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Evaluation of the public health impacts of traffic
congestion: a health risk assessment
Jonathan I Levy1,2*, Jonathan J Buonocore2, Katherine von Stackelberg3

Abstract

Background: Traffic congestion is a significant issue in urban areas in the United States and around the world.
Previous analyses have estimated the economic costs of congestion, related to fuel and time wasted, but few have
quantified the public health impacts or determined how these impacts compare in magnitude to the economic
costs. Moreover, the relative magnitudes of economic and public health impacts of congestion would be expected
to vary significantly across urban areas, as a function of road infrastructure, population density, and atmospheric
conditions influencing pollutant formation, but this variability has not been explored.

Methods: In this study, we evaluate the public health impacts of ambient exposures to fine particulate matter
(PM2.5) concentrations associated with a business-as-usual scenario of predicted traffic congestion. We evaluate 83
individual urban areas using traffic demand models to estimate the degree of congestion in each area from 2000
to 2030. We link traffic volume and speed data with the MOBILE6 model to characterize emissions of PM2.5 and
particle precursors attributable to congestion, and we use a source-receptor matrix to evaluate the impact of these
emissions on ambient PM2.5 concentrations. Marginal concentration changes are related to a concentration-
response function for mortality, with a value of statistical life approach used to monetize the impacts.

Results: We estimate that the monetized value of PM2.5-related mortality attributable to congestion in these 83
cities in 2000 was approximately $31 billion (2007 dollars), as compared with a value of time and fuel wasted of
$60 billion. In future years, the economic impacts grow (to over $100 billion in 2030) while the public health
impacts decrease to $13 billion in 2020 before increasing to $17 billion in 2030, given increasing population and
congestion but lower emissions per vehicle. Across cities and years, the public health impacts range from more
than an order of magnitude less to in excess of the economic impacts.

Conclusions: Our analyses indicate that the public health impacts of congestion may be significant enough in
magnitude, at least in some urban areas, to be considered in future evaluations of the benefits of policies to
mitigate congestion.

Background
Congestion arises when a roadway system approaches
vehicle capacity, resulting in numerous negative impacts
ranging from wasted fuel and time to increases in tail-
pipe emissions. Multiple studies have modeled conges-
tion in urban areas and assigned economic values to the
excess fuel consumption and time wasted in traffic, con-
cluding that congestion leads to annual economic bur-
dens ranging from $83 billion [1] to $124 billion [2].
While this represents a substantial economic loss, there

are multiple externalities from congestion that have not
been previously characterized, including the public
health impacts of excess air pollutant emissions during
periods of congestion.
Fine particulate matter (PM2.5) is influenced by motor

vehicle emissions of both PM2.5 and particle precursors,
with source apportionment studies finding vehicles con-
tributing up to one-third of ambient PM2.5 in urban
areas in the US [3-5], with an even greater contribution
if secondary sulfate and nitrate are considered. PM2.5

has been associated with premature mortality in multi-
ple studies [6-8], and health impact assessments have
demonstrated PM2.5-related damages on the order of
hundreds of billions of dollars per year [9]. Recently, an
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expert committee [10] summarized the available epide-
miological literature on exposure to traffic-generated air
pollution and adverse health effects. They find strong
evidence for a causative role for traffic-related air pollu-
tion on mortality, particularly from cardiovascular
events. Thus, the public health implications of conges-
tion could be appreciable and merit further
investigation.
Multiple factors can complicate the comparison

between economic and public health impacts, including
some of the non-linearities in the system and variability
across urban areas. On the former point, when density
is close to capacity, small increases in traffic volumes
generally lead to larger increases in delays (i.e., conges-
tion follows a non-linear function) [11]. Economic
impacts will tend to increase approximately proportional
to delay time, but public health impacts will have some-
what different dependencies, including relationships
with population size and age distribution (both of which
will also influence traffic demand). On the latter point,
previous studies [12,13] have emphasized that the popu-
lation exposure implications of a given magnitude of
emissions will vary significantly by location, largely as a
function of population density at various distances from
the source but also influenced by atmospheric condi-
tions affecting pollutant fate and transport. Any analysis
designing congestion mitigation strategies would need to
take this variability into account, but complex chemis-
try-transport models are computationally intensive and
may be impractical if direct economic costs dominate.
Yet another complication stems from the time-

dynamic aspects of the system. While recent economic
conditions have led to reductions in vehicle-miles tra-
veled for passenger vehicles and goods transport, popu-
lation and economic growth over the long term would
be expected to lead to further increases in traffic
volumes in upcoming decades. Without changes to the
existing infrastructure (whether through increased high-
way construction, increased mass transit, or other solu-
tions) or other policy interventions, substantially greater
congestion would be anticipated, with corresponding
economic and public health implications. However,
there are countervailing influences, including signifi-
cantly (presumably) lower per-vehicle emissions of mul-
tiple pollutants over time.
Thus, the primary aims of our study are to estimate

the magnitude of the air pollution-related public health
impacts of congestion relative to the economic impacts
of congestion, in order to determine the significance of
public health endpoints in future assessments and to
identify information gaps that need to be addressed in
order to accurately determine the future burden of con-
gestion in the United States and to better evaluate
potential strategies for ameliorating congestion. Our

study considers a “business as usual” scenario with the
following objectives:

• Develop a baseline scenario to predict time spent
in congested traffic in 83 urban areas out to 2030
• Quantify emissions of PM2.5 and particle precursors
as a function of vehicle speed, urban area, and year
• Develop estimates of health risks and monetary
impacts attributable to congestion, using a value of a
statistical life approach
• Determine the critical information gaps that must
be addressed in order to more precisely quantify the
public health burdens of congestion and the public
health benefits of potential congestion mitigation
measures.

Methods
The key components of the analysis include predicting
emissions corresponding with traffic congestion for 83
individual urban areas based on travel demand models,
developing estimates of changes in ambient concentra-
tions associated with these emissions, applying concen-
tration-response functions for the contaminants of
concern, and finally, integrating the components of the
model to estimate potential health risks associated with
exposure to pollutants attributable to congestion. We
focus on primary and secondary PM2.5 as the constitu-
ents of concern, and evaluate only premature mortality
attributable to PM2.5 exposures, noting that there are
numerous morbidity effects including respiratory and
cardiovascular outcomes that are not considered in this
analysis.
We note that there are two primary exposures poten-

tially resulting from emissions during congestion events:
the first is in-cabin exposures for drivers in their vehi-
cles, and the second is a general increase in ambient
concentrations of contaminants that impact the sur-
rounding population. In the present study we focus
solely on quantifying impacts associated with increases
in ambient concentrations.

Predicting Emissions
We develop estimates of vehicle miles traveled (VMT)
based on data and methods from the Center for Urban
Transportation Research (CUTR) at the University of
Central Florida [14]. We use MOBILE6 to estimate city-
specific emissions per VMT based on year, temperature
profile, and average vehicle speed. We focus on emis-
sions from the baseline year (2000) until 2030. The ana-
lysis is conducted for 83 individual urban areas that
were previously evaluated by the Texas Transportation
Institute (TTI) [1] and are in the lower 48 states. The
following sections provide more detail concerning each
of these analytical steps.
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Vehicle Miles Traveled (VMT) Estimation
We obtained census data and projections for different
age classes from Woods & Poole [15], for each county
of the United States, for the years 2000 - 2015, 2020,
2025, and 2030. To properly apply the CUTR model, we
first determined the population in each of the 83 urban
areas modeled (Additional file 1, Table S1). To approxi-
mate urban area population, we began by establishing
baseline population data using 2000 US Census data at
census block resolution, overlaying these data on shape-
files for the urban areas of interest. This provided esti-
mates not only of the population within each urban area
as a whole, but also estimates split by county when the
urban area spanned multiple counties.
To determine urban area population for past and

future years, we calculated the percentage change in
population for each county relative to 2000 using
Woods & Poole data, and we assumed that these per-
centages were applicable to the portions of the urban
areas located within each county.
Next, predictions of traffic volume were based on a

model derived from an analysis of the National House-
hold Travel Survey, part of the 2000 US Census, devel-
oped by Polzin and Chu at CUTR [14] in a spreadsheet
model they made available. The CUTR model inputs
include age distribution, population density, gender dis-
tribution, and residency tenure distribution as covari-
ates. We estimated population age distribution using
Woods & Poole data, we calculated population density
directly from the population estimates, and residency
tenure distributions were provided in the CUTR model
on a state-by-state basis for 2001 and 2035, and were
linearly interpolated to provide values for the interven-
ing years. These age, population density, and residency
tenure covariates, represented as proportion of the
population, were multiplied by factors determined by
the CUTR analysis to estimate the different factors of
travel behavior - person-trips/person, person-miles/per-
son-trip, and vehicle-miles/person-mile.

Person-trips
Person

State constant

proportion in age group

= −

×[

mmultiplier for age group

proportion in residency tenure 

∑ −]

[ ggroup

residency tenure group multiplier

proportion in 

×
−∑ ]

[ ppopulation density group 

population residency multiplier

×
]]∑

(1)

Person-miles/person-trip and vehicle-miles/person-
mile were calculated similarly, and the product of these
three terms and population provided VMT, as indicated
below.

