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We study the two-electron eigenspectrum of a carbon-nanotube double quantum dot with spin-orbit cou-
pling. Exact calculations are combined with a simple model to provide an intuitive and accurate description of
single-particle and interaction effects. For symmetric dots and weak magnetic fields, the two-electron ground
state is antisymmetric in the spin-valley degree of freedom and is not a pure spin-singlet state. When double
occupation of one dot is favored by increasing the detuning between the dots, the Coulomb interaction causes
strong correlation effects realized by higher orbital-level mixing. Changes in the double-dot configuration
affect the relative strength of the electron-electron interactions and can lead to different ground-state transi-
tions. In particular, they can favor a ferromagnetic ground state both in spin and valley degrees of freedom. The
strong suppression of the energy gap can cause the disappearance of the Pauli blockade in transport experi-
ments and thereby can also limit the stability of spin qubits in quantum information proposals. Our analysis is
generalized to an array of coupled dots which is expected to exhibit rich many-body behavior.

DOI: 10.1103/PhysRevB.82.125437 PACS number�s�: 73.63.Fg, 73.23.�b, 73.22.�f

I. INTRODUCTION

Experiments on few-electron double quantum dots allow
the measurement and manipulation of the spin degree of
freedom of the confined electrons.1 Such control is at the
heart of semiconductor-based spintronics2,3 and quantum-
information proposals.4,5 Recently, substantial experimental
efforts have been focused on controlling electrons in carbon-
nanotube double quantum dots, and many of the capabilities
previously achieved in GaAs double dots1,6–8 are starting to
be reproduced.9–11 These include the ability to start from an
empty double dot and systematically fill it with electrons.
Since 12C has no nuclear spin, carbon-based nanostructures
are expected to reduce hyperfine-induced decoherence as
compared with GaAs.12

Furthermore, carbon-based materials exhibit richer phys-
ics than GaAs semiconducting materials because of the ad-
ditional valley degree of freedom.13–15 In principle, the spin
and valley degrees of freedom could lead to a SU�4� sym-
metry at zero magnetic field instead of the standard SU�2�
symmetry in conventional semiconductors �see, e.g., Ref. 16
and references therein�. However, it has been recently
demonstrated17 that the enhancement of the spin-orbit split-
ting in small-radius nanotubes breaks the fourfold degen-
eracy of the single-electron ground state into a twofold
degeneracy.

In this work, we study how spin-orbit coupling and
electron-electron interaction effects are manifested in the
two-electron spectrum and transport properties of a carbon-
nanotube double dot. This represents an extension of previ-
ous studies on few-electron physics in a single carbon-
nanotube dot.18–20 We find that, despite of spin-orbit
coupling and the existence of an additional valley degree of
freedom, the two-electron eigenstates can be separated in an
orbital part and a spin-valley part that are, to a very good
approximation, independent of each other. The spin-valley
part can be grouped in six antisymmetric and ten symmetric
spin-valley eigenstates which we refer to as multiplets.

The separation of spin-valley degrees of freedom signifi-
cantly simplifies the description of the systems and allows us
to draw analogies with standard GaAs double dots. Our main
results can be summarized as follows: �a� for dots at zero
magnetic field and no detuning, each dot is populated by a
single electron and tunneling is suppressed because of Cou-
lomb interactions. Thus, interdot coupling only occurs virtu-
ally via superexchange interactions that determine the
ground-state symmetry. In this regime, we find a spin-valley
antisymmetric ground state, that does not have a well-defined
spin due to the spin-orbit coupling. �b� For large detuning
between the dots, double occupation of the same dot be-
comes favorable. In this regime, Coulomb interactions can
mix higher orbitals in the two-electron ground state.18–20

This admixture significantly reduces the energy spacing be-
tween the multiplets �which, for weakly interacting electrons,
is determined by the orbital level spacing�. The interplay
between spin-orbit coupling and interaction then leads to a
ferromagnetic ground state above a small critical magnetic
field since the Zeeman terms overcome the strongly sup-
pressed splitting between effective singlet an triplet. �c� The
reduction in the energy gap between orbitally symmetric and
antisymmetric states caused by the Coulomb interaction af-
fects transport properties through the dot and can lead to the
disappearance of the so-called Pauli blockade �suppression
of current through the double dot due to the Pauli exclusion
principle� and might explain the absence of Pauli blockade
reported in Ref. 11. The absence of spin blockade might
affect the performance of quantum information proposal
which use spin qubits in double dots since gate operation in
those proposals is based on the spin-blockade mechanism.
The disappearance of Pauli blockade might be prevented by
reducing Coulomb correlations by either working with short
dots or by covering the nanotube by large dielectrics.18

