a plug of celite, the solvent is removed in vacuo. To the solid residue is added CHCl3 (5 mL) and water (5 mL). The phases are separated and the aqueous phase is extracted with CHCl3 (3 × 5 mL). The combined organic phases are washed with brine (5 mL) and dried (Na2SO4). The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 1:1 (v/v) to afford 380 mg of the title compound as a yellow solid (76% yield).
TLC (hexane/EtOAc, 3:7 v/v): RF = 0.26; m.p.: 175 °C (decomp.); 1H-NMR (500 MHz, CDCl3, 23 ºC): δ 9.01 (d, J = 5.0 Hz, 2H), 8.28 (dd, J = 5.0 Hz, 1.5 Hz, 1H), 7.91 (dd, J = 8.5 Hz, 1.5Hz, 1H), 7.80–7.70 (m, 5H), 7.61 (br, 1H) 7.47 (d, J = 9.0 Hz, 2H), 7.38 (d, J = 9.0 Hz, 2H), 7.33–7.28 (m, 4H), 7.00–6.95 (m, 2H), 6.81 (d, J = 8.0 Hz, 1H), 6.25 (d, J = 2.0 Hz, 1H), 1.60 (s, 9H); 13C-NMR (125 MHz, CDCl 3, 23 ºC): δ 153.9, 153.4, 150.1, 149.3, 147.8,147.7, 144.6, 142.3, 137.9, 136.5, 130.5, 130.0, 128.6, 127.5, 127.0, 126.8, 126.0, 125.1, 125.0, 124.7, 124.6, 124.4, 122.4, 121.5, 119.9, 113.8, 106.8, 83.4, 28.4; HRMS-FIA (m/z): [M + Na]+ calcd for C37H31N5O6PdS, 802.0922; found, 802.0895. Anal: calcd for C37H31N5O6PdS: C, 56.96; H, 4.01; N, 8.98; found: C, 56.84; H, 3.94; N, 8.65.

Fluorobenzene 5a

To 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (2), (4.3 mg, 0.012 mmol, 1.2 equiv) in acetonitrile-d-3 (0.3 mL) at 50 ºC is added aryl palladium complex 4a (6.4 mg, 0.010 mmol, 1.0 equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 ºC for 20min. The reaction mixture is cooled to 23 ºC, and the yield is determined by comparing integration of the 19F-NMR (375 MHz, acetonitrile-d-3, 23 ºC) resonance of fluorobenzene (–115.3 ppm) and that of 3-nitrofluorobenzene (–112.0 ppm, 2.00 μL, 0.0188 mmol). (81% yield). The 19F-NMR chemical shift of the product corresponds to that of authentic sample purchased from Aldrich.

1-tert-Butyl-4-fluorobenzene 5b

To 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (2) (4.3 mg, 0.012 mmol, 1.2 equiv) in acetonitrile-d-3 (0.3 mL) at 50 ºC is added aryl palladium complex 4b (7.0 mg, 0.010 mmol, 1.0
equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 °C for 20 min. The reaction mixture is cooled to 23 °C, and the yield is determined by comparing integration of the $^{19}\text{F-NMR}$ (375 MHz, acetonitrile-d_3, 23 °C) resonance of 1-tert-butyl-4-fluorobenzene (−120.7 ppm) and that of 3-nitrofluorobenzene (−112.0 ppm, 2.00 μL, 0.0188 mmol). (79% yield). The $^{19}\text{F-NMR}$ chemical shift of the product corresponds to that of reported data.9

4-Fluorobiphenyl 5c

![Chemical structure of 4-Fluorobiphenyl 5c](image)

To 1-Chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(tetrafluoroborate) (2) (85.0 mg, 0.240 mmol, 1.20 equiv) in acetonitrile (6.0 mL) at 50 °C is added aryl palladium complex 4c (143 mg, 0.200 mmol, 1.00 equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 °C for 20 min. After cooled to 23 °C, to the reaction mixture is added pyridine (8.1 μL, 0.10 mmol, 1.0 equiv), and filtered through a plug of celite. The filtrate is concentrated in vacuo and the residue is purified by chromatography on silica gel eluting with hexane/EtOAc 99:1 (v/v) to afford 24.8 mg of the title compound as a white solid (72% yield).

