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Intermediate band photovoltaics hold the promise of being highly efficient and cost effective
photovoltaic cells. Intermediate states in the band gap, however, are known to facilitate nonradiative
recombination. Much effort has been dedicated to producing metallic intermediate bands in hopes of
producing lifetime recovery – an increase in carrier lifetime as doping levels increase. We show that
lifetime recovery induced by the insulator-to-metal transition will not occur, because the metallic
extended states will be localised by phonons during the recombination process. Only trivial forms
of lifetime recovery, e.g., from an overall shift in intermediate levels, are possible. Future work in
intermediate band photovoltaics must focus on optimizing subgap optical absorption and minimizing
recombination, but not via lifetime recovery.

The development of novel highly-efficient photovoltaic
(PV) devices has the potential to significantly address
the global energy and carbon problems. The vast ma-
jority of commercial solar cells are made from single-
junction semiconductors, an architecture which Shockley
and Queisser showed has an absolute efficiency limit of
41% (with concentrated sunlight) [1]. Among the pro-
posals to break this limit is the intermediate band (IB)
photovoltaic, which has an efficiency limit of 63%, con-
siderably higher than the single-junction limit [2, 3].

A standard single-junction semiconductor PV must op-
timise its band gap to maximise the product of current
and voltage; these compete because it can absorb only
photons with energy greater than the band gap Eg, and
the supplied voltage can be no larger than Eg/e, where
−e is the electron charge. An IBPV device, illustrated in
Fig. 1, has an extra set of levels inside the semiconductor
band gap; two subgap photons can be absorbed by the
IB layer, producing a single electron-hole pair. Electri-
cal contact is made only to the standard n- and p-type
layers, so the IB layer produces extra current while al-
lowing the full band gap to set the limit on the voltage,
giving the considerably elevated efficiency bound of 63%
[2]. The IBPV effect has been demonstrated in a num-
ber of systems [4–6], though it has not yet produced high
efficiency cells.

One method for making a material with an IB is
to dope a semiconductor with large concentrations of
dopants that form donor (or acceptor) levels deep in-
side the band gap. There is an obvious problem with
this recipe: levels deep in the band gap are well known
to cause nonradiative recombination [7, 8]. It was pro-
posed that a sufficiently high concentration of dopants
could cause an insulator to metal transition (IMT) in
the IB, which would suppress the nonradiative recombi-
nation rate and cause lifetime recovery in which adding
additional dopants decreases the nonradiative recombi-
nation rate [9]. A great deal of work has gone into look-
ing for such an IMT in doped semiconductors [10–15],
including a report of lifetime recovery [16].

Abs
or

be
d 

in
 h

os
t

Abs
or

be
d 

in
 IB

IB np

Eg

CB

VB
V

μe μi μh

FIG. 1. An intermediate band (IB) device has an IB layer
between standard p- and n-type semiconductor layers. The
IB layer absorbs subgap photons, which pass through the p-
type (or n-type) host layer, increasing current generation. At
bottom, band levels under illumination are shown, indicating
the voltage V and the three separate quasi-Fermi levels µe,
µh, and µi for the CB electrons, VB holes, and IB states,
respectively. If trapping rates are low, voltage production is
still determined by the n- and p-type band gaps.

The theoretical claim of lifetime recovery arose from
a study of multiphonon recombination [17–19]. A sin-
gle defect-mediated recombination event consists of two
trapping events: a conduction band (CB) electron is
trapped by an unoccupied defect state and a valence band
(VB) hole is trapped by an occupied defect state. The
statistical mechanics of the occupancy of the trap lev-
els – showing that midgap states are best at fostering
nonradiative recombination – was worked out by Shock-
ley and Read [7] and Hall [8] and is called SRH recom-
bination. The theory of multiphonon trapping is well
developed for isolated impurities [17, 19, 20]. When ap-
plied to polar semiconductors, that theory implies that
the trapping rates decrease as the size of the defect wave-

ar
X

iv
:1

11
0.

56
39

v1
  [

co
nd

-m
at

.m
tr

l-
sc

i]
  2

5 
O

ct
 2

01
1



2

function increases [20, 21]; this result was taken to imply
that midgap metallic, extended states would not induce
recombination [9].

