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Abstract

In this paper, we take a control-theoretic approach to answering
some standard questions in statistical mechanics, and use the results
to derive limitations of classical measurements. A central problem is
the relation between systems which appear macroscopically dissipa-
tive but are microscopically lossless. We show that a linear system is
dissipative if, and only if, it can be approximated by a linear lossless
system over arbitrarily long time intervals. Hence lossless systems are
in this sense dense in dissipative systems. A linear active system can
be approximated by a nonlinear lossless system that is charged with
initial energy. As a by-product, we obtain mechanisms explaining the
Onsager relations from time-reversible lossless approximations, and the
fluctuation-dissipation theorem from uncertainty in the initial state of
the lossless system. The results are applied to measurement devices
and are used to quantify limits on the so-called observer effect, also
called back action, which is the impact the measurement device has on
the observed system. In particular, it is shown that deterministic back
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action can be compensated by using active elements, whereas stochas-
tic back action is unavoidable and depends on the temperature of the
measurement device.

1 Introduction

Analysis and derivation of limitations on what is achievable are at the core
of many branches of engineering, and thus of tremendous importance. Ex-
amples can be found in estimation, information, and control theories. In
estimation theory, the Cramér-Rao inequality gives a lower bound on the
covariance of the estimation error, in information theory Shannon showed
that the channel capacity gives an upper limit on the communication rate,
and in control theory Bode’s sensitivity integral bounds achievable control
performance. For an overview of limitations in control and estimation, see
the book [1]. Technology from all of these branches of engineering is used
in parallel in modern networked control systems [2]. Much research effort
is currently spent on understanding how the limitations from these fields
interact. In particular, much effort has been spent on merging limitations
from control and information theory, see for example [3–5]. This has yielded
insight about how future control systems should be designed to maximize
their performance and robustness.

Derivation of limitations is also at the core of physics. Well-known exam-
ples are the laws of thermodynamics in classical physics and the uncertainty
principle in quantum mechanics [6–8]. The exact implications of these phys-
ical limitations on the performance of control systems have received little
attention, even though all components of a control system, such as actua-
tors, sensors, and computers, are built from physical components which are
constrained by physical laws. Control engineers discuss limitations in terms
of location of unstable plant poles and zeros, saturation limits of actuators,
and more recently channel capacity in feedback loops. But how does the
amount of available energy limit the possible bandwidth of a control sys-
tem? How does the ambient temperature affect the estimation error of an
observer? How well can you implement a desired ideal behavior using phys-
ical components? The main goal of this paper is to develop a theoretical
framework where questions such as these can be answered, and initially to
derive limitations on measurements using basic laws from classical physics.
Quantum mechanics is not used in this paper.

The derivation of physical limitations broaden our understanding of con-
trol engineering, but these limitations are also potentially useful outside of
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the traditional control-engineering community. In the physics community,
the rigorous error analysis we provide could help in the analysis of far-from-
equilibrium systems when time, energy, and degrees of freedom are limited.
For Micro-Electro-Mechanical Systems (MEMS), the limitation we derive
on measurements can be of significant importance since the physical scale
of micro machines is so small. In systems biology, limits on control perfor-
mance due to molecular implementation have been studied [9]. It is hoped
that this paper will be a first step in a unified theoretical foundation for
such problems.

1.1 Related work

The derivation of thermodynamics as a theory of large systems which are
microscopically governed by lossless and time-reversible fundamental laws of
physics (classical or quantum mechanics) has a large literature and tremen-
dous progress for over a century within the field of statistical physics. See
for instance [10–13] for physicists’ account of how dissipation can appear
from time-reversible dynamics, and the books [6–8] on traditional statistical
physics. In non-equilibrium statistical mechanics, the focus has tradition-
ally been on dynamical systems close to equilibrium. A result of major
importance is the fluctuation-dissipation theorem, which plays an important
role in this paper. The origin of this theorem goes back to Nyquist’s and
Johnson’s work [14, 15] on thermal noise in electrical circuits. In its full
generality, the theorem was first stated in [16]; see also [17]. The theorem
shows that thermal fluctuations of systems close to equilibrium determines
how the system dissipates energy when perturbed. The result can be used
in two different ways: By observing the fluctuation of a system you can
determine its dynamic response to perturbations; or by making small per-
turbations to the system you can determine its noise properties. The result
has found wide-spread use in many areas such as fluid mechanics, but also
in the circuit community, see for example [18, 19]. A recent survey article
about the fluctuation-dissipation theorem is [20]. Obtaining general results
for dynamical systems far away from equilibrium (far-from-equilibrium sta-
tistical mechanics) has proved much more difficult. In recent years, the so-
called fluctuation theorem [21,22], has received a great deal of interest. The
fluctuation theorem quantifies the probability that a system far away from
equilibrium violates the second law of thermodynamics. Not surprisingly,
for longer time intervals, this probability is exceedingly small. A surpris-
ing fact is that the fluctuation theorem implies the fluctuation-dissipation
theorem when applied to systems close to equilibrium [22]. The fluctuation
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theorem is not treated in this paper, but is an interesting topic for future
work.

From a control theorist’s perspective, it remains to understand what
these results imply in a control-theoretical setting. One contribution of this
paper is to highlight the importance of the fluctuation-dissipation theorem
in control engineering. Furthermore, additional theory is needed that is both
mathematically more rigorous and applies to systems not merely far-from-
equilibrium, but maintained there using active control. More quantitative
convergence and error analysis is also needed for systems not asymptoti-
cally large, such as arise in biology, microelectronics, and micromechanical
systems.

Substantial work has already been done in the control community in for-
mulating various results of classical thermodynamics in a more mathematical
framework. In [23, 24], the second law of thermodynamics is derived and a
control-theoretic heat engine is obtained (in [25] these results are general-
ized). In [26], a rigorous dynamical systems approach is taken to derive the
laws of thermodynamics using the framework of dissipative systems [27,28].
In [29], it is shown how the entropy flows in Kalman-Bucy filters, and in [30]
Linear-Quadratic-Gaussian control theory is used to construct heat engines.
In [31–33], the problem of how lossless systems can appear dissipative (com-
pare with [10–12] above) is discussed using various perspectives. In [34],
how the direction of time affects the difficulty of controlling a process is
discussed.

1.2 Contribution of the paper

The first contribution of the paper is that we characterize systems that can
be approximated using linear or nonlinear lossless systems. We develop a
simple, clear control-theoretic model framework in which the only assump-
tions on the nature of the physical systems are conservation of energy and
causality, and all systems are of finite dimension and act on finite time hori-
zons. We construct high-order lossless systems that approximate dissipative
systems in a systematic manner, and prove that a linear model is dissipative
if, and only if, it is arbitrarily well approximated by lossless causal linear
systems over an arbitrary long time horizon. We show how the error be-
tween the systems depend on the number of states in the approximation and
the length of the time horizon (Theorems 1 and 2). Since human experience
and technology is limited in time, space, and resolution, there are limits to
directly distinguishing between a low-order macroscopic dissipative system
and a high-order lossless approximation. This result is important since it
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shows exactly what macroscopic behaviors we can implement with linear
lossless systems, and how many states are needed. In order to approximate
an active system, even a linear one, with a lossless system, we show that the
approximation must be nonlinear. Note that active components are at the
heart of biology and all modern technology, in amplification, digital elec-
tronics, signal transduction, etc. In the paper, we construct one class of
low-order lossless nonlinear approximations and show how the approxima-
tion error depends on the initial available energy (Theorems 4 and 5). Thus
in this control-theoretic context, nonlinearity is not a source of complexity,
but rather an essential and valuable resource for engineering design. These
result are all of theoretical interest, but should also be of practical inter-
est. In particular, the results give constructive methods for implementing
desired dynamical systems using finite number of lossless components when
resources such as time and energy are limited.

As a by-product of this contribution, the fluctuation-dissipation theo-
rem (Propositions 2 and 3) and the Onsager reciprocal relations (Theo-
rem 3) easily follows. The lossless systems studied here are consistent with
classical physics since they conserve energy. If time reversibility (see [28]
and also Definition 2) of the linear lossless approximation is assumed, the
Onsager relations follow. Uncertainty in the initial state of linear lossless
approximations give a simple explanation for noise that can be observed at a
macroscopic level, as quantified by the fluctuation-dissipation theorem. The
fluctuation-dissipation theorem and the Onsager relations are well know and
have been shown in many different settings. Our contribution here is to give
alternative explanations that use the language and tools familiar to control
theorists.

The second contribution of the paper is that we highlight the importance
of the fluctuation-dissipation theorem for deriving limitations in control the-
ory. As an application of control-theoretic relevance, we apply it on models
of measurement devices. With idealized measurement devices that are not
lossless, we show that measurements can be done without perturbing the
measured system. We say these measurement devices have no back action,
or alternatively, no observer effect. However, if these ideal measurement de-
vices are implemented using lossless approximations, simple limitations on
the back action that depends on the surrounding temperature and available
energy emerge. We argue that these lossless measurement devices and the
resulting limitations are better models of what we can actually implement
physically.

We hope this paper is a step towards building a framework for under-
standing fundamental limitations in control and estimation that arise due
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to the physical implementation of measurement devices and, eventually, ac-
tuation. We defer many important and difficult issues here such as how to
actually model such devices realistically. It is also clear that this framework
would benefit from a behavioral setting [35]. However, for the points we
make with this paper, a conventional input-output setting with only regular
interconnections is sufficient. Aficionados will easily see the generalizations,
the details of which might be an obstacle to readability for others. Perhaps
the most glaring unresolved issue is how to best motivate the introduction
of stochastics. In conventional statistical mechanics, a stochastic framework
is taken for granted, whereas we ultimately aim to explain if, where, and
why stochastics arise naturally. We hope to address this in future papers.
The paper [33] is an early version of this paper.