TLC (hexane/EtOAc, 19:1 v/v): $R_f = 0.60$; $^1\text{H-NMR}$ (500 MHz, CDCl$_3$, 23 °C): δ 7.60–7.54 (m, 4H), 7.47 (dd, $J = 7.5$ Hz, 7.0 Hz, 2H), 7.36 (t, $J = 7.5$ Hz, 1H), 7.14 (dd, $J = 8.0$ Hz, 7.5 Hz, 2H); $^{13}\text{C-NMR}$ (125 MHz, CDCl$_3$, 23 °C): δ 162.7 (d, $J = 244$ Hz), 140.5, 137.6, 129.0, 128.9 (d, $J = 8.5$ Hz), 127.5, 127.3, 115.8 (d, $J = 21$ Hz); $^{19}\text{F-NMR}$ (375 MHz, CDCl$_3$, 23 °C): δ −116.2. These spectroscopic data correspond to those of authentic sample purchased from Alfa Aesar.

4-Fluorobenzylalcohol 5d

To 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (2) (42.5 mg, 0.120 mmol, 1.20 equiv) in acetonitrile (3.0 mL) at 50 °C is added aryl palladium complex 4d (67.1 mg, 0.100 mmol, 1.00 equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 °C for 20 min. After cooled to 23 °C, to the reaction mixture is added pyridine (8.1 μL, 0.10 mmol, 1.0 equiv). After concentrated in vacuo, the residue is purified by preparative TLC eluting with pentane/Et₂O 7:3 (v/v) to afford 8.8 mg of the title compound as colorless oil (70% yield).

TLC (hexane/EtOAc 7:3 v/v): R_f = 0.61; \(^1\)H-NMR (500 MHz, CDCl₃, 23 °C): δ 7.29–7.25 (m, 2H), 7.05–7.00 (dd, J = 8.0 Hz, 7.5 Hz, 2H), 4.55 (s, 2H), 3.10 (br, 1H); \(^1\)³C-NMR (125 MHz, CDCl₃, 23 °C): δ 162.5 (d, J = 243 Hz), 136.8, 129.0 (d, J = 8.3 Hz), 115.6 (d, J = 21 Hz), 64.5; \(^1\)⁹F-NMR (375 MHz, CDCl₃, 23 °C): δ –115.4. These spectroscopic data correspond to those of authentic sample purchased from Alfa Aesar.

4-Fluorobenzaldehyde 5e

To 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (2) (42.5 mg, 0.120 mmol, 1.20 equiv) in acetonitrile (3.0 mL) at 50 °C is added aryl palladium complex 4e (66.9 mg, 0.100 mmol, 1.00 equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 °C for 20 min. After cooled to 23 °C, to the reaction mixture is added pyridine (8.1 μL, 0.10 mmol, 1.0 equiv). After concentrated in vacuo, the residue is purified by preparative TLC eluting with pentane/Et₂O 7:3 (v/v) to afford 8.8 mg of the title compound as colorless oil (61% yield).

TLC (hexane/EtOAc, 7:3 v/v): R_f = 0.77; \(^1\)H-NMR (500 MHz, CDCl₃ 23 °C): δ 9.95 (s, 1H), 7.92–7.88 (m,
2H), 7.22–7.18 (dd, J = 8.0 Hz, 7.5 Hz, 2H); 13C-NMR (125 MHz, CDCl$_3$, 23 ºC): δ 190.7, 166.7 (d, J = 255 Hz), 133.2, 132.5 (d, J = 9.9 Hz), 116.6 (d, J = 22 Hz); 19F-NMR (375 MHz, CDCl$_3$, 23 ºC): δ –102.9. These spectroscopic data correspond to those of authentic sample purchased from Aldrich.