Here, we extend the multiphonon recombination the-
ory to the case of many impurities. We show that delo-
calised states actually increase trapping rates compared
to an equivalent localised system. We show that as long
as the shift of IB energies due to interactions in the
IB is less than the dopant ionization energy ∆E′, the
trapping rates cannot be significantly reduced from the
independent-dopant limit, regardless of whether the IB
eigenstates are extended or localised. A trivial form of
lifetime recovery in which the interaction between defects
moves the IB away from mid-gap is possible, but this is
not a useful route to IBPV, as the optical absorption
frequencies will change accordingly. A similarly trivial
form of lifetime recovery could also occur if the dopant
chemical state changes with doping, e.g., if precipitates
form.

Despite this negative prediction about true lifetime re-
covery, IBPV still has potential to produce highly effi-
cient solar cells if materials can be found which have suffi-
ciently strong absorptivity for subgap photons, as we dis-
cuss at the end of this article. Efforts should be directed
toward finding semiconductor:dopant systems which have
intrinsically long trapping times and in which the subgap
absorptivities are high, not toward finding insulator-to-
metal transitions in doped semiconductors.

TRAPPING RATE

The argument for lifetime recovery focuses on multi-
phonon recombination, and we will consider that mech-
anism here. For neutral defects and deep defect levels,
the multiphonon trapping mechanism is believed to be
most important; in other cases cascade capture is impor-
tant [22]. The physics inside an IB can be complicated,
with both disorder and interactions. The band edges of
the IB, however, should be relatively easy to determine
optically, so we consider the energies ε1 and ε2 of the
highest and lowest energy states in the IB to be known.
In the standard multiphonon trapping process, we con-
sider a conduction band (CB) electron (equivalently a
valence band hole, but we will consider an electron for
specificity) captured by an unoccupied defect state (see
Fig. 2).

We work in the Born-Oppenheimer approximation,
in which the lattice is considered static for the elec-
tronic system, so we neglect the phonon momentum;
each phonon coordinate Qi has an associated angular
frequency ωi, and there are N impurities. We consider a
situation in which there is initially one electron in the CB
in a state |φc〉, and all IB states are empty. This situation
permits a single-electron picture with N localised orthog-
onalised impurity wavefunctions |ψα〉 for α = 1 . . . N .
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FIG. 2. Energy levels as a function of lattice distortion Q
with the electron in the CB (upper) and with the electron in
the impurity state (lower). The equilibrium phonon coordi-
nate is shifted when the localised impurity state is occupied,
giving the relaxation energy λ and causing the parabolas to
cross. The activation energy Ea shows the energy required
to take the CB electron to the degeneracy point, from which
trapping occurs most rapidly.

We discuss effects of partial filling of the IB at the end
of this paper. In this approximation, we ignore scatter-
ing by CB states into each other, which is valid in the
usual case that the CB bandwidth is large compared to
the electron-phonon coupling. Assuming linear coupling
between the electron and phonon degrees of freedom, the
Hamiltonian can be written as H = Hel + Eph +Hel−ph
with

Hel = EC |φc〉 〈φc|+ ε′0
∑
α

|ψα〉 〈ψα|+
∑
αβ

hαβ |ψα〉 〈ψβ |

Eph =
∑
i

1

2
ω2
iQ

2
i (1)

Hel−ph =
∑
i

Qi
[∑
αβ

Aiαβ |ψα〉 〈ψβ |

+
∑
α

Biα(|ψα〉 〈φc|+ |φc〉 〈ψα|)
]
,

where EC is the energy of the conduction band edge, ε′0
is the energy of the empty isolated-impurity state, the
IB Hamiltonian h is zero in the dilute-impurity limit,
Ai is responsible for the shift in the equilibrium phonon
coordinate when an impurity state is occupied, and Bi

causes the transition between the conduction and impu-
rity states. In what follows, we will neglect Bi in describ-
ing state energies, as it is important only when IB and
CB states are nearly degenerate. The phonon mass has
been incorporated into the phonon coordinates (lattice
displacements) Qi. The phonon modes include all stan-
dard crystalline extended modes in addition to any local
vibrational modes around the impurity.

