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ABSTRACT

Genomics provided us with an unprecedented
quantity of data on the genes that are activated or
repressed in a wide range of phenotypes. We have
increasingly come to recognize that defining the
networks and pathways underlying these pheno-
types requires both the integration of multiple data
types and the development of advanced compu-
tational methods to infer relationships between
the genes and to estimate the predictive power
of the networks through which they interact.
To address these issues we have developed
Predictive Networks (PN), a flexible, open-source,
web-based application and data services frame-
work that enables the integration, navigation, visu-
alization and analysis of gene interaction networks.
The primary goal of PN is to allow biomedical
researchers to evaluate experimentally derived
gene lists in the context of large-scale gene inter-
action networks. The PN analytical pipeline involves
two key steps. The first is the collection of a
comprehensive set of known gene interactions
derived from a variety of publicly available
sources. The second is to use these ‘known’
interactions together with gene expression data to
infer robust gene networks. The PN web application
is accessible from http://predictivenetworks.org.
The PN code base is freely available at https://
sourceforge.net/projects/predictivenets/.

INTRODUCTION

The sequencing of the human genome and the develop-
ment of new approaches including genomics (DNA),
transcriptomics (RNA), methylomics (epigenetic methy-
lation) and proteomics (protein), have given scientists
the tools necessary to amass comprehensive datasets of
genomic profiles in a range of cellular and organismal
phenotypes and in response to a variety of perturbations.
While the hope was that we could use these data to under-
stand the link between genotype and phenotype, we have
increasingly come to recognize that the cellular regulatory
processes are more complex than we had once imagined.
We now understand that it is generally not individual
genes, but networks of interacting genes and gene
products, which collectively interact to define phenotypes
and the alterations that occur in the development of
disease.

Network models were first applied to gene expression
data from a yeast cell cycle experiment in which
synchronized cells were profiled over a carefully planned
time-course (1). Friedman et al. (2) analyzed these data in
a Bayesian Network framework to develop a predictive
cell-cycle model. Since this early work, there have been
many other methods developed to model networks while
addressing the intrinsic complexity of high-throughput
genomic data (high feature-to-sample ratio, high-level of
noise and co-linearity) (1–9). Other web-based tools, such
as ASIAN (10), SEBINI (11) and CARRIE (12), attempt
to infer interaction networks based solely on genomic
data. However, few methods have come into widespread
use and often fail to produce useful network models
(13,14). The problem may be that most methods deal
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solely with genomic data and ignore what may be the best
resource we have to efficiently constraint the fitting of
network models: the collection of existing prior knowledge
captured in published biomedical literature and structured
databases.

There are a number of web-based tools have been
developed to retrieve putative gene–gene interactions
based on descriptions in PubMed abstracts and in
biological databases, including GeneMANIA (15) and
iHOP/GIM (16,17). Commercial tools, such as GeneGO
(18) and Ingenuity Pathway Analysis (19), combine this
functionality with enrichment analysis that allows users
to estimate significance of key biological functions and
processes represented among a list of genes. But these
tools generally treat the networks inferred from prior
knowledge as scaffolds onto which gene expression data
is projected, rather than as a tool to help guide network
inference using genomic data. And further, we must
recognize that a ‘known network’ based on published
information may not represent the true biological
network or may fail to capture the network alterations
that may be associated with the phenotypes or conditions
being analyzed in a particular study.

Here we present Predictive Networks (PN; http://
predictivenetworks.org), a flexible, open-source, web-
based application and data services framework for
inferring networks using gene expression data in combin-
ation with gene–gene interactions mined from the full-text
biomedical literature and publicly available network and
pathway databases. PN allows users to create ‘phenom-
enological’ models based on the observed data that
facilitate hypothesis generation and that can help
identify the most relevant genes for distinguishing
between phenotypes in an analysis.

COLLECTING, INTEGRATING AND ANALYZING
GENE INTERACTIONS

Gene–gene interactions are described through the action
of one gene on another. For example, we can define
an interaction through the sentence ‘PGC is inhibited by
SIRT1’ or ‘CCNT1 regulates PGC’ which have the basic
English language structure:

[Subject; Predicate; Object].