4-Fluorobenzamide 5f

![Image of 4-Fluorobenzamide 5f]

To 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (2) (42.5 mg, 0.120 mmol, 1.20 equiv) in acetonitrile (3.0 mL) at 50 ºC is added aryl palladium complex 4f (68.4 mg, 0.100 mmol, 1.00 equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 ºC for 20 min. After cooled to 23 ºC, to the reaction mixture is added pyridine (8.1 μL, 0.10 mmol, 1.0 equiv). After concentrated in vacuo, the residue is purified by preparative TLC eluting with EtOAc to afford 10.3 mg of the title compound as colorless oil (74% yield).

TLC (EtOAc): R_f = 0.40; 1H-NMR (500 MHz, DMSO-d$_6$, 23 ºC): δ 8.02 (br, 1H), 7.95 (dd, J = 9.0 Hz, 6.0Hz, 2H), 7.42 (br, 1H), 7.26 (dd, J = 7.5 Hz, 7.0 Hz, 2H); 13C-NMR (125 MHz, DMSO-d$_6$, 23 ºC): δ 167.6, 164.6 (d, J = 247 Hz), 131.4, 130.8 (d, J = 14 Hz), 115.8 (d, J = 21 Hz); 19F-NMR (375 MHz, DMSO-d$_6$, 23 ºC): δ –110.0. These spectroscopic data correspond to those of authentic sample purchased from Alfa Aesar.

4-Fluorophenol 5g

![Image of 4-Fluorophenol 5g]

To 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (2) (85.0 mg, 0.240 mmol, 1.20 equiv) in acetone (6.0 mL) at 50 ºC is added aryl palladium complex 4g (131 mg, 0.200 mmol,
1.00 equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 °C for 20 min. After cooled to 23 °C, to the reaction mixture is added pyridine (16 μL, 0.20 mmol, 1.0 equiv). After concentrated in vacuo, the residue is purified by preparative TLC eluting with Hexane/EtOAc 7:3 (v/v) to afford 6.9 mg of the title compound as a white solid (31% yield).

TLC (hexane/EtOAc, 7:3 v/v): $R_f = 0.58$; 1H-NMR (500 MHz, CDCl$_3$, 23 °C): δ 6.95–6.95 (dd, $J = 8.0$ Hz, 7.5 Hz, 2H), 6.80–6.76 (m, 2H), 5.41 (s, 1H); 13C-NMR (125 MHz, CDCl$_3$, 23 °C): δ 157.6 (d, $J = 237$ Hz), 151.5, 116.5 (d, $J = 8.0$ Hz), 116.3 (d, $J = 21$ Hz); 19F-NMR (375 MHz, CDCl$_3$, 23 °C): δ –124.3. These spectroscopic data correspond to those of authentic sample purchased from Aldrich.

4-Fluoroanisole 5h

To 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (2) (85.0 mg, 0.240 mmol, 1.20 equiv) in acetone (6.0 mL) at 50 °C is added aryl palladium complex 4h (134 mg, 0.200 mmol, 1.00 equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 °C for 20 min. After cooled to 23 °C, to the reaction mixture is added pyridine (16 μL, 0.20 mmol, 1.0 equiv). After concentrated in vacuo, the residue is purified by preparative TLC eluting with pentane/Et$_2$O 9:1 (v/v) to afford 11.6 mg of the title compound as colorless oil (46% yield).