We begin by considering the standard case of only one
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impurity, N = 1, so h = 0. If the electron is in the
CB level, then the energy of the system is EC( ~Q) =
EC +

∑
i ω

2
iQ

2
i /2. If the electron is in the impurity level,

then the energy is

EI( ~Q) = ε′0 +
∑
i

1

2
ω2
i (Qi +Ai/ω2

i )2 −Ai2/2ω2
i .

We see that the equilibrium phonon position is δQi =
−Ai/ω2

i . We define the relaxation energy λ ≡∑
Ai

2
/2ω2

i . When the impurity state is filled, its re-
laxed energy is ε0 = ε′0 − λ, as shown in Fig. 2. We also
define ∆E′ = EC − ε′0 and ∆E = EC − ε0, where primes
indicate empty IB levels. It is customary to define the
dimensionless Huang-Rhys factor for each phonon mode
as

Si ≡ ωiδQ2
i /2~ = Ai

2
/2~ω3

i , (2)

where ~ is Planck’s constant. The total Huang-Rhys fac-
tor is S =

∑
i Si. Then λ = ~

∑
i Siωi. In the case

of polar electron-phonon coupling, S ∝ 1/a∗B where a∗B
is the effective Bohr radius of the hydrogenlike impurity
wavefunction [21, 23, 24]. As the defect state becomes
more delocalised, S (and thus λ) decreases. In nonpolar
semiconductors, the relationship between S and wave-
function size is, to our knowledge, unexplored. Since the
argument for lifetime recovery relies on this relationship,
we will assume that it applies.

The energies EC , EI are equal when the phonon coor-
dinate is such that ~Q· ~A = ∆E′. The activation energy to
reach this configuration is Ea =

∑
i ω

2
iQ

2
i /2. The phonon

coordinate ~Q satisfying EC( ~Q) = EI( ~Q) and minimizing

Ea is denoted ~Qc. A simple application of Lagrange mul-
tipliers shows that

Qc,i =
Ai

ω2
i

∆E′

2λ
, (3)

which gives

Ea =
1

2

∑
i

ω2
iQ

2
c,i =

(∆E′)2

4λ
=

(∆E − λ)2

4λ
. (4)

This is the same activation energy as in Marcus theory, in
whose terminology the IB trapping problem is generally
in the inverted regime [25].

In the high-temperature activated regime, where
kBT � ~ω/2, the multiphonon trapping process occurs

primarily through ~Q = ~Qc [17, 20], giving the multi-
phonon trapping rate

γ =
∣∣∣V ( ~Qc)

∣∣∣2( π

kBTλ

)1/2

exp

(
− Ea
kBT

)
, (5)

where T is the temperature, kB is Boltzmann’s constant,

and the off-diagonal matrix element V ( ~Qc) = ~Qc · ~B [20].1

The case of the low temperature tunneling regime will be
discussed at the end of this article.

Intermediate Band

We see from Eqs. 4, 5 that γ increases with λ until
λ is near ∆E. Thus, one can potentially suppress γ by
decreasing λ. For large impurity concentration Nt, the
impurity states can undergo an insulator-to-metal tran-
sition (IMT), with their eigenstates transitioning from
localised to extended. Since λ decreases with impurity
wavefunction size, Luque et al. suggested that the IMT
would suppress the trapping rates and thus the overall re-
combination rate U [9]. We show that the extrapolation
from the isolated-impurity problem to the many-impurity
problem is more complicated. Even when the IB has ex-
tended eigenstates, the lattice distortions associated with
multiphonon recombination localise electronic states suf-
ficiently to cause multiphonon recombination. The delo-
calised states in fact can only increase the trapping rate.
A related extension to many intermediate states was
analysed in Ref. 26. Let ∆ = max{|ε1 − ε′0| , |ε2 − ε′0|} be
the largest energy shift due to the many-impurity physics.
Then ∆/∆E′ is our perturbation parameter, assumed to
be small.

