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Abstract
Background: Obesity is associated with insulin resistance that can often be improved by caloric
restriction and weight reduction. Although many physiological changes accompanying insulin resistance
and its treatment have been characterized, the genetic mechanisms linking obesity to insulin resistance are
largely unknown. We used DNA microarrys and RT-PCR to investigate significant changes in hepatic gene
transcription in insulin resistant, diet-induced obese (DIO)-C57/BL/6J mice and DIO-C57/BL/6J mice
fasted for 48 hours, whose weights returned to baseline levels during these conditions.

Results: Transcriptional profiling of hepatic mRNA revealed over 1900 genes that were significantly
perturbed between control, DIO, and fasting/weight reduced DIO mice. From this set, our bioinformatics
analysis identified 41 genes that rigorously discriminate these groups of mice. These genes are associated
with molecular pathways involved in signal transduction, and protein metabolism and secretion. Of
particular interest are genes that participate in pathways responsible for modulating insulin sensitivity. DIO
altered expression of genes in directions that would be anticipated to antagonize insulin sensitivity, while
fasting/ weight reduction partially or completely normalized their levels. Among these discriminatory
genes, Sh3kbp1 and RGS3, may have special significance. Sh3kbp1, an endogenous inhibitor of PI-3-kinase,
was upregulated by high-fat feeding, but normalized to control levels by fasting/weight reduction. Because
insulin signaling occurs partially through PI-3-kinase, increased expression of Sh3kbp1 by DIO mice may
contribute to hepatic insulin resistance via inhibition of PI-3-kinase. RGS3, a suppressor of G-protein
coupled receptor generation of cAMP, was repressed by high-fat feeding, but partially normalized by
fasting/weight reduction. Decreased expression of RGS3 may augment levels of cAMP and thereby
contribute to increased, cAMP-induced, hepatic glucose output via phosphoenolpyruvate carboxykinase
(PCK1), whose mRNA levels were also elevated.

Conclusion: These findings demonstrate that hepatocytes respond to DIO and weight reduction by
controlling gene transcription in a variety of important molecular pathways. Future studies that
characterize the physiological significance of the identified genes in modulating energy homeostasis could
provide a better understanding of the mechanisms linking DIO with insulin resistance.
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Background
Obesity is a growing concern in the industrialized world.
It is estimated that over 61% of adult Americans are over-
weight or obese [1] and an alarming number of children
and adolescents are following suit [2]. Of primary concern
are the associated complications stemming from obesity's
growing prevalence, among which type 2 diabetes is
reaching epidemic proportions.

The aetiology of type 2 diabetes is complex because of its
heterogeneous origins that result in the commonly
observed hyperglycemia and hyperinsulinemia, which are
characteristic of insulin resistance. While an enormous
number of investigations have resulted in identifying
some of the relevant molecular pathways, particularly in
muscle and adipose tissue, more research is required to
fully understand genetic susceptibility to type 2 diabetes
and insulin resistance.

In the liver, hepatic glucose output (HGO) increases dur-
ing insulin resistance and several key molecules contribut-
ing to this phenotype have been widely studied [3-6].
Despite these extensive efforts, the genes identified thus
far do not alone account for all of the variability in HGO.
Further insight may be obtained by conducting genome
wide transcriptional studies during diet induced obesity
(DIO) and its associated insulin resistant physiological
state. This approach is a critical step towards further defin-
ing the molecular processes that regulate the phenotype
and thereby augment the discovery of new potential ther-
apeutic targets.

C57/BL/6J mice fed a high-fat diet become obese, hyperg-
lycemic, and hyperinsulinemic, reflecting an insulin
resistant metabolic state [7-11] that resembles the human
condition. Although it has been demonstrated that short-
term caloric restriction can improve insulin resistance
[12], the regulatory pathways that control hepatic metab-
olism during DIO and associated insulin resistance, and
the improvement of insulin resistance with caloric restric-
tion, are the focus of intense research efforts. The molecu-
lar mechanisms underlying these pathways rely upon
alterations in gene transcription [13], which can be mon-
itored using DNA microarrays [14,15].

To investigate hepatic gene regulation in response to DIO
and insulin resistance, whole genome microarrays con-
taining 17,280 gene probes were used to examine tran-
scription in two groups of C57/BL/6J mice : 1) the
"control mice" received a normal diet for 10 weeks, 2) the
"high-fat mice" received a high-fat diet for 10 weeks. In
addition, to assess hepatic gene regulation in response to
caloric restriction, which is a commonly recommended
treatment for DIO and insulin resistance, a third group of
mice was used, the "fasted/ weight reduced mice", which

was fed the same high-fat diet for ten weeks followed
immediately by 48 hours of fasting, returning their
weights to baseline levels prior to tissue harvest. Fasting/
weight reduction data provides further differentiation
among genes that not only respond to DIO and insulin
resistance, but are also normalized by caloric restriction.