TLC (hexane/EtOAc, 9:1 v/v): $R_f = 0.55$; 1H-NMR (500 MHz, CDCl$_3$, 23 °C): δ 7.01–6.95 (m, 2H), 6.87–6.81 (m, 2H), 3.79 (s, 3H); 13C-NMR (125 MHz, CDCl$_3$, 23 °C): δ 157.4 (d, $J = 247$ Hz), 155.9, 116.0 (d, $J = 23$ Hz), 115.0 (d, $J = 7.7$ Hz), 56.0; 19F-NMR (375 MHz, CDCl$_3$, 23 °C): δ –124.8. These spectroscopic data correspond to those of authentic sample purchased from Alfa Aesar.
1-Bromo-4-fluorobenzene 5i

To 1-Chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(tetrafluoroborate) (2) (42.5 mg, 0.120 mmol, 1.20 equiv) in acetonitrile (3.0 mL) at 50 °C is added aryl palladium complex 4i (72.0 mg, 0.100 mmol, 1.00 equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 °C for 20 min. After cooled to 23 °C, to the reaction mixture is added pyridine (8.1 μL, 0.10 mmol, 1.0 equiv). After concentrated in vacuo, the residue is purified by preparative TLC eluting with pentane/Et2O 19:1 (v/v) to afford 12.8 mg of the title compound as colorless oil (73% yield).

TLC (hexane/EtOAc, 19:1 v/v): \(R_f = 0.70 \); \(^1\)H-NMR (500 MHz, CDCl3, 23 ºC): δ 7.47–7.42 (m, 2H), 6.98–6.92 (m, 2H); \(^{13}\)C-NMR (125 MHz, CDCl3, 23 ºC): δ 162.1 (d, \(J = 245 \) Hz), 133.2, (d, \(J = 8.5 \) Hz), 117.5 (d, \(J = 23 \) Hz), 116.8; \(^{19}\)F-NMR (375 MHz, CDCl3, 23 ºC): δ –115.7. These spectroscopic data correspond to those of authentic sample purchased from Alfa Aesar.

4-Chloro-2-fluorotoluene 5k

To 1-Chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(tetrafluoroborate) (2) (42.5 mg, 0.120 mmol, 1.20 equiv) in acetonitrile (3.0 mL) at 50 ºC is added aryl palladium complex 4k (68.9 mg, 0.100 mmol, 1.00 equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 ºC for 20 min. After cooled to 23 ºC, to the reaction mixture is added pyridine (8.1 μL, 0.10 mmol, 1.0 equiv). After concentrated in vacuo, the residue is purified by preparative TLC eluting with pentane/Et2O 9:1 (v/v) to afford 11.9 mg of the title compound as colorless oil (82% yield).

TLC (hexane/EtOAc, 9:1 v/v): \(R_f = 0.72 \); \(^1\)H-NMR (500 MHz, CDCl3, 23 ºC): δ 7.13–7.08 (dd, \(J = 7.5 \) Hz, 7.0 Hz, 2H), 7.05–7.01 (m, 2H); \(^{13}\)C-NMR (125 MHz, CDCl3, 23 ºC): δ 161.3 (d, \(J = 246 \) Hz), 132.3, 132.2 (d,
$J = 5.9$ Hz), 124.3, 123.6 (d, $J = 17$ Hz), 116.0 (d, $J = 26$ Hz), 14.4; 19F-NMR (375 MHz, CDCl$_3$, 23 ºC): δ – 115.1; These spectroscopic data correspond to those of authentic sample purchased from Alfa Aesar.

4-Fluorobenzotrifluoride 5l

![Diagram of reaction](image)

To 1-chloromethyl-4-fluoro-1,4-diaziobicyclo[2.2.2]octane bis(tetrafluoroborate) (2) (4.3 mg, 0.012 mmol, 1.2 equiv) in acetonitrile-d$_3$ (0.3 mL) at 50 ºC is added aryl palladium complex 4l (6.4 mg, 0.010 mmol, 1.0 equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 ºC for 20 min. The reaction mixture is cooled to 23 ºC, and the yield is determined by comparing integration of the 19F-NMR (375 MHz, acetonitrile-d$_3$, 23 ºC) resonance of 4-fluorobenzotrifluoride (–109.4 ppm) and that of 3-nitrofluorobenzene (–112.0 ppm, 2.00 μL, 0.0188 mmol). (54% yield). The 19F-NMR chemical shift of the product corresponds to that of authentic sample purchased from Alfa Aesar.