This structure, called a ‘triple’, is the basis of data
representation in Semantic Web technologies (20) and
as such they provide a natural way of describing and
characterizing interactions and networks. For example,
if we know that PGC is inhibited by SIRT1 and that
CCNT1 regulates PGC then we have a simple network
suggesting both SIRT1 and CCNT1 influence PGC
(Figure 1A); this network is actually composed of
the two triples [‘PGC’, ‘is inhibited by’, ‘SIRT1’] and
[‘CCNT1’, ‘regulates’, ‘PGC’] extracted from a PubMed
abstract or a full-text article (Figure 1B). Because there are
now a large number of tools for storing, searching and
manipulating triples, we chose to use triples as the basic
representation of gene–gene interactions in PN.

In representing interactions, the Subject and Object are
both genes. One of the challenges we faced in creating
a store of interactions was the frequent use of synonyms
and ‘common names’ for genes rather than the standard
Gene Symbols. The Predicates capture the interactions
between genes and include terms like ‘regulates’ or ‘is
inhibited by’ that capture directional interactions
(Subject!Object or Subject Object, respectively).
One subtle challenge in capturing and representing

triples is negation, and for our triples we include a flag
representing the evidence in a sentence supporting the
presence or absence of an interaction, as inferred from
the predicate. For example, we want to distinguish
between the positive interaction, ‘regulates’, and the
negative interaction ‘does not regulate’. We also recognize
that the literature often contains contradictory evidence
for the direction of the interaction between two genes;
one way to decide likely directionality in an interaction
is to weight interactions based on the number of times
they have been described in various publications.
To create the database underlying the PN web applica-

tion, we used two main sources from which we extracted
triples (Table 1): the published biomedical literature
including both abstracts catalogued in PubMed and
full-text articles available through PubMed Central, and
structured biological databases including Pathway
Commons (21) and functional interactions identified in
the recent publication of Stein et al. (22). The method
we used to extract triples depends on the data source.
Extraction of triples from structured pathway databases
requires minimal processing and conversion to capture the
interactions. However, deducing triples and their context
from the biomedical literature is a challenging task that
required we develop a text mining pipeline (Figure 2)
that combined custom parsing and text mining systems
(available through sourceforge, https://sourceforge.net/
projects/predictivenets) together with the LingPipe text
processing library (23).
The text mining pipeline starts by extracting complete

text from the PubMed Open Access/Abstracts text
XML files, which are available in compressed form
at ftp.ncbi.nlm.nih.gov/pub/pmc/articles.*.tar.gz. A predi-
cate ontology is used to detect predicates in each sentence
from each article. A gene name detection approach is
then used to identify genes appearing on either side of
the predicate. If a gene–gene interaction triple is identified
a final scan is performed upon the text to detect context.
To derive contexts for gene interaction triples, we used

terms and phrases used in MeSH (24) and the Gene
Ontology project (25) to provide an ontological represen-
tation of context keywords. We assume that the source
from which triples are being extracted provides an over-
arching context for those gene interactions. Given this
assumption we pull contextual keywords from the entire
body of each source and apply those contexts to each
interaction derived from the source. In assessing the
relative value of derivation of triples from full-text
sources versus abstracts alone, we observed that the
number of contexts per triples extracted from full-text
articles is significantly larger than from abstracts
(Fisher’s exact test P< 0.001; Table 1).
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Use Case 1: gene-centered network searches

One of the primary questions that users of a resource such
as this want to ask is ‘What other genes interact with my
gene of interest?’ This is a relatively easy question to
answer through the PN web application as all interactions
are stored as triples and a network can be represented
as a collection of triples connected either through
common Subjects or Objects (Figure 1A and B).

The PN web application allows users to enter single
gene names and to find genes that connect to it, and
then genes that connect to its connection partners up to
whatever distance one might desire. The PN web applica-
tion allows users to submit single gene names as queries.
These are disambiguated and mapped to standard identi-
fiers which are then queried against the collected
PN triples. The resulting network built from interactions

PGC

SIRT1

CCNT1

PGC

Symbol: PGC
Name: progastrician
Alt. symbols: PEPC, PGII,...
Alt. names: gastricsin, pepsin C,...

Symbol: SIRT1
Name: sirtuin 1
Alt. symbols: SIR2L
Alt. names: SIR2-like protein 1,...

Symbol: CCNT1
Name: cyclin T1
Alt. symbols: CCNT, CYCT1,HIVE1
Alt. names: cyclin C-related protein,...

Symbol: PGC
Name: progastrician
Alt. symbols: PEPC, PGII,...
Alt. names: gastricsin, pepsin C,...

