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Abstract

A critical accomplishment in the rapidly developing field of regenerative medicine will be the ability to 

foster repair of neurons severed by injury, disease, or microsurgery.  In C. elegans, individual visualized 

axons can be laser-cut in vivo and neuronal responses to damage can be monitored to decipher genetic 

requirements for regeneration.  With an initial interest in how local environments manage cellular debris, 

we performed femtosecond laser axotomies in genetic backgrounds lacking cell death gene activities. 

Unexpectedly, we found that the CED-3 caspase, well known as the core apoptotic cell death executioner, 

acts in early responses to neuronal injury to promote rapid regeneration of dissociated axons. In ced-3 

mutants, initial regenerative outgrowth dynamics are impaired and axon repair through reconnection of 

the two dissociated ends is delayed. The CED-3 activator, CED-4/Apaf-1, similarly promotes 

regeneration, but the upstream regulators of apoptosis CED-9/Bcl2 and BH3-domain proteins EGL-1 and 

CED-13 are not essential.  Thus, a novel regulatory mechanism must be utilized to activate core apoptotic 

proteins for neuronal repair.  Since calcium plays a conserved modulatory role in regeneration, we 

hypothesized calcium might play a critical regulatory role in the CED-3/CED-4 repair pathway.  We used 

the calcium reporter cameleon to track in vivo calcium fluxes in the axotomized neuron.  We show that 

when the endoplasmic reticulum calcium-storing chaperone calreticulin, CRT-1, is deleted, both calcium 

dynamics and initial regenerative outgrowth are impaired.  Genetic data suggest that CED-3, CED-4 and 

CRT-1 act in the same pathway to promote early events in regeneration and that CED-3 might act 

downstream of CRT-1, but upstream of the conserved DLK-1 kinase implicated in regeneration across 

species. This study documents reconstructive roles for proteins known to orchestrate apoptotic death and 

links previously unconnected observations in the vertebrate literature to suggest a similar pathway may be 

conserved in higher organisms. 
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Author Summary 

Clinical success in reconnection of neurons damaged by injury, disease, or microsurgery will require 

detailed molecular understanding of how mature axons respond to axotomy. To decipher intrinsic 

molecular pathways that stimulate axon regeneration, we use the small transparent model, Caenorhabditis 

elegans, in which individual labeled axons can be laser-severed without damage to neighboring tissue, 

and regrowing axons can be observed directly in the living animal. Here we show that the core apoptotic 

cell death executioner protease CED-3, well studied for its developmental effects in killing cells, also 

unexpectedly acts in a beneficial role to promote regeneration of severed axons. CED-3 is involved in 

early steps of axonal regeneration, as the generation of initial filopodia extensions and the initial post-

surgery outgrowth are impaired in a ced-3 mutant. The activation of CED-3 caspase occurs independently 

of major cell death regulatory pathways that involve proteins EGL-1/BH3 and CED-9/Bcl-2, but efficient 

regeneration does require caspase activator CED-4/Apaf-1, conserved regeneration kinase DLK-1, and 

calreticulin-dependent calcium fluxes within the severed neuron. Our data pull together previously 

unconnected observations in higher organism cell culture to suggest a novel conserved pathway for 

neuronal reconstruction and call into question blocking of caspases to treat neuronal injury in the clinic.  

Blurb

Laser microsurgeries of individual axons in the nematode Caenorhabditis elegans revealed that the 

apoptotic executioner caspase CED-3 and its regulator CED-4/Apaf-1 play an unexpected beneficial role 

in promoting axonal regeneration. 
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Introduction

In the injured vertebrate central nervous system (CNS), neurons often survive and sprout but 

encounter extrinsic and intrinsic barriers to functional regeneration [1], with devastating consequences for 

victims. The successful repair of neurons severed by accident or surgery is an obvious goal of modern 

regenerative medicine. A more detailed understanding of the fundamental molecular mechanisms of 

neuronal regeneration within physiological context will be required for design of novel and effective 

therapies that could shift treatment goals from palliative care to restoration of function. 

Considerable understanding of regeneration responses consequent to neuronal injury has been 

generated via study of vertebrate models in vivo and in vitro. More recently, laser technology advanced 

the precision of in vivo investigation to the single axon level by enabling the axotomy of individual 

processes in genetic model organisms [2,3]. Moreover, the opportunity to test individual gene activities 

for roles in regeneration biology in whole animal context, and now to conduct high throughput genetic 

and pharmacological screens for such activities [4,5,6], is contributing to rapid advances in dissection of 

molecular mechanisms involved in neuronal regeneration. Although very much a work in progress, the 

emerging picture suggests regeneration may employ mechanisms conserved across species [5]. For 

example, in Caenorhabditis elegans, like in other models, physical disruption of an axon triggers an 

intracellular calcium spike [7,8]. Calcium waves can originate from extracellular sources via voltage-

gated calcium channels and may be amplified by release from internal stores. Elevation of calcium 

concentration activates signaling pathways, notably cAMP and MAPK DLK-1 pathways [8,9,10], which 

control growth cone formation and subsequent axonal elongation through cytoskeleton and membrane 

remodeling. Many details of the complex mechanisms involved remain to be established, the 

accomplishment of which might inspire strategies for directed neuronal repair. 

With an initial interest in whether neurons might activate death pathways to eliminate the 

dissociated fragments generated by axon severing, we performed femtosecond laser microsurgeries on 

individual C. elegans neurons that lacked cell death proteins. To our surprise, we found that dissociated 

fragments often persisted for significant amounts of time.  Moreover, CED-3 caspase, the essential core 



6

executioner protease in apoptosis [11], rather than being needed for cell fragment elimination, instead acts 

beneficially to promote early events in neuronal regeneration. ced-3 mutations affect early regenerative 

dynamics with the consequence of slowing initial outgrowth and delaying the physical reconnection of the 

regenerating axon to the severed distal segment, although ced-3 deficiency does not change long-term 

regeneration outcome. Core apoptotic proteins CED-3 and CED-4 are mobilized via a regulatory 

mechanism distinct from that involving known apoptotic regulators, but which requires calcium flux and 

regeneration kinase dlk-1. Our data pull together disconnected observations in the literature to suggest that  

caspases act via a conserved mechanism to promote regenerative responses in injured neurons. 

Results

CED-3 caspase activity is needed for efficient axonal regeneration

 With an initial interest in whether neurons might activate death pathways in soma or dissociated 

fragments in response to severe physical injury such as axon severing, we performed femtosecond laser 

microsurgeries on individual GFP-visualized C. elegans neurons. We find that ALM mechanosensory 

neurons and D-type motor neurons rarely die after laser axotomy in adult C. elegans. Moreover, the 

severed dissociated processes generally persist for several days post-surgery (Figure S1) and can remain 

functional, as axotomized animals were touch-sensitive 6 hrs after surgery and remained so up to at least 

one week post-surgery (see data note in Methods). As observed previously [2,3,9,12,13], severed 

processes display substantial regeneration from the soma-proximal side, with the severed stump 

regenerating a structure that first extends multiple spike-like filopodia and then directs further axonal 

extension (see Supplementary Movie 1 for a typical depiction of wild type (WT) regeneration). At 24 h, 

roughly one third of axotomized ALM axons grew back to track along the severed distal process (see 

below), and the remaining axons displayed dramatic outgrowth with long and branched processes (Figure 

1a i-iii, v). We also noted limited regrowth responses from the end of the severed soma-distal side (see 

below and Supplementary Movie 1, 2). 

 As one approach toward quantitation of the regeneration response, we measured total new 

outgrowth length of the proximal fragment 24 h following laser surgery for those neurons that did not 
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regrow back into the original severed process (Figure 1a iii, v, those processes that did track back to the 

old distal process could not be measured as the new process could not be distinguished the old persisting 

process). Somewhat unexpectedly, four independent mutants of ced-3 caspase, the central apoptosis 

executor protease required for all C. elegans programmed cell deaths [11], showed markedly reduced 

regenerative ALM outgrowth in this timeframe (Figure 1a iv,vi, 1b), a phenotype also exhibited by ced-3 

D-type motor neurons (Figure 1c). ced-3 regenerative defects in severed ALM neurons diminished with 

time and were no longer apparent at 3 days post-surgery (Figure 1d). Most severe ALM deficits in ced-3 

mutants occur in L4 larvae, although significant regeneration differences are apparent in young adults 

(Figure 1e). Notably, mutant phenotypes in the ced-3(n2433) active-site point mutant, which is deficient 

in in vitro protease activity [14], indicate that caspase activity itself is necessary for efficient axonal 

regeneration.

 Axonal regeneration involves a complex interplay of biochemical activities within the injured 

neuron and interactions of the neuron with signals and structures in its environment. Thus, caspases might 

act directly in injured neurons, in the synaptic partners that provide guidance cues, or in the surrounding 

tissue (hypodermis for touch neurons) to set up conditions permissive for regeneration. To address 

whether CED-3 caspase activity is required within the severed neuron to facilitate regeneration, we 

expressed ced-3 in the mechanosensory neurons of the ced-3(n2433) mutant. Although like others [15] we 

found that expression of caspase transgenes is most often associated with cell toxicity, making the 

generation of transgenic lines extremely challenging, we identified one low copy number transgenic line 

with only moderate touch neuron loss (Figure S2). We found that the regeneration defect induced by ced-3

(n2433) was rescued by specific expression of ced-3 in the mechanosensory neurons (Figure 1f), 

supporting that CED-3 acts in the damaged neuron for regeneration. Of note, moderate overexpression of 

ced-3 in wild-type neurons did not trigger enhanced regeneration (Figure 1f), which suggests that CED-3, 

though necessary, may not be sufficient to promote efficient regeneration.  However, because it may be 

difficult to achieve CED-3 cellular expression levels that permit optimal repair rather than cell death 

(Figure S2), whether CED-3 might have the capacity to drive regeneration on its own remains unclear.