An extensive bioinformatics analysis led to the identifica-
tion of 41 discriminatory genes participating in key
molecular pathways in DIO, insulin resistance, and fast-
ing/ weight reduction. The implicated pathways involve
signal transduction and protein metabolism and secre-
tion. In addition, the 41 genes identified can accurately
classify the three groups of mice ("control", "high-fat",
and "fasted/ weight reduce"), and importantly, they repre-
sent a set of candidate genes that may influence hepatic
function during periods of insulin resistance and
sensitivity.

Methods
Animals
Three to five week old C57/BL/6J mice were obtained
from Jackson Laboratories (Bar Harbor, ME). All animals
were allotted a seven day acclimation period with access
to food and water ad libitum, and were maintained at
25°C with a 12-hour light/ dark cycle (lights on from
06:30–18:30) for the duration of the study. A normal
chow (Purina Rodent Chow; Harlan Teklad #5008; 6.5%
fat, 49% carbohydrate, 23% protein, 3.5 kcal/g) and high-
fat diet (Harlan Teklad #TD88137, 42.16% fat, 42.81%
carbohydrate, 15.02% protein, 4.53 kcal/g) were fed to
respective mice, as outlined below.

This report explored alterations in hepatic gene mRNA
levels in C57/BL/6J mice fed either a control or high-fat
diet for 10 weeks, as well as alterations in mRNA levels of
C57/BL/6J mice fasted for 48 hours following 10 weeks of
high-fat feeding. Fasted animals were allowed access to
water during the fasting period. All animals were sacri-
ficed by CO2 asphyxiation, followed by immediate collec-
tion of liver tissue, which were stored at -80°C as
previously described [16].

The control group consisted of C57/BL/6J mice fed nor-
mal chow diet for 10 weeks. The experimental group con-
sisted of C57/BL/6J mice fed a high-fat diet for 10 weeks
(n = 9/group). The ten week high-fat dietary treatment has
been demonstrated to be long enough for C57/BL/6J mice
to develop insulin resistance and a condition that resem-
bles type 2 diabetes [7,8]. Two days before tissue harvest,
the C57/BL/6J mice on the high-fat diet were divided into
two groups, with one group remaining on the high-fat diet
(n = 5; to be used in the first study) and one group fasting
for the final 48 hours (n = 4; to be used in the second
study). Mouse weights were recorded two days prior to,
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and on the day of tissue harvest. All animals were handled
in accordance with the principles and guidelines estab-
lished by the National Institutes of Health. The protocol
was approved by the Institutional Review Board at Beth
Israel Deaconess Medical Center, Boston, MA.

Preparation of total RNA and cDNA for microarray 
hybridization
Total RNA was purified from liver tissue samples using
STAT-60 (Tel-Test, Inc., Friendswood, TX) according to the
manufacturer's instructions, and stored at -80°C. Labeled
control cDNA was made from Total RNA control samples
(Universal Mouse Reference RNA, catalog #740100, Strat-
agene) using Cy3 dCTP (Perkin-Elmer), and labeled liver
cDNA was made from total RNA experimental samples
using Cy5 dCTP (Perkin-Elmer) during reverse transcrip-
tion, as described previously [17].

Microarrays were prepared using GAPS glass slides (Corn-
ing) and a Virtek arrayer (Bio-Rad). Arrays contained
17,280 features, printed from a synthesized oligonucle-
otide mouse library (Operon) as described previously
[17].

RT-PCR analysis of IL6st, PTP4a2, G6P, PCK1, and malic 
enzyme
A two-step RT-PCR protocol was performed to confirm
the mRNA levels of several genes. In this procedure the
cDNA synthesis was performed as detailed previously [17]
except the Cy-labeled nucleotides were replaced with
unlabeled nucleotides such that all dNTPs were at the
same final concentration during the reaction. PCR was
conducted in 94-well plates using the iQ SYBR Green
Supermix Kit (Bio-Rad), according to the manufacturer's
instructions on an iCycler RT-PCR machine (Bio-Rad).
Briey, 1 µL of the final, diluted cDNA template was mixed
with 19 µL of RNase free water, 25 µL of Bio-Rad RT-PCR
Supermix (Bio-Rad), 2 µL of sense and antisense primers,
and 1 µL of 12.5 mM dNTPs. The final primer concentra-
tion was 0.25 µM. The PCR cycle used a single three
minute hot-start at 95°C, followed by 50 cycles of 30 sec-
onds at 95°C, one minute at 60°C, and two minutes at
72°C during which time the reaction fluorescence was
measured. Each mouse sample was measured in either
triplicate or quadruplicate. The sense and antisense
primer sequences were: for interleukin 6 signal transducer
IL6st 5'-GCGGCTCGAACTTCACTGC-3', and 5'-CACGAT-
GTAGCTGGCATTCACG-3'; for protein tyrosine phos-
phatase 4a2 PTP4a2 5'-TTTCTGCTGCGGAACATTTCAAG-
3', and 5'-GCGTGCGTGTGTGAGTGTG-3'; for regulator
of g-protein signalling 3 RGS3 5'-GCACATCCCGCATTC-
CAGTTAC-3', and 5'-AGGGAACACCAGGACTTTAGGG-
3'; for glucose-6-phosphatase G6P 5'-GTGATTGCTGAC-
CTGAGGAACG-3', and 5'-TGCCACCCAGAGGAGATT-
GATG-3'; for phosphoenolpyruvate carboxykinase PCK1