1.3 Organization

The organization of the paper is as follows: In Section 2, we derive lossless
approximations of various classes of systems. First we look at memoryless
dissipative systems, then at dissipative systems with memory, and finally at
active systems. In Section 3, we look at the influence of the initial state of
the lossless approximations, and derive the fluctuation-dissipation theorem.
In Section 4, we apply the results to measurement devices, and obtain limits
on their performance.

1.4 Notation

Most notation used in the paper is standard. Let f(t) ∈ R
n×n and fij(t) be

the (i, j)-th element. Then f(t)T denotes the transpose of f(t), and f(t)∗ the
complex conjugate transpose of f(t). We define ‖f(t)‖1 :=

∑n
i,j=1 |fij(t)|,

‖f(t)‖2 :=
√

∑n
i,j=1 |fij(t)|2, and σ̄(f(t)) is the largest singular value of f(t).

Furthermore, ‖f‖L1[0,t] :=
∫ t
0 ‖f(s)‖1ds, and ‖f‖L2[0,t] :=

√

∫ t
0 ‖f(s)‖22ds. In

is the n-dimensional identity matrix.

2 Lossless Approximations

2.1 Lossless systems

In this paper, linear systems in the form

ẋ(t) = Jx(t) +Bu(t), x(t) ∈ R
n,

y(t) = BTx(t) +Du(t), u(t), y(t) ∈ R
p,

(1)
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where J and D are anti symmetric (J = −JT , D = −DT ) and (J,B)
is controllable are of special interest. The system (1) is a linear lossless
system. We define the total energy E(x) of (1) as

E(x) :=
1

2
xTx. (2)

Lossless [27, 28] means that the total energy of (1) satisfies

dE(x(t))

dt
= x(t)T ẋ(t) = y(t)Tu(t) =: w(t), (3)

where w(t) is the work rate on the system. If there is no work done on the
system, w(t) = 0, then the total energy E(x(t)) is constant. If there is work
done on the system, w(t) > 0, the total energy increases. The work, however,
can be extracted again, w(t) < 0, since the energy is conserved and the
system is controllable. In fact, all finite-dimensional linear minimal lossless
systems with supply rate w(t) = y(t)Tu(t) can be written in the form (1),
see [28, Theorem 5]. Nonlinear lossless systems will also be of interest later in
the paper. They will also satisfy (2)–(3), but their dynamics are nonlinear.
Conservation of energy is a common assumption on microscopic models in
statistical mechanics and in physics in general [6]. The systems (1) are also
time reversible if, and only if, they are also reciprocal, see [28, Theorem 8]
and also Definitions 1–2 in Section 2.3. Hence, we argue the systems (1)
have desirable “physical” properties.

Remark 1. In this paper, we only consider systems that are lossless and
dissipative with respect to the supply rate w(t) = y(t)Tu(t). This supply rate
is of special importance because of its relation to passivity theory. Indeed,
there is a theory for systems with more general supply rates, see for example
[27, 28], and it is an interesting problem to generalize the results here to
more general supply rates.

Remark 2. The system (1) is a linear port-Hamiltonian system, see for
example [36], with no dissipation. Note that the Hamiltonian of a linear
port-Hamiltonian system is identical to the total energy E.

There are well-known necessary and sufficient conditions for when a
transfer function can be exactly realized using linear lossless systems: All
the poles of the transfer function must be simple, located on the imaginary
axis, and with positive semidefinite residues, see [28]. In this paper, we
show that linear dissipative systems can be arbitrarily well approximated
by linear lossless systems (1) over arbitrarily large time intervals. Indeed,
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Figure 1: The inductor-capacitor circuit in Example 1.

if we believe that energy is conserved, then all macroscopic models should
be realizable using lossless systems of possibly large dimension. The lin-
ear lossless systems are rather abstract but have properties that we argue
are reasonable from a physical point of view, as illustrated by the following
example.

Example 1. It is a simple exercise to show that the circuit in Fig. 1 with
the current i(t) through the current source as input u(t), and the voltage
v1(t) across the current source as output y(t) is a lossless linear system. We
have

ẋ(t) =





0 −1/
√
L1C1 0

1/
√
L1C1 0 −1/

√
L1C2

0 1/
√
L1C2 0



 x(t)

+





1/
√
C1

0
0



u(t),

y(t) =
(

1/
√
C1 0 0

)

x(t),

x(t)T =
(√

C1v1(t)
√
L1i1(t)

√
C2v2(t)

)

,

E(x(t)) =
1

2
x(t)Tx(t) =

1

2
(C1v1(t)

2 + L1i1(t)
2 + C2v2(t)

2),

w(t) = y(t)u(t) = v1(t)i(t).

Note that E(x(t)) coincides with the energy stored in the circuit, and that
w(t) is the power into the circuit. Electrical circuits with only lossless com-
ponents (capacitors and inductors) can be realized in the form (1), see [37].
Circuits with resistors can always be approximated by systems in the form
(1), as is shown in this paper.
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2.2 Lossless approximation of dissipative memoryless sys-

tems

Many times macroscopic systems, such as resistors, are modeled by simple
static (or memoryless) input-output relations

y(t) = ku(t), (4)

where k ∈ R
p×p. If k is positive semidefinite, this system is dissipative

since work can never be extracted and the work rate is always nonnegative,
w(t) = y(t)Tu(t) = u(t)Tku(t) ≥ 0, for all t and u(t). Hence, (4) is not
lossless. Next, we show how we can approximate (4) arbitrarily well with
a lossless linear system (1) over finite, but arbitrarily long, time horizons
[0, τ ]. First of all, note that k can be decomposed into k = ks + ka where
ks is symmetric positive semidefinite, and ka is anti symmetric. We can
use D = ka in the lossless approximation (1) and need only to consider the
symmetric matrix ks next.

First, choose the time interval of interest, [0, τ ], and rewrite y(t) = ksu(t)
as the convolution

y(t) =

∫ ∞

−∞
κ(t− s)u(s)ds, κ(t) := ksδ(t), (5)

where u(t) is at least continuous and has support in the interval [0, τ ],

u(t) = 0, t ∈ (−∞, 0] ∪ [τ,∞),

and δ(t) is the Dirac distribution. The time interval [0, τ ] should contain all
the time instants where we perform input-output experiments on the system
(4)–(5). The impulse response κ(t) can be formally expanded in a Fourier
series over the interval [−τ, τ ],

κ(t) ∼ ks
2τ

+

∞
∑

l=1

ks
τ

cos lω0t, ω0 := π/τ. (6)

To be precise, the Fourier series (6) converges to ksδ(t) in the sense of
distributions. Define the truncated Fourier series by κN (t) := ks/(2τ) +
∑N−1

l=1 (ks/τ) cos lω0t and split κN (t) into a causal and an anti-causal part:

κN (t) =: κcN (t) + κacN (t)

κcN (t) = 0 (t < 0), κacN (t) = 0 (t ≥ 0).
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The causal part κcN (t) can be realized as the impulse response of a lossless
linear system (1) of order (2N − 1)r using the matrices

J = JN :=





0 0 0
0 0 ΩN

0 −ΩN 0



 ,

ΩN := diag{ω0Ir, 2ω0Ir, . . . , (N − 1)ω0Ir},

B = BN :=

√

1

τ

(

kTf√
2

kTf . . . kTf 0 . . . 0

)T

,

(7)

where r = rank ks and kf ∈ R
r×p satisfies ks = kTf kf . That the series (6)

converges in the sense of distributions means that for all smooth u(t) of
support in [0, τ ] we have that

ksu(t) = lim
N→∞

∫ ∞

−∞
(κacN (t− s) + κcN (t− s))u(s)ds.

A closer study of the two terms under the integral reveals that

lim
N→∞

∫ ∞

−∞
κacN (t− s)u(s)ds =

1

2
ksu(t+),

lim
N→∞

∫ ∞

−∞
κcN (t− s)u(s)ds =

1

2
ksu(t−),

because of the anti-causal/causal decomposition and κcN (t) = κacN (−t), t > 0.
Thus since u(t) is smooth, we can also model y(t) = ksu(t) using only the
causal part κcn(t) if it is scaled by a factor of two. This leads to a linear
lossless approximation of y(t) = ksu(t) that we denote by the linear operator
KN : C2(0, τ) → C2(0, τ) defined by

yN(t) = (KNu)(t) =

∫ ∞

−∞
2κcN (t− s)u(s)ds

=

∫ t

0
2κcN (t− s)u(s)ds.

(8)

Here C2(0, τ) denotes the space of twice continuously differentiable func-
tions on the interval [0, τ ]. The linear operator KN is realized by the triple
(JN ,

√
2BN ,

√
2BT

N ). We can bound the approximation error as seen in the
following theorem.
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Theorem 1. Assume that u ∈ C2(0, τ) and u(0) = 0. Let y(t) = ku(t) =
ksu(t)+kau(t) with ks symmetric positive semidefinite and ka anti symmet-
ric. Define a lossless approximation with realization (JN ,

√
2BN ,

√
2BT

N , ka),
yN (t) = KNu(t) + kau(t). Then the approximation error is bounded as

‖y(t)− yN (t)‖2 ≤ 2σ̄(ks)τ

π2(N − 1)

(

‖u̇(t)‖2 + ‖u̇(0)‖2 + ‖ü‖L1[0,t]

)

,

for t in [0, τ ].