CED-3 acts at early steps of axonal regeneration
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To evaluate ced-3 impact on regeneration in greater detail, we acquired time-lapse images of 

regrowing neurons for the first 5 h following laser axotomy.  We accomplished this using nematode 

immobilization techniques that are stable over long time periods without the used of harsh anesthetics (see 

Methods and Figure S3) [16,17]. We found that both the rate and extent of new outgrowth were 

dramatically reduced in ced-3 mutants during the initial 5 h following laser axotomy, with total outgrowth 

reduced by ~45% and the average outgrowth rate reduced by 55% (Figure 2a). Higher resolution analysis 

of initial regenerative dynamics in WT and ced-3 mutants revealed three striking phenotypes in 

regenerating ced-3 neurons that impact the sprouting of short, often transient, exploratory filipodia-like 

processes that dominate during this early stage of outgrowth: 1) there is a significant delay in outgrowth 0

onset after axotomy, with first signs of re-growth appearing after 91±13 minutes on average in ced-3 

mutant axons compared to 43±8 minutes characteristic of WT axons (Figure 2b); 2) the number of sprouts 

initiated in ced-3 mutants is greatly diminished 0-5 hours post-surgery, with greatest effect observed 

during the initial 0-45 min (Figure 2c); and 3) ced-3 extensions often appear defective or stunted, 

resulting in short, wide, persistent bleb-like outgrowths that are distinctly different from the transient, 

dynamically active filopodia-like extensions of WT neurons (Figure 2d,e, Supplementary Movies 2,3). 

These dramatic defects in the initiation of regrowth responses to axotomy in ced-3 contrast with overall 

outgrowth scores three days post-surgery, which no longer show differences from WT (Figure 1d). We 

conclude that the CED-3 apoptosis caspase impacts very early events in post-axotomy filipodia extension 

but is not essential to regrowth per se, suggesting that, like in other C. elegans regeneration studies [18], 

additional gene activities may act in parallel to promote regeneration. 

ced-3 mutant neurons are not generally defective in developmental growth cone formation or 

guidance. In ced-3 mutants, we observed that developmental growth cones of migrating VD motor 

neurons in L1 larval stage embryos exhibit wild-type behaviors when they contact a new surrounding 

tissue: rounded in the hypodermis, and anvil-shaped when contacting the lateral nerve cord or body wall 

muscle cells (Figure S4) [19]. In addition, when we examined the AVM touch neuron projection to the 

ventral nerve cord (VNC) (a model for in vivo regenerative axon guidance [2]) by laser dissecting the 

AVM process half way to the VNC, we found that the ced-3(n2433) mutant shows the same ability to 

reach the ventral nerve cord 24h post surgery as the wild type (WT: 63+/-9.3% reach the VNC, N=27 [2]; 
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ced-3(n2433): 64.3+/-9.1% N=28, no statistical difference by t-test).  Together, these observations suggest 

that ced-3 defects in early filopodia extension dynamics and outgrowth might be limited to injury 

responses, although detailed quantification of developmental outgrowth and guidance needs to be 

accomplished before relative roles in development vs. injury can be definitively assigned.

Interestingly, our high-resolution time lapse studies also revealed that the distal part of the 

axotomized axon, disconnected from the cell body, exhibited regrowth attempts by blebbing and 

extending exploratory processes initially similar in appearance to those in the proximal end (Figure 2d 

purple arrow, Supplementary Movies 2,3). However, in the ced-3 mutant 0-5 h post-surgery, growth from 

the distal side of the laser cut was both delayed in onset (58±13 minutes in WT vs. 111±22 minutes in 

ced-3 distal termini, p<0.05) and diminished in extent (1.8±0.2 exploratory processes in WT vs. 1.3±0.2 

in ced-3, p<0.05)(Figure S5). These initial regenerative responses of axon segments separated from the 

cell body must therefore be driven by ced-3 proteins or transcripts already present in the injured axon 

[20].  Thus, it appears that a nucleus-independent mechanism of CED-3 caspase activation lies in wait in 

healthy processes prior to injury.

CED-3 is needed for rapid reconnection following axotomy

 In C. elegans, injured neurons can reconnect to reestablish the cytoplasmic connection of the 

proximal axon with the dissociated distal region of the axon [8,13]. To generate a more complete picture 

of the consequences of ced-3 deficiency, we assayed regenerative capacities of those WT and ced-3 

mutant neurons that tracked back to the dissociated process (i.e., those not counted for overall outgrowth 

due to coincidence of old and new processes) using a cytoplasmic reconnection assay. To score for 

reconnection, we adapted a fluorescence transfer protocol for use with GFP [21] (see Methods for details). 

In our assay, we isolated a segment of the previously severed fragment by introducing a second cut more 

distal to the initial injury/potential reconnection site; we then selectively photo-bleached GFP within this 

distal segment (Figure 3a). Rapid recovery of GFP fluorescence within this segment revealed free 

diffusion of GFP from the non-photobleached regenerating proximal axon into the formerly severed 

fragment, and thus a re-established cytoplasmic connection. 
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To assay regeneration phenotypes of those neurons that regrew to come in proximity to the 

dissociated process, we compared WT and ced-3 mutant neurons for restored cytoplasmic continuity. We 

found that ced-3 mutant neurons were somewhat diminished in their capacity to rapidly track back to the 

dissociated fragment (Figure 3b), but, of the neurons that grew back to, and appear to be in contact with, 

the dissociated distal process at 12 h, 92 ±8% of WT vs. 20±18% of ced-3 processes successfully 

reconnect (p<0.05 Fisher’s exact test) (Figure 3c). When we sum data for all axotomies at 12 h post 

surgery, 34±8% of total WT ALM axons severed were reconnected at this time point, as compared to 

4±4% of ced-3 mutant axons (Figure 3d). As is true for the outgrowth phenotype, reconnection can 

approach WT levels after a significant time lag (Figure 3e). We conclude that a consequence of ced-3 0

caspase inactivation is delayed reconnection. Although the reconnection defect might be an indirect 

consequence of slow initial outgrowth, it is clear that CED-3 caspase deficiency impairs both initiation of 

axonal regeneration and reparative timing. In cultured Aplysia neurons, the time to reconnection can 

influence long-term function of the neuron [22], so the speed to reconnection might hold physiological 

relevance in invertebrate physiology. 

CED-4/Apaf-1, but no other C. elegans apoptosis regulator, is required for efficient regeneration

A pressing question raised by the discovery of the role of CED-3 caspase in post-axotomy 

neuronal responses is whether other apoptotic pathway components modulate neuronal regeneration. 

During C. elegans developmental apoptosis, the expression of EGL-1 (BH3 domain only protein) inhibits 

CED-9 (Bcl-2 family member), releasing CED-4 (apoptosis protease activating factor-1 Apaf-1 homolog), 

which in turn activates CED-3 caspase [23]; CED-8 modulates the timing of developmental apoptosis 

[24].  Physiological germline apoptosis requires ced-9 transcription directed by the lin-35 Rb ortholog 

[25] and under conditions of radiation stress, both the C. elegans BH3-only domain proteins EGL-1 and 

CED-13 are needed for CED-3-dependent apoptosis [26]. To address how CED-3 caspase might be 

activated by axotomy, we tested roles of known apoptosis regulators in regeneration using the amount of 

24 hr outgrowth as a measure. We found that ced-4(n1162) and ced-4(n1416) mutants displayed 

diminished regeneration similar to ced-3(n2433), establishing that CED-4 functions in axonal 

regeneration as well as in apoptosis (Figure 4a). The double mutant ced-4(n1162); ced-3(n2433) is 

impacted to the same degree as either single mutant, suggesting that ced-3 and ced-4 work in the same 
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pathway to influence regenerative outgrowth (Figure 4a). We also found that expression of our one 

minimally toxic ced-3 transgene in the touch neurons partially rescued the ced-4(n1162) defect, consistent 

with ced-3 acting downstream of ced-4 in axonal regeneration (the same as the order of CED-4 and 

CED-3 action in apoptosis) (Figure 4a). As with ced-3, regenerative defects of ced-4 mutant animals were 

no longer apparent after 3 days (Figure 4b). We conclude that ced-4 is needed for efficient regeneration 

and acts upstream in the same pathway as ced-3.

Other known upstream regulators of apoptosis, including loss-of-function (lf) allele ced-9(n2812), 

gain-of-function (gf) allele ced-9(n1950), egl-1 lf mutants egl-1(n1084n3082) and egl-1(n986), the egl-1; 

ced-13 double mutant lacking both C. elegans BH3-only domain proteins, and lin-35(n745), did not affect 

regeneration proficiency, revealing an alternative regulatory mechanism for CED-4 and CED-3 activation 

in the response to axotomy (Figure 4c). Likewise, because the ced-8(n1891) mutation did not impact 

regeneration, we conclude that the delayed regeneration response in ced-3 mutants is unlikely to be the 

consequence of timing-regulator ced-8 action in axonal regeneration. Overall, our data reveal an 

unexpected reconstructive role for the core apoptotic proteins CED-3 and CED-4 that is mobilized via a 

novel regulatory mechanism distinct from known apoptosis regulatory pathways.