We start with the intuitive argument, illustrated in
Fig. 3. The multiphonon trapping process occurs with
the lattice in a configuration ~Qc where a CB and IB state
are degenerate. In a system where ∆� ∆E′, the energy
to raise an IB state above the conduction band minimum
must come predominantly from the electron-phonon cou-
pling. In such a lattice configuration, the eigenstates of
the electron-phonon coupling (i.e., the localised states)
are the approximate system eigenstates, with h acting
only as a perturbation, regardless of whether the eigen-
states of h are localised or extended. Only when ∆ is
of similar order to ∆E is it possible for h to produce
extended states that are still extended when ~Q = ~Qc.
In order to realise the Luque et al. proposal for lifetime
recovery [9], the IB must approach this large-bandwidth
limit, having extended states and sufficient bandwidth
to resist their localization. However, when ∆ approaches
∆E′, the IB crosses with the CB, and the material is no
longer useful for IBPV.

Both SRH statistics and the dependence of γ (Eq. 5)
on ionization energy ∆E′ produce the result that recom-
bination is fastest through states at the centre of the
band. Thus, a perturbation that moves IB energy levels

1 For applications such as SRH statistics, the impurity trapping
cross section is σc = Ωγ/vth, where Ω is the system size and vth
is the thermal electron velocity [20]. Note that B ∝ 1/

√
Ω, so σc

is independent of system size.
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FIG. 3. Cartoon of a crystal of gray spherical atoms with
blue diamond impurities. a) With the intermediate band un-
occupied and the atoms in their ground state positions, an
eigenstate in the IB (light green) may be extended across the
impurity sites. Its energy is indicated by the green line in the
density of states (DOS), at right, which shows the conduction
band and the intermediate band. b) When a thermal fluctu-
ation moves the atoms surrounding an impurity away from
their equilibrium positions, an eigenstate becomes localised
at that impurity; its energy is shown by the green line in the
DOS. This occurs because for sufficiently large deviations of
the host atoms, the electron-phonon coupling energy is larger
than the IB bandwidth, so the eigenstates of the electron-
phonon coupling become approximate eigenstates of the IB.
When the energy of this localised state equals that of the CB,
rapid trapping occurs.

uniformly away from the centre of the band will decrease
the recombination rate. This trivial form of lifetime re-
covery is possible, but a suppression of recombination
due to delocalization arising from an insulator-to-metal
transition is not.

We develop this argument formally using Eq. 1 in the
case with N impurity levels. The Ai are now matrices
that couple IB states. In the basis of localised IB states,
the Aiαβ should be local matrices, either diagonal or with

small off-diagonal components, as the phonons mainly
act to raise and lower the energy of occupying a given
localised state; off-diagonal terms in this basis encourage
delocalization, which is not expected for phonons. The
calculation below is simplest if we assume the Ai are all
diagonal in the localised basis (or otherwise that they
all commute), but we will keep their off-diagonal compo-
nents and formally treat them as small.

The trapping rate is determined by the minimal acti-
vation energy Ea =

∑
i ω

2
iQ

2
i /2 such that an IB state is

degenerate with the CB, where we neglect Bi. That is,
we want to find a vector ~Q such that the highest eigen-
value of the Hamiltonian

Htot( ~Q) = h+ ~Q · ~A (6)

is equal to ∆E′, and Ea is minimal. Let the highest
eigenvalue of Htot( ~Q) be E0( ~Q).

Variational argument

We now present a variational argument that off-
diagonal terms of h (i.e., those that can produce metallic,
extended states) always increase the trapping rate. We
consider an IB in which the bandwidth is less than ∆E′,
so the IB does not overlap with the CB when ~Q = 0.
With h = 0, let ~Q0 be the phonon coordinate such that
Eh=0

0 ( ~Q0) = ∆E′ and the activation energy, Eh=0
a , is

minimal.2 Let |ψ0〉 be the associated eigenstate; |ψ0〉 is
localised since h = 0 and trapping is fastest through lo-
calised states. Assume that 〈ψ0|h |ψ0〉 = 0, to eliminate
the trivial change of trapping rates due to shifts in the
localised states’ energies. By the variational principle,
E0( ~Q0) ≥ ∆E′, since 〈ψ0|Htot |ψ0〉 = ∆E′. We assume

that E0( ~Q) is a smooth function of ~Q. Then since by

assumption E0( ~Q = 0) < ∆E′, there is a κ ≤ 1 such that

E0(κ~Q0) = ∆E′. The activation energy for this state is
Ea = κ2Eh=0

a . Thus, the trapping rate is greater than or
equal to the trapping rate without h at all.