N-Boc-5-fluoroindole 5m

![Diagram of reaction](image)

To 1-Chloromethyl-4-fluoro-1,4-diaziobicyclo[2.2.2]octane bis(tetrafluoroborate) (2) (42.5 mg, 0.120 mmol, 1.20 equiv) in acetone (3.0 mL) at 50 ºC is added aryl palladium complex 4m (78.0 mg, 0.100 mmol, 1.00 equiv) as a solid in 10 portions over 10 min. The reaction mixture is stirred at 50 ºC for 20 min. After cooled to 23 ºC, to the reaction mixture is added pyridine (8.1 μL, 0.10 mmol, 1.0 equiv). After concentrated in vacuo, the residue is purified by preparative TLC eluting with hexane/EtOAc 7:3 (v/v) to afford 14.1 mg of the title compound as colorless oil (60% yield).

TLC (hexane/EtOAc 7:3 v/v): $R_f = 0.753$; 1H-NMR (500 MHz, CDCl$_3$, 23 ºC): δ 8.08 (br, 1H), 7.62 (d, $J =$
4.0 Hz, 1H), 7.20 (dd, J = 6.5 Hz, J = 2.0 Hz, 1H), 7.03 (ddd, J = 7.0 Hz, 6.5 Hz, 2.0 Hz, 1H), 6.52 (d, J = 4.0 Hz, 1H), 1.68 (s, 9H); 13C-NMR (125 MHz, CDCl₃, 23 ºC): δ 159.5 (d, J = 238 Hz), 149.7, 131.8, 131.6 (d, J = 10 Hz), 127.7, 116.3 (d, J = 9.1 Hz), 112.2 (d, J = 24 Hz), 107.2, 106.5 (d, J = 24 Hz), 84.1, 28.4; 19F-NMR (375 MHz, CDCl₃, 23 ºC): δ –121.7. These spectroscopic data correspond to those of authentic sample independently synthesized from 5-fluoroinodole and Boc₂O.

Bispyridine palladium tetrafluoroborate salt 8

![Chemical Structure of Bispyridine Palladium Tetrafluoroborate Salt 8](image)

To chloro palladium complex 7 (59.9 mg, 0.100 mmol, 1.00 equiv) in acetonitrile (1.0mL) at 23 ºC is added AgBF₄ (38.8 mg, 0.200 mmol, 2.00 equiv). The suspension is stirred at 23 ºC for 1.0 hour and to the suspension is added pyridine (8.1 μL, 0.10 mmol, 1.0 equiv). The suspension is filtered through a plug of celite and the filtrate is concentrated in vacuo to afford 67.9 mg of the title compound as an orange solid (67.9 mg, 93% yield).

1H-NMR (500 MHz, acetone-d₆, 23 ºC): δ 9.29 (d, J = 5.5 Hz, 2H), 8.99 (d, J = 5.5 Hz, 2H), 8.51 (dd, J = 5.5 Hz, 1.5 Hz, 1H), 8.44 (dd, J = 7.5 Hz, 1.0 Hz, 1H), 8.15–8.08 (m, 3H), 8.01 (dd, J = 8.0 Hz, 7.5 Hz, 1H), 7.89 (t, J = 7.5 Hz, 1H), 7.80–7.70 (m, 4H), 7.66 (d, J = 9.0 Hz, 2H), 7.59–7.52 (m, 4H), 7.48 (dd, J = 8.0 Hz, 5.5 Hz, 1H); 13C-NMR (125 MHz, CDCl₃, 23 ºC): δ 152.6, 152.4, 152.3, 152.2, 152.9, 152.8, 148.7, 147.2, 141.4, 140.8, 140.7, 140.6, 140.5, 140.3, 140.2, 137.7, 136.5, 130.8, 130.6, 130.3, 129.2, 128.8, 127.9, 127.8, 127.4, 127.2, 126.9, 126.8, 126.7, 126.5, 125.2, 124.9, 123.9, 123.8, 123.1, 122.9, 118.4. The complex 13C spectrum is presumably due to pyridine exchange with the NMR solvent acetone. 19F-NMR (375 MHz, acetone-d₆, 23 ºC): δ –151.5; HRMS-FIA (m/z): [M – C₅H₅N + C₂H₃N – BF₄]⁺ calcd for C₃₁H₂₄N₄O₅PdS, 604.0265; found, 604.0228.
X-ray Crystallographic Analysis