5'-CAGAGAGACACAGTGCCCATCC-3', and 5'-AAGTC-
CTCTTCCGACATCCAGC-3'; for malic enzyme 5'-GCCA-
GAGGATGTCGTCAAGG-3', and 5'-
ATTACAGCCAAGGTCTCCCAAG-3', respectively. These
primers each gave specific fragments of the correct length
when viewed upon a 4% agarose gel (data not shown). As
an internal control β-Actin mRNA levels were also meas-
ured. The sense and antisense sequences were 5'-
AATAAGTGGTTACAGGAAGTC-3' and 5'-ATGAAGTAT-
TAAGGCGGAAG-3', respectively.

Gene specific standards were developed by amplifying the
entire mRNA coding sequence of each gene by PCR, gel
purifying the resulting band, and then diluting it to con-
centrations from 104 µg/µL to 10 9 µg/µL. The R2 value of
the standard curve, relating the threshold cycle to the
amount of standard template, was always greater than
0.97. The mRNA levels of β-actin measured were not sig-
nificantly (p > 0.05) different between the dietary treat-
ments for any of the groups.

Array validation
Microarray protocols have been extensively validated in
our laboratory as described previously [17]. For valida-
tion, we prepared arrays containing an approximately
13,000 gene sub-set of our oligonucleotide mouse library,
printed in triplicate. Total RNA from skeletal muscle and
brain tissue were used for validation comparisons, and
each sample was analyzed in duplicate and prepared and
processed as described above. Matlab was used to calcu-
late basic statistics.

The arrays' ability to detect differential transcription
between muscle and brain RNA was evaluated by two dif-
ferent methods. In the first, we examined the number of
genes that were up- or down-regulated by a factor greater
than two (i.e., whose mean ratio was either greater than
two, or less than 0.5) in the muscle versus muscle and the
muscle versus brain RNA comparisons. This criterion has
been used as a basis for assessing differential transcription
in a number of studies [18-20]. In the second method, we
defined a threshold for differential expression by using
the 95% confidence interval determined from the muscle
versus muscle control arrays. Table 1 summarizes the
results, where the p-values reported were from two-tailed
student t-tests.

Although there are only about 370 genes exceeding the
threshold in the muscle versus muscle arrays, more than
1000 genes were differentially expressed in the muscle
versus brain arrays. This result supports the assertion that
the assaying method and selection criterion are signifi-
cantly more likely to identify differentially expressed
genes.
Page 3 of 13
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The coefficient of variation, CV, was calculated for each
replicated gene expression and the distribution across all
genes is plotted in Figure 1. For the muscle versus muscle
control arrays, the median CV across all probes was
10.2%. For the muscle versus brain arrays the median
coefficient of variation across all probes was 9.8%. This
indicates that for a gene transcription ratio of 1, we might
expect the true value to lie between 0.9 and 1.1; similarly
for a gene transcription ratio of 3, we might expect the true
value to lie between 2.7 and 3.3. Although the median CV
across all probes for the muscle versus muscle control
arrays was 10.2%, the median CV for the 314 genes com-
mon to both muscle versus muscle arrays that had a fold
difference greater than two, was 24.7%. Because of their
increased CV and high fold change, none of these genes
were included in our subsequent analysis.

In duplicate arrays, 76% of the genes observed on one
muscle versus muscle array were also observed on the
duplicate; likewise 77% of the genes found on one muscle
versus brain array were conserved on the duplicate. These
data demonstrate the inter-array reproducibility by show-
ing the majority of genes are reproducibly found in multi-
ple replicate arrays.

RT-PCR was also used to verify the array results for IL6st,
PTP4a2, and RGS3. The variation in the ratios of the
mRNA levels was less than 30% for each of these genes
whether measured using the arrays or RT-PCR as shown in
Table 2.

Computational methods
A combination of statistical and data mining methods
were used to extract information from the microarray
data. Statistical methods rigorously quantify the reliability
of differences in the microarray data [21] and can objec-
tively evaluate changes in gene transcription ratios and
derivative quantities. Data mining is particularly useful

for uncovering patterns and structure in microarray data
that might have otherwise been difficult to detect through
manual inspection and intuition alone [22,23]. Applying
statistics and data mining methods to microarray data in
unison enables rapid and reliable analysis without a priori
assumptions that may bias expectations about the data
set.

A t-test [24] was used to evaluate whether a gene exhibited
statistically significant expression differences in pairwise
comparisons between the control, high-fat, and fasting/
weight reduced groups. The t-test results showed that
1981 genes had at least one statistically significant (p <
0.05) change between the treatments. Wilks-λ based rank-
ing [25] was used to identify discriminatory genes that dif-
ferentiated the three groups. This technique is particularly
appropriate for multi-class comparisons, ranking genes on
the basis of their within group, and between group vari-
ances. Thus, a gene exhibiting a small variation within
each of the three groups, but a large variation between
groups would rank highly; conversely, a gene that had a
high level of variation within each group and a low level
of variation among the groups would be ranked low. The
Wilks-λ score can be transformed into an F statistic, which
can be compared with the F distribution to assess the sta-
tistical significance of the observation [25]. In this analy-
sis a Wilks-λ threshold value of 0.47 was used, which is
equivalent to a p value of 0.05. From the 1981 genes
selected by the p < 0.05 cutoff, we retained the 1169 genes
that had a Wilks-λ value below 0.47.