Proof. We have that y(t) − yN (t) =
∑∞

l=N (2ks/τ)
∫ t
0 cos lω0(t − s)u(s)ds,

t ∈ [0, τ ]. The order of summation and integration has changed because
this is how the value of the series is defined in distribution sense. We
proceed by using repeated integration by parts on each term in the se-
ries. It holds that

∫ t
0 cos lω0(t− s)u(s)ds = [

∫ t
0 sin lω0(t− s)u̇(s)ds]/(lω0) =

[u̇(t) − u̇(0) cos lω0t −
∫ t
0 cos lω0(t − s)ü(s)ds]/(l2ω2

0). Hence, we have the
bound

‖y(t)− yN (t)‖2 ≤ 2σ̄(ks)

τ

∞
∑

l=N

1

l2ω2
0

(‖u̇(t)‖2

+ ‖u̇(0)‖2 +
∫ t

0
‖ü(s)‖1ds).

Since
∑∞

l=N 1/l2 ≤ 1/(N−1), we can establish the bound in the theorem.

The theorem shows that by choosing the truncation order N sufficiently
large, the memoryless model (4) can be approximated as well as we like
with a lossless linear system, if inputs are smooth. Hence we cannot then
distinguish between the systems y = ku and yN = KNu+ kau using finite-
time input-output experiments. On physical grounds one may prefer the
model KN+ka even though it is more complex, since it assumes the form (1)
of a lossless system (and is time reversible if k is reciprocal, see Theorem 3).
Additional support for this idea is given in Section 3. Note that the lossless
approximation KN is far from unique: The time interval [0, τ ] is arbitrary,
and other Fourier expansions than (6) are possible to consider. The point is,
however, that it is always possible to approximate the dissipative behavior
using a lossless model.

It is often a reasonable assumption that inputs u(t), for example voltages,
are smooth if we look at a sufficiently fine time scale. This is because we
usually cannot change inputs arbitrarily fast due to physical limitations.
Physically, we can think of the approximation order (2N−1)r as the number
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of degrees of freedom in a physical system, usually of the order of Avogadro’s
number, N ≈ 1023. It is then clear that the interval length τ can be very
large without making the approximation error bound in Theorem 1 large.
This explains how the dissipative system (4) is consistent with a physics
based on energy conserving systems.

Remark 3. Note that it is well known that a dissipative memoryless system
can be modeled by an infinite-dimensional lossless system. We can model
an electrical resistor by a semi-infinite lossless transmission line using the
telegraphists’s equation (the wave equation), see [38], for example. If the
inductance and capacitance per unit length of the line are L and C, re-
spectively, then the characteristic impedance of the line,

√

L/C, is purely
resistive. One possible interpretation of KN is as a finite-length lossless
transmission line where only the N lowest modes of the telegraphists’s equa-
tion are retained. Also in the physics literature lossless (or Hamiltonian)
approximations of dissipative memoryless systems can be found. In [10–12],
a so-called Ohmic bath is used, for example. Note that it is not shown in
these papers when, and how fast, the approximation converges to the dissi-
pative system. This is in contrast to the analysis presented herein, and the
error bound in Theorem 1.

2.3 Lossless approximation of dissipative systems with mem-

ory

In this section, we generalize the procedure from Section 2.2 to dissipa-
tive systems that have memory. We consider asymptotically stable time-
invariant linear causal systems G with impulse response g(t) ∈ R

p×p. Their
input-output relation is given by

y(t) = (Gu)(t) =

∫ t

0
g(t− s)u(s)ds. (9)

Possible direct terms in G can be approximated separately as shown in
Section 2.2. The system (9) is dissipative with respect to the work rate
w(t) = y(t)Tu(t) if and only if

∫ τ
0 y(t)Tu(t)dt ≥ 0, for all τ ≥ 0 and admis-

sible u(t). An equivalent condition, see [28], is that the transfer function
satisfies

ĝ(jω) + ĝ(−jω)T ≥ 0 for all ω. (10)

Here ĝ(jω) is the Fourier transform of g(t).
We will next consider the problem of how well, and when, a system (9)

can be approximated using a linear lossless system (1) (call it GN ) with
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fixed initial state x0,

yN (t) = BT eJtx0 +

∫ t

0
BT eJ(t−s)Bu(s)ds, (11)

for a set of input signals. Let us formalize the problem.

Problem 1. For any fixed time horizon [0, τ ] and arbitrarily small ǫ > 0,
when is it possible to find a lossless system with fixed initial state x0 and
output yN such that

‖y(t)− yN (t)‖2 ≤ ǫ‖u‖L2[0,t], (12)

for all input signals u ∈ L2[0, t] and 0 ≤ t ≤ τ?

Note that we require x0 to be fixed in Problem 1, so that it is independent
of the applied input u(t). This means the approximation should work even
if the applied input is not known beforehand. Let us next state a necessary
condition for linear lossless approximations.

Proposition 1. Assume there is a linear lossless system GN that solves
Problem 1. Then it holds that

(i) If x0 6= 0, then x0 is an unobservable state;

(ii) If x0 6= 0, then x0 is an uncontrollable state; and

(iii) If the realization of GN is minimal, then x0 = 0.

Proof. (i): The inequality (12) holds for u = 0 when y = 0. Then (12)
reduces to ‖yN (t)‖2 ≤ 0, for t ∈ [0, τ ], which implies yN (t) = BT eJtx0 = 0.
Thus a nonzero x0 must be unobservable. (ii): For the lossless realizations it
holds that N (O) = R(OT )⊥ = R(C)⊥, where O and C are the observability
and controllability matrices for the realization (J,B,BT ). Thus if x0 is
unobservable, it is also uncontrollable. (iii): Both (i) and (ii) imply (iii).

Proposition 1 significantly restricts the classes of systems G we can ap-
proximate using linear lossless approximations. Intuitively, to approximate
active systems there must be energy stored in the initial state of GN . But
Proposition 1 says that such initial energy is not available for the inputs and
outputs of GN . The next theorem shows that we can approximate G using
GN if, and only if, G is dissipative.
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Theorem 2. Suppose G is a linear time-invariant causal system (9), where
‖g(t)‖2 is uniformly bounded, g(t) ∈ L1 ∩ L2(0,∞), and ġ(t) ∈ L1(0,∞).
Then Problem 1 is solvable using a linear lossless GN if, and only if, G is
dissipative.

Proof. See Appendix 6.1.

The proof of Theorem 2 shows that the number of states needed in
GN is proportional to τ/ǫ2, and again the required state space is large. The
result shows that for finite-time input-output experiments with finite-energy
inputs it is not possible to distinguish between the dissipative system and
its lossless approximations. Theorem 2 illustrates that a very large class
of dissipative systems (macroscopic systems) can be approximated by the
lossless linear systems we introduced in (1). The lossless systems are dense
in the dissipative systems, in the introduced topology. Again this shows how
dissipative systems are consistent with a physics based on energy-conserving
systems.

In [28, Theorem 8], necessary and sufficient conditions for time reversible
systems are given. We can now use this result together with Theorem 2 to
prove a result reminiscent to the Onsager reciprocal relations which say
physical systems tend to be reciprocal, see for example [6]. Before stating
the result, we properly define what is meant by reciprocal and time reversible
systems. These definitions are slight reformulations of those found in [28].

A signature matrix Σe is a diagonal matrix with entries either +1 and
−1.

Definition 1. A linear time-invariant system G with impulse response g(t)
is reciprocal with respect to the signature matrix Σe if Σeg(t) = g(t)TΣe.

Definition 2. Consider a finite-dimensional linear time-invariant system G
and assume that x(0) = 0. Let u1, u2 be admissible inputs to G, and y1, y2
be the corresponding outputs. Then G is time reversible with respect to the
signature matrix Σe if y2(t) = Σey1(−t) whenever u2(t) = −Σeu1(−t).

Theorem 3. Suppose G satisfies the assumptions in Theorem 2. Then G
is dissipative and reciprocal with respect to Σe if, and only if, there exists a
time-reversible (with respect to Σe) arbitrarily good linear lossless approxi-
mation GN of G.

Proof. See Appendix 6.2.

Hence, one can understand that macroscopic physical systems close to
equilibrium usually are reciprocal because their underlying dynamics are
lossless and time reversible.

14



Remark 4. There is a long-standing debate in physics about how macro-
scopic time-irreversible dynamics can result from microscopic time-reversible
dynamics. The debate goes back to Loschmidt’s paradox and the Poincaré
recurrence theorem. The Poincaré recurrence theorem says that bounded
trajectories of volume-preserving systems (such as lossless systems) will re-
turn arbitrarily close to their initial conditions if we wait long enough (the
Poincaré recurrence time). This seems counter-intuitive for real physical
systems. One common argument is that the Poincaré recurrence time for
macroscopic physical systems is so long that we will never experience a recur-
rence. But this argument is not universally accepted and other explanations
exist. The debate still goes on, see for example [13]. In this paper we con-
struct lossless and time-reversible systems with arbitrarily large Poincaré
recurrence times, that are consistent with observations of all linear dissi-
pative (time-irreversible) systems, as long as those observations take place
before the recurrence time. For a control-oriented related discussion about
the arrow of time, see [34].