GenePredicate

Triple

regulates

is inhibited by

BA Gene list

CCNT1

PGC

SIRT1

Gene interaction network

Figure 1. Overview of the core PN concepts ultimately representing a gene interaction network. A gene interaction network (A) is a collection of
triples (B) where each triple involves two genes (for example PGC, SIRT1) and a predicate (for example ‘is inhibited by’); each gene is described by
a number of meta-data, incuding annotations; each gene can be part of a users’ gene list.

Table 1. Description of data sources

Biomedical literature Structured biological databases

PubMed abstracts PubMed Central full-text articles Function interaction Pathways common

No. of genes 11 443 7128 9408 11 535
No. of interactions 59 159 21 863 1 81 013 1 142 763
No. of contexts 102 987 84 507 N/A N/A
Average no. of contexts per article 1.78 7.34 N/A N/A
Average no. of contexts per sentence 1.53 3.59 N/A N/A
Source pubmed.org pubmed.org string-db.org Pathwaycommons.org

The data sources used in PN including the number of genes identified, the interactions found, number of contexts, average number of such contexts
per article and per sentence, and the URL from which the primary data were downloaded. No contexts have been extracted from the structured
biological databases (NA, not applicable).
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represented in the triples is then visualized as a graph that
can then be filtered based on the following criteria:

. Context: Networks can be limited to interactions
reported in a specific context. For example a
network centered on gene ‘RB1’ could be built using
only triples identified in the context of ‘tumor
suppressor’.

. Number of occurrences: Networks can be built only
using interactions that are supported by a sufficient
number of triples. For example, users can specify
that only interactions reported more than five times
should be used to build the network.

. Connectivity: The default network that is presented
only contains the gene and its primary (first degree)
connections. Users can increase the connectivity to
display more distant inferred connections to their
target gene of interest and

. Max Genes: Networks can be limited to display a
maximum number of genes; genes involved in the
interaction supported by the largest number of triples
will be selected. The default maximum of genes is 20.

In the network display, users can click on a gene name to
highlight that gene and its connections. Clicking on a gene
node in the network expands the network to include
neighbors of that gene. Networks can be exported
as a table (comma-separated value or tab-delimited
spreadsheets), an image or a GML file [Graph Modeling
Language (26)] which can be imported into Cytoscape
(27,28) or NAVIGaTOR (29) to allow further network
exploration.

Use Case 2: identifying connections in gene lists

Most genomic analyses compare two or more phenotypic
conditions and report a list of genes that are significant
for distinguishing between experimental groups, but the
connections between the genes in the ‘gene list’ are often

unknown. The PN web application allows users to upload
a gene list and, based on user-defined parameters, searches
for reported interactions stored as triples that link the
genes in the list. The resulting gene interaction network
is displayed in a graphical format with similar features
to that described for single genes and can be exported
in a variety of formats for presentation or further
exploration.

Use Case 3: network inference from literature-inferred
interactions and genomic data

Inferring networks from genomic data is a challenging
problem. Learning the network architecture without
some prior constraints requires consideration of all
possible pairwise connections between genes, a problem
that has been shown to be NP-hard (30). Indeed, for
directed networks, the number of possible graphs is
super-exponential in the number of nodes; for eight
genes, there are 7.8� 1011 network configurations that
must be considered to completely explore the problem’s
‘state space’. Consequently, most approaches are prone
to overfitting and fail to find ‘realistic’ networks.
Our primary goal in developing the PN application

was to analyze genomic data using literature inferred
relationships to help build predictive network models.
Consequently, the PN application allows users to
provide their own gene expression data and to use one
of two methods to deduce network interactions. We pre-
viously described a seeded Bayesian network approach
and demonstrated that the use of prior information
could significantly improve the quality of the inferred
network models (9). But inferring Bayesian networks for
large numbers of genes, even with a seeded prior remains
computationally challenging. Regression-based methods
are not able to represent the full joint distribution of
the data as Bayesian networks do, but they have been
shown to have promising performance and to enable
inference of extremely large biological networks (31).