VMT population
person trips

person

person miles
person trips

ve

= × ×

× hhicle miles
person miles

(2)

We estimated VMT on a per-county basis using the
fraction of the population of that county actually resid-
ing in the urban area, then summed across the entire
urban area to generate estimates applicable for that
urban area. The VMT estimates then fed into the travel
demand and congestion model developed by TTI. We
note that the TTI model links VMT with congestion
but does not include forecasted VMT, necessitating the
use of two different models, but that this leads to some
incompatibilities (e.g., the CUTR model is driven by
population within the urban area, whereas the historical
TTI analyses are driven by traffic volume data that
includes people not residing in the urban area). To eval-
uate our approach before proceeding with the core ana-
lyses, we compared our VMT estimates to those from
TTI for past years (1985, 1990, 1995, and 2000 - 2005),
while recognizing that the models would not be
expected to yield identical outputs given these differing
assumptions between the TTI and CUTR model inputs.
Travel Demand and Congestion Modeling
We combined the VMT estimates derived above with
population data at the census tract level for the 83
urban areas addressed by TTI. The household travel
survey provides the data which CUTR used to construct
the traffic demand function. This is difficult to estimate,
as the data do not address induced travel resulting from
increased roadway capacity [16-18]. The baseline sce-
nario presented here assumes the demand elasticity for
trip rate, trip length, and occupancy derived from ana-
lyses of the CUTR surveys. Demand elasticities are pri-
marily related to fuel price, travel time, and income [19].
Estimates of the infrastructure in each urban area

were provided by TTI. Data were only provided for
years between 1985 and 2005, and we used values for
2005 for all subsequent years (e.g., a fixed infrastructure
over time). The values for VMT in each urban area
were divided by the available infrastructure to generate
daily traffic per lane. This fed into equations used to
estimate average vehicle speed on freeway and arterial
streets, and are based on uncongested to extremely con-
gested conditions [1].
The percent of daily travel under congested conditions

was based on the roadway congestion index, estimated
as the ratio of daily traffic volume to the number of
lane-miles of arterial streets and freeways. TTI [1] pro-
vides a non-linear function relating roadway congestion
index to the amount of travel occurring in congested
conditions (Additional file 1, Table S2) that imposes a
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maximum of 50% of daily traffic occurring in conges-
tion. Using traffic volume and infrastructure estimates,
the average speed on both arterial streets and freeways
in both peak and off-peak directions can be estimated
using the equations provided by TTI (Additional file 1,
Table S3). The split of traffic between peak and off-peak
directions was assumed at 65% and 35%, respectively, in
accordance with median values reported previously [20].
MOBILE6
Emissions are estimated using the MOBILE6 vehicle
emission modeling software from the US EPA [21], the
most robust software available at the time of our analy-
sis. Given interests in PM2.5-related health risks, we
derived emissions estimates for nitrogen oxides (NOx),
sulfur dioxide (SO2), and primary PM2.5 for all model
years, based on monthly averages of daily maximum and
minimum ambient temperature, average vehicle speed
for the two road types from the speed model, and
MOBILE6 default fleet composition and performance
for that year. A key limitation of MOBILE6 is that emis-
sions are estimated using an average speed; thus, signifi-
cant aspects of stop and go traffic and fast acceleration
and deceleration, hallmarks of travel in congestion, are
not adequately captured. Because of this limitation,
within our study, we modeled the emissions that occur
during congested conditions (with 100% of the emis-
sions during periods of congestion attributed to “con-
gestion”), rather than evaluating the proportion of
emissions due solely to reduced vehicle speeds. In other
words, the emissions outputs from MOBILE6 for each
urban area were multiplied by the amount of VMT that
occurs in congestion. This provided an estimate of the
health risks associated with periods of congestion, but
not information on (for example) the marginal differ-
ence between current conditions and an enhanced infra-
structure that would allow for the same traffic volume
at higher speeds, which was beyond the capabilities of
MOBILE6 and therefore outside of the scope of our
study.

Exposure Estimates
To estimate the marginal concentration changes asso-
ciated with congestion-related emissions from each
urban area, we applied a source-receptor (S-R) matrix
[22,23]. S-R matrix is a reduced-form model containing
county-to-county transfer factors across the United
States, considering both primary PM2.5 and secondary
formation of sulfate and nitrate particles. It is based on
an underlying sector-averaged Gaussian dispersion
model with wet and dry deposition and first-order che-
mical conversion. The S-R matrix is simplified relative
to gold standard chemistry-transport models such as the
Community Multiscale Air Quality model (CMAQ), but
it is computationally tractable for an application such as

this, and it has been shown to yield similar population
health impact estimates to CMAQ [24,25] and CAL-
PUFF [26] at a fraction of the computational time and
cost. It also includes a calibration step to ensure corre-
spondence with ambient monitoring data. The calibra-
tion factors were developed comparing the modeled
PM2.5 concentrations at county centroids with spatially
interpolated monitored data at county centroids. For the
monitored data, 2001 National Emissions Inventory
(NEI) and data from the Federal Reference Method
(FRM) and EPA’s Speciation Network (ESPN) monitor
sites were used.