Figure S1.: acetato palladium complex 1 (CCDC 67599)

The x-ray structure of acetato palladium complex 1 with hydrogens and with the atom labeling scheme employed. The nonhydrogen atoms are depicted with 50% probability ellipsoids.
Table S2.: Crystal data and structure refinement for acetato palladium complex 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>CCDC 675999 = [Pd(C₅H₅N)(C₂H₃O₂)(C₁₀H₁₂N₃O₄S)]</td>
</tr>
<tr>
<td>Formula</td>
<td>C₂₆H₂₀N₄O₆PdS</td>
</tr>
<tr>
<td>Formula weight</td>
<td>622.92</td>
</tr>
<tr>
<td>Temperature</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>PĪ (No. 2)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.1803(2) Å, b = 11.3199(2) Å, c = 12.8456(2) Å</td>
</tr>
<tr>
<td></td>
<td>α = 67.735(1)°, β = 87.215(1)°, γ = 75.798(1)°</td>
</tr>
<tr>
<td>Volume</td>
<td>1196.16(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.730 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.916 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>628</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.175 x 0.150 x 0.025 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.72 to 27.50°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-11≤h≤11, -14≤k≤14, -16≤l≤16</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>17370</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>5486 [R(int) = 0.0586]</td>
</tr>
<tr>
<td>Completeness to theta = 27.50°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Numerical</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9775 and 0.8562</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>5486 / 0 / 344</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.030</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R₁ = 0.0376, wR₂ = 0.0859</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R₁ = 0.0518, wR₂ = 0.0935</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.525 and -0.543 e.Å⁻³</td>
</tr>
</tbody>
</table>
Figure S2.: aryl palladium complex 4a (CCDC 676000)

The x-ray structure of aryl palladium complex 4a with hydrogens and with the atom labeling scheme employed. The nonhydrogen atoms are depicted with 50% probability ellipsoids.
Table S3.: Crystal data and structure refinement for aryl palladium complex 4a.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>CCDC 676000 = [Pd(C₅H₅N)(C₆H₅)(C₁₀H₁₂N₃O₄S)]</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C₃₀H₂₂N₄O₄PdS</td>
</tr>
<tr>
<td>Formula weight</td>
<td>640.98</td>
</tr>
<tr>
<td>Temperature</td>
<td>193(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁2₁2₁ (No. 19)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.5439(2) Å, α= 90°, b = 13.8697(2) Å, β= 90°, c = 19.5047(3) Å, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>2581.86(8) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.649 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.846 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1296</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.125 x 0.075 x 0.050 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.80 to 27.50°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-12<=h<=12, -18<=k<=18, -25<=l<=25</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>67549</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>5932 [R(int) = 0.1052]</td>
</tr>
<tr>
<td>Completeness to theta = 27.50°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9589 and 0.9016</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>5932 / 0 / 361</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.050</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R₁ = 0.0329, wR₂ = 0.0657</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R₁ = 0.0427, wR₂ = 0.0698</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>-0.03(2)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.488 and -0.576 e.Å⁻³</td>
</tr>
</tbody>
</table>
Spectroscopic Data