2.4 Nonlinear lossless approximations

In Section 2.2, it was shown that a dissipative memoryless system can be
approximated using a lossless linear system. Later in Section 2.3 it was also
shown that the approximation procedure can be applied to any dissipative
(linear) system. Because of Proposition 1 and Theorem 2, it is clear that it
is not possible to approximate a linear active system using a linear lossless
system with fixed initial state. Next we will show that it is possible to solve
Problem 1 for active systems if we use nonlinear lossless approximations.

Consider the simplest possible active system,

y(t) = ku(t), (13)

where k ∈ R
p×p is negative definite. This can be a model of a negative

resistor, for example. More general active systems are considered below.
The reason a linear lossless approximation of (13) cannot exist is that the
active device has an internal infinite energy supply, but we cannot store
any energy in the initial state of a linear lossless system and simultaneously
track a set of outputs, see Proposition 1. However, if we allow for lossless
nonlinear approximations, (13) can be arbitrarily well approximated. This
is shown next by means of an example.
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Consider the nonlinear system

ẋE(t) =
1√
2E0

u(t)Tku(t), xE(0) =
√

2E0, E0 > 0,

yE(t) =
xE(t)√
2E0

ku(t),

(14)

with a scalar energy-supply state xE(t), and total energy E(xE) = 1
2x

2
E .

The system (14) has initial total energy 1
2xE(0)

2 =: E0, and is a lossless
system with respect to the work rate w(t) = yE(t)u(t), since

d

dt
E(xE(t)) = xE(t)ẋE(t) = yE(t)

Tu(t).

The input-output relation of (14) is given by

xE(t) =
√

2E0 +
1√
2E0

∫ t

0
u(s)Tku(s)ds,

yE(t) = ku(t) +
1

2E0
ku(t)

∫ t

0
u(s)Tku(s)ds.

(15)

We have the following approximation result.

Theorem 4. For uniformly bounded inputs, ‖u(t)‖2 ≤ ū, t ∈ [0, τ ], the error
between the active system (13) and the nonlinear lossless approximation (14)
can be bounded as

‖yE(t)− y(t)‖2 ≤ ǫ‖u‖L2[0,t],

for t ∈ [0, τ ], where ǫ = σ̄(k)2ū2
√
τ/(2E0).

Proof. A simple bound on yE(t) − ku(t) from (15) gives ‖yE(t) − y(t)‖2 ≤
σ̄(k)2‖u(t)‖2

2E0

∫ t
0 ‖u(s)‖22ds. Then using ‖u(t)‖2 ≤ ū, t ∈ [0, τ ], gives the result.

The error bound in Theorem 4 can be made arbitrarily small for finite
time intervals if the initial total energy E0 is large enough. This example
shows that active systems can also be approximated by lossless systems, if
the lossless systems are allowed to be nonlinear and are charged with initial
energy.

The above approximation method can in fact be applied to much more
general systems. Consider the ordinary differential equation

ẋ(t) = f(x(t), u(t)), x(0) = x0,

y(t) = g(x(t), u(t)),
(16)
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where x(t) ∈ R
n, and u(t), y(t) ∈ R

p. In general, this is not a lossless
system with respect to the supply rate w(t) = y(t)Tu(t). A nonlinear lossless
approximation of (16) is given by

˙̂x(t) =
xE(t)√
2E0

f(x̂(t), u(t)), x̂(0) = x0,

ẋE(t) =
1√
2E0

g(x̂(t), u(t))T u(t)− 1√
2E0

x̂(t)T f(x̂(t), u(t)),

yE(t) =
xE(t)√
2E0

g(x̂(t), u(t)), xE(0) =
√

2E0,

(17)

where again xE(t) is a scalar energy-supply state, and x̂(t) ∈ R
n can be

interpreted as an approximation of x(t) in (16). That (17) is lossless can be
verified using the storage function

E =
1

2
x̂(t)T x̂(t) +

1

2
xE(t)

2,

since

Ė = (xE/
√

2E0)(x̂
T f(x̂, u) + g(x̂, u)Tu− x̂T f(x̂, u))

= (xE/
√

2E0)g(x̂, u)
Tu = yTEu = w.

Since xE(t)/
√
2E0 ≈ 1 for small t, it is intuitively clear that x̂(t) in (17) will

be close to x(t) in (16), at least for small t and large initial energy E0. We
have the following theorem.

Theorem 5. Assume that ∂f/∂x is continuous with respect to x and t, and
that (16) has a unique solution x(t) for 0 ≤ t ≤ τ . Then there exist positive
constants C1 and E1 such that for all E0 ≥ E1 (17) has a unique solution
x̂(t) which satisfies ‖x(t) − x̂(t)‖2 ≤ C1/

√
2E0 for all 0 ≤ t ≤ τ .

Proof. Introduce the new coordinate ∆xE = xE −
√
2E0 and define ǫ0 :=

1/
√
2E0. The system (17) then takes the form

˙̂x = (1 + ǫ0∆xE)f(x̂, u), x̂(0) = x0,

∆ẋE = ǫ0g(x̂, u)
Tu− ǫ0x̂

T f(x̂, u), ∆xE(0) = 0.

Perturbation analysis [39, Section 10.1] in the parameter ǫ0 as ǫ0 → 0 yields
that there are positive constants ǫ1 and C1 such that ‖x− x̂‖2 ≤ C1|ǫ0| for
all |ǫ0| ≤ ǫ1. The result then follows with E1 = 1/(2ǫ21).
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Just as in Section 2.3, the introduced lossless approximations are not
unique. The one introduced here, (17), is very simple since only one extra
state xE is added. Its accuracy (C1, E0) of course depends on the particular
system (f , g) and the time horizon τ . An interesting topic for future work
is to develop a theory for “optimal” lossless approximations using a fixed
amount of energy and a fixed number of states.

2.5 Summary

In Section 2, we have seen that a large range of systems, both dissipative and
active, can be approximated by lossless systems. Lossless systems account
for the total energy, and we claim these models are more physical. It was
shown that linear lossless systems are dense in the set of linear dissipative
systems. It was also shown that time reversibility of the lossless approx-
imation is equivalent to a reciprocal dissipative system. To approximate
active systems nonlinearity is needed. The introduced nonlinear lossless
approximation has to be initialized at a precise state with a large total en-
ergy (E0). The nonlinear approximation achieves better accuracy (smaller
ǫ) by increasing initial energy (increasing E0). This is in sharp contrast to
the linear lossless approximations of dissipative systems that are initialized
with zero energy (E0 = 0). These achieve better accuracy (smaller ǫ) by
increasing the number of states (increasing N). The next section deals with
uncertainties in the initial state of the lossless approximations.

3 The Fluctuation-Dissipation Theorem

As discussed in the introduction, the fluctuation-dissipation theorem plays
a major role in close-to-equilibrium statistical mechanics. The theorem has
been stated in many different settings and for different models. See for
example [17, 20], where it is stated for Hamiltonian systems and Langevin
equations. In [18,19], it is stated for electrical circuits. A fairly general form
of the fluctuation-dissipation theorem is given in [6, p. 500]. We re-state this
version of the theorem here.

Suppose that yi and ui, i = 1, . . . , p, are conjugate external variables
(inputs and outputs) for a dissipative system in thermal equilibrium of tem-
perature T [Kelvin] (as defined in Section 3.1). We can interpret yi as a
generalized velocity and ui as the corresponding generalized force, such that
yiui is a work rate [Watt]. Although the system is generally nonlinear, we
only consider small variations of the state around a fixpoint of the dynamics,
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which allows us to assume the system to be linear. Assume first that the sys-
tem has no direct term (no memoryless element). If we make a perturbation
in the forces u, the velocities y respond according to

y(t) =

∫ t

0
g(t− s)u(s)ds,

where g(t) ∈ R
p×p is the impulse response matrix by definition. The follow-

ing fluctuation-dissipation theorem now says that the velocities y actually
also fluctuates around the equilibrium.

Proposition 2. The total response of a linear dissipative system G with no
memoryless element and in thermal equilibrium of temperature T is given
by

y(t) = n(t) +

∫ t

0
g(t− s)u(s)ds, (18)

for perturbations u. The fluctuations n(t) ∈ R
p is a stationary Gaussian

stochastic process, where

En(t) = 0,

Rn(t, s) := En(t)n(s)T

=

{

kBTg(t− s), t− s ≥ 0

kBTg(s − t)T , t− s < 0,

(19)

where kB is Boltzmann’s constant.

Proof. See Section 3.1.

The covariance function of the noise n is determined by the impulse re-
sponse g, and vice versa. The result has found wide-spread use in for exam-
ple fluid mechanics: By empirical estimation of the covariance function we
can estimate how the system responds to external forces. In circuit theory,
the result is often used in the other direction: The forced response deter-
mines the color of the inherent thermal noise. One way of understanding the
fluctuation-dissipation theorem is by using linear lossless approximations of
dissipative models, as seen in the next subsection.

We may also express (18) in state space form in the following way. A
dissipative system with no direct term can always be written as [28, Theo-
rem 3]:

ẋ(t) = (J −K)x(t) +Bu(t),

y(t) = BTx(t),
(20)
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where K = KT is positive semidefinite and J anti symmetric. To account
for (18)–(19), it suffices to introduce a white noise term v(t) in (20) in the
following way,

ẋ(t) = (J −K)x(t) +Bu(t) +
√

2kBTLv(t),

y(t) = BTx(t),
(21)

where the matrix L is chosen such that LLT = K. Equation (21) is the
called the Langevin equation of the dissipative system.