Concentration-Response Function for PM2.5 Mortality
PM2.5 has been associated with a number of morbidity
outcomes as well as premature mortality. For the pur-
pose of this assessment, we focus on mortality due to
long-term exposure to PM2.5, which has previously
dominated monetized externality estimates in compari-
son with morbidity endpoints [9,27]. As in recent health
impact assessments [28], we derive our concentration-
response function from a combination of published
cohort studies and an expert elicitation study addressing
the concentration-response function for PM2.5-related
mortality. Two major cohort studies are generally
thought to provide estimates that are most robust and
applicable to the general population, with the Harvard
Six Cities Study publications reporting central estimates
of an approximate 1.2-1.6% increase in all-cause mortal-
ity per μg/m3 increase in annual average PM2.5 [7,8],
and the American Cancer Society studies reporting esti-
mates of approximately 0.4-0.6% [6,29], with higher esti-
mates when exposure characterization was more
spatially refined [30]. Within the expert elicitation study
[31], the median concentration-response function across
experts was approximately 1%, midway between these
cohort estimates, with a median 5th percentile of 0.3%
and a median 95th percentile of 2.0%. For this first-order
health impact calculation, we consider a value of a 1%
increase in all-cause mortality per μg/m3 increase in
annual average PM2.5 to be well-justified and applicable,
but consider the implications of alternative values in
sensitivity analyses. We applied this function to the
baseline mortality rate and the number of people in
each census tract 25 years of age or older (the popula-
tion in the Six Cities Study). We assumed that the age-
specific mortality rate would not change over time, but
given shifts in the age distribution of the population,
that the overall mortality rate could change over time.

Monetized Estimates of Premature Mortality
To monetize the resulting estimates of mortality attribu-
table to congestion, we applied a value of a statistical
life (VSL) of approximately $7.7 M in 2007 dollars (for
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2000 GDP), the central estimate used in recent EPA reg-
ulatory impact analyses [32]. We increased VSL as a
function of predicted increase in real GDP (as reported
by the Bureau of Labor Statistics) and an income elasti-
city of 0.5, noting that recent epidemiological evidence
indicates that the time lag between exposure to PM2.5

and mortality is relatively short [8], indicating that our
value would not be sensitive to choice or application of
discount rate.

Comparisons between Public Health and Economic
Impacts
One of our primary objectives is to compare the mone-
tized public health damages with the economic damages
associated with congestion, over time and across urban
areas. Although economic damages from fuel and time
wasted have been derived previously, we re-estimated
these values to correspond with our VMT estimates and
to provide consistency with our public health estimates.
We applied algorithms from TTI [1,14] to calculate time
and fuel spent in traffic at the modeled speeds and at
free-flow. We calculated the difference between the time
and fuel consumed at modeled speeds and at free-flow,
which gave us the time and fuel wasted as a result of
time spent in congestion, allowing us to compare eco-
nomic and public health costs from each of these
sources.
While the structure of our analyses did not allow for

formal uncertainty propagation, given the numerous
parameters with no plausible uncertainty quantification,
we recognize that the uncertainties in our monetized
public health damage estimates are significant. In our
core results, we present public health damages based on
central estimates for each parameter to provide a first
approximation of impacts, and within limited sensitivity
analyses, focus on the influence of selected parameter
values on qualitative conclusions regarding the relative
magnitudes of public health and economic damages.

Results
Vehicle-Miles Traveled and Degree of Congestion
In total, across the 83 urban areas modeled, VMT is
projected to increase 33% from 2000 to 2030 (an
increase from 2.97 billion daily VMT to 3.94 billion
daily VMT), closely paralleling projected population
growth in the urban areas of 32% (an increase from 133
million people to 176 million). There are some clear
geographic patterns in the areas with high and low per-
centage changes in VMT. Multiple urban areas in the
South and West are projected to have VMT growth in
excess of 40%, including Raleigh NC, Oxnard CA, Rich-
mond VA, and San Antonio TX. Those urban areas
with limited VMT growth or declines are generally
found in the industrial Midwest, including Cleveland

OH, Dayton OH, Detroit MI, and Toledo OH-MI, but
also in New Orleans LA and Salem OR. Intermediate
values are generally seen in the largest urban areas, with
7-10% projected growth in New York-Newark, Los
Angeles, and Chicago. A complete table of VMT esti-
mates by urban area is provided in Additional file 1,
Table S4.
Trajectories of the degree of congestion by urban area

closely pattern trajectories of VMT, although not in a
linear fashion given the maximum value of 50% of time
in congestion in the traffic model and other non-linear-
ities in the system. Whereas 18 of the 83 urban areas
were estimated to have 50% of time in congestion in
2000, 40 urban areas reached this threshold by 2030,
given our baseline scenario of population growth with
no corresponding changes in infrastructure or policy.