Fischer Discriminant Analysis [26] (FDA) was used to
identify not just individual genes, but combinations of
genes whose expression levels are capable of correctly clas-
sifying the control mice, high-fat mice, and fasting/ weight
reduced mice. FDA is based on linear combinations of gene
expressions and considers the discriminatory power of gene
groups as opposed to individual genes. Samples are

Table 1: Differential gene transcription validation data. This table summarizes the results of the array validation with respect to the 
study of differential expression.

Array Condition # of Probes Detected # of Genes >2-Fold Different Differentially Genes at the 
Expressed 95% Confidence Level

Muscle vs. Muscle 7574 438 429
Muscle vs. Muscle 6417 314 302

Average 6996 376 366

Muscle vs. Brain 7143 1201 1161
Muscle vs. Brain 8318 981 931

Average 7731 1091 1046

P-value 0.47 0.03 0.03
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scored based on the weighted contribution of each gene's
expression level to a newly defined metric called a "canon-
ical variable" (CV). Because each gene's contribution to a
sample's score is weighted by a coefficient called a "load-
ing," genes with very small loadings do not significantly
contribute to the sample's score and classification, and
can therefore be eliminated from further consideration.
This technique can be used as a tool to visualize the gene
transcription results in a lower dimensional space defined
by the canonical variables. As shown in Figure 2, using
expression data of the selected gene combinations allows
accurate classification of the dietary treatments suggesting
that the genes in Table 3 (See Additional file: 1) are dis-
criminatory of the conditions examined when sample
classification is used as a criterion. On the basis of the suc-

cessful classification afforded by the FDA projection, dis-
criminatory genes were selected using the magnitude of
the loading coefficients. Principle Component Analysis
[27] was used as an unsupervised classification procedure
to complement FDA. The results of the PCA analysis
largely mirrored the FDA results (data not shown).

Methods used here, along with the data set, are available
for public use at our laboratory's web-site [28]. The entire
data set is also available through the National Center for
Biotechnology Information's Gene Expression Omnibus
database [29].

Distribution of the coefficient of variation for DNA microarraysFigure 1
Distribution of the coefficient of variation for DNA microarrays. The coefficient of variation was calculated for every gene in 
the experiment, and plotted for the muscle versus muscle and muscle versus brain.
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Results
The effect of 10 weeks of high-fat feeding and 48 hours of 
caloric restriction on body weight in C57/BL/6J mice
C57/BL/6J mice significantly increased their body weight
by 32% after 10 weeks of high-fat feeding (p < 0.001;
Table 4). After 48 hours of fasting, their weights returned
to baseline levels and were not significantly different from
the control mice, but were significantly less than mice
maintained on the high-fat diet (p < 0.001; Table 4).

Microarray analysis of hepatic genes after 10 weeks of 
high-fat feeding and 48 hours of fasting/ weight reduction 
in C57/BL/6J mice
Employing statistical and data mining methods we
searched the transcription data set for hepatic genes that
direct the biological response during DIO, associated
insulin resistance, and fasting/ weight reduction. We used
the t-test to determine the statistical significance of every
pairwise gene difference between the treatments. The t-test
showed that 1981 genes had at least one statistically sig-
nificant (p < 0.05) change between the treatments. Within
this gene set, 113 genes were significantly changed
between the high-fat fed mice and the control mice, 169
genes were significantly changed between the fasting/
weight reduced mice and the control mice, and 260 genes
were significantly changed between the high-fat fed and
fasting/ weight reduced mice, all at p < 0.01. From the
1981 genes selected by the p < 0.05 cutoff, we retained the
1169 genes that had a Wilks-λ value below our cutoff cri-
terion of 0.47, which is equivalent to a p-value of less than
0.05 [25]. From these genes we selected those with the
greatest Fisher Discriminant Analysis (FDA) and Principle

Component Analysis (PCA) loading coefficients [27],
resulting in the 41 genes reported in Table 3 (See Addi-
tional file: 1).