Dissipative systems with memoryless elements are of great practical sig-
nificance. Proposition 2 needs to be slightly modified for such systems.

Proposition 3. The total response of a linear dissipative memoryless sys-
tem in thermal equilibrium of temperature T and for perturbations u is given
by

y(t) = n(t) + ku(t) = n(t) + ksu(t) + kau(t), (22)

where ks ≥ 0 is symmetric positive semidefinite, and ka anti symmetric.
The fluctuations n(t) ∈ R

p is a white Gaussian stochastic process, where

En(t) = 0,

Rn(t, s) := En(t)n(s)T = 2kBTksδ(t− s).

Proposition 3 follows from Proposition 2 if one extracts the dissipative
term ksu(t) from the memoryless model ku(t) and puts g(t) = ksδ(t). How-
ever, the integral in (18) runs up to s = t and cuts the impulse δ(t) in half.
The re-normalized impulse response of the dissipative term is therefore given
by g(t) = 2ksδ(t) (see also Section 2.2). The result then follows using this
g(t) by application of Proposition 2. One explanation for why the anti sym-
metric term ka can be removed from g(t) is that it can be realized exactly
using the direct term D in linear lossless approximation (1). An application
of Proposition 3 gives the Johnson-Nyquist noise of a resistor.

Example 2. As first shown theoretically in [15] and experimentally in [14],
a resistor R of temperature T generates white noise. The total voltage over
the resistor, v(t), satisfies v(t) = Ri(t) + n(t), En(t)n(s) = 2kBTRδ(t− s),
where i(t) is the current.

3.1 Derivation using linear lossless approximations

Let us first consider systems without memoryless elements. The general
solution to the linear lossless system (1) is then

y(t) = BT eJtx0 +

∫ t

0
BT eJ(t−s)Bu(s)ds, (23)
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where x0 is the initial state. It is the second term, the convolution, that ap-
proximates the dissipative (Gu)(t) in the previous section. In Proposition 1,
we showed that the first transient term is not desired in the approximation.
Theorems 1 and 2 suggest that we will need a system of extremely high order
to approximate a linear dissipative system on a reasonably long time hori-
zon. When dealing with systems of such high dimensions, it is reasonable
to assume that the exact initial state x0 is not known, and it can be hard
to enforce x0 = 0. Therefore, let us take a statistical approach to study its
influence. We have that

Ey(t) = BT eJtEx0 +

∫ t

0
BT eJ(t−s)Bu(s)ds, t ≥ 0,

if the input u(t) is deterministic and E is the expectation operator. The
autocovariance function Ry for y(t) is then

Ry(t, s) := E[y(t)−Ey(t)][y(s)−Ey(s)]T

= BT eJtX0e
−JsB,

(24)

where X0 is the covariance of the initial state,

X0 := E∆x0∆xT0 , (25)

where ∆x0 := x0 −Ex0 is the stochastic uncertain component of the initial
state, which evolves as ∆x(t) = eJt∆x0. The positive semidefinite matrix
X0 can be interpreted as a measure of how well the initial state is known.
For a lossless system with total energy E(x) = 1

2x
Tx we define the internal

energy as

U(x) :=
1

2
∆xT∆x, ∆x := x−Ex. (26)

The expected total energy of the system equals EE(x) = 1
2(Ex)TEx +

EU(x). Hence the internal energy captures the stochastic part of the total
energy, see also [25,30]. In statistical mechanics, see [6–8], the temperature
of a system is defined using the internal energy.

Definition 3 (Temperature). A system with internal energy U(x) [Joule]
has temperature T [Kelvin] if, and only if, its state x belongs to Gibbs’s
distribution with probability density function

p(x) =
1

Z
exp[−U(x)/kBT ], (27)

where kB is Boltzmann’s constant and Z is the normalizing constant called
the partition function. A system with temperature is said to be at thermal
equilibrium.
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When the internal energy function is quadratic and the system is at ther-
mal equilibrium, it is well known that the uncertain energy is equipartitioned
between the states, see [6, Sec. 4-5].

Proposition 4. Suppose a lossless system with internal energy function
U(x) = 1

2∆xT∆x has temperature T at time t = 0. Then the initial state
x0 belongs to a Gaussian distribution with covariance matrix X0 = kBTIn,
and EU(x0) =

n
2kBT .

Hence, the temperature T is proportional to how much uncertain equipar-
titioned energy there is per degree of freedom in the lossless system. There
are many arguments in the physics and information theory literature for
adopting the above definition of temperature. For example, Gibbs’s distri-
bution maximizes the Shannon continuous entropy (principle of maximum
entropy [40, 41]). In this paper, we will simply accept this common defini-
tion of temperature, although it is interesting to investigate more general
definitions of temperature of dynamical systems.

Remark 5. Note that lossless systems may have a temperature at any time
instant, not only at t = 0. For instance, a lossless linear system (23) of
temperature T at t = 0 that is driven by a deterministic input remains at the
same temperature and has constant internal energy at all times, since ∆x(t)
is independent of u(t). To change the internal energy using deterministic
inputs, nonlinear systems are needed as explained in [23,24]. For the related
issue of entropy for dynamical systems, see [23,25].

If a lossless linear system (23) has temperature T at t = 0 as defined in
Definition 3 and Proposition 4, then the autocovariance function (24) takes
the form

Ry(t, s) = kBT · BT eJ(t−s)B = kBT · [BT eJ(s−t)B]T ,

since JT = −J . It is seen that linear lossless systems satisfy the fluctuation-
dissipation theorem (Proposition 2) if we identify the stochastic transient
in (23) with the fluctuation, i.e. n(t) = BT eJtx0 (assuming Ex0 = 0), and
the impulse response as g(t) = BT eJtB. In particular, n(t) is a Gaussian
process of mean zero because x0 is Gaussian and has mean zero.

Theorem 2 showed that dissipative systems with memory can be arbi-
trarily well approximated by lossless systems. Hence we cannot distinguish
between the two using only input-output experiments. One reason for pre-
ferring the lossless model is that its transient also explains the thermal
noise that is predicted by the fluctuation-dissipation theorem. To explain
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the fluctuation-dissipation theorem for systems without memory (Proposi-
tion 3), one can repeat the above arguments by making a lossless approxi-
mation of ks (see Theorem 1). The anti symmetric part ka does not need
to be approximated but can be included directly in the lossless system by
using the anti symmetric direct term D in (12).

Proposition 3 captures the notion of a heat bath, modelling it (as de-
scribed in Theorem 1) with a lossless system so large that for moderate
inputs and within the chosen time horizon, the interaction with its environ-
ment is not significantly affected.

That the Langevin equation (21) is a valid state-space model for (18) is
shown by a direct calculation. If we assume that (20) is a low-order approx-
imation for a high-order linear lossless system (23), in the sense of Theorem
2, it is enough to require that both systems are at thermal equilibrium with
the same temperature T in order to be described by the same stochastic
equation (18), at least in the time interval in which the approximation is
valid.

3.2 Nonlinear lossless approximations and thermal noise

Lossless approximations are not unique. We showed in Section 2.4 that
low-order nonlinear lossless approximations can be constructed. As seen
next, these do not satisfy the fluctuation-dissipation theorem. This is not
surprising since they can also model active systems. If they are used to
implement linear dissipative systems, the linearized form is not in the form
(1). By studying the thermal noise of a system, it could in principle be
possible to determine what type of lossless approximation that is used.

Consider the nonlinear lossless approximation (14) of y(t) = ku(t), where
k is scalar and can be either positive or negative. The approximation only
works well when the initial total energy E0 is large. To study the effect of
thermal noise, we add a random Gaussian perturbation ∆x0 to the initial
state so that the system has temperature T at t = 0 according to Definition 3
and Proposition 4. This gives the system

ẋE(t) =
k√
2E0

u(t)2, xE(0) =
√

2E0 +∆x0, E∆x0 = 0,

yE(t) =
k√
2E0

xE(t)u(t), E∆x20 = kBT.

(28)

The solution to the lossless approximation (28) is given by

yE(t) = ku(t) + ns(t) + nd(t), (29)
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where

nd(t) =
k2

2E0
u(t)

∫ t

0
u(s)2ds, ns(t) =

k∆x0√
2E0

u(t). (30)

We call nd(t) the deterministic implementation noise and ns(t) the stochastic
thermal noise. The ratio between the deterministic and stochastic noise is

nd(t)

ns(t)
=

k√
2E0∆x0

∫ t

0
u(s)2ds =

ku(0)2√
2E0∆x0

t+O(t2),

as t → 0, if u(t) is continuous. Hence, for sufficiently small times t and if
∆x0 6= 0, the stochastic noise ns(t) is the dominating noise in the lossless
approximation (28). Since ∆x0 belongs to a Gaussian distribution, there is
zero probability that ∆x0 = 0. Hence, the solution yE(t) can be written

yE(t) = ku(t) + ns(t) +O(t),

Ens(t) = 0, Ens(t)
2 =

k2kBT

2E0
u(t)2.

(31)

Just as in Proposition 3, the noise variance is proportional to the tempera-
ture T . Notice, however, that the noise is significantly smaller in (31) than
in Proposition 3. There the noise is white and unbounded for each t. The
expression (31) is further used in Section 4.