Perturbative calculation

This variational result is non-constructive. To under-
stand its physical origin, we perform a perturbative cal-
culation in h to find the activation energy as delocalizing
effects are included. This will also allow us to make a
prediction for trapping rate changes, including the triv-
ial effect.

2 If there are N identical defects in identical environments, then
there are N such vectors, one for each localised defect state. Here
we consider just one of them.
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First consider h = 0. As in the variational argument,
there is a vector ~Q0 such that the largest eigenvalue of
H0 = ~Q0 · ~A is ∆E′ and

∑
i ω

2
iQ

2
0,i is minimal. Choose

the basis {ψα} for α = 0 . . . N − 1 to be the eigenstates
of H0, with eigenvalues {Eα} with E0 = ∆E′. Using

the constraint ∆E′ = 〈ψ0|H0 |ψ0〉, we find ~Q0 using a
Lagrange multiplier, minimizing

f =
1

2

∑
i

ω2
iQ

2
0,i + l(∆E′ − ~Q0 · ~A00), (7)

where we use the notation Aαβ ≡ 〈ψα|A |ψβ〉, giving

Q0,i =
∆E′

2λ0

Ai00
ω2
i

, (8)

and we define the isolated impurity relaxation energy

λ0 =
∑
i

(Ai00)2

2ω2
i

. (9)

Together, these give the activation energy

E0
a =

1

2

∑
i

ω2
iQ

2
0,i =

(∆E′)2

4λ0
, (10)

just as in Eq. 4.

Including the IB Hamiltonian h

When we include h, we must also consider a shift in
the phonon vector,

~Q = ~Q0 + ~∆Q. (11)

We consider the perturbation Hamiltonian

H1 = h+ ~∆Q · ~A, (12)

and we seek the self-consistent solution ~∆Q such that the
highest eigenvalue of H0+H1 equals ∆E′ and

∑
i ω

2
iQ

2
i /2

is minimal.
We consider second-order perturbation theory. Near

the configuration ~Q0, the electron-phonon coupling most
strongly perturbs a single localised state, so we can as-
sume that no Eα>0 is close to degenerate with E0. When
H1 is added, the highest eigenvalue is

Ẽ0 = E0 + 〈ψ0|H1 |ψ0〉+
∑
α>0

|〈ψα|H1 |ψ0〉|2

E0 − Eα
+ third order.

(13)

We impose the constraint that Ẽ0 = E0 = ∆E′ by mini-
mizing the function

f =
∑
i

1

2
ω2
i (Q0,i + ∆Qi)

2 + l(Ẽ0 − E0), (14)

∂f

∂∆Qi
= 0 =ω2

i (Q0,i + ∆Qi) (15)

+ l

[
Ai00 + 2

∑
α>0

hα0 + ~∆Q · ~Aα0
E0 − Eα

Aiα0

]
,

where we have assumed that all the wavefunctions and
operators are real.

If the matrices Ai all commute, then Aiα0 ∝ δα0. We
instead assume that the Aiα0 are small for α > 0 and

consider h and
∑
α>0

~Qc · ~Aα0 to be of the same order.

Then the term ~∆Q · ~Aα0Aiα0 in Eq. 15 is third order and
can be neglected. Note that since the |ψα〉 are eigenstates

of ~Q0 · ~A,

~Q0 · ~Aα0 = δα0∆E′. (16)

Using this result and Eq. 8,∑
i

Aiα0
Ai00
ω2
i

=
∑
i

Aiα0Q0,i
2λ0
∆E′

= 2λ0δα0. (17)

Then we find

l =
−∆E′ + h00 +

∑
α>0

|hα0|2
E0−Eα

2λ0
and (18)

∆Qi = −

(
h00 +

∑
α>0

|hα0|2

E0 − Eα

)
Q0,i

∆E′
− ∆E′

λ0ω2
i

∑
α>0

hα0A
i
α0

E0 − Eα
.