The 41 discriminating genes contributed to the classifica-
tion observed in Figure 2. In Figure 2, each sample is given
a canonical variable (CV) score, based on the weighted
sum of its gene expression values. The genes with the larg-
est contributions to CV1 and CV2 are given in Table 3 (See
Additional file: 1), suggesting these genes underlie the
biological differences between the samples. Figure 2
shows that 10 weeks of high-fat feeding altered the tran-
scriptional levels of genes composing CV1 and CV2 so as
to separate the control and high-fat mice in the CV1 and
CV2 space. However, while 48 hours of fasting/ weight
reduction normalized many of the genes contributing to
CV2, resulting in a return to control levels for that
variable, the genes contributing to CV1 remained
perturbed, resulting in the observed separation between
the fasted/ weight reduced mice and control mice. This
suggests that while some genes, and their associated path-
ways that differentiate DIO and insulin resistance from
normal physiology, return to control levels as weight is
reduced, other genes remain perturbed, reflecting further
physiological adaptations that occur during these treat-
ments. To show individual gene responses to the dietary
treatments, the 41 genes were clustered according to
changes in the p-values from pairwise comparisons
between the control mice, the high-fat fed mice, and the
fasting/ weight reduced mice. This classification arranges
the genes according to their transcript levels during the
physiological states examined. For example, Group A in

Table 2: Comparison of array results and RT-PCR results for selected genes. Gene expression percentages are reported relative to the 
control values. F/ WR: Fasting Weight Reduction.

Genes Assay High Fat vs. Control F/ WR vs. Control

IL6st Array 154 ± 21%* 144 ± 21%*†

RT-PCR 167 ± 19%* 185 ± 15%*†

PTP4a2 Array 71 ± 4%* 89 ± 3%*
RT-PCR 75 ± 16% 94 ± 18%

RGS3 Array 35 ± 5%* 54 ± 8%*
RT-PCR 38 ± 9%* 59 ± 8%*

G6P RT-PCR 476 ± 72% 769 ± 216%*

PCK1 RT-PCR 132 ± 28% 217 ± 80%*

Malic Enzyme RT-PCR 9.1 ± 1.5%* 0.1 ± 0.1%*

*Indicates that the measurements were significantly different from control values at P < 0.01.
†Indicates that the measurements made on the micro array were significantly different from the RT-PCR measurement at P < 0.05.
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(page number not for citation purposes)



Nutrition & Metabolism 2005, 2:15 http://www.nutritionandmetabolism.com/content/2/1/15
Fisher discriminant analysis plot of mouse liver samplesFigure 2
Fisher discriminant analysis plot of mouse liver samples. Samples were scored according to the canonical variables determined 
by Fisher Discriminant Analysis (FDA). Each canonical variable is defined as a weighted sum of 100 specific genes, including each 
of the 41 genes contained in Table 3 (See Additional file: 1). To score a sample, the gene expression value is multiplied by an 
FDA coefficient, called a loading, and the products from the 100 genes used in the analysis are summed to give the canonical 
variable score for the sample. F/ WR: Fasting/ Weight Reduced.

Table 4: Experimental treatments and mouse weights.

Diet Feeding Regimen Weight 48 hours Prior to Harvest 
(Average ± St. Dev., n)

Weight at Harvest (Average ± St. 
Dev., n)

Normal Chow Ad libitum 35.6 ± 1.8, 9 35.6 ± 1.5, 9
High-Fat Ad libitum 47.1 ± 5.8*, 9 51.7 ± 4.4*†,5
High-Fat Restricted 37.3 ± 2.6,4

*Indicates that the weight was statistically different from the control at P < 0.001.
† Indicates that the weight of the high-fat and fasted mice was different at P < 0.001.
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Table 3 (See Additional file: 1) comprises genes that were
significantly elevated or repressed (p < 0.05) by high-fat
feeding, but then normalized to (insignificant, p > 0.05)
control levels by fasting and weight reduction. Similarly,
group B genes were significantly elevated or repressed (p <
0.05) by high-fat feeding and partially normalized to con-
trol levels by fasting/ weight reduction: the expression dif-
ferences are still significant (p < 0.05) when comparing
both the high-fat and control mice with the fasted/ weight
reduced mice. The genes of each group along with their
normalized expression levels are given in Table 3 (See
Additional file: 1).

Among the 41 discriminatory genes identified in this
study, interleukin 6 signal transducer (IL6st), protein tyro-
sine phosphatase 4a2 (PTP4a2), SH3-domain kinase
binding protein 1 (Shk3bp1), and regulator of g-protein
signaling 3 (RGS3) are of special interest because, based
on known biology, they may contribute to the physiolog-
ical changes that accompany DIO, insulin resistance, and
increased insulin sensitivity due to fasting/ weight reduc-
tion. Both IL6st and Sh3kbp1 are significantly upregulated
after 10 weeks of high-fat feeding (p < 0.001), but only
Sh3kbp1 is normalized to baseline levels after 48 hours of
fasting and weight reduction (Table 3: See Additional file:
1). Both PTP4a2 and RGS3 are significantly downregu-
lated after 10 weeks of high-fat feeding (p < 0.01), and
both are partially normalized after 48 hours of fasting/
weight reduction (p < 0.01 for fasted/ weight reduced ver-
sus high-fat and fasted/ weight reduced versus control;
Table 3: See Additional file: 1).