3.3 Summary

In Section 3, we have seen that uncertainty in the initial state of a linear loss-
less approximation gives a simple explanation for the fluctuation-dissipation
theorem. We have also seen seen that uncertainty in the initial state of a
nonlinear lossless approximation gives rise to noise which does not satisfy
the fluctuation-dissipation theorem. In all cases, the variance of the noise is
proportional to the temperature of the system. Only when the initial state
is perfectly know, that is when the system has temperature zero, perfect
approximation using lossless systems can be achieved.

4 Limits on Measurements and Back Action

In this section, we study measurement strategies and devices using the de-
veloped theory. In quantum mechanics, the problem of measurements and
their interpretation have been much studied and debated. Also in classical
physics there have been studies on limits on measurement accuracy. Two
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examples are [42, 43], where thermal noise in measurement devices is ana-
lyzed and bounds on possible measurement accuracy derived. Nevertheless,
the effect of the measurement device on the measured system, the “back ac-
tion”, is usually neglected in classical physics. That such effects exist also in
classical physics is well known, however, and is called the “observer effect”.
Also in control engineering these effects are usually neglected: The sensor
is normally modeled to interact with the controlled plant only through the
feedback controller.

Using the theory developed in this paper, we will quantify and give limits
on observer effects in a fairly general setting. These limitations should be
of practical importance for control systems on the small physical scale, such
as for MEMS and in systems biology.

4.1 Measurement problem formulation

Assume that the problem is to estimate the scalar potential y(tm) (an out-
put) of a linear dissipative dynamical system S at some time tm > 0. Fur-
thermore, assume that the conjugate variable of y is u (the “flow” variable).
Then the product y(t)u(t) is a work rate. As has been shown in Section 2.3,
all single-input–single-output linear dissipative systems can be arbitrarily
well approximated by a dynamical system in the form,

S :

{

ẋ(t) = Jx(t) +Bu(t), x(0) = x0,

y(t) = BTx(t), y(0) = y0 = BTx0,
(32)

for a fixed initial state x0. Note that this system evolves deterministically
since x0 is fixed. Let us also define the parameter C by BTB =: 1/C. Then
1/C is the first Markov parameter of the transfer function of S. If S is an
electrical capacitor and the measured quantity a voltage, C coincides with
the capacitance.

To estimate the potential y(tm), an idealized measurement device called
M is connected to S in the time interval [0, tm], see Fig. 2. The validity of
Kirchoff’s laws is assumed in the interconnection. That is, the flow out of S
goes into M, and the potential difference y(t) over the devices is the same
(a lossless interconnection). The device M has an ideal flow meter that
gives the scalar value um(t) = −u(t). Therefore the problem is to estimate
the potential of S given knowledge of the flow u(t). For this problem, two
related effects are studied next, the back action b(tm), and the estimation
error e(tm). By back action we mean how the interconnection with M
effects the state of S. It quantifies how much the state of S deviates from its
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[0, tm]

S

M

u(t)

um(t)

y(t)

Figure 2: Circuit diagram of an idealized measurement device M and the
measured system S. The measurement is performed in the time interval
[0, tm]. The problem is to estimate the potential y(tm) as well as possible,
given the flow measurement um = −u.

[0, tm] [0, tm]

S S

km km −km

u(t) u(t)

um(t) um(t)

y(t)

Figure 3: Circuit diagrams of the memoryless dissipative measurement de-
vice M1 (left) and the memoryless active measurement device M2 (right).

natural trajectory after the measurement. Estimation error is the difference
between the actual potential and the estimated potential. Next we consider
two measurement strategies and their lossless approximations in order to
study the impact of physical implementation.

Remark 6. The reason the initial state x0 in S is fixed is that we want to
compare how different measurement strategies succeed when used on exactly
the same system. We also assume that y0 = BTx0 is completely unknown
to the measurement device before the measurement starts.
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4.2 Memoryless dissipative measurement device

Consider the measurement device M1 to the left in Fig. 3. This measure-
ment device connected to S is modeled by a memoryless system with (a
known) admittance km > 0,

M1 :







um(t) = −u(t) = kmy(t)

ym(t) =
um(t)

km
= y(t).

The signal ym(t) is the measurement signal produced by M1. The dynamics
of the interconnected measured system becomes

SM1 :

{

ẋ1(t) = (J − kmBBT )x1(t), x1(0) = x0,

y1(t) = BTx1(t),

where x1(t) is the state of S when it is interconnected to M1. If the mea-
surement circuit is closed in the time interval [0, tm], then the state of the
system S gets perturbed from its natural trajectory by a quantity

b(tm) := x1(tm)− x(tm) = e(J−kmBBT )tmx0 − eJtmx0

= −kmy0Btm +O(t2m),

where x(t) satisfies (32) with u(t) = 0, and b(tm) is the back action. By mak-
ing the measurement time tm small, the back action can be made arbitrarily
small.

In this situation, a good estimation policy for the potential y1(tm) is to
choose ŷ(tm) = ym(tm), since the estimation error e(tm) is identically zero
in this case,

e(tm) := ŷ(tm)− y1(tm) = 0.

The signal ŷ(tm) should here, and in the following, be interpreted as the best
possible estimate of the potential of S for someone who has access to the
measurement signal ym(t), 0 ≤ t ≤ tm. Note that the estimation error e is
defined with respect to the perturbed system SM1. Given that we already
have defined back action it is easy to give a relation to the unperturbed
system S by

y(tm) = ŷ(tm)− e(tm)−BT b(tm), (33)

which is valid for non-zero estimation errors also.
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Remark 7. Whether one is interested in the perturbed potential y1(tm) or
the unperturbed potential y(tm) of S depends on the reason for the measure-
ment. For a control engineer who wants to act on the measured system,
y1(tm) is likely to be of most interest. A physicist, on the other hand, who
is curious about the uncontrolled system may be more interested in y(tm).
Either way, knowing the back action b, one can always get y(tm) from y1(tm)
using (33).

4.2.1 Lossless realization M̂1

Next we make a linear lossless realization of the admittance km > 0 in
M1, using Proposition 3, so that it satisfies the fluctuation-dissipation the-
orem. Linear physical implementations of M1 inevitably exhibit this type
of Johnson-Nyquist noise. We obtain

M̂1 :











um(t) = −u(t) = kmy(t) +
√

2kmkBTmn(t),

ym(t) =
um(t)

km
= y(t) +

√

2kBTm

km
n(t),

where Tm is the temperature of the measurement device, and n(t) is unit-
intensity white noise. As shown before, the noise can be interpreted as due
to our ignorance of the exact initial state of the measurement device. The
interconnected measured system SM̂1 satisfies a Langevin-type equation,

SM̂1 :











ẋ1(t) = (J − kmBBT )x1(t)−
√

2kmkBTmBn(t),

x1(0) = x0,

y1(t) = BTx1(t).

The solution for SM̂1 is

x1(t) = e(J−kmBBT )tx0

−
∫ t

0
e(J−kmBBT )(t−s)B

√

2kmkBTmn(s)ds.
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The back action can be calculated as

b(tm) = x1(tm)− x(tm) = bd(tm) + bs(tm),

bd(tm) := Ex1(tm)− x(tm) = e(J−kmBBT )tmx0 − eJtmx0

= −kmy0Btm +O(t2m),

bs(tm) := x1(tm)−Ex1(tm)

= −
∫ tm

0
e(J−kmBBT )(tm−s)B

√

2kmkBTmn(s)ds,

where we have split the back action into deterministic and stochastic parts.
The deterministic back action coincides with the back action for M1. The
stochastic back action comes from the uncertainty in the lossless realization
of the measurement device. The measurement device M̂1 injects a stochastic
perturbation into the measured system S.

The covariance P of the back action b at time tm is

P (tm) := E[b(tm)−Eb(tm)][b(tm)−Eb(tm)]T

= Ebs(tm)bs(tm)T = 2kmkBTm

∫ tm

0
e(J−kmBBT )(tm−s)B

×BT (e(J−kmBBT )(tm−s))Tds = 2BBTkmkBTmtm +O(t2m). (34)

It holds that P (tm) → kBTmIn and Ex1(t) → 0 as tm → ∞, see [30,
Propositions 1 and 2], and the measured system attains temperature Tm

after an infinitely long measurement. It is therefore reasonable to keep tm
small if one wants to have a small back action.

Next we analyze and bound the estimation error. The measurement
equation is given by

ym(t) =
um(t)

km
= y1(t) +

√

2kBTm

km
n(t).

Note that ŷ(tm) = ym(tm) is now a poor estimator of y1(tm), since the
variance of the estimation error e(t) = ŷ(t)−y1(t) is infinite due to the white
noise n(t). Using filtering theory, we can construct an optimal estimator
that achieves a fundamental lower bound on the possible accuracy (minimum
variance) given ym(t) in the interval 0 ≤ t ≤ tm. The solution is the Kalman
filter,

˙̂x1(t) = (J − kmBBT )x̂1(t) +K(t)[ym(t)−BT x̂1(t)],

ŷ(t) = BT x̂1(t),
(35)

29



whereK(t) is the Kalman gain (e.g. [44]). The minimum possible variance of
the estimation error, M∗(tm) = minE(ŷ(tm)− y1(tm))2 (∗ denotes optimal)
can be computed from the differential Riccati equation

Ẋ(t) = JkmX(t) +X(t)JT
km + 2kmkBTmBBT

− km
2kBTm

(X(t)− 2kBTmIn)B

×BT (X(t)− 2kBTmIn)
T , (36)

M∗(tm) = BTX(tm)B, Jkm := J − kmBBT .