DLK-1 kinase and CED-3 appear to act in the same pathway to promote regeneration.0

The DLK-1 p38-like MAPK pathway has been shown to play a critical role in C. elegans neuronal 

regeneration [8,9,10]. Our detailed phenotypic analysis of ced-3 suggests action early in axonal 

regeneration, influencing initial exploratory sprouting (Figure 2) and similarly, the dlk-1 mutant has a 

drastic reduction in primary growth cone formation consequent to axotomy [9]. We therefore addressed 

whether DLK-1 might act together with CED-3 and CED-4 in the same molecular pathway, or 

alternatively, might act in parallel. Using our femtosecond laser and immobilization protocol, we find that 

the single mutant dlk-1(ju476) displays ALM regenerative outgrowth similar to that of ced-3 mutants, 

with a ~50% reduction as measured at the 24 hour time-point but wild-type regeneration proficiency at 3 

days (Figure 5a,  b). In the dlk-1(ju476) mutant background, weak regeneration of touch neurons severed 

in the adult contrasts with total block of regeneration of D-type motoneurons severed at the L4 larval 

stage, as we measured no regeneration outgrowth following axotomy in 22/22 D-type motoneurons (data 
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not shown) [8,9,10], underscoring that different molecular mechanisms might control regeneration in 

different cell types or developmental stages and, more specifically, that multiple redundant pathways may 

influence regeneration in adult ALM neurons. Interestingly, the double mutant dlk-1(ju476); ced-3(n2433) 0

exhibited ALM regeneration impairment similar to that of single mutants, both at 24 hours and at 3 days 0 0

post-surgery (Figure 5a, b), suggesting action in the same pathway. Additionally, the double mutant dlk-1

(ju476); ced-4(n1162) showed the same regeneration defect as the single mutants at 24 hours (Figure 5a), 

further genetic evidence in support of action in the same pathway. Finally, expression of ced-3 in the 

touch neurons did not ameliorate regeneration deficiencies in dlk-1 mutants (Figure 5a), suggesting that 

ced-3 may act upstream of dlk-1 to promote early events in regeneration of ALM touch neurons in adult 

C. elegans. 

Kinase KGB-1 of the (JNK) MAPK pathway has recently been shown to operate in parallel 

DLK-1 to promote axon regeneration [18]. We find that although mutant kbg-1(um3) is defective in ALM 

regeneration, the double mutant kgb-1(um3)ced-3(n2433) is significantly more impaired in overall 00 0

regrowth scores than either of the kgb-1 or ced-3 single mutants (Supplementary Figure 6). Our data 00 00 0

suggest that, similar to dlk-1, ced-3 acts in a separate regeneration pathway from kgb-1. Together, these 00 0 0

studies define two parallel processes, one involving ced-4, ced-3 and dlk-1, and the other involving kgb-1, 

that act in ALM axon regeneration. 0

CED-3 caspase promotes axonal regeneration in a calreticulin-, calcium-dependent pathway 

Calcium signaling is known to play a fundamental role in the neuronal responses to damage and 

subsequent recovery, with acute cellular insult inducing large intracellular calcium transients important 

for regrowth [7,8]. To address whether calcium signaling could play a role in the CED-3/CED-4 

molecular pathway during regeneration, we performed in vivo measurements of cytoplasmic calcium 

levels in the touch neuron cell soma during laser axotomy using two versions of the genetically encoded 

fluorophore cameleon (see Methods). Laser axotomy of WT neurons initiates an immediate (within < 3 s) 0

and dramatic increase of cellular calcium levels reported by cameleon-based FRET (Figure 6a). In two 

independent crt-1 mutants, which lack the ER calcium-binding chaperone calreticulin known to contribute 

to cellular calcium homeostasis, we found neuronal damage-induced calcium signals are reduced by 
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~50% (Figure 6a, left panel). By contrast, no dramatic defect in calcium responses was detected in either 0 0

ced-3(n2433) or ced-4(n1162) mutants as compared to WT (Figure 6a, right panel). Thus, ER calcium 0

stores modulated by CRT-1 influence early calcium fluxes in response to axotomy, but CED-3 and CED-4 

do not influence early calcium changes in the injured neuron.0

To genetically address the requirement for calcium in regeneration, we tested the crt-1 mutants for 

total regenerative outgrowth and found a significant deficiency for both at the 24 h time point, which was 

no longer apparent after 3 days (Figure 6b, c). We noted that cytoplasmic expression of calcium-binding 

cameleon YC2.12, which might sequester some intracellular calcium, diminished overall outgrowth, 0

consistent with a role for calcium in directing re-growth responses (Figure S7). By contrast, expression of 

cameleon YC3.60 that has a lower calcium binding affinity does not appear to effect regeneration (see 

Methods). Note that despite a dampening effect of cameleon YC2.12 on total regenerative outgrowth, the 

relative differences between WT and crt-1 mutants in regeneration of ALM mechanosensory neurons 24h 

post surgery were maintained in cameleon-expressing lines. 

We examined early regeneration phenotypes in crt-1(bz29) using high resolution video analysis 

and found that, similar to ced-3, the first signs of re-growth in axotomized crt-1 mutant neurons appeared 

with a significant delay (Figure 6d) and that numbers of exploratory processes were highly reduced over 

both the  0-45 min and 0-5 h time periods post-axotomy (Figure 6e). Our combined genetic and imaging 

results implicate calcium changes that are activated by injury, and dependent upon calreticulin, in 

initiation of regeneration.  Data follow recent findings that correlate reduced calcium transients resulting 

from nerve damage with diminished neuronal regeneration in C. elegans [8] (see note in Methods on 

some experimental differences).

To probe the relationship between crt-1 and ced-3 in regeneration, we compared regenerative 

capacity in the ced-3(n2433) single mutant, the crt-1(bz29) single mutant, and the ced-3(n2433); crt-1

(bz29) double mutant. We find that regeneration deficits at 5 h and at 24 h in the double mutant were 

similar to those in single mutants, consistent with the possibility that CED-3 and CRT-1 act via the same 

pathway to influence initiation of regeneration (Figure 6b, d, e). We also found that expression of our one 
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minimally toxic ced-3 transgene in the touch neurons partially rescued the crt-1(bz29) defect (Figure 6b), 

suggesting that CRT-1/calcium elevation might act upstream of CED-3 activation during axonal 

regeneration. This is in agreement with the calcium imaging data in Figure 6a showing a defect in calcium 

signaling in the crt-1 mutants but not in the ced-3 or ced-4 mutants. Finally, the double mutant dlk-1; 

crt-1 showed similar defects to the single mutants (Figure 6b), consistent with the action of dlk-1 in the 

same pathway as crt-1/ced-4/ced-3. Taken together, our data are consistent with a model in which crt-1 

could act to influence intracellular calcium signals needed for CED-4-dependent localized CED-3 

activation and efficient regeneration initiation promoted in part via kinase DLK-1. 

Discussion

Here we document novel roles of core apoptosis executors in the initiation of process regrowth in 

axotomized neurons. CED-3 caspase activity within the injured neuron promotes rapid remodeling and 

outgrowth, often resulting in efficient reconnection. C. elegans apoptosis executor CED-3 contributes to 

early regenerative events via a process genetically implicated to include CED-4 and calreticulin. The 

DLK-1 kinase might act downstream in the crt-1/ced-4/ced-3 pathway. The definition of reconstructive 

roles for the core apoptosis executor CED-3 holds implications for regenerative medicine strategies.

Caspase CED-3 is needed for early regrowth and appears ready for rapid activation. High resolution 

video microscopy time course studies during the first 5 hours post-axotomy revealed that in wild type 

proximal processes, distinctive filopodia-like extensions can appear within minutes, leading to active 

growth cones and extensive outgrowth. In ced-3, these responses are slowed and often appear markedly 

defective—ced-3 processes take longer to initiate outgrowth, there are fewer filopodia generated, and 

there is less overall outgrowth. One particularly striking phenotype is that severed processes in ced-3 

mutants can appear to produce extensions that do not mature into filopodia—instead, ends persist as 

rounded blebs that lack structure and do not extend (Supplementary Movie 3, Figure 2e). Previous in vitro 

screens have identified C. elegans cytoskeletal proteins, such as actin, tubulin and myosin chains, as 

potential CED-3 targets [27]; and caspases can cleave mammalian cytoskeletal proteins and their 

regulators [28,29]. Thus, although critical targets in the regrowth mechanism remain to be identified, one 
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possibility is that CED-3 activity might induce structural rearrangements needed for efficient filopodia 

production by cleaving cytoskeletal proteins.

 Eventually, both total regenerative outgrowth and reconnection to the severed distal fragment 

reached WT levels at longer time points in ced-3 mutants, 3 days post surgery (Figure 1d

 and Figure 3e). This outcome is consistent with a model in which the CED-3 caspase plays a role in the 

kinetics of a single regeneration pathway; alternatively, other pathways may run in parallel to promote 

regeneration and these other pathways may eventually compensate for ced-3 defects.  Given the complex 

processes that influence regeneration in C. elegans [6,18] and mammalian systems [30], and our genetic 

data that suggest kinase KGB-1 acts in parallel to caspase CED-3, the contribution of multiple pathways 

to regeneration seems like a probable scenario. The dramatic deficits in the initiation and early outgrowth 0

dynamics suggest that CED-3 plays a prominent role during this critical stage of regeneration. Because 

dlk-1 is needed for early growth cone formation [9], exhibits similar outgrowth defects to ced-3, the dlk-1 

ced-3 double mutant shows similar regenerative outgrowth defects as single mutants, and elevated 

expression of ced-3 does not ameliorate the dlk-1 mutant deficit, we suggest that conserved kinase DLK-1 

may be an integral downstream component of this early-acting mechanism. 