This paper is organized as follows. In Sec. II, we intro-
duce the microscopic model for the double dot and analyze
the noninteracting predictions taking into account a magnetic
field parallel to the nanotube axis, spin-orbit couplings and
detuning between the dots. Then, we construct a simple two-
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electron model that captures the interaction effects. This
model is then compared with solutions of an exact many-
band Hamiltonian using localized single-particle orbitals. In
Sec. III, we discuss the energy spectrum of two interacting
electrons in a double dot in three different detuning regimes
corresponding to �i� a symmetric double dot, with one elec-
tron in each dot, �ii� strong detuning, with both electrons in
the same dot, and �iii� at the crossover between both regimes.
We then analyze the transport properties of the double dot.
Finally, we discuss how to extend our low-energy behavior
analysis to serially coupled quantum dots. In Sec. IV, we
present the conclusion. Technical details on the calculation of
Coulomb matrix elements and the derivation of the rate
equations used for transport are presented in Appendices A
and B.

II. MODEL

Single-wall carbon nanotubes are formed by a single layer
of graphite called graphene rolled up into a cylinder.
Graphene has a honeycomb lattice formed by covalently
bonded carbon atoms. Its electronic properties are deter-
mined by the pz orbital of the carbon atom. The low-energy
spectrum of graphene consists of two Dirac cones located at
the K and K�=−K points of the graphene’s Brillouin zone,
where the valence and conduction bands touch. To character-
ize the two Dirac cones, we introduce the valley index �
= �1, where �=1 corresponds to the K� point and �=−1 to
the K point. The behavior of graphene in the presence of an
external potential can be described by an effective mass ap-
proximation, or �� · p� theory.21 In this approximation, the en-
velope wave function for the A and B sites of the two-atom
unit cell in a honeycomb lattice follows an effective Dirac
equation. In a carbon nanotube, the cylindrical structure im-
poses a quantization condition that leads to either metallic or
semiconducting nanotubes, depending on the orientation of
the underlying lattice with respect to the symmetry axis of
the tube. Here, we will focus on the behavior of semicon-
ducting nanotubes.

A. Single-particle spectrum and interactions

In this section, we follow previous work12,18,22 to derive
the localized eigenstates of a semiconducting nanotube with
an additional confinement potential along the tube, which is
controlled by external gates. We describe the confinement
potential of each dot by a square well12,22 �see Fig. 1�. The
form of the confinement potential will not affect our results
qualitatively and we note that for a single dot, the results for
parabolic confinement and square well are in good
agreement.18,20 The external potential leads to a discrete set
of bound states. Taking � as the direction of the nanotube
axis and � as the angle perpendicular to the nanotube axis,
we can write the single-particle Hamiltonian as

H0 = − i�v���1
1

R
�� + �2��� + V��� , �1�

where v is the Fermi velocity, �i are the Pauli matrices op-
erating over the sublattice space, and V��� is the external

potential that describes one or two dots. The eigenstates are
determined by matching the solutions for the dot and barrier
regions, which are of the form

	�,�,k��,�� = ei��R�+k���z�,k
�

1
� . �2�

Here � ,k denote the wave vectors around and along the tube,
z�,k

� = � ���− ik� /��2+k2, and the energy is given by E�,k

= ��v��2+k2. Solving the effective Dirac equation for
V1D���, which is 0 for 0
�
L and Vg otherwise, leads to a
quantization condition for the longitudinal momentum
modes kn of the localized states, where n denotes the band
index.12

So far, the K and K� solutions are degenerate and inde-
pendent of spin, �= ↑↓, leading to a fourfold symmetry.
However, this symmetry is broken by spin-orbit coupling
corrections17,23,24 and by a constant magnetic field B along

the nanotube axis �̂. The spin-orbit coupling and the presence
of a magnetic field modify the quantization condition in the
�̂ direction,

� = �0 + �AB/�0R − s�SO/��v� , �3�

�0 = �/3R . �4�

Here, s= �1 /2 is the quantum number corresponding to the

spin operator parallel to the nanotube �Ŝ��↑ �=1 /2�↑ � and

Ŝ��↓ �=−1 /2�↓ ��; �SO�1 meV /R �nm� is the energy split-
ting due to spin-orbit coupling, �AB=BR2 is the Aharonov-
Bohm flux through the nanotube25 and �0=hc / �e�. The mag-
netic field also leads to a spin Zeeman term Hz=s��, where
�= �e�gB / �2m0c� is the Zeeman frequency in terms of the
gyromagnetic constant g, the electron mass m0, and the speed
of light c. The sign convention for the spin used here is
opposite to the one of Ref. 18. Note that in Eq. �4� we only

FIG. 1. �Color online� Schematic representations of a double
quantum dot in carbon nanotube. Top: darker �blue online� regions
of the nanotube correspond to the potential barriers. Bottom:
double-dot potential at finite detuning �. Dashed lines schemati-
cally represent the single-particle orbitals.
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consider the lowest mode in the transverse direction since
excitations involve energies of about �v /R which are much
larger than longitudinal-excitation energies or Coulomb-
interaction effects as long as R�L.