Note that the first term of ~∆Q is parallel to ~Q0. The last
term of ~∆Q shifts the direction of the phonon coordinates
and is second order (or zero if the Ai commute).

We use this result and Eq. 8 to find the new activation
energy

Ea =E0
a

[(
1− h00

∆E′

)2

− 2

∆E′

∑
α>0

|hα0|2

E0 − Eα

]
, (19)

where we have kept terms to second order and again have
used Eq. 16. Note that the shift in the direction of the
lattice distortion has no effect on Ea, at least to second
order.

The second order correction to Ea (the second term in
Eq. 19) is always negative, since E0 > Eα for all α > 0,
thus increasing γ. These are the terms resulting from the
off-diagonal components of h, which the variational ar-
gument above showed always increase the trapping rate.
The first order term represents a trivial change in the
trapping rate due to a shift in the energy of the localised
states.

We can use this result to find an upper bound on Ea
(and associated lower bound on γ), which is valid through
second order. The first order correction simply takes the
activation energy for the localised states, Eq. 10, and
shifts the energy gap ∆E′ by h00. We consider h00 to be
unknown, though it could be easily determined within a



6

model for the IB. For example, a standard tight-binding
model for the IB would have h00 = 0. Since we consider
the bounds of h to be experimentally determinable, we
know h00 ≥ ε2. Then we can bound, to second order,

Ea ≤
(EC − ε2)2

4λ0
. (20)

If there are N defects (equivalently, N distinct IB

states), then each one has an associated ~Qc, whose in-
fluence on trapping we can estimate in this same way.
Then Eq. 20 gives a lower bound on the overall trap-
ping rate for CB electrons that scales with N , just as for
independent defects.

We now consider the case of an IB that is not ini-
tially empty. If the IB bandwidth is less than λ0, then
small-polaron formation [27] will localise the filled IB
states, splitting the IB into a lower-energy, filled band
and a higher-energy empty IB, which should behave as
described in this article. If the IB bandwidth is signifi-
cantly greater than λ0 and if the IB begins partially oc-
cupied, the effective gap to the CB, ∆E′, of Eq. 10 will
be increased if the localised state |ψ0〉 begins partially
occupied. An energy cost of up to λ0 must be paid to
empty the state, which will decrease the trapping rate.

While we have discussed dopant-produced IB’s, a sim-
ilar result holds for highly-mismatched alloys (HMA),
in which the IB is formed by the repulsion of the CB
from resonances above the CB minimum [4, 28, 29]. In
this case, recombination can still proceed through the
IB, but there is no isolated impurity state for compari-
son. Multiphonon trapping will still occur through the
localised states in the IB, since they are the eigenstates
of the electron-phonon coupling. For any IB, the reorga-
nization energy λ0 is determined by the smallest wave-
function that can be made by linear combinations of the
states of the IB.3 In addition to this λ0, the HMA IB
can still be characterised by a maximum and minimum
energy ε1 and ε2 and bandwidth J = ε1− ε2. As long as
J � EC−ε1, the localised wavefunctions will become ap-
proximate eigenstates of the IB as the lattice is distorted,
and multiphonon trapping through the localised states
will occur, as described above for the dopant-produced
IB. Since the IB in the HMA case forms from the un-
doped CB, λ0 may be considerably smaller than in the
deep-level-dopant case, giving a small multiphonon re-
combination rate; lifetime recovery is still not expected.

The high-temperature limit used in Eq. 5 is only appli-
cable for kBT � ~ 〈ω〉, where 〈ω〉 is the typical phonon
frequency. At low temperatures, the phonon momentum
must be treated correctly, and tunneling is required to

3 In the case of dopant-produced IB’s, the isolated-dopant wave-
function is presumably the smallest wavefunction in the span of
the IB states.

realise the multiphonon trapping process. In the low-
temperature tunneling regime

γ ∝ exp

{
− ∆E

~ωM

[
log

(
∆E

λ

)
− 1

]}
(21)

where ωM is the maximum phonon frequency [30]. The
effect of h is effectively to change ∆E without changing λ
(see Eq. 2). With a deep IB, ∆E � λ so ∆E ≈

√
4λEa.