RT-PCR analysis of IL6st, PTP4a2, RGS3, G6P, PCK1, and 
malic enzyme
We compared the transcript levels measured by RT-PCR
with the ratios measured using DNA microarrays by divid-
ing RT-PCR expression values observed in high-fat fed
mice and fasted/ weight reduced mice by the expression
values measured in the control mice. Liver mRNA levels
for each mouse in the study were determined by RT-PCR
for IL6st, PTP4a2, and RGS3. The values measured by RT-
PCR were not significantly different from the results
observed by hepatic microarray analysis (p > 0.05; Table
2) for all genes except IL6st between the fasting/ weight
reduced mice and control mice. Notably, in this single
case, both microarray analysis and RT-PCR show signifi-
cant increases (p < 0.001) in the levels of IL6st mRNA,
demonstrating similar qualitative changes between the
measurement methods. The close agreement between the
micoarray results and RT-PCR results thus validates the
specificity and accuracy of our microarray measurements.
The difference in the ratios between the values determined
by RT-PCR and those determined by microarray analysis
was less than 30% for each of these genes (Table 2).

Although several commonly studied genes, such as glu-
cose-6-phosphatase (G6P), phosphoenolpyruvate carbox-
ykinase (PCK1), and malic enzyme, did not make it into
our bioinformatics analysis, we evaluated their expression
by RT-PCR because of their considerable effects on hepatic
glucose output. G6P and PCK1 were upregulated follow-
ing 10 weeks of high-fat feeding, but only the change
observed in G6P achieved statistical significance (p = 0.09
for PCK1 and p < 0.01 for G6P in the high-fat versus con-
trol comparison; Table 2). Fasting/ weight reduction
resulted in even larger increases in mRNA levels for both
G6P and PCK1 (p < 0.01 versus controls; Table 2). In con-
trast, malic enzyme exhibited significant underexpression
following 10 weeks of high-fat feeding, with further
down-regulation following fasting/ weight reduction
(Table 2).

Discussion
Diet induced obesity (DIO) in C57/BL/6J mice is a com-
monly used animal model for the development of insulin
resistance in humans [7-11], which results in simultane-
ous hyperglycemia and hyperinsulinemia. Although
short-term caloric restriction and weight loss can improve
insulin resistance [12,30,31], the regulatory mechanisms
in the liver that lead to insulin resistance in response to
DIO, as well as the improvement of insulin sensitivity in
response to short-term caloric restriction and weight
reduction, remain largely unknown. To identify genes
involved in hepatic physiology during DIO and short-
term caloric restriction, we used DNA microarrays to
measure genome-wide transcript abundance.

The 41 most discriminating genes determined by our bio-
informatics analysis lie essentially within two large groups
(Table 3: See Additional file: 1): 1) Genes that are signifi-
cantly induced or repressed by 10 weeks of high-fat feed-
ing and completely (Group A) or partially (Group B)
normalized by 48 hours of fasting/ weight reduction, 2)
Genes that are significantly induced or repressed by 10
weeks of high-fat feeding, but are not normalized by 48
hours of fasting/ weight reduction (Group D). Both of
these groups contain genes involved in signal transduc-
tion pathways, as well as protein metabolism and secre-
tion, highlighting the importance of these molecular
pathways in the hepatic response to DIO and fasting/
weight reduction.

Because genes in Group A and B (Table 3: See Additional
file: 1) were perturbed by DIO, their expression levels cor-
relate with observed physiological differences that
develop during this condition. These differences include
elevated concentrations of serum triglycerides, leptin, and
tumor necrosis factor-α, as well as changes in the levels of
other factors that have been previously demonstrated to
play a physiological role during DIO in C57/BL/6J mice
Page 8 of 13
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[7-9,11,32]. Notably, Group A and B genes are either com-
pletely (Group A, Table 3: See Additional file: 1) or par-
tially (Group B, Table 3: See Additional file: 1)
normalized following 48 hours of fasting/ weight reduc-
tion, when insulin sensitivity has increased, suggesting
they may be important to the development of hepatic
insulin resistance during DIO. Several relevant signal
transduction pathways are influenced by the genes within
Group A and B (Table 3: See Additional file: 1), particu-
larly Sh3kbp1, PTP4a2, and RGS3. While Sh3kbp1 and
PTP4a2 may be directly involved with insulin signaling,
by respectively binding PI-3-kinase and dephosphorylat-
ing protein tyrosine residues, RGS3 interacts directly with
G-proteins and some evidence suggests RGS family mem-
bers may also indirectly affect proteins in the MAPK signal
transduction pathways [33] as well as certain tyrosine
phosphatases [34].

Sh3kbp1 (SH3-domain kinase binding protein, also called
Ruk) belongs to the CD2AP/CMS family of adapter-type
proteins, which mediate a number of different cellular
mechanisms including signal transduction [35]. Insulin

signaling occurs via phosphorylation of insulin receptor
substrates (IRSs) that interact with signal transduction
molecules including PI-3-kinase, Grb2, nck, and SHP2
[36]. Sh3kbp1 has been shown to directly inhibit PI-3-
kinase signaling by binding the p85α regulatory subunit
in vivo and in vitro, and interacts with Grb2 in vitro [37].
Therefore, increased levels of Sh3kbp1 mRNA in the high-
fat fed mice relative to both the control and fasted/ weight
reduced mice, suggests that Sh3kbp1 may mediate DIO
associated insulin resistance in hepatocytes via a mecha-
nism described in Figure 3.