An example of the single-particle energy spectrum of a
single dot is shown in Fig. 2. Note that we measure the
energy with respect to the center of the gap so that the domi-
nant part of the single-particle energy is constant and given
by �v��220 meV /R �nm�. Generally, disorder or the con-
finement potential itself can lead to intervalley coupling.
However, for a noticeable effect, the potential must change
on the scale of the nearest-neighbor lattice spacing between
carbon atoms a0=1.4 Å. The experiment of Ref. 17 shows
only a tiny valley mixing, and we neglect intervalley scatter-
ing in this work.

The longitudinal wave vector depends indirectly on spin-
valley quantum numbers and on magnetic field and these
effects are included in the multiband calculations. However,
since �0��AB / ��0R� ,�SO / �2�v� ,kn, the single-particle en-
ergies can be significantly simplified, yielding

En,� � En
c�Vg� + E�, �5�

E� = B���orb + 2�spins� − �SO�s . �6�

Here we have introduced a single quantum number �
	�� ,s� to describe the spin valley degrees of freedom ��
=K↑ ,K↑ ,K�↓ ,K�↓�. The confinement energy En

c�Vg�
=�v��0

2+kn
2 is the single-particle spectrum of a dot with po-

tential depth Vg ignoring magnetic field, spin, and spin-orbit
dependences; �spin=�� / �2B�=��e�g / �4m0c�; and �orb
= �R�e� /hc�. Within this approximation the orbital part of
the single-particle states separate from the spin-valley part.
Figure 2 illustrates that, for the parameters studied in this
work, spin-valley splitting is basically the same for all lon-
gitudinal bands, and Eq. �5� provides a good description of
the single-particle spectrum of a single dot.

Next, we consider a biased double-dot system, schemati-
cally presented in Fig. 1. In experiment the double quantum

dot is formed by applying appropriate voltages to external
gates and we model the resulting confinement potential
V2D��� by a square well potential that is −� /2 for −a /2−L

�
−a /2, � /2 for a /2
�
a /2+L, and Vg otherwise.
The length of the dots is L and a is the width of the interdot
barrier. As discussed previously we do not expect our results
to change qualitatively, if a smoother potential is used. In the
double-dot system at finite detuning, the depths of the dots
change affecting the single-particle energies. In the numeri-
cal calculation, we determine the eigenspectrum of V2D ex-
actly. The main effect of the detuning is an energy shift
�� /2 to the single-particle eigenenergies, where “+” corre-
sponds to right dot, and “−” to the left dot. Using Eq. �5� and
neglecting interdot tunneling, the energies of the localized
left and right single-particle orbitals are approximately

En,�
R/L � En

c�Vg � �/2� + E� � En
c�Vg� � �/2 + E�. �7�

When more than one electron is confined in the single or
double dot, electron-electron interactions become important.
The electrons interact through the long-range Coulomb po-
tential,

Vc�r1,r2� =
e2

kd�r1 − r2�
, �8�

where kd denotes the dielectric constant. Coulomb interac-
tions allow for certain off-diagonal matrix elements in valley
space that are produced by intervalley scattering.26 However,
these matrix elements are small for quantum dots with a size
much larger than the interatomic distance; they are neglected
in this work.18

To obtain an accurate description of interacting few-
electron systems, we extend the single-dot treatment of Refs.
18 and 19 to the double-dot system. We construct single-
particle orbitals localized in the left and right dots from the
exact single-particle solutions of the double dot and then we
use them to expand the many-body Hamiltonian �see more
details in Appendix A�. The single-particle orbitals have a
weak dependence on the spin-valley degrees of freedom that
comes from the dependence of the wave vectors � and k on
� and s. This leads to a dependence of the interaction matrix
elements on the spin-valley degrees of freedom. However,
this dependence is very weak and, to a very good approxi-
mation, can be neglected. Thus, interactions can be consid-
ered spin-valley independent allowing the separation of the
orbital and the spin-valley contributions in the two-electron
solutions.18