Attributable Emissions and Public Health Impacts
For 2005, nationwide estimates of traffic emissions attri-
butable to time spent in congestion include approxi-
mately 1.2 million tons of NOx, 34,000 tons of SO2, and
23,000 tons of PM2.5. These emissions are associated
with approximately 3,000 premature deaths in 2005
(Figure 1), with an economic valuation of $24 billion (in
2007 dollars). Overall, approximately 48% of the impact
over the 83 urban areas is attributable to NOx emis-
sions, with 42% attributable to primary PM2.5 emissions
and 11% attributable to SO2 emissions. However, the
relative proportion of the impact attributable to different
pollutants varies significantly across urban areas. For
example, the proportion due to NOx ranges from 6% in
multiple Northeast cities (Hartford, CT; Boston, MA;
New Haven, CT; Springfield, MA) to over 70% in less
densely populated areas of Texas (Brownsville, Austin)
and Washington State (Spokane). Similarly, the propor-
tion due to primary PM2.5 emissions is highest in den-
sely-populated urban areas of the Northeast
(approximately 80%) and below 20% in Brownsville. The
proportion attributable to SO2 emissions is highest in
California, with four urban areas in California constitut-
ing the only places with more than 20% of the mortality
risk from SO2 emissions. These relative proportions are
attributable in part to high ambient sulfate in the east-
ern US, which tends to reduce particulate nitrate forma-
tion, and to atmospheric conditions in California
favoring the secondary formation of particulate sulfates.
Examining time trends in mortality risk attributable to

congestion (Figure 1), there is a steady decline from
2000 until 2020, with an estimated 4,000 premature
deaths in 2000 and an estimated 1,600 premature deaths
in 2020. This decline is driven by significant reductions
in projected per-vehicle emissions that offset the growth
in population and general increase in per-capita mortal-
ity rates (based on the aging of the population).
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However, after this point, there is a steady increase in
mortality risk (to 1,900 premature deaths in 2030), as
population growth continues but projected pre-vehicle
emissions reductions level off. Using economic values
assigned to premature mortality in each year, with all
values in 2007 dollars, the impact decreases to approxi-
mately $13 billion in 2020, after which point it increases
up to $17 billion by 2030. Changes occur in the relative
contribution of various particle constituents, given that
NOx emissions per vehicle-mile are projected to
decrease by 83% on arterial streets and 86% on freeways
between 2005 and 2030, as opposed to a 64% decrease
in primary PM2.5 emissions on both road types and a
24% decrease in SO2 emissions on both road types. By
2030, the relative contributions of the different pollu-
tants to mortality risk attributable to congestion have
changed to 24% attributable to NOx emissions, 27%
attributable to SO2 emissions, and 49% attributable to
primary PM2.5 emissions.
Figure 2 presents the monetized health impacts over

time for selected urban areas, illustrating that the trajec-
tories differ as a function of differential population
growth, congestion, population density and atmospheric
chemistry. For example, monetized health impacts
increase steadily over time in cities such as Raleigh NC
and San Diego CA, in which VMT and population
growth are significant and primary PM2.5 makes a

substantial contribution to health risk. In contrast,
Chicago and other cities in the Midwest are projected to
have small VMT growth and have more substantial con-
tributions to public health damages from NOx emis-
sions, and therefore show a steady decline in health
risks over time given the larger decline in NOx emis-
sions per vehicle-mile.

Comparison of Economic Impacts and Public Health
Impacts
Figure 3 presents the economic costs from time and fuel
wasted and monetized estimates of premature mortality
attributable to traffic congestion across the 83 urban
areas. Overall, time wasted accounts for the bulk of the
economic cost associated with traffic congestion, and
the cost of time wasted increases from $56 billion in
2000 to $96 billion in 2030, as this is directly propor-
tional to the extent of congestion. In contrast, reduc-
tions in per-vehicle emissions contribute to declines in
economic costs associated with premature mortality
from $31 billion in 2000 to $13 billion in 2020, with
modest increases after that point to $17 billion in 2030.
As a result, whereas the public health impacts contrib-

uted approximately 34% of the total cost of congestion
in 2000, this decreases to 14% by 2030. However, the
proportion of the cost of congestion attributable to pre-
mature mortality varies substantially across urban areas.