A caspase ready for repair. Interestingly, our studies reveal that both the proximal process (remaining in 

contact with the nucleus) and the dissociated distal process (devoid of a nucleus) exhibit early regrowth 

efforts, generating dynamic filopodial extensions. Changes in the dissociated end have been noted in 

another C. elegans regeneration study [10]. As growth cones have been observed to extend from isolated 

processes in injured cultured vertebrate neurons [31,32,33], this phenomenon might represent another 

conserved element of the injury response. We find that in C. elegans, the regenerative response in the 

dissociated end is significantly diminished when ced-3 is lacking, and thus ced-3-dependent responses can 

occur independently of a nucleus and new transcription. These observations suggest that CED-3 protein 

might persist at low levels in an inactive form in healthy axons, evidence for which has been previously 

noted in touch neurons [15] and suggested for other non-apoptotic caspase paradigms [34]. Low basal 

level caspase activity can modulate motility in some cell types [35,36] and might contribute to 

regeneration in this case. Alternatively, ced-3 transcript distributed throughout healthy processes might be 
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translated at the injury site upon transection, as rapid local translation of other messages has been 

documented at injury sites in in vitro mammalian culture models [20] and in C. elegans [10] (including 

dlk-1). Regardless of activation strategy, it appears that C. elegans neurons can rapidly employ CED-3 

activity when regenerative repair growth is needed.

CED-3 is needed for rapid reconnection. Wild type regenerating C. elegans neurons are capable of 

rapidly locating and re-fusing with the dissociated distal process (34.4% successfully reconnected at 12 h; 

>50% reconnected by 72 h). We observed that ced-3 mutant processes are diminished in reconnection at 

the 12 hour timepoint --fewer neurons overall reconnect (3.8% for ced-3 vs. 34.4% for WT), and of 

neurons that do successfully track to the distal severed process, fewer ced-3 ends successfully reconnect 

(20.0% for ced-3 vs. 91.7% for WT). Eventually, severed neurons do grow and reconnect in the ced-3 

mutant background.  Thus, ced-3 is not essential for reconnection, but rather plays a role in promoting 

rapid reconnection. The phenomenon of reconnection raises the question as to whether process breaking is 

a natural in vivo challenge in the development and/or function of neurons such that a protective 

mechanism of repair has evolved. Interestingly, severed Aplysia neurons also reconnect in culture, with 

failure to reconnect associated with electrophysiological dysfunction of the proximal neuron [22]. Rapid 

reconnection might thus be physiologically important for restoring or maintaining the function of the 

injured neuron.

Defined pathways that regulate apoptosis are not operative in regeneration. We tested multiple 

regulators of C. elegans somatic or germline apoptosis for an effect on neuronal regeneration but find that 

regrowth is not influenced by CED-9/Bcl-2, BH3 domain proteins EGL-1 and CED-13, or the LIN-35 

germline apoptosis regulator. Likewise, regeneration responses are not altered in a ced-8 mutant in which 

the progression through apoptosis is slowed. These data support that CED-3 caspase must be regulated by 

a novel mechanism that transpires independently of known apoptosis regulatory pathways. 

 The one other apoptosis protein needed for efficient regeneration is Apaf-1/CED-4, which our 

genetic analysis suggests acts upstream in the same pathway as ced-3. In apoptosis, CED-4 oligomerizes 

to form the apoptosome structure that facilitates procaspase cleavage [37]. It is possible that a similar 



17

reaction occurs in the regenerative response, although this process would likely need to be tightly 

regulated to prevent apoptosis (see below). ced-4 has been documented to execute some functions 

independently of ced-3 [38,39,40], and one instance of non-apoptotic cell death in neurons knocked down 

for mitochondrial coenzyme Q involves both CED-3 and CED-4 [41].  To our knowledge, however, our 

finding is the first report of CED-3 and CED-4 co-function in a pro-survival mechanism.  

A working model for calcium-dependent CED-4 activation of CED-3 for regenerative outgrowth. If 

CED-4 activates CED-3 caspase activity, a key question becomes how CED-4 might become proficient to 

do so consequent to axotomy.  Interestingly, the CED-4 protein contains two regions that exhibit 

similarities to EF-hand calcium binding domains [42]. Our data and that of others [8] document local and 

transient elevation of calcium within the damaged neuron, and also show that limiting calcium signals 

from the ER or plasma membrane can diminish regeneration. Thus, one model for CED-3 activation in 

regeneration could be that calcium transients resulting from nerve damage, amplified by CRT-1, might 

locally activate CED-4, which in turn activates CED-3. Consistent with this model, we find that calcium 

dynamics in response to axotomy are disrupted in crt-1 mutants, but are normal in ced-4 and ced-3 

mutants. 

Limiting caspase activity to localized repair rather than cell destruction. Once CED-3 becomes 

activated, its proteolytic functions must be tightly regulated to prevent apoptosis. Indeed, the need for a 

delicate balance is evident by the extreme difficulty and resulting cell death that we and others have 

encountered with introducing caspase transgenes, which most often kills cells [15] (Figure S2). If 

maintained high calcium is needed for continued activation, local calcium transients initiated by 

membrane lesion might confer regulation; it is also possible that a mechanism exists for very low level 

basal level activity [35,36]. Two elegant examples of localized caspase activation/regulation for 

developmental functions in Drosophila are the pruning of dendrites in the restructuring nervous system 

[43,44] and the differentiation of spermatids [45]. Mammalian caspases have been shown to function in 

cell differentiation, cell migration, olfactory neuron development [46], and modulation of longterm 

depression in the brain [47].  Our findings on CED-3 and CED-4 roles in axon repair extend thinking on 

how proteins known to orchestrate apoptotic cell death can also contribute to pro-life functions [45].
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CED-3 repairs axons: implications for the treatment of nerve injury. CED-3 is the executor caspase 

for all C. elegans apoptosis, yet CED-3 clearly influences regenerative neuronal repair.  The growth 

protein GAP-43 and the transcription factors p53 and c-jun can have dual roles in both promoting 

neuronal death and regeneration following axonal injury [48], raising the possibility that recruitment of 

cell death machinery in localized axonal regrowth might be a feature shared across phyla. Indeed, our data 

intersect with independent findings in culture models that suggest a mechanism similar to what we 

propose for C. elegans regeneration might influence regrowth in vertebrate neurons. Studies on in vitro 

vertebrate neuronal culture showed that caspase-3 is rapidly activated within 5 minutes of application of 

the guidance cues netrin-1 and LPA on growth cones to promote chemotropic responses [49] and that 

addition of caspase-3 inhibitors hinder growth cone formation after axotomy [20]. Moreover, calreticulin 

expression has been found to be dramatically induced in mammalian growth cones [50]. Together, these 

studies raise the possibility that localized deployment of caspases and calreticulin activity in axonal 

regeneration may be conserved in higher organisms. If caspases are found to promote mammalian axonal 

regeneration, regulated activation of caspase-promoted regrowth/reconnection might be used to promote 

functional repair in regenerative microsurgery or in injury therapy; at the same time, the use of anti-

caspase therapeutics to limit neuronal loss following nerve damage [51] might be reconsidered.

Methods

Laser microsurgery and microscopy techniques

Laser surgery was performed as described earlier [52]. A Ti:sapphire laser system (Cascade Laser, 

Eclipse Pulse Picker, KMLabs, Boulder, CO or Mantis PulseSwitch Laser systems Coherent Inc., Santa 

Clara, CA) generated a 1 kHz train of ~100 fs pulses in the near infrared (~800 nm). The beam, focused to 

a diffraction limited spot (using either a Nikon 100X, or 60X, 1.4 N.A. microscope objective) resulted in 

vaporization and tissue disruption with pulse energies ranging from 5-15 nJ. Visual inspection of the 

targeted neuron immediately following brief laser exposure (~100-500 ms) confirmed successful 

axotomy. In some cases multiple laser exposures were necessary to generate a visual break in the nerve 
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fiber. For 24 h regeneration measurements, C. elegans were temporarily anesthetized on 2% agar pads 

containing 3 mM sodium azide to allow for laser surgery, subsequently rescued, and then re-anesthetized 

24 h later for imaging. 

Regenerative outgrowth measurements

We targeted ALM axons 20 µm from the cell body unless otherwise stated and D-type motor 

neurons 20 µm up from the ventral nerve cord along the ventral-dorsal commissure. For length 

measurements, we calculated the total outgrowth of a neuron by summing lengths of the multiple 

outgrowth branches (for example the green traces in Figure 1a v), excluding very short branches (those <5 

µm long). For ALM 24 h and 72 h regeneration outgrowth analysis (Figure 1, 4, 5, 6 and Figure S6, S7), 

regrowth of the proximal end only was monitored. The outgrowth of the distal end was measured only in 

data presented in Figure S4. The integrated lines zdIs5[pmec-4gfp] [53] and rnyIs014[pmec-4mCherry 

unc-119(+)], a gift from K. Nehrke, U. Rochester Medical School, were used for ALM surgeries in young 

adults. D-motor neuron surgeries were performed in L4 larvae using oxIs12[punc-47gfp] [54]. Note: at 72 h, 

outgrowth measurements in different genetic backgrounds (data in Figure 1d, 4b, 5b, 6c) showed no 

statistical difference from one another by one-way ANOVA. 