In this case, γ still decreases exponentially with
√
Ea, and

the above analysis of the qualitative effect of delocalised
states is still valid.

VALENCE BAND TRAPPING

A similar estimate can be made for the IB to VB trap-
ping process: trapping occurs through the phonon co-
ordinate ~Qv such that the lowest energy filled IB state
is degenerate with a VB state. The relevant Hamilto-
nian is the same as in Eq. 1, with the addition of a term
EV |φv〉 〈φv|, with |φv〉 a VB state, where EV = EC−Eg.
We define the energy gap between the filled impurity
state and the VB to be ∆Ev = ε0 − EV . Then the
activation energy to first order is

Ea,v =
(∆Ev − λ0 − h00)2

4λ0
. (22)

Note that the unperturbed phonon coordinate, as in Eq.
8, is

~Q0,v = −∆E′v
2λ0

~A00

ω2
i

= −∆E′v
∆E′

~Q0, (23)

where ∆E′v = ∆Ev + λ0. We see that ~Q0,v is a dis-

placement of the opposite sign from ~Q0 but in the same
direction.

Note that if h00 is close to ε2, as in Eq. 20, the CB trap-
ping rate is slowed, but the VB trapping rate is increased,
and vice versa if h00 is close to ε1. The overall recombi-
nation rate will be minimised by slowing whichever of the
CB and VB trapping rates is rate-limiting. For a func-
tioning IB photovoltaic, both trapping rates must inde-
pendently be small, so the material can sustain separate
quasi-Fermi levels for the CB, IB, and VB populations
[2], as in Fig. 1.

PROSPECTS FOR IBPV

Though nontrivial lifetime recovery in an IB system
appears impossible, there is still good reason to think
that IB devices can improve PV efficiencies. Consider an
IBPV device as illustrated in Fig. 1. The high-energy
photons will be absorbed by the p-type region before
reaching the IB layer. Let α be the mean absorptivity of
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the IB region over the subgap portion of the spectrum.
The IB layer width w must be sufficiently wide to absorb
a large fraction of subgap photons, so it is desirable to
choose w = c/α for c ≈ 2 − 3. For the IBPV device
to outperform the single-junction device with no IB, the
IB region must add more current by absorption of sub-
gap photons than it subtracts by enhanced nonradiative
recombination, in addition to not significantly changing
the voltage.

Let t be the transit time for a CB electron to move
from the p-type to n-type side of the device and let τ
be the nonradiative lifetime of CB electrons in the IB
region. The IBPV device will have higher efficiency than
the single-junction device as long as ν ≡ τ/t � 1. If we
assume that the built-in voltage Vbi is dropped mostly
across the IB region, then

t =
w2

µVbi
(24)

where µ is the electron mobility in the IB region. Thus,
for an IB region just thick enough to absorb the subgap
light [31],

ν =
1

c2
Vbiµα

2τ. (25)

We roughly expect τ ∝ 1/Nt and α ∝ Nt in the IB re-

gion. The mobility also declines as N−βt , but generally
with a small exponent β [32, 33]. Thus, we have reason
to believe that high dopant concentrations and strong
subgap absorptivities [34–37] can produce useful IBPV
devices. Full analysis balancing recombination and cur-
rent generation as in Ref. 38 is required.

Future research efforts should focus on producing
highly absorptive, thin layers of IB materials made of
dopants which have as-small-as-possible contributions
to nonradiative recombination, not on lifetime recovery.
Non-dopant-based IBPV proposals, including HMA’s [4]
and crystalline systems [39] may have inherently small
trapping rates, so are also promising.

We acknowledge helpful comments on the manuscript
from Mark Winkler and conversations with Daniel Recht,
graphics help from Lauren Kaye, and support from NSF
Grant Nos. DMR-0934480 and DMR-0906475 and the
Harvard University Center for the Environment.
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[16] E. Antoĺın, A. Mart́ı, J. Olea, D. Pastor, G. González-
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