Figure 1 PM2.5-related premature mortality attributable to traffic congestion nationwide. Pollutants in legend indicate emitted
pollutants, and the figure indicates the effects of these emissions on PM2.5 concentrations.
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Figure 2 Monetized estimates of the PM2.5-related mortality risks from traffic congestion in selected urban areas. Pollutants in legend
indicate emitted pollutants, and the figure indicates the effects of these emissions on PM2.5 concentrations.
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For example, in 2000, 17 urban areas had health impacts
contributing less than 20% of the total cost of conges-
tion, whereas 19 urban areas had contributions in excess
of 50%. Those urban areas with relatively small contri-
butions from public health had very high levels of con-
gestion (near or at the 50% threshold) but did not have
correspondingly high population density, including
Laredo TX, Eugene OR, and Las Vegas NV. In contrast,
those urban areas where public health impacts domi-
nated had smaller percentage of time spent in conges-
tion but greater public health benefits per ton of
emissions.

Sensitivity Analyses
Our findings should be considered quite uncertain and
are clearly sensitive to a number of the model assump-
tions, many of which could not be formally quantified
or propagated. However, we note that the relative eco-
nomic values assigned to the cost of fuel, the value of
time per hour, and the value of statistical life, as well as
future fuel efficiency, are key assumptions that could
greatly influence our conclusions. In addition, we note
that the magnitude of the public health damages is sen-
sitive to the concentration-response function applied.

Because our model results scale linearly with these
values, we can provide some first-order approximations
of the relative values that would be needed to alter our
conclusions about the significance of public health rela-
tive to economic impacts, providing a sense of the likeli-
hood of significantly different conclusions by year.
For example, in 2000, the price of gasoline is known,

so the estimate of the cost of fuel wasted is relatively
less uncertain. The cost of delay depends on the value
of time, which we derived from TTI models using a
non-commercial value of time (approximately $16/hr in
year 2000 dollars), which is likely a lower bound on the
true value of time. The VSL and the concentration-
response function represent the most significant quanti-
fiable uncertainties for public health damages, so we can
explore the combinations of values needed for public
health damages to exceed economic damages. Using the
central estimate for the concentration-response function,
the VSL would need to be approximately $14 million in
2007 dollars for the public health damages to exceed the
value of time wasted in 2000, or roughly the 95th per-
centile of the uncertainty distribution for VSL reported
by US EPA [32]. Using an upper-bound concentration-
response function of 2% would lead the public health

Figure 3 Comparison of the economic costs of congestion with the monetized estimates of PM2.5-related mortality risks (in billions of
2007 dollars).
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damages with a central estimate VSL to be comparable
to the economic damages, whereas a lower-bound con-
centration-response function of 0.3% would require an
extremely large VSL for the magnitudes to be compar-
able. By 2005, the VSL would need to have been $18.5
million in 2007 dollars for public health damages to
exceed the value of time using the central estimate con-
centration-response function, which is outside of the
reported confidence intervals. When considering future
years, uncertainties exist regarding both the value of
time and the cost of fuel, with potentially large uncer-
tainties in the latter case. However, across all model
years, the cost of fuel contributes an order of magnitude
less than the value of time, indicating that the cost of
fuel would need to increase appreciably relative to
income in order to strongly influence our conclusions
(and such a change in the cost of fuel would appreciably
influence driving patterns and resulting congestion). As
the contribution from public health damages decreases
relative to the value of time in future years, the neces-
sary VSL and concentration-response function to equal-
ize these damage estimates becomes quite high,
although significant uncertainties regarding the time tra-
jectory of emissions and effect of changing background
concentrations on pollutant formation add to uncertain-
ties in this comparison, and public health damages are
the dominant contributors in selected urban areas even
in 2030.

Discussion
Our modeling illustrates that the public health impacts
of traffic during periods of congestion, associated with
premature mortality from primary and secondary PM2.5

concentrations, are appreciable, with thousands of
deaths per year and a monetized value of tens of billions
of dollars per year. While the monetized public health
damages are smaller than the economic value of time
wasted, with the differential anticipated to grow over
time, there are some geographic areas where public
health damages represent a significant proportion of the
total damages, even in future years when per-vehicle
emissions are expected to be substantially less. Prior
analyses of population exposure per unit emissions from
motor vehicles [13] demonstrated that these values were
highest in dense urban areas for primary PM2.5 and sec-
ondary sulfate, especially in California, the mid-Atlantic
states, and the industrial Midwest, and were highest in
the Southeast and Midwest for secondary nitrate. The
urban areas with the greatest proportion of damages
from public health were often found in parts of Califor-
nia and the Midwest, where the damages per ton of
emissions were greater and the projected future popula-
tion growth was lower. These findings provide an indi-
cation that considering only the direct economic costs

of congestion will underestimate societal benefits of
mitigating congestion, significantly so in certain urban
areas.
There are some clear limitations in our models and