A series expansion X(t) = 1
tX−1 + X0 + tX1 + . . . of the solution to (36)

yields that the coefficient X−1 should satisfy X−1 = km
2kBTm

X−1BBTX−1.
Note that X−1 is independent on Jkm . From the X1 equation, we yield that

M∗(tm) =
2kBTm

kmtm
+O(1),

since M∗(t) = 1
tB

TX−1B + BTX0B + tBTX1B + . . . Here the boundary
condition M∗(0) = +∞ has been used, since it is assumed that y0 is com-
pletely unknown, see Remark 6. It is easy to verify that M∗(tm) → 0 as
tm → ∞, and given an infinitely long measurement a perfect estimate is
obtained. This comes at the expense of a large back action.

To implement the Kalman filter (35) requires a complete model (J,B, km, Tm)
which is not always reasonable to assume. Nevertheless, the Kalman filter
is optimal and the variance of the estimation error, M(t) := Ee(t)2, of
any other estimator, in particular those that do not require complete model
knowledge, must satisfy

M(tm) ≥ M∗(tm) =
2kBTm

kmtm
+O(1). (37)

4.2.2 Back action and estimation error trade-off

Define the root mean square back action and the root mean square estima-
tion error of the potential y by

|∆y(tm)| :=
√

BTP (tm)B, |∆ŷ(tm)| :=
√

M(tm).

This is the typical magnitude of the change of the potential y and the es-
timation error after a measurement. Using (34) and (37), the appealing
relation

|∆y(tm)||∆ŷ(tm)| ≥ 2kBTm/C +O(tm), (38)

30



Table 1: Summary of back action and estimation error after a measurement
in the time interval [0, tm]. bd(tm) - deterministic back action, P (tm) -
covariance of back action, |∆y|2 - variance of potential, and M∗(tm) - lower
bound on estimation error.

Device bd(tm) P (tm) = Ebs(tm)bs(tm)T |∆y(tm)|2 = BTP (tm)B M∗(tm) = min |∆ŷ|2
M1 −kmy0Btm +O(t2m) 0 0 0

M̂1 −kmy0Btm +O(t2m) 2kmkBTmBBT tm +O(t2m) 2kmkBTm

C2 tm +O(t2m) 2kBTm

km
t−1
m +O(1)

M2 0 0 0 0

M̂2
y3
0
km

4Em
Bt2m +O(t3m) 2kmkBTmBBT tm +O(t2m) 2kmkBTm

C2 tm +O(t2m) 2kBTm

km
t−1
m +O(1)

where 1/C = BTB, is obtained. Hence, there is a direct trade-off between
the accuracy of estimation and the perturbation in the potential, indepen-
dently on (small) tm and admittance km. It is seen that the more “capaci-
tance” (C) S has, the less important the trade-off is. One can interpret C
as a measure of the physical size or inertia of the system. The trade-off is
more important for “small” system in “hot” environments. Using an optimal
filter, the trade-off is satisfied with equality.

4.3 Memoryless active measurement device

A problem with the device M1 is that it causes back action b even in the
most ideal situation. If active elements are allowed in the measurement
device, this perturbation can apparently be easily eliminated, but of course
with the inherent costs of an active device. Consider the measurement device
M2 to the right in Fig. 3. It is modeled by

M2 :



















um(t) = kmy(t),

u(t) = um(t)− kmy(t) = 0,

ym(t) =
um(t)

km
= y(t),

where an active element −km exactly compensates for the back action in
M1. It is clear that there is no back action and no estimation error using
this device,

b(tm) = 0, e(tm) = 0,

for all tm. Next, a lossless approximation of M2 is performed.
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4.3.1 Lossless realization M̂2

Let the dissipative element km in M2 be implemented with a linear lossless
system, see Proposition 3, and the active element −km be implemented using
the nonlinear lossless system in (28). This approximation of M2 captures
the reasonable assumption that the measurement device must be charged
with energy to behave like an active device, and that its linear dissipative
element satisfies the fluctuation-dissipation theorem.

Assume that the temperature of the measurement device M̂2 is Tm and
the deterministic part of the total energy of the active element is Em. Then
the interconnected system becomes

SM̂2 :















































































ẋ2(t) = (J − kmBBT )x2(t)

+
km√
2Em

xr(t)BBTx2(t)

−B
√

2kmkBTmn(t), x2(0) = x0,

ẋr(t) =
km√
2Em

(BTx2(t))
2,

xr(0) =
√

2Em +∆xr0,

E∆xr0 = 0, E∆x2r0 = kBTm,

ym(t) =
um(t)

km
= BTx2(t) +

√

2kBTm

km
n(t),

where x2 is the state of S, and xr is the state of the active element. Using
the closed-form solution (29)–(30) to eliminate xr, we can also write the
equations as

SM̂2 :



























ẋ2(t) =

(

J +
km∆xr0√

2Em
BBT

)

x2(t)

+Bwd(t)−B
√

2kmkBTmn(t), x2(0) = x0,

ym(t) =
um(t)

km
= BTx2(t) +

√

2kBTm

km
n(t),

(39)

with the deterministic perturbation wd(t) =
k2my3

0

2Em
t+O(t2). The solution to
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(39) can be expanded as

x2(t) = x0 −
√

2kmkBTmBN(t)

+

(

J +
km∆xr0√

2Em
BBT

)

x0t

−
√

2kmkBTm

(

J +
km∆xr0√

2Em
BBT

)

×B

∫ t

0
N(s)ds+B

k2my30
4Em

t2 + o(t2), (40)

where N(t) =
∫ t
0 n(s)ds = O(

√
t) is integrated white noise (a Brownian

motion). It can be seen that the white noise disturbance n is much more
important than the deterministic disturbance wd. The back action becomes

b(tm) = x2(tm)− x(tm) = bd(tm) + bs(tm)

bd(tm) := Ex2(tm)− x(tm) =
k2my30
4Em

Bt2m +O(t3m),

bs(tm) := x2(tm)−Ex2(tm)

= −
√

2kmkBTmBN(tm) +
km∆xr0√

2Em
By0tm

+O(tm
√
tm),

where we used that the covariance between ∆xr0 and N is zero. The covari-
ance of the back action becomes

P (tm) := Ebs(tm)bs(tm)T = 2kmkBTmBBT tm +O(t2m). (41)

It is seen that the dominant term in the stochastic back action is the same
as for M̂1, but the deterministic back action bd is much smaller.

Remark 8. Using a nonlinear lossless approximation of −km of order larger
than one, we can make the deterministic back action smaller for fixed Em,
at the expense of model complexity.

The measurement noise in SM̂2 is the same as in SM̂1, and we can
essentially repeat the argument from Section 4.2.1. The difference between
SM̂2 and SM̂1 lies in the dynamics. In SM̂2, the system matrix is J +
km∆xr0√

2Em

BBT and there is a deterministic perturbation wd(t). To make an

estimate ŷ(tm), knowledge of ym(t) in the interval [0, tm] is assumed. If
we assume that the model (J,B, km, Tm) is known plus that the observer
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somehow knows wd(t) and ∆xr0, then the optimal estimate again has the
error covariance M∗(tm) = 2kBTm

kmtm
+O(1). Any other estimator that has less

information available must be worse, so that

M(t) ≥ M∗(tm) =
2kBTm

kmtm
+O(1).

Again, we have the trade-off (38)

|∆y(tm)||∆ŷ(tm)| ≥ 2kBTm/C +O(tm),

which holds even though we have inserted an active element in device. The
only effect of the active element is to eliminate the deterministic back action.

4.4 Summary and Discussion

The back action and estimation error of the measurement devices are sum-
marized in Table 1. For the ideal devices M1 and M2 no real trade-offs
exist. However, if we realize them with lossless elements very reasonable
trade-offs appear. It is only in the limit of infinite available energy and zero
temperature that the trade-offs disappear. The deterministic back action
can be made small with large Em, charging the measurement device with
much energy. However, the effect of stochastic back action is inescapable for
both M̂1 and M̂2, and the trade-off

|∆y||∆ŷ| ≥ 2kBTm/C for small tm, (42)

holds in both cases. The reason for having short measurements is to mini-
mize the effect of the back action. The lower bound on the estimation error
M∗(tm) tends to zero for large tm, but at the same time the measured system
S tends to a thermodynamic equilibrium with the measurement device.

It is possible to increase the estimation accuracy by making the admit-
tance km of the measurement device large, but only at the expense of mak-
ing a large stochastic perturbation of the measured system. Hence, we have
quantified a limit for the observer effect discussed in the introduction of this
section. We conjecture that inequalities like (42) hold for very general mea-
surement devices as soon as the dissipative elements satisfy the fluctuation-
dissipation theorem. Note, for example, that if a lossless transmission cable
of admittance km and of temperature Tm is used to interconnect the system
S to an arbitrary measurement device M, then the trade-off (42) holds. The
deterministic back action, on the other hand, is possible to make smaller by
using more elaborate nonlinear lossless implementations.
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5 Conclusions

In this paper, we constructed lossless approximations of both dissipative
and active systems. We obtained an if-and-only-if characterization of linear
dissipative systems (linear lossless systems are dense in the linear dissipative
systems) and gave explicit approximation error bounds that depend on the
time horizon, the order, and the available energy of the approximations. We
showed that the fluctuation-dissipation theorem, that quantifies macroscopic
thermal noise, can be explained by uncertainty in the initial state of a linear
lossless approximation of very high order. We also saw that using these
techniques, it was relatively easy to quantify limitations on the back action
of measurement devices. This gave rise to a trade-off between process and
measurement noise.