PTP4a2 (Protein tyrosine phosphatase 4a2) dephosphor-
ylates tyrosine residues in proteins. When insulin binds its
receptor it activates the receptor's tyrosine kinase activity
[38], leading to autophosphorylation and subsequent
tyrosine phosphorylation of molecules containing Src
homology 2 (SH2) or phosphotyrosine binding (PTB)
domains. Therefore PTPs can in fluence insulin signaling
by dephosphorylating protein tyrosine residues. Although
it would be anticipated that PTPs would attenuate insulin
signaling, they have been implicated in both positive and

Inhibition of PI-3-Kinase signaling by Sh3kbp1Figure 3
Inhibition of PI-3-Kinase signaling by Sh3kbp1. In this figure, insulin, I, binds to its receptor, activating the receptor's tyrosine 
kinase activity. Insulin receptor substrates, IRS, are activated by phosphorylation. IRS phosphorylates PI-3-kinase, which 
migrates to the cell membrane where it generates phosphatidylinositol, PI, second messengers, which alters physiological proc-
esses. Shown here, Sh3kbp1 is capable of binding the regulatory subunit of PI-3-kinase, inhibiting its ability to generate PI sec-
ond messengers, and thereby attenuating insulin signaling.
Page 9 of 13
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negative regulation of this pathway [39]. A definitive role
for many PTPs in glucose homeostasis and insulin signal-
ing has not been established, however, PTP1B knock-out
mice have enhanced insulin sensitivity and are resistant to
DIO [40]. Therefore if PTP4a2 also negatively regulates
insulin signaling, its significant downregulation (p < 0.01)
following 10 weeks of high-fat feeding may be a physio-
logical adaptation that protects hepatocytes against insu-
lin resistance, which is normalized by fasting/ weight
reduction.

RGS3 (Regulator of G-protein coupled receptor (GPCR)
signaling 3) has been primarily studied in neurons [41-
43] and cells in culture [44,45]. RGS proteins bind Gα
subunits and generally increase the GTPase activity [46].
We found that hepatic RGS3 mRNA levels are significantly
decreased (p < 0.01) after 10 weeks of high-fat feeding, but
partially normalized by fasting/ weight reduction. These
findings are particularly relevant because hepatocytes
express a truncated form of RGS3 that has been shown to
directly inhibit Gsα stimulated cAMP production and Gqα
stimulated IP production [47], in addition to interacting
with, Giα [48]. Glucagon signals via a GPCR that stimu-
lates adenyl cyclase and increases cAMP levels [49].
Because the truncated form of RGS3 inhibits cAMP
production, lowering RGS3 concentration may augment
basal cAMP levels and thereby promote hepatic glucose
output resulting from cAMP induced phosphoenolpyru-
vate carboxykinase (PCK1) expression and cAMP
repressed glucokinase transcription. Although glucoki-
nase expression levels were not measured, PCK1 mRNA
levels were increased by both 10 weeks of high-fat feeding
and fasting/ weight reduction (Table 2).

While genes in Group D (Table 3: See Additional file: 1)
were also significantly induced or repressed following 10
weeks of high-fat feeding, unlike genes in Group A and B,
they do not respond to 48 hours of fasting/ weight reduc-
tion. Therefore hepatic regulation of Group D genes may
not be as directly linked to changes resulting from DIO
and insulin resistance and sensitivity. Despite this, it is
interesting that a number of Group D genes are also
implicated in several signal transduction pathways that
may be activated by DIO. These genes include BMP2, Fosb,
Gabrr1, IL6st, and 4833414G15Rik.

BMP2 (Bone morphogenetic protein 2), is a highly con-
served member of the transforming growth factor-β (TGF-
β) gene family. BMP2 is related to BMP9, which was the
first reported hepatic factor shown to decrease blood glu-
cose levels by increasing insulin release and decreasing
food intake [50]. While these mechanisms may be a
compensating response to DIO, they oppose the physio-
logical adaptations that accompany 48 hours of fasting/
weight reduction, and therefore additional studies are

required to determine the effects of BMP2 upregulation in
mice following these dietary treatments.

FosB is a member of the AP-1 family of transcription fac-
tors [51]. These molecules are considered immediate early
genes, because they initiate responses to environmental
stimuli [52]. The Fos family of transcription factors form
either homodimers with one another, or heterodimers
with the Jun family of transcription factors, which then
bind DNA to alter gene transcription [53]. Because insulin
affects the expression of members of the AP-1 family of
transcription factors [54], it is not surprising that during
DIO and fasting/ weight reduction, conditions that per-
turb insulin signaling, significantly increase transcription
of FosB.