About 35% of WT axons reconnect within 24 h.  For scoring of regenerative growth, we focused 

on instances in which we could get an accurate measurement of the total length and excluded these 

potential reconnection events from outgrowth scores, as in those cases we could not distinguish new 

growth from old process (the old process persists and does not loose GFP signal). Wild type data was 

generated in 6 distinct groups, taken months apart, in strains ZB154 (zdIs5[pmec-4gfp]) and KWN177 

(rnyIs014[pmec-4mCherry unc-119(+)]) (each group consisting of experiments run on the same or adjacent 

days using the same reagents). We found no significant difference between 24 h regenerative outgrowth of 

different WT groups and different transgenic markers (by one-way ANOVA).  Wild-type data from all 

groups was therefore pooled together to give the wild type measurement reported in the figures. 

As measured in the time-lapse analysis (see below), the effect of the ced-3 mutation in the first 5 

hours is quite striking, featuring a deficit in exploratory processes, stunted sprout morphology not seen in 
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WT regenerating neurons, and a general delay in response. Although conducting 5 hour scoring in all 

genetic studies might have maximized phenotypic differences, the 24 hr time point was used to evaluate 

relative regeneration in most genetic comparisons (most of these studies were conducted prior to the 5 h 

measurements that revealed early action of ced-3). Because statistically significant differences were still 

apparent at 24 hours, and 5 hr high resolution video microscopy required laborious analysis of individual 

movies, it would have been impractical to redo all genetic analyses for the 0-5 hr time points.  

 Light touch to the anterior part of C. elegans body is sensed through a pair of ALM neurons and 

the AVM neuron. Interestingly, when both ALM axons were cut 20 µm from the cell body (n=10) and 

AVM was ablated, we found that anterior touch was not significantly reduced, suggesting that the severed 

distal processes, in contact with post-synaptic interneurons to mediate the escape behavior, maintains the 

capacity for touch transmission. When we cut both ALM axons >200 µm from the cell body (just 

posterior to the nerve ring, where critical contacts to interneuron targets are concentrated), touch 

sensitivity was diminished. Although some axons from this axotomy distance seemed to have a directed 

regeneration, we did not find evidence of restored touch sensitivity even several days post-axotomy, 

consistent with previous reports [12]. 

Some of our scores of extent of regeneration defects differ quantitatively from some published 

studies. Differences may be attributed to a number of factors, including different anesthetic techniques, 

neuron type studied, age, and laser surgery technique [2,8,9,12]. A few teams previously reported a delay 

of ~10 h in the formation of the growth cone [2,12]. However, using nematode immobilization techniques 

that do not require harsh anesthetics (microfluidic devices (Figure S3), as well as a10% agarose 

preparation, see below), we observed no such delay: neurons often displayed initial growth within 

minutes of the laser damage with average initial growth time < 1 h (Figure 2b). We observed more robust 

regeneration in ALM neurons compared to that of D-motor neurons, which may explain some of our 

differing results with published dlk-1 mutant strains (we consistently find reduction to ~ 50% 24 hr 

regrowth rather than no regrowth; minimal but non-zero regeneration in dlk-1 mutant strains has been 

reported in the PLM neurons in other studies [8,10]). Our laser ablation technique utilizing a 1kHz 

femtosecond pulse train at ~800 nm is specifically designed to deliver precise ablation with minimal 
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collateral damage to the animal and target neuron. Other techniques using MHz femtosecond pulse trains 

and conventional UV lasers produce larger regions of ablation and therefore more significant damage to 

the targeted neuron. Although some studies have indicated that postsurgical neuronal regeneration is 

unaffected by laser ablation technique [12], under certain conditions this may not hold true, leading to 

possible discrepancies in details among experiments. Despite these technical differences in the field and 

quantitative differences in extent of regeneration reported, basic conclusions have held across the field. 

Reconnection test

A significant proportion of axotomized neurons grew back to the dissociated fragment and could not 

be monitored for total outgrowth.  To determine how ced-3 caspase disruption altered regeneration 

outcomes in this fraction of axotomized neurons, we scored for reconnection. ALM axons were severed 

20 µm from the cell body in young adults using an zdIs5[pmec-4gfp] marker to visualize processes. 12 h, 24 

h or 72 h post surgery, neurons where inspected by eye. Neurons for which the regenerative outgrowth of 

the proximal axon segment appeared to track to (i.e. be in close contact with) the dissociated distal 

segment (Figure 3a), were further assayed for reconnection using the following photo-bleaching 

experiment:

a) An initial image of the neuron was recorded (frame 1, see Figure 3a panel iii and iv).

b) Using the laser, a second cut (yellow arrow in Figure 3a panel v and vi) was made along the distal 

segment ~40 µm from the initial cut point (red arrow) and ~20 µm from any potential reconnection points. 

This effectively isolated the distal segment, where there is potential reconnection, from the rest of the 

process. This was important to prevent GFP refilling from the distal side.

c) The relevant segment (i.e. between the two cut points) was selectively bleached using standard 

high intensity UV illumination and a restricted illumination field. A second image was acquired 

immediately after bleaching (frame 2, see Figure 3a panel v and vi). 

d) After 15 minutes a third picture was acquired (frame 3, see Figure 3a panel vii and viii).

GFP fluorescence level in each frame was measured as the average intensity along ~15 µm of the nerve 

process starting at the second cut point (white brackets in Figure 3a panel vii and viii), minus the 

background fluorescence measured adjacent to the nerve process (note: the same portion of the process 

was analyzed in each successive frame). Percent recovery was calculated as intensity increase between 
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frames 3 and 2, relative to the intensity decrease between frames 1 and 2, % recovery= (if3-if2)/(if1–if2) 

(where if1 is the fluorescence intensity measured in frame 1, etc.). Over the short recovery time, recovery 

of GFP intensity indicates diffusion of non-bleached GFP into the isolated segment through a new 

connection point with the regenerating neuron (Figure 3a panel vii). If there is no reconnection, the 

segment is truly isolated and GFP fluorescence does not recover (Figure 3a panel viii). Control 

experiments, performed by severing the axon of an intact neuron twice and immediately photo-bleaching 

the isolated unconnected segment, gave an average “recovery” background after 15 min of 3.05 ±0.55%. 

We therefore set a cutoff for successful reconnection at >7.37% recovery (2 sigma from the control 

average). The percent of reconnection at 12 h as well as additional measurements are given in Figure 3b-

d. 

Time-lapse imaging 

Time-lapse movies following laser surgery were acquired using two methods of worm 

immobilization: 1) microfluidic devices, the design, fabrication and use of which followed previously 

described methods [17], and 2) a preparation of stiff 10% agarose pads and polystyrene microspheres as 

described earlier [16]. Laser surgery was performed by manual alignment, but subsequent imaging was 

computer-automated to allow simultaneous time-lapse imaging of up to ten regenerating neurons in 

separate C. elegans. Initially movies were generated using microfluidic devices at lower resolution (30 

min/frame, X40 magnification). This data was eventually pooled with that from higher resolution movies 

(see below) to generate the time-lapse outgrowth data shown in Figure 2a (n=43 for WT, n=40 for ced-3). 

For all movies, outgrowth in each frame was measured as the contour length along the new axon growth, 

with branches <1µm long excluded. At each time point, mean outgrowth values were calculated across all 

regenerating neurons of that strain type. Regression fits to the data displayed in Figure 2a (by the least 

squared error method, KaleidaGraph, Synergy Software, and restricted to pass through the origin) were 

used to generate the outgrowth rates displayed in the insert. These rates therefore measure the average 

total outgrowth of the neurons, which at this stage is largely dominated by the creation and retraction of 

numerous filopodial extensions rather then the elongation of an individual branch. 

 To generate an accurate account of the initial regenerative dynamics (the number and timing of 

exploratory processes displayed in Figure 2b-e, Figure 6d,e and Supplementary Movies 2-3), higher 
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resolution movies (10 min/frame or 15 min/frame, X60 magnification) were generated in two ways. 

Microfluidic devices were used as described above, with the addition of 0.05% tetramisole in the 

surrounding buffer. The tetramisole worked to partially paralyze the worms [19] in order to keep them still 

enough for automated re-imaging under high magnification for long time periods. Worms were also 

immobilized for imaging without anesthetics, using stiff 10% agarose pads and polystyrene microspheres 

[16]. Data was collected for 5 h post surgery and images were analyzed by eye (counting number and 

timing of exploratory processes). Figure 2b,c and Figure 6d,e show the results of data pooled together 

from the two preparations, as no statistical difference was found between results from the microfluidic 

devices and stiff agarose protocols. 