Collection of triples
Common text 

interface

PubMed
abstracts

PubMed full-
text articles

Predictive
Networks (PN) 
text services

LingPipe

Figure 2. Text mining pipeline. PubMed abstracts and full-text articles from PubMed Central are extracted and formatted so they can be analyzed
using the common text interface. The processed text is then mined using a combination of custom parsing scripts and the LingPipe text processing
library to identify gene interaction triples and their contexts. These triples are then used to infer gene interactions networks used throughout PN.
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To partially address the problem of network inference, the
PN web application includes the seeded Bayesian network
inference we had described previously (9) and a novel
regression-based technique (32).
Both Bayesian and regression network inference

starts with a normalized gene expression dataset and a
‘Gene List’ selected by users based on their own criteria.
The gene expression data might be generated with any
microarray platform and normalization techniques,
although the use of Affymetrix (http://www.affymetrix.
com) data normalized by (f)RMA (33,34) is a good
choice given that they are widely used. The gene list
might be a set of genes determined to be statistically sig-
nificant for distinguishing sample groups or the genes in a
pathway they would like to explore in the context of their
expression data. Both methods use the gene list to deduce
an initial network based solely on the PN triples as a
starting point (or set of ‘priors’) that can evolve based
on relationships represented in the users’ gene expression
data, allowing new interactions between genes to be
identified or poorly supported interactions to be elimi-
nated. Minimum and maximum size for gene expression
datasets and gene lists are further described in the
Supplementary Data section.
For both methods, users upload their gene expression

data and gene lists, and provide a name for their analysis.
The regression-based method is run by default, but users
can select ‘Advanced Options’ to select a specific method
and to set parameters for the analysis; a detailed descrip-
tion of the parameters is provided in the Supplementary
Data section. The inferred interactions are visualized
and the networks and associated data can be downloaded
for further analysis.
Because the quality of inference is not uniform over

the network, we developed both interaction-specific and
gene-specific statistical measures to assess the quality of
the constituent subnetworks that comprise the full
network, This allows users to focus on the subnetworks,
interactions and genes that are well supported by the
data. A description of these statistics is provided in the
Supplementary Data section.
The PN analytical tools rely on two interaction-specific

measures, the interaction relevance and interaction stabil-
ity statistics that identify gene–gene interactions that
can be inferred from the prior and experimental data
with high confidence. The interaction relevance statistic
spans [0,1] where values close to 1 represent interactions
that are strongly supported by the data (literature-inferred
interactions and/or genomic data) while values close to
0 denote interactions that are only weakly supported.
The interaction stability statistic also spans [0,1] and
uses k-fold cross validation to estimate how strongly the
inference of an interaction depends on the initial dataset
used to identify it. Values close to 1 represent stable inter-
actions that are inferred irrespective of the precise dataset
used to identify them, and values close to 0 represent
interactions that are rarely identified and therefore
depend strongly on the dataset.
We also implemented two gene-specific statistics, R2

[R squared (35)] and the MCC [Matthews Correlation
Coefficient (36)], that both help to identify genes in the

network whose expression can be reliably predicted based
on the expression of their parents. The R2 prediction score
spans [0,1] where values close to 1 represent strong
relationship between parent genes and a target gene as
estimated by a linear regression model while values
close to 0 denote weak association. R2 is available for
regression-based network inference only since this tech-
nique does not require discretization of the gene expres-
sion values (32). The MCC prediction score also spans
[0,1] and its interpretation is the same than R2 but in
a classification framework where expression values are
discretized. MCC is particularly suited to assess quality
of Bayesian network inference because, in their traditional
implementation, Bayesian network inference requires
expression data to be discretized.

Use Case 4: developing a collaborative framework
for defining networks

We realized that users might want to share information
with colleagues about the networks they are deducing
through their analysis. In the PN web application, we
have implemented a community-based tool to allow
collaborative development of a comprehensive gene inter-
action network knowledge base. While a considerable
amount of information can be derived from structured
data sources and text mining analyses, we recognize that
expert curation can provide greater data depth and
accuracy than automated methods can provide. To this
end, we allow users to upload network data sets into the
system and to ‘publish’ these so that others can use them.

WEB INTERFACE

Architecture of web interface to PN

The web interface to PN (http://predictivenetworks.org)
uses the Groovy/Grails web application framework
(37,38) and Java 1.6 technologies. The application runs
on an Apache Tomcat 6 web application server on a
CentOS 5 Linux server. Front-end interactivity makes
use of the jQuery 1.3.2 Javascript library. MySQL is
used as the backend database system.

PN is intended to be used for network inference both
via the web application user interface and through
third-party applications. In addition to the web applica-
tion, the PN system also includes a RESTful API.
For example, a gene symbol query to this API will
return a list of all gene interactions involving that gene
allowing users to import these PN triples into their
own applications.