6 Appendices

6.1 Proof of Theorem 2

We first show the ’only if’ direction. Assume the opposite: There is a
lossless approximation GN that satisfy (12) for arbitrarily small ǫ > 0
even though G is not dissipative. From Proposition 1 it is seen that we
can without loss of generality assume GN has a minimal realization and
x0 = 0. If G is not dissipative, we can find an input u(t) over the in-
terval [0, τ ] such that

∫ τ
0 y(t)Tu(t)dt = −K1 < 0, i.e., we extract energy

from G even though its initial state is zero. Call ‖u‖L1[0,τ ] = K2. We have
∫ τ
0 (yN (t) − y(t))Tu(t)dt ≤ ǫK2, by the assumption that a lossless approxi-
mation GN exists and using the Cauchy-Schwarz inequality. But the lossless
approximation satisfies

∫ τ
0 yN (t)Tu(t)dt = 1

2x(τ)
Tx(τ), since x0 = 0. Hence,

−
∫ τ
0 y(t)Tu(t)dt = K1 ≤ ǫK2 − 1

2xN (τ)TxN (τ) ≤ ǫK2. But since ǫ can be
made arbitrarily small, this leads to a contradiction.

To prove the ’if’ direction we explicitly construct a GN that satisfies (12),
when G is dissipative. It turns out that we can fix the model parameters
D = 0 in GN . Furthermore, we must choose x0 = 0 since otherwise the zero
trajectory y = 0 cannot be tracked (see above). We thus need to construct
a lossless system with impulse response gN (t) such that ‖g− gN‖L2[0,τ0] ≤ ǫ,
where we have denoted the time interval given in the theorem statement by
[0, τ0]. Note that we can increase this time interval without loss of generality,
since if we prove ‖g − gN‖L2[0,τ ] ≤ ǫ then ‖g − gN‖L2[0,τ0] ≤ ǫ, if τ ≥ τ0.
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Let us define the constants

C1 ≥ ‖g(t)‖2, t ≥ 0; C2 =

∫ ∞

0
‖ġ(t)‖1dt;

C3 =

∫ ∞

0
‖g(t)‖1dt; C =

4C1 + 2C2

π
+

4C3

τ0
,

which are all finite by the assumptions of the theorem. It will become clear
later why the constants are defined this way.

Next let us fix the approximation time interval [0, τ ] such that

δ(τ) :=

∫ ∞

τ
‖g(t)‖1dt ≤

ǫ2

2C
√
p
, (43)

where τ ≥ τ0. Such a τ always exists since δ(τ) is a continuously decreasing
function that converges to zero. The lossless approximation is achieved by
truncating a Fourier series keeping N terms. Let us choose the integer N
such that

N ≤ τC2

ǫ2
≤ N + 1, (44)

where τ is fixed in (43). We proceed by constructing an appropriate Fourier
series.

6.1.1 Fourier expansion

The extended function g̃(t) ∈ L2(−∞,∞) of g(t) is given by

g̃(t) =

{

g(t), t ≥ 0,

g(−t)T , t < 0.

Let us make a Fourier expansion of g̃(t) on the interval [−τ, τ ],

g̃τ (t) :=
1

2
A0 +

∞
∑

k=1

Ak cos
kπt

τ
+Bk sin

kπt

τ
,

with convergence in L2[−τ, τ ]. For the restriction to [0, τ ] it holds that
‖g− g̃τ‖L2[0,τ ] = 0. The expressions for the (matrix) Fourier coefficients are

Ak =
1

τ

∫ τ

0
(g(t) + g(t)T ) cos

kπt

τ
dt

Bk =
1

τ

∫ τ

0
(g(t) − g(t)T ) sin

kπt

τ
dt.

(45)
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Note that Ak, Bk ∈ R
p×p, and Ak are symmetric (Ak = AT

k ) and Bk are
anti-symmetric (Bk = −BT

k ). Parseval’s formula becomes

‖g̃τ‖2L2[0,τ ]
=

∫ τ

0
Tr g(t)g(t)T dt

=
τ

4
Tr AT

0 A0 +
τ

2

∞
∑

k=1

Tr AT
kAk +Tr BT

k Bk. (46)

We also need to bound ‖Ak − jBk‖22 = Tr AT
kAk +Tr BT

k Bk. It holds

Ak − jBk =
1

τ

∫ τ

−τ
g̃(t)e−jπkt/τdt

=
(−1)k

jkπ
(g(τ)T − g(τ)) +

1

jkπ
(g(0) − g(0)T )

+
1

jkπ

∫ τ

0
e−jπkt/τ ġ(t)− ejπkt/τ ġ(t)T dt,

using integration by parts. Then

‖Ak − jBk‖2

≤ 4C1

kπ
+

1

kπ

∣

∣

∣

∣

∣

∣

∣

∣

∫ τ

0
e−jπkt/τ ġ(t)− ejπkt/τ ġ(t)Tdt

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ 4C1

kπ
+

2

kπ

∫ τ

0
‖ġ(t)‖1dt ≤

1

k

4C1 + 2C2

π
.

Furthermore,

‖Ak − jBk‖2 =
∣

∣

∣

∣

∣

∣

∣

∣

1

τ

∫ τ

−τ
g̃(t)e−jπkt/τdt

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ 2C3

τ0
,

since τ ≥ τ0. If the former bound is multiplied by k and the latter is
multiplied by two and they are added together, we obtain

‖Ak − jBk‖2 ≤ C

2 + k
, k ≥ 0, (47)

where C was defined above.

6.1.2 Lossless approximation GN

Let us now truncate the series g̃τ (t) and keep the terms with Fourier coef-
ficients A0, . . . , AN−1 and B1, . . . , BN−1. The truncated impulse response

37



can be realized exactly by a finite-dimensional lossless system iff A0 ≥ 0 and
Ak − jBk ≥ 0, k = 1, . . . , N − 1, see [28, Theorem 5]. But these inequalities
are not necessarily true. We will thus perturb the coefficients to ensure the
system becomes lossless and yet ensure that the L2-approximation error is
less than ǫ.

We quantify a number ξ ≥ 0 that ensures that Ak − jBk + ξIp ≥ 0 for
all k. Note that by the assumption of G being dissipative, it holds that

ĝ(jω) + ĝ(−jω)T =

∫ ∞

−∞
g̃(t)e−jωtdt ≥ 0.

Remember that
∫ τ
−τ g̃(t)e

−jπkt/τdt = τAk − jτBk, and therefore

Ak − jBk +∆k ≥ 0

where ∆k := 1
τ

∫∞
τ g(t)e−jπkt/τ + g(t)T ejπkt/τdt. The size of ∆k can be

bounded and we have

‖∆k‖2 =
√

Tr ∆∗
k∆k ≤ 2

τ

∫ ∞

τ
‖g(t)‖1dt ≤

ǫ2

τC
√
p
,

using (43). Thus we can choose

ξ =
ǫ2

τC
√
p
,

and Ak − jBk + ξIp ≥ 0 for all k, since ρ(∆k) ≤ ‖∆k‖2.
Next we verify that a system GN with impulse response

gN (t) :=
1

2
(A0 + ξIp)

+

N−1
∑

k=1

(Ak + ξIp) cos
kπt

τ
+Bk sin

kπt

τ
, (48)

where τ , N , ξ are fixed above satisfies the statement of the theorem. By the
construction of ξ, GN is lossless. It remains to show that the approximation
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error ‖g − gN‖L2[0,τ ] is less than ǫ. Using Parseval’s formula (46), it holds

‖g − gN‖2L2[0,τ ]
= ‖g̃τ − gN‖2L2[0,τ ]

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

2
ξI +

N−1
∑

k=1

ξI cos
kπt

τ
+

∞
∑

k=N

Ak cos
kπt

τ
+Bk sin

kπt

τ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤ τ

2
Nξ2p+

τ

2

∞
∑

k=N

‖Ak − jBk‖22 ≤
τ

2
Nξ2p+

τ

2

∞
∑

k=N

C2

(2 + k)2

≤ τ

2

τC2

ǫ2
ǫ4

τ2C2p
p+

τ

2

C2

N + 1
≤ ǫ2

2
+

τ

2

C2ǫ2

τC2
= ǫ2,

where the bounds (44) and (47) are used. The result has been proved.

6.2 Proof of Theorem 3

We first show the ’if’ direction. Then there exists a lossless and time-
reversible (with respect to Σe, see Definition 2) approximation GN of G.
Theorem 2 shows that G is dissipative. Theorem 8 in [28] shows that GN

necessarily is reciprocal with respect to Σe. Since GN is an arbitrarily good
approximation it follows that G also is reciprocal, which concludes the ’if’
direction of the proof.

Next we show the ’only if’ direction. Then G is dissipative and recip-
rocal with respect to Σe. Theorem 2 shows that there exists an arbitrarily
good lossless approximation GN , and we will use the approximation (48).
That G is reciprocal with respect to Σe means that Σeg(t) = g(t)TΣe, see
Definition 1. Using this and the definition of Ak and Bk in (45), it is seen
that

Σe(Ak + ξIp) = (Ak + ξIp)
TΣe, ΣeBk = BT

k Σe.

Thus the chosen GN is also reciprocal, ΣegN (t) = gN (t)TΣe, and Theorem 8
in [28] shows GN is time reversible with respect to Σe. This concludes the
proof.
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