Fluorescence calcium imaging 

 We quantified calcium dynamics as changes in ratiometric fluorescence emission between the 

cyan and yellow fluorescent protein components of cameleon, in the same manner as described previously 

[55,56]. Two versions of cameleon were employed, YC2.12 [57] and YC3.60 [56,58]. For measurements 

within the crt-1 mutants we used the bzIs17[pmec-4YC2.12 + lin-15(+)] allele expressing cameleon 

YC2.12 from the mec-4 promoter [57]. Because of apparent close linkage between the ced-3 and the 

bzIs17[pmec-4YC2.12 + lin-15(+)] allele, we used a second allele expressing cameleon YC3.60 under the 

mec-4 promoter, bzIs158[pmec-4YC3.60], for measurements in the ced-3 and in the ced-4 mutant 

backgrounds. Images were taken every 3 s with a 300 ms exposure time. The response of an individual 

neuron was measured as an integration of the fluorescence signal across the entire cell soma. For the 

YC2.12 measurements, animals were immobilized on a 2% agar pad containing 0.05% tetramisole. For 

the YC3.60 measurements the 10% agarose preparation, described above, was used. Differences in the 

wild type calcium response between YC2.12 and YC3.60 expressing strains could be due to a number of 

factors including the larger dynamic range and lower calcium affinity of YC3.60, and the different worm 

immobilization techniques. For these reasons we compared calcium measurements only across genetic 

backgrounds expressing the same cameleon variant. Likewise, our measured intracellular calcium signals 

differ with that of others [8] due to a number of possibilities including differing neuron type, calcium 

reporter, position of cut relative to the cell body and the portion of cell analyzed. Strains expressing 

cameleon YC2.12 displayed a deficit in regeneration compared to non-cameleon strains at the 24 h time 
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point (Figure S7). Although we observed a general reduction in overall regenerative outgrowth for all 

strains expressing the calcium-binding cameleon YC2.12, the ~50% relative reduction in outgrowth 

compared to WT control is maintained in the crt-1 mutant in the presence or absence of cameleon 

YC2.12, so basic conclusions on the requirement for crt-1 are not compromised by the use of the 

cameleon YC2.12 reporter (Figure S7). The WT strain expressing cameleon YC3.60 showed no 

significant defect in regenerative outgrowth at the 5 h time point. 

Statistical Analysis

 Details of statistical analysis are stated in the figure legends. In general, for comparisons between 

two measurements a two-tailed Student's t-test was used to show statistical significance (direct t-tests are 

indicated by brackets were they are not otherwise obvious). For group comparisons involving multiple 

strains  (i.e. all strains within one figure panel unless otherwise indicated) the Dunn-Sidak group 

comparison method was used.  Statistical tests were implemented using MATLAB (The MathWorks, 

Inc.). Outgrowth rates in Figure 2a insert were calculated by regression fits to the data as described above.

C. elegans strains and media

 Strains were grown at 20°C on NGM agar seeded with Escherichia coli OP50 as a food source 

[59]. The wild type strain was C. elegans N2 Bristol. Standard genetic techniques were used to generate 

compound mutant strains. The active site point mutation allele ced-3(n2433) was used in all compound 

mutant strains.  

Strain name Genotype
ZB2673 zdIs5[pmec-4gfp] I; ced-3(n2433) IV
ZB2676 zdIs5[pmec-4gfp] I; ced-3(n2452) IV
ZB2694 zdIs5[pmec-4gfp] I; ced-3(n2888) IV
ZB2677 zdIs5[pmec-4gfp] I; ced-4(n1162) III
ZB2699 zdIs5[pmec-4gfp] I; ced-4(n1416) III
ZB2678 zdIs5[pmec-4gfp] I; ced-9(n1950) III gf



25

ZB2675 zdIs5[pmec-4gfp] I; ced-9(n2812)/ qC1 dpy-19(e1259) glp-1(q339) III

ced-9(n2812) lf homozygotes are viable due to maternal rescue, but sterile
ZB2674 zdIs5[pmec-4gfp] I; egl-1(n1084n3082) V
ZB2680 zdIs5[pmec-4gfp] I; ced-8(n1891) X
ZB2708 lin-35(n745) zdIs5[pmec-4gfp] I
ZB2689 zdIs5[pmec-4gfp] I; ced-4(n1162) III; ced-3(n2433) IV
ZB2701 zdIs5[pmec-4gfp] I; egl-1(n1084n3082) V; ced-13(sv32) X
ZB2698 zdIs5[pmec-4gfp] I; egl-1(n986) V
ZB2688 oxIs12[punc-47gfp] X; ced-3(n2433) IV
ZB2679 zdIs5[pmec-4gfp] I; crt-1(bz29) V
ZB2700 zdIs5[pmec-4gfp] I; crt-1(ok948) V
ZB2684 zdIs5[pmec-4gfp] I; ced-3(n2433) IV; crt-1(bz29) V
ZB2705 zdIs5[pmec-4gfp] I; crt-1(ok948) V; bzIs122[pmec-4ced-3 unc-119(+)]
ZB2710 crt-1(bz29) V; bzIs17[mec-4pYC2.12 + lin-15 plasmid]
ZB2711 crt-1(ok948) V; bzIs17[mec-4pYC2.12 + lin-15 plasmid]
ZB2687 zdIs5[pmec-4gfp] I; bzIs123[unc-119(+)]
ZB2695 zdIs5[pmec-4gfp] I; bzIs122[pmec-4ced-3]
ZB2686 zdIs5[pmec-4gfp] I; ced-3(n2433) IV; bzIs123[unc-119(+)]
ZB2685 zdIs5[pmec-4gfp] I; ced-3(n2433) IV; bzIs122[pmec-4ced-3]
ZB2707 dlk-1(ju476) zdIs5[pmec-4gfp] I
ZB2709 dlk-1(ju476) zdIs5[pmec-4gfp] I; ced-3(n2433) IV
ZB4005 dlk-1(ju476) zdIs5[pmec-4gfp] I; bzIs122[pmec-4ced-3]
ZB4004 zdIs5[pmec-4gfp] I; ced-4(n1162); bzIs122[pmec-4ced-3]
ZB4006 dlk-1(ju476) zdIs5[pmec-4gfp] I; crt-1(bz29) V
ZB4007 dlk-1(ju476) zdIs5[pmec-4gfp] I; ced-4(n1162) III
ZB4010  zdIs5[pmec-4gfp] I; kgb-1(um3) IV
ZB4009 zdIs5[pmec-4gfp] I; kgb-1(um3) ced-3(n2433) IV
CG1B bzIs158[pmec-4YC3.6]
ZB4008 ced-3(n2433) IV; bzIs158[pmec-4YC3.6]
ZB4011 ced-4(n1162) III; bzIs158[pmec-4YC3.6]
ZB154 zdIs5[pmec-4gfp lin-15(+)] I
EG1285 oxIs12[punc-47gfp lin-15(+)] X
ZB1056 lin-15(c11) X; bzIs17[pmec-4YC2.12 lin-15(+)]
KWN177 rnyIs014[pmec-4mCherry unc-119(+)]

Table 1. List of strains used in this study. Mutations are loss-of-function unless otherwise indicated.  We 

confirmed lesions in all ced-3, ced-4, and dlk-1 constructs by DNA sequence analysis.

Note on molecular lesions of alleles studied
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 The true ced-3 null allele has not been formally defined although many loss-of-function mutants 

have been described in detail [60]. All 4 ced-3 alleles studied are strong loss-of-function. The n2433 allele 

encodes a point mutation that alters the caspase active site and shows weak semi-dominance regarding 

apoptosis; the encoded substitution generates a mutant CED-3 that has no detectable protease activity in 

vitro [14]. We also studied regeneration in ced-3(n2452) (a 17Kb deletion also disrupting 4 other putative 

genes, C48D1.1, F58D2.2, F58D2.4 and F58D2.1), ced-3(n717) (mutation of the conserved acceptor site 

of intron #7), and ced-3(n2888) (early stop codon).

 The crt-1(ok948) deletion mutant deletes all but the first 21 amino acids, including the stop codon. 

crt-1(bz29) encodes a stop codon at position 28 and lacks immunoreactivity [61]. These crt-1 alleles have 

been suggested to be functional null alleles.

 The dlk-1(ju476) allele is a 5 bp insertion at G631 [62]; this allele has been cited to act as a null 

allele for axonal regeneration [9].

Plasmid construction and generation of ced-3 transgenic animals

 Plasmids were constructed using standard genetic techniques. The pmec-4mCherry vector was 

constructed by amplification of mCherry sequence improved for expression in C. elegans [63] using the 

following primers 

5’-GGGATCCATGGTCTCAAAGGGTGAAGA-3’ and 

5’-GGAATTCTTATACAATTCATCCATGCC-3’. The PCR fragment generated was cloned into 

pmec-4GFP [64], replacing GFP using BamHI and EcoRI sites.

For the construction of pmec-4ced-3, ced-3 cDNA was amplified from a pool of C. elegans cDNA using 

primers 5’-GGATCCATGATGCGTCAAGATAGAAGGA-3’ and 5’-

CAATTGTTAGACGGCAGAGTTTCGTGC-3’ and cloned into pCR2.1 using TOPO TA cloning kit 

(Invitrogen). For further cloning purposes, the HindIII site of ced-3 cDNA was inactivated while 

introducing the silent mutation A to G at position 609 on the cDNA giving pCRced-3(A609G) 

(QuikChange II Site-Directed Mutagenesis Kit). The GFP fragment of pmec-4GFP [64] was replaced with 

ced-3(A609G) from pCRced-3(A609G) using BamHI and MfeI sites. A fragment containing the mec-4 

promoter fused to ced-3(A609G) cDNA from the previous vector was introduced using ApaI and HindIII 

sites into pDP#MM016b bearing unc-119(+) [65] and giving the pmec-4ced-3 vector construction.
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 The pmec-4ced-3 vector and the pDP#MM016b [65] vector bearing unc-119 gene were used for 

bombarding unc-119(ed3) animals as described [66]. Generated transgenic lines were bzIs122[pmec-4ced-3 

unc-119(+)] and bzIs123[unc-119(+)], named Is[pmec-4ced-3] and Is[unc-119(+)], respectively, in the 

figures presented for this study. Strains were outcrossed once before further genetic constructions. Note 

that the line generated exhibited evidence of some touch neuron loss (Figure S2) and that numerous 

repeated attempts at generation of transgenic expression of C. elegans caspase genes were unsuccessful. 