their interpretation, which provide some potential gui-
dance for future studies. First, our results assume that
the infrastructure is fixed at 2005 levels but that popula-
tion continues to increase out to 2030. This is relatively
unlikely to be the case, but given our modeling frame-
work and available information, it is difficult to evaluate
future changes in infrastructure in a manner that is not
misleading. Increasing the available infrastructure
(whether through roadway capacity or public transporta-
tion) increases average speed. Because of limitations in
the MOBILE6 model, which assumes an average speed
and does not incorporate stop-and-go traffic or fast
acceleration and deceleration, increased speed leads to
higher MOBILE6 emissions estimates, particularly for
NOx. In contrast, Frey et al. [33] illustrated that when
comparing traveling conditions of congestion and free-
flowing traffic in which the estimated average speed is
similar, emissions during congested driving conditions
are 50% higher. Other studies have shown that NOx
emissions from heavy-duty diesel vehicles are three
times higher at low speeds than when at highway speed
[34], and PM, elemental carbon (EC) and organic carbon
(OC), and air toxics emissions are heightened during
start-and-stop traffic [35,36], but these insights are not
captured in our emissions model.
We therefore could only characterize the public health

impacts of congestion as the total impacts during peri-
ods of congestion, rather than the marginal difference
between these impacts and the impacts if the infrastruc-
ture were expanded, a potentially significant limitation.
Future studies should explore other emissions modeling
frameworks that better capture the effects of congestion
on emissions, linked to more detailed traffic flow mod-
els. For example, micro-simulation techniques have been
developed to evaluate the impact of improved traffic
flow on vehicle emissions [37], capturing both the near-
term decrease in emissions and the long-term effect of
induced vehicle traffic. However, this model does not
capture all pollutants or provide insight about the effects
of changes in technology over time. The MOVES2010
emissions model [38] became available subsequent to
our analysis, which provides some insight regarding
start-and-stop traffic, and this modeling framework
could be explored in future studies.
There are further limitations with MOBILE6 that should

be acknowledged, including difficulties in addressing mal-
functioning vehicles and in projecting fleet composition
over an extended period of time. For comparability with
other work and lacking other quantitative values, we used
default MOBILE6 values where possible, including for
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fleet mixtures (by age and class), mileage accumulation,
inspection and maintenance programs, vehicle fuel
economy and emissions performance, starting emissions,
reformulated gasoline and oxygenated fuels programs, and
low-sulfur diesel regulations, among others. To the extent
that there are significant regulatory or technology changes
over time, which would influence per-vehicle emissions as
well as fleet composition, our analyses would become pro-
gressively more uncertain over time. In an extreme case,
given significant penetration of electric vehicles (which
were not formally considered in this analysis), the impact
of congestion would need to consider emissions from elec-
tricity production, which was well beyond the scope of this
analysis. Regardless, this emphasizes that there are some
large uncertainties in emissions characterization, which
could not be quantified in our sensitivity analyses but
which should be considered in formulating policy
strategies.
A related limitation has to do with a difference in how

congestion is treated within the economic and public
health impact models. Our estimates of time and fuel
wasted are derived from the difference between modeled
speed and free-flow speed on arterial roads and freeways
(assumed to be the posted speed limit), while the health
impact estimates are based on the roadway congestion
index, a piecewise linear function providing an estimate
of the proportion of the daily traffic that occurs in con-
gestion, which we then use to attribute emissions to
congestion. Because changes in speed are only predicted
once a threshold relative congestion index is reached,
time and fuel wasted therefore have a congestion thresh-
old below which there are no predicted impacts,
although the roadway congestion index predicts emis-
sions attributable to congestion at all levels. As a result,
some areas will show public health impacts but little to
no economic damages from wasted time and fuel. These
situations should be interpreted as largely artifacts of
the modeling structure, and a more refined characteriza-
tion of traffic flows and infrastructure-based congestion
would likely eliminate these predictions in future assess-
ments. Additionally, the congestion model treats the
entire urban area as a whole, so the model does not
explicitly distinguish between arterial and freeway traffic
conditions the way that the speed model does. Both this
issue and the previous issue regarding infrastructure
emphasize the potential need for more refined assess-
ments in targeted geographic areas, in which modeling
can go beyond what is feasible when looking at 83
urban areas concurrently. That said, modeling 83 urban
areas concurrently provides first-order insight about
geographic areas necessitating further study, allowing
for targeted future studies.
An additional limitation arises in our focus solely on the