Querying PN

There are a number of starting points on the main PN
page (Figure 3). Users can search for a single gene, the
interaction between a pair of genes, interactions linking
genes in a list and a network inference analysis panel
that allows users to upload their gene expression data
and a gene list to infer a robust gene interaction
network. Users also have the option of creating an account
and logging in so that they have access to additional
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information as well as the option to store and revisit
their analytical results and gene sets through ‘My Page’.

Network visualization

All network visualization is handled through the same
basic interface, with a few additional for inferred
networks. The primary display presents interactions
between genes as a directed graph and provides options
to filter interactions so that large graphs remain readable
and avoid the ‘hairball’ effect (39) while remaining more
relevant to the problem being studied. Among these
options, users can highlight a specific gene and its
interactors, select the maximum of number of genes to
display (the genes involved in the largest number of
triples are selected), the connection degree, filter the
interactions by the number of triples that support them,
directionality to a target gene (single gene search only)
and the contexts in which triple have been identified.

Collaboration

Registered users have access to My Page through which
they are able to upload gene lists, gene expression data as
well as their own gene interaction networks to the system.
Gene lists and networks can be kept private or shared with
a defined group of users.

Documentation

All options are thoroughly documented through tooltips
that provide context-specific information and options
when the user ‘mouses over’ a relevant item. A video
tutorial is available directly from the web application

and a PDF manual is being prepared describing the site
and its use in greater detail.

Downloading networks

All data, except users’ private data, are available for
download through the page System Info. The gene–gene
interactions (triples) identified by PN are available as flat
files (resource description framework, RDF files). Lists of
genes can be downloaded as spreadsheets (comma
separated value, CSV, or tab-delimited text files).
Network visualization and heatmaps representing
network properties and statistics can be exported as
portable network graphics (PNG) files. Networks can
also be exported as GML files for further analysis.

Database core attributes

The database core attributes are listed in Supplementary
File S1, in accordance with the BioDBcore standards
(40,41).

CASE STUDIES

Case Study 1: search for genes known to interact with
a specific gene

Let’s consider that a user wants to retrieve all the genes
known to interact with BRCA1, a gene whose mutation is
well-established to significantly increase risk of breast
cancer (42). On the front page of the PN web application
in the ‘Search for a Gene:’ box, the user can enter the gene
symbol, ‘BRCA1’. Since a gene symbol may be ambigu-
ous, if only a gene symbol is being entered a list of

Figure 3. Front page of the PN web application displaying the four entry points: the single gene, single gene–gene interaction and gene list searches,
and the network inference analysis panel. The top left panel provides a series of quick links to ensure easy navigation between the different web pages
which compose the PN web application.
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alternative gene symbols is proposed while the user is
typing.
Hitting the ‘Search’ button returns a list of possible hits,

highlighting gene names. In this case, the user can click on
‘BRCA1’ which brings up the option to ‘View Details’.
Selecting this returns detailed information on the gene,
including its gene symbol, name, alternative symbol,
alternative names and External IDs including EnsEMBL
and EntrezGene identifiers. A first degree directed
network presenting the genes most commonly reported
to interact with BRCA1 is also presented, as is a gene
name ‘tag cloud’ and a comprehensive list reporting the
triples, their number of occurrences, their context and
the primary data source from which they were derived.
As noted previously, the network graph can be saved or
exported for further analysis. All supporting documenta-
tion, including the complete list of triples containing
BRCA1 can be downloaded in a variety of formats.
For BRCA1, PN identified 856 triples, of which 208 were

extracted from PubMed abstract and full-text articles and
the remainder were annotated in pathway databases. Three
genes—BARD1, P53 and RAD51—were reported to
interact with BRCA1 in at least 10 triples.

Case Study 2: network analysis of a published
gene signature

There have been thousands of published studies that
compare gene expression patterns between various pheno-
typic conditions. The product of the analysis of the data in
these studies is typically a list of genes that the authors of
the study found to be significant in distinguishing their ex-
perimental groups. For example, we recently discovered a
gene signature that is predictive of the mutational status of
PIK3CA oncogene in breast cancer (43). Although the sig-
nature is robust and highly predictive, little is known about
relationships between the genes themselves and how they
interact in the mutated and wild-type PIK3CA phenotypes.
We used the PN web application to infer a robust gene