This is likely due to the toxicity of elevated ced-3 expression. Note that although we obtained published 

lines overexpressing dlk-1 on extrachromosomal arrays, transgenic lines were consistently sick and array 

transgenes were lost at a very high frequency, precluding our ability to test dlk-1 overexpression in ced-3 

mutants.  mitani supp ref[67]
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Figure Legends  

Figure 1. CED-3 caspase activity is needed for efficient axonal regeneration.

(a) Representative images of a pmec-4GFP-labeled ALM neuron were taken before (i), immediately after 

(ii, red arrow indicates cut point at 20 µm from the cell body), and 24 hours after laser axotomy in WT 

(iii) and in the ced-3(n2433) active site mutant (iv). Images are projected z-stacks. The green traces 

indicate the observed regenerative outgrowth for WT (v) and ced-3(n2433) (vi); Scale bar: 10 µm. 

Regenerative outgrowth was measured 24 h after surgery in (b) ALM neurons (4 independent ced-3 

alleles including deletion allele n2452 and active site mutant allele n2433) and (c) D-motor neurons for 

young adult animals. (d) Regenerative outgrowth was measured 3 days after surgery in ALM neurons in 

WT and ced-3(n2433) (no statistical difference between the two by t-test). (e) Comparison of WT (grey) 

and ced-3(n2433) (red) 24 h regenerative outgrowth in ALM neurons for different age animals (L3 and L4 
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larvae, young adults and 2-day old adult). (f) Cell autonomy test for ced-3 rescue of regeneration 

outgrowth phenotype. The length of ALM regenerative outgrowth was measured 24 h after surgery in 

young adult animals for the control transgenic strains, bearing the unc-119(+) marker of transformation, Is

[unc-119(+)] and ced-3(n2433); Is[unc-119(+)]  as well as transgenic strains expressing ced-3 in the 

touch neurons Is[pmec-4ced-3] and ced-3(n2433); Is[pmec-4ced-3]. See notes on strain construction and 

ced-3 transgene expression toxicity in touch neurons in Figure S2. The unc-119 integrated copy (Is

[unc-119(+)]) did not affect the ced-3(n2433) defect in regeneration and expression of pmec-4ced-3 (Is

[pmec-4ced-3]) in the mechanosensory neurons rescues the ced-3(n2433) defect, despite some 

neurotoxicity. pmec-4ced-3 expression in wild type does not induce excessive regeneration (panel f, third 

bar), and thus does not appear sufficient to promote regeneration, although we cannot rule that toxicity of 

elevated caspase activation could mask a potential beneficial outcome. All bar graphs depict mean ± 

s.e.m. The Student’s t-test, with a Dunn-Sidak adjustment for multiple comparisons, was used to 

determine the statistical significance of differences versus WT in each panel, except in (f) where brackets 

indicate direct Student’s t-test between two specific values; *p<0.05, **p<0.005 in all cases. Number of 

animals assayed is indicated in (or above) each bar for this and all other figures. 

Figure 2. CED-3 caspase contributes to early dynamics of axonal regeneration.

(a) Time-lapse regenerative outgrowth measurements during the 0-5 h time period following laser surgery  

for WT (grey) and ced-3(n2433) (red). Data points indicate outgrowth of individual neurons, lines 

indicate average outgrowth (shaded region areas ± s.e.m). The insert shows total outgrowth rates over the 

0-5 h time period (calculated using a regression fit of the displayed outgrowth data, restricted to pass 

through the origin). (b) Mean time of initial outgrowth after laser surgery for WT (grey) and ced-3(n2433) 

(red) mutant worms as determined from time lapse measurements. (c) Mean number of individual 

exploratory processes generated during the 0-45 min and 0-5 h time periods following laser surgery. (d) 

Representative images showing numerous exploratory outgrowths, sprouting of small often short-lived 

processes, in the WT background, compared to (e) relatively few such protrusions in the ced-3(n2433) 

mutant background. Green arrows mark new exploratory processes, green arrowheads mark stunted or 

stalled processes, purple arrow marks an exploratory process from the disconnected distal axon segment, 

time is indicated in minutes post laser surgery. For bar graphs, data are expressed as mean ± s.e.m. 
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*p<0.05, **p<0.005 versus wild type by Student’s t-test. 

Figure 3. CED-3 caspase contributes to reconnection to the dissociated distal fragment.

(a) Photo-bleaching test for successful reconnection (see Methods for details). (i, ii) Compressed z-stack 

images 12 h post laser surgery of neurons displaying apparent reconnection. Red arrow indicates the 

original cut point. (iii, iv) Magnified image of distal segment (single z-frame). (v, vi) A second laser cut 

(yellow arrow) is followed by selective photo-bleaching between the two cut points. (vii) Recovery of 

GFP fluorescence in the original distal segment within 15 min indicates the existence of a fusion between 

the regenerating proximal axon segment and the distal segment, (viii) a lack of fluorescence recovery 

indicates no such reconnection (with a cutoff of <7.7% fluorescence score, see Methods). White brackets 

indicate the portion of process analyzed for fluorescence recovery; numbers indicate percent recovery of 

fluorescence. (b) Percent of re-growing axons that track to the place of the dissociated distal fragment at 

12 h (i.e., appear to be in physical contact).  Note that although ced-3 mutant axons tend to track less 

often to the dissociated distal fragment, the differences are not statistically significant (p=0.217)  (c) 

Percent of neurons, of those that track to the dissociated distal fragment, that are also scored to have 

reconnected at 12 h. Specific reconnection events (in addition to poor tracking) appear delayed in ced-3 

mutant axons. (d) Percentage of total neurons at 12 h post surgery, for which the regenerating proximal 

axon successfully reconnected with the disconnected distal axon segment. (e) Percentage of total neurons 

at 72 h post surgery, for which the regenerating proximal axon successfully reconnected with the 

disconnected distal axon segment. Note that reconnected axons do not show filopodial extensions, 

suggesting this trait might be suppressed in reconnected neurons as well as in intact neurons. All 

comparisons are by Fisher’s exact test, with *p<0.05 

Figure 4. The ced-4 core apoptotic gene, but not known C. elegans upstream regulators of 

developmental, germline, or radiation-induced apoptosis, are needed for efficient axonal 

regeneration. 

(a) We measured mean regenerative outgrowth in ALM neurons 24 h after laser surgery for WT and 

mutant strains affecting ced-3 and ced-4 (two independent alleles) core apoptotic genes, compound 

mutants and in ced-4; Is[pmec-4ced-3]. Because some studies [9,10,18] documented mutant neurons that 
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show virtually no post-axotomy regeneration and we find that the kgb-1 ced-3 double mutant exhibits 

lower regeneration than the ced-3 single mutant (Figure S6), the partial phenotype can become more 

severe in compound mutants. (b) Regenerative outgrowth was measured 3 days after surgery in ALM 

neurons in WT and ced-4(n1162) (no statistical difference by t-test). (c) Regenerative outgrowth was 

measured 24 h after surgery in ALM neurons for mutants in upstream apoptosis regulators as well as 

compound mutants (which show no statistical difference by one-way ANOVA test). Bar graphs depict 

mean ± s.e.m. For (a) the Student’s t-test, with a Dunn-Sidak adjustment for multiple comparisons, was 

used to determine the statistical significance of differences versus WT with brackets indicating direct 

Student’s t-test between two specific values. *p<0.05, **p<0.005. 

Figure 5. The MAPKKK dlk-1 might act together with ced-3 to promote regeneration.

(a) Mean regenerative outgrowth in ALM neurons was measured 24 h after laser surgery for WT and 

mutant strains for ced-3, ced-4, dlk-1, double mutants dlk-1; ced-3 and dlk-1; ced-4, as well as dlk-1; Is

[pmec-4ced-3].  Note that double mutant kgb-1 ced-3 exhibits lower regeneration than ced-3 alone (Figure 

S6), as would be predicted for action in a parallel regeneration pathway, so it is experimentally possible 

for a double mutant to exhibit lower regeneration.  (b) Regenerative outgrowth in ALM neurons was 

measured 3 days after laser surgery for WT and mutant strains dlk-1 and dlk-1; ced-3. Bar graphs depict 

mean ± s.e.m. For (a), the Student’s t-test, with a Dunn-Sidak adjustment for multiple comparison, was 

used to determine the statistical significance of differences versus WT in each panel; *p<0.05, **p<0.005. 

For (b) there is no statistical difference by one-way ANOVA. 

Figure 6. CED-3 caspase acts in a calreticulin-, calcium-dependent pathway for efficient axonal 

regeneration.