IL6st (Interleukin 6 signal transducing subunit, also called
gp130) is a key component in cytokine signal transduc-
tion that occurs during inflammation through the JAK
(Janus kinase)/ STAT (signal transducers and activators of
transcription) pathway. IL6st forms homo- and het-
erodimers with other signal transducing subunits in
response to binding by an assortment of ligands including
IL-6, IL-11, LIF, CT-1, CNTF, and OSM [55]. Among these,
IL-6 knockout mice develop mature-onset obesity [56],
and treatment of hepatocytes with IL-6 reduces the
expression of PCK1 [6], thus implicating IL-6 in the regu-
lation of hepatic glucose output. There are at least four dif-
ferent Jaks (Jak1, Jak2, Jak3, and Tyk2) and seven different
STAT factors (STAT1, 2, 3, 4, 5a, 5b, and 6) that can inter-
act with IL6st. Of particular relevance to DIO and insulin
resistance is STAT3. The liver-specific STAT3 knockout
mouse is insulin resistant and develops glucose intoler-
ance when fed a high-fat diet, due in part to increased
expression of PCK1 and G6P [57]. Adenoviral mediated
reconstitution of STAT3 signaling ameliorated glucose
intolerance in both L-ST3KO and Lepr-/- mice [57] by low-
ering PCK1 and G6P levels, demonstrating the impor-
tance of STAT3 signalling to hepatic glucose output.
Because IL6st is significantly upregulated (p < 0.001) by
10 weeks of high-fat feeding and 48 hours of fasting/
weight reduction, when PCK1 and G6P were also induced
relative to control levels (Table 2), it may be that IL6st per-
forms a sensitizing function that contributes to feedback
control of hepatic glucose output via IL6 and STAT3 sign-
aling. In addition to the cellular signaling pathways that
contained differentially expressed genes identified in this
study, a number of genes involved in protein metabolism
and secretion were also identified. Although a direct link
between protein metabolism/ secretion and DIO/ insulin
resistance is not as well established, in other insulin sensi-
tive tissues the release of hormones and trafficking of
receptors clearly plays a role in regulating tissue specific
responses to insulin and glucose. Group A and B genes
involved in protein metabolism and secretion pathways
Page 10 of 13
(page number not for citation purposes)



Nutrition & Metabolism 2005, 2:15 http://www.nutritionandmetabolism.com/content/2/1/15
include Kcnk8, Pmm1, Serpina5, and Eif4a2. Group D
genes that were identified include Copz2, Rab3c, and
4933432M07Rik.

Serpina5, encodes a serine protease inhibitor. Serine pro-
tease inhibitors represent a family of glycoproteins that
are known to inactivate serine proteases by forming stoi-
chiometric enzyme-inhibitor complexes. Among the pro-
teases known to be inhibited by Serpins are trypsin,
chymotrypsin, the sperm protease acrosin, and a variety of
proteases involved in hemostasis [58]. Copz2 encodes a
vesicle coating protein that helps to mediate vesicle traf-
ficking, while Rab3c is a member of the Ras oncogene fam-
ily that encodes a monomeric GTP-binding protein that is
implicated in regulated exocytosis and vesicle transport,
and has been suggested to play a role in GLUT4 transloca-
tion in rat cardiac muscle cells [59]. Hence, Copz2 and
Rab3c may synergistically influence protein trafficking in
response to 10 weeks of high-fat feeding and 48 hours of
fasting/ weight reduction.

Conclusion
Using DNA microarrays we have investigated the effects of
DIO and fasting/ weight reduction on liver gene transcrip-
tion. We have analyzed this data set using four computa-
tional methods that represent a rigorous approach to
analysis requiring no a priori assumptions about the data.
This has enabled us to infer the importance of any given
gene change among a multitude of gene differences result-
ing from DIO and fasting/ weight reduction. Our results
lead us to focus on 41, out of an initial 1981 genes.

Although many of the genes resulting from our analysis
have not yet been studied extensively in the context of
energy homeostasis, several are related to important
molecular pathways that have been previously identified
in the literature. Those pathways include different signal
transduction cascades, as well as pathways involved in
protein metabolism and secretion. Given the diverse func-
tions of the liver, identifying genes involved in signaling
and protein metabolism pathways in response to DIO and
fasting/ weight reduction is not surprising. Among the
genes involved in signaling are Sh3kbp1, Rgs3, PTP4a2,
BMP2, IL6st, Fosb, Gabrr1, and possibly Rab3c. Genes
implicated in protein metabolism and secretion pathways
include Crym, Serpina5, Eif4a2, Ctrl, Snrpg, Kcnk8, Copz2,
and Rab3c.

While the link between many of these genes and DIO will
require further investigations, their identification here is
an important contribution to understanding how the
hepatic response to DIO and fasting/ weight reduction is
mediated through a variety of molecular pathways. These
genes all share a consistent set of attributes that made
them stand out in the data set. They demonstrate signifi-

cant differences between the dietary treatments, are indi-
vidually discriminatory of each treatment, and are
members of a set that classifies each sample using both
supervised and unsupervised algorithms. Genes that
satisfy all of these criteria represent good candidates for
influencing the liver's response to DIO and fasting/ weight
reduction, and therefore warrant more detailed
investigations.
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These genes are organized by their pairwise t-test results,
and the relation between their expression levels. F/ WR:
Fasting/ Weight Reduced.
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