mortality risks of PM2.5. There are clearly numerous other

health endpoints or pollutants that may contribute to the
public health burden of congestion, including morbidity
endpoints associated with PM2.5, mortality and morbidity
from ozone, and effects of multiple air toxics. As described
earlier, previous studies have demonstrated that PM2.5-
related mortality dominates monetized public health
damages, but if lower concentration-response functions
are applied for mortality or lower economic values are
applied to premature mortality (e.g., using a life-year
approach), the significance of PM2.5-related morbidity
would be enhanced. In addition, in years and urban areas
where the contributions from NOx emissions are large
relative to the contributions from SO2 or primary PM2.5

emissions, inclusion of ozone concentrations may be war-
ranted. We also omitted potential impacts of ultrafine par-
ticulate matter, which would be challenging to quantify
given limitations with emissions inventories, dispersion
models, and available concentration-response functions,
but which could exhibit significant health effects in the
near field and may merit future consideration.
One additional pollution-related endpoint of interest

would be carbon dioxide emissions and corresponding
effects of global climate change. While estimating this
pathway is highly uncertain and was beyond the scope
of our analysis, we can make a first-order approximation
to determine the likelihood that this would contribute
appreciably to damages. In 2005, we estimated approxi-
mately 3.12 billion daily VMT across the 83 urban areas
during periods of congestion. According to a recent
report [39], gasoline contributes climate-related damages
on the order of 0.06 to 6 cents/VMT, which would cor-
respond with between $680 million and $68 billion in
damages, bounding the PM-related public health
damages of $24 billion in 2005. While both categories
are quite uncertain, this indicates that modeling global
climate impacts clearly merits further consideration.
In addition, while we have included the effects of

emissions on ambient concentrations, we have not cap-
tured the effects on in-vehicle concentrations and perso-
nal exposures. As drivers and passengers spend more
time in traffic, their in-vehicle exposures to traffic-
related pollutants will increase due to time-activity
changes as well as increases in roadway concentrations,
which can sharply increase personal exposures and
doses. For example, Alm et al. [40] found that added
exposures (due to commuting in addition to background
levels) to carbon monoxide and PM2.5 were considerably
higher during morning commutes and higher under
slower average speed conditions than in faster driving
conditions. Riediker et al. [41] measured PM and volatile
organic compounds in vehicles at various times and
found that elevated contaminant levels were related to
locations with high traffic volumes. These and other stu-
dies suggest that in-vehicle exposures may significantly
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contribute to personal exposures, particularly during
times of congestion, and these would add to the esti-
mates of health impacts developed here. We could not
quantify this pathway, given challenges in linking epide-
miological evidence from central site monitors with per-
sonal exposures during commuting, as well as because
of complications related to differences between ambient
and in-vehicle concentrations, but we anticipate that
this pathway would be appreciable enough to merit con-
sideration in future analyses.
Although these and other factors are significant limita-

tions, it is important to note that more advanced model-
ing approaches would be unable to characterize 83
urban areas individually and simultaneously, and would
therefore lack insight on relative differences among
urban areas. Moreover, our VMT estimates and result-
ing economic costs of congestion are quite similar to
those previously determined [1], and our estimated pub-
lic health damages per ton of emissions compare quite
favorably to those estimated previously in spite of the
simplified atmospheric model applied. For example, a
recent study [42] used a response surface model derived
from CMAQ runs to determine health impact estimates
for nine urban areas in 2015. The estimated damage
values for mobile sources were $550,000 per ton of pri-
mary PM2.5 and $9,700 per ton of NOx, with $73,000
per ton of SO2 for area sources (no value was reported
for mobile sources). The corresponding values from our
study (for all 83 urban areas) for 2015 are approximately
$530,000 per ton of primary PM2.5, $11,600 per ton of
NOx, and $100,000 per ton of SO2.
More generally, though capturing the congestion-related

contribution from traffic emissions was challenging given
available models, this framework was necessary to provide
direct comparisons with the economic impacts of conges-
tion. This would also allow for future evaluations of policy
measures addressing congestion, including both infrastruc-
ture enhancements and other measures to reduce conges-
tion (e.g., congestion pricing and traffic management).
Thus, despite the limitations and somewhat simplified
modeling approaches in our study, our findings can be
used to inform both public policy and future investigations
of the economic consequences of traffic congestion.

Conclusions
Our model results show that health impacts (based on
estimates of premature mortality following exposure to
primary and secondary PM2.5) are likely significant
enough to necessitate inclusion in a comprehensive eva-
luation of the benefits of measures to reduce congestion.
While health impacts are projected to decrease relative
to economic impacts, given reductions in per-vehicle
emission rates, there remain multiple urban areas in
which the public health impacts are still appreciable in

2030. We recommend that future investigations develop
refined estimates of emissions in congestion and lin-
kages with personal exposures, which could make a sig-
nificant contribution to the estimated public health
burdens of congestion in multiple urban areas.
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traveled by urban area and year (Table S4).
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