(a) Intracellular calcium dynamics in the ALM neurons during laser axotomy. Two different variants of 

the FRET-based calcium sensitive fluorophore cameleon were used: Left Panel YC2.12, Right Panel 

YC3.60. Differences in the wild type response (amplitude and shape) are due in part to the lower calcium 

affinity and larger dynamic range of the YC3.60 fluorophore compared to that of YC2.12 [58]. All laser 

axotomies were performed 20 µm from the cell soma at time = 0 s (red arrow). Traces represent average 

response at the cell soma (9 ≥ trials per trace), shaded regions indicate s.e.m. (b) Mean regenerative 



35

outgrowth in ALM neurons measured 24 h after laser surgery for the indicated mutant strains and 

compound mutant strains defective in the ER calcium-binding chaperone calreticulin, including in the 

context of ced-3 expression in touch neurons (indicated as crt-1; Is[pmec-4ced-3]). (c) Regenerative 

outgrowth was measured 3 days after surgery in ALM neurons in crt-1(bz29) (no statistical difference was 

found by Student’s t-test).  crt-1(bz29) and ced-3(n2433); crt-1(bz29) double mutant were compared with 

WT and ced-3 for (d) Mean time of initial outgrowth after laser surgery, and (e) Mean number of 

individual exploratory processes generated during the 0-45 min and 0-5 h time periods following laser 

surgery.  Bar graphs depict mean ± s.e.m. For (b), (c), (d) and (e) the Student’s t-test, with a Dunn-Sidak 

adjustment for multiple comparison, was used to determine the statistical significance of differences 

versus WT in each panel, with brackets indicating direct Student’s t-test between two specific values; 

*p<0.05, **p<0.005. 
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Supplementary Figure Legends

Figure S1. The severed distal fragment generated consequent to ALM axotomy often persists for 

days.

(a) Pictures of a regenerating ALM neuron expressing the zdIs5[pmec-4gfp] transgene that does not 

obviously regrow to the site of the dissociated fragment. Note that the severed distal end (green arrow), 

disconnected from the cell body, remains visible for at least 3 days post-axotomy in young adults. Red 

arrow indicates laser cut point. (b) To quantitate process persistence in non-reconnected neurons, we 

classified degeneration of the distal fragment into three types : i) No or very minimal degeneration (apart 

from the formation of an end bulb at the cut point); ii) significant degeneration consisting of apparent 

thinning of the axon, significant loss of GFP fluorescence and/or beading; and iii) fragmentation and 

complete degeneration (this was not observed). (c) Degeneration from ALM axotomies classified in this 

way in wild type (N=39) and ced-3(n2433) mutant (N=37) animals showed no significant difference.  

Figure S2. CED-3 caspase expression affects neuronal health, but one minimally-toxic low copy 

number line can be used for rescue in touch receptor neurons.

To test whether ced-3-specific expression in touch neurons could rescue the ced-3 mutation defect in 

regeneration, we constructed transgenic lines using biolistic transformation, which generates low copy 

number integrated transgenes. We first engineered a control transgenic line harboring an integrated 

unc-119 gene (the selectable marker used for biolistic transformation, which is also a critical gene for 

neuronal development, see details in Methods), indicated as Is[unc-119(+)]. Is[unc-119(+)] was crossed 

to the ced-3(n2433) mutant to generate ced-3(n2433); Is[unc-119(+)]. The pmec-4ced-3 cDNA was 

expressed in touch neurons in the wild type and ced-3(n2433) backgrounds along with co-transformation 

marker unc-119. These strains are indicated as Is[pmec-4ced-3] and ced-3(n2433); Is[pmec-4ced-3]. To test 

for toxicity associated with ced-3 neuronal expression from Is[pmec-4ced-3], we compared surviving 

fluorescent touch neurons visualized by the zdIs5[pmec-4gfp] transgene in wild type, ced-3(n2433), the 

control transgenic strains Is[unc-119(+)] and ced-3(n2433); Is[unc-119(+)] as well as transgenic strains 

expressing ced-3 in the touch neurons Is[pmec-4ced-3] and ced-3(n2433); Is[pmec-4ced-3]. Mean ± s.e.m. 

are shown. Student’s t-test with a Dunn-Sidak adjustment for multiple comparisons, was used to 
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determine the statistical significance: *p<0.005 versus wild type, #p<0.005 versus ced-3(n2433). Note that 

ced-3 mutant displays 1.1±0.8 (mean ± standard deviation) extra surviving fluorescent neurons as 

compared to wild type, including in transgenic backgrounds, consistent with a previous report suggesting 

survival of a lineage sister that does not undergo programmed cell death in this background [67].  Many 

transgene lines had higher levels of touch neuron death associated with ced-3 overexpression (not shown) 

and thus could not be used for rescue assays in our study.    

Figure S3. Immobilized C. elegans in microfluidics channels. 

C. elegans were physically immobilized in microfluidic devices consisting of a parallel array of 128 

tapered channels or worm “clamps”. Constant suction through the device sufficiently restrained the 

animals for laser surgery and subsequent time-lapse imaging. This figure is related to time lapse imaging 

quantitated in Figure 2a.

Figure S4. Growth cones of ced-3 mutant neurons exhibit wild type behavior during development. 

Migrating VD neurons exhibit stereotyped behaviors when they contact a new substratum, as visualized 

by the oxIs12[unc-47::GFP] in the wild type and in ced-3(n2433) mutant. Rounded growth cones migrate 

across the epidermis (left panels). Growth cones form anvils at the lateral nerve cord (middle panels). 

Anvil-shaped growth cones paused at the dorsal body wall muscle extend fingers toward the dorsal nerve 

cord (right panels). 5 larvae were observed for each genotype. Pictures are projections of z-stacks. The 

scale bar represents 5 µm.  We conclude that ced-3 mutants do not have major systemic defects in 

developmental growth cones.

Figure S5. Post-axotomy regenerative dynamics in the dissociated distal axon segment reveal that 

CED-3 activities can be induced in a cellular fragment devoid of a nucleus.

(a) Mean time of initial outgrowth from the severed end of the distal fragment after laser surgery for WT 

(grey) and ced-3(n2433) (red) mutant (see Figure 2). (b) Mean number of individual exploratory 

processes generated from the dissociated end of the distal axon segment, during the 0-5 h time period 

following laser surgery. Student’s t-test was used to determine the statistical significance of differences for 

ced-3 versus WT in each panel; *p<0.05. See also Supplementary movies 1, 2 and 3 for views of changes 
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in dissociated distal ends. 

Figure S6. Regeneration efficiency is lower in kgb-1 ced-3 than in ced-3 and kgb-1 strains, 0

suggesting that kgb-1 and ced-3 act in different regeneration pathways.

A recent study suggested parallel kinase pathways promote C. elegans regeneration, and that kgb-1 was 

one kinase that might act in parallel to dlk-1 [18].  Because our genetic data suggested that dlk-1 acts in 

the ced-3 pathway, we elected to construct a double mutant with kgb-1 to provide proof-of-principle that 

double mutants impacting parallel pathways would have enhanced regeneration defects.  We measured 0

regenerative outgrowth of the axotomized ALM neuron visualized using the zdIs5[pmec-4gfp] transgene 

and monitored 24h post surgery in ced-3(n2433) and kgb-1(um3) single mutants and in the kgb-1(um3) 0 0 0

ced-3(n2433) double mutant. Student’s t-test with a Dunn-Sidak adjustment for multiple comparisons, 0

was used to determine the statistical significance: **p<0.005 versus WT, #p<0.05 versus kgb-1(um3) 

ced-3(n2433). 0

Figure S7. crt-1 mutant axons exhibit reduced regenerative outgrowth with calcium sensor 

cameleon YC2.12 in the background. 

Since calcium-binding cameleon might sequester calcium to change regeneration events when expressed 

in touch neurons, we scored our cameleon strains for regenerative outgrowth.  Both WT and crt-1 strains 

that harbor cameleon YC2.12 transgenes exhibit diminished regenerative outgrowth as compared to non-

cameleon strains (WT shown, compare crt-1 data with Figure 6b). However, even with cameleon 

transgene expression, crt-1 mutants remain ~50% reduced in 24 h regenerative outgrowth such that 

conclusions on calcium signaling remain valid (see Figure 6a). The wild type strain expressing improved 

cameleon variant YC3.60 showed no significant defect in regenerative outgrowth at the 5 h time point but 

was not investigated further since a crt-1 dependence for efficient regeneration was apparent even with 

YC2.12. 

Shown is mean regenerative outgrowth 24 h after laser surgery for strains expressing the cameleon 

YC2.12 bzIs17[pmec-4YC2.12 + lin-15(+)] (indicated as WT YC2.12), bzIs17[pmec-4YC2.12 + lin-15(+)]; 

crt-1(bz29) (indicated as crt-1(bz29) YC2.12) and bzIs17[pmec-4YC2.12 + lin-15(+)]; crt-1(ok948) 
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(indicated as crt-1(ok948) YC2.12). Brackets represent Student’s t-test between the two indicated 

measurements with *p<0.05, **p<0.005. 

Supplementary Movie 1. Regeneration of an ALM neuron after femtosecond laser axotomy.

The ALM dendrite was targeted 13 µm from the cell body in an adult wild type C.

elegans (arrow). We can visualize new growth cones that direct axon extension. Note that the posterior 

process also initiates limited outgrowth. Frames were taken every 15 minutes as indicated with laser 

axotomy occurring at T=0 min. Duration: 9 h 30 min. Scale bar: 10 µm.

Supplementary Movies 2-3. Comparison of time-lapse regenerative dynamics in WT vs. ced-3 

mutant. 

Representative time-lapse movies of initial stages (0-5 h) of neuronal regeneration in WT (Supplementary 

Movie 2) and ced-3(n2433) mutant (Supplementary Movie 3) backgrounds. WT ALM neurons display 

numerous transient, dynamically active exploratory processes. In contrast, ced-3 mutants display 

significantly fewer of these extensions and initial outgrowth is substantially delayed. Animals were held 

in microfluidic devices for laser surgery and time-lapse imaging (see Methods and Figure S3). Frames 

were taken every 10 minutes as indicated with laser axotomy occurring at T=0 min. Scale bar: 10 µm. 

Select frames are displayed in Fig 2d,e. 

Supplementary Information contains 7 Supplementary Figures and Legends and 3 Supplementary 

Movies.
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