interaction network among these genes using both known
gene–gene interactions and the gene expression data from
Loi et al. (43). We first created a user account (only
username and email address are required), logged in and
went to My Page. We started with the ‘Create Analysis’
option and entered the PIK3CA gene list, which we
had downloaded from GeneSigDB (http://compbio.dfci.
harvard.edu/genesigdb/signaturedetail.
jsp?signatureId=20479250-TableS4) (44), and uploaded
a data file that included gene expression data on those 30
genes in the PIK3CA signature measured in 148 breast
cancer patients (the top 30 genes of the PIK3CA signature
and the gene expression data have been preloaded in the PN
web application as examples) (43,45). Hitting the ‘Run
Analysis’ button launches a network inference, the results
of which are then posted to the ‘Results For My Analyses’
section of ‘My Page’.
Clicking on the name of the analysis brings up

a summary and we can further explore the results of the
analysis. The topology of the inferred network, and its
related statistics can be visualized through directed
graphs and heatmaps (Figure 4). The page displaying

the topology of the networks helps the user easily
identify the interactions that are supported both by
the priors (biomedical literature or structured biological
databases or both) and the gene expression data, as well as
novel interactions deduced in the analysis (Figure 4).

For the analysis described here, we find evidence of
interactions for >20 of the initial 30 genes, with genes
like PITX1, IRS2 or NOTCH2 being highly connected.
The user can also view representations of the interaction-
and gene-specific statistics and so choose to focus
on the parts of the network that are inferred with higher
confidence. One can see that, due to the small sample size,
many interactions are unstable (stability< 0.5) but that
there are also a set of highly stable interactions such as
IRS2!PIK3R3 and SCGB2$A2SCGB1D2 (Figure 5A).
By looking at the R2 prediction statistics one can see that a
third of the genes have good prediction scores, which
means that, despite the small sample size, the inferred

Figure 4. Gene interaction network inferred from breast cancer gene
expression data and the PIK3CA signature. The network graph in the
upper panel allows users to view the topology of the inferred gene
interaction network. Each gene–gene interaction is color-coded to rep-
resent the evidence supporting it: literature-inferred interactions that
are not supported by reported PN triples are colored in red, those
inferred from the data only are green, and those supported by both
are yellow. In the lower panel a color-coded heatmap allows users to
quickly identify clusters of interactions and click on an interaction of
interest to highlight it on the network graph.
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network model can reasonably predict the expression of
these genes based on their parents (Figure 5B).

SUMMARY AND FUTURE DIRECTIONS

The Predictive Networks application fills an important
need by allowing efficient extraction of contextualized
gene–gene interactions from a variety of data sources,
including full-text PubMed articles and structured bio-
logical databases. It further enables the use of these
relationships to infer robust gene interaction networks
from high-throughput genomic data. We have imple-
mented these functions in an open-source web application
that facilitates query and extraction of such biological
networks; the framework we developed could be easily
extended by power users to include additional net-
work inference algorithms. Further, PN provides a collab-
oration framework in which scientists can search, share
and curate gene networks.

The PN web interface will continue to develop and we
intend to implement several new features, including

allowing users to curate triples identified by the PN
text-mining pipeline and share them with other users.
We also plan to enrich the network visualization with
new layouts (hierarchical or circular network representa-
tions, for instance), and to optimize visualization of
heatmaps to better assess the high quality subtnetworks
within very large networks. Parallelization of our network
inference algorithms is also a priority as it will accelerate
these computationally intensive analyses. Finally, our
hope is to extend network inference methods beyond
gene expression data to include other genomic and
epigenomic data types.

LICENSE

The software used in constructing Predictive Networks is
open source software and provided under the Apache
License 2.0. All content created by the Predictive
Networks application including text mining results, is
provided without restriction. Data used within the PN
application but derived from third party sources (such as

Figure 5. Interaction- and gene-specific statistics for the PIK3CA gene interaction network. The interaction-specific stability scores are represented
in (A) and can be displayed in the PN application by mousing over the heatmap. One can see that many interactions are unstable (stability< 0.5)
meaning that they cannot be confidently inferred from the data. However, some such as SCGB2A2SCGB1D2 are highly stable given the data. The
gene-specific R2 prediction scores are displayed in (B) where one can see that some genes can be accurately predicted given their parents, see
SCGB2A2, SCGB1D2, RPL14, PITX1, IRS2, MYC and NOTCH2 for instance.
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Pathway Commons data) are covered by their own
licenses and restrictions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figure 1 and Supplementary References
[3,28,29,46–49].
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