B. Separating orbital from spin-valley degrees of freedom

Since interactions can be considered diagonal in spin-
valley degrees of freedom, orbital and spin-valley part of the
two-electron solutions provide independent contributions to
the energies and the wave functions.18 The total two-particle
wave function must be antisymmetric with respect to particle
exchange and the symmetry of the orbital part must always
be opposite to that of the spin-valley part. Thus, the two-
particle spectrum can be grouped according to their orbital
symmetry or parity under particle exchange in multiplets of
six states if the orbital part is symmetric or ten states if the

E1 K�

E1 K '�

E1 K�

E1 K '�

0.0 0.2 0.4 0.6 0.8 1.0

91

93

101

103

117

119

B �T�

E
�m

eV
�

FIG. 2. �Color online� Single-particle spectrum as a function of
B for L=70 nm, Vg=78 meV, and R=2.5 nm and �SO
0. Solid
curves correspond to EnK↑, dashed curves correspond to EnK↓,
dashed-dotted curves correspond to EnK�↑, and dotted curves corre-
spond to EnK�↓, where n=1,2 ,3 is the band label.
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orbital part is antisymmetric. The energy splitting between
different multiplets, called �, depends on the orbital part,
which is determined by electron-electron interactions and
longitudinal confinement, and it is generally given by a cor-
related state that is represented as a superposition of various
two-electron orbital wave functions. The energy relations
within a multiplet are exclusively determined by E� that in-
cludes the orbital and spin Zeeman terms as well as the spin-
orbit coupling 
Eq. �6��. Therefore, the spin-valley part of the
wave function always has the simple form shown in Fig. 3
and tabulated in Table I.

The magnetic field dependence of the two multiplets is
illustrated in Fig. 3. The competition between spin-orbit cou-
pling and orbital Zeeman energy leads to a ground-state
crossings in the multiplet with antisymmetric spin-valley part

at a critical magnetic field Bc=�SO /2�orb. For B
Bc, the
ground state of the antisymmetric spin-valley multiplet 
Fig.
3�a�� is in a superposition of spin singlet and triplet since
�K↓ ,K�↑�−= ��KK��+�↓↑�−+ �KK��−�↓↑�+� /�2. For B
Bc, the
lowest state of the antisymmetric spin-valley multiplet
�K↑ ,K↓�− is antiferromagnetic in spin but ferromagnetic �or
polarized� in valley space. The lowest state of the symmetric
spin-valley multiplet �K↓ ,K↓�+ is ferromagnetic in both spin
and valley space for all positive magnetic fields.

The energy difference between the different multiplets �
and the magnetic field B determines the spin-valley symme-
try of the ground state. The thick curves in Figs. 3�a� and
3�b� correspond to the possible ground states which we label
according to their spin and valley symmetry.

C. Model description

One of the objectives of this study is to be able to describe
the evolution of the spectrum as the detuning is changed
from small to large and the low-energy configurations
change from �1L ,1R�, i.e., one electron per dot, to �2L ,0R�
or �0L ,2R�, two electrons in the same dot. An accurate de-
scription of the strong interaction effects requires the inclu-
sion of several single-particle bands of the double-dot sys-
tem. For example, the behavior of the �2L ,0R� configurations
is expected to be very similar to that of the doubly occupied
single dot and in that situation the strong correlations need to
be described by many single-particle orbitals.18,19 This situ-
ation makes the description and the interpretation of the re-
sults not very intuitive. However, we can significantly sim-
plify the description by realizing that no matter how strongly
correlated the system is, the parity is a good quantum num-
ber and the states can be classified according to the state
parity. Thus, we can model the exact system with a simple
effective Hamiltonian in the charge degrees of freedom that
captures this dependence on parity and describes the ener-
getically lowest multiplets of the �1L ,1R�, �2L ,0R�, and
�0L ,2R� configurations.

The charge degrees of freedom of two electrons in a
double dot can have three configurations: �2L ,0R��,
�1L ,1R��, and �0L ,2R��, where � characterizes the con-
served orbital symmetry �i.e., + for antisymmetric spin-
valley states and − for symmetric spin-valley states�. Within
this model, interaction effects can be obtained by diagonal-
izing the effective Hamiltonians HS and HAS, where S and AS
denote symmetric and antisymmetric spin-valley state. The
complex multiband problem is then reduced to simple three
times three matrices,

HS = �V + Vex − � − tS 0

− tS VLR tS

0 tS V + Vex + �
 �9�

and

HAS = �V − Vex − � − tAS 0

− tAS VLR − tAS

0 − tAS V − Vex + �
 . �10�

These effective Hamiltonians include the on-site and nearest-
neighbor interactions V and VLR, the tunnelings in symmetric

�a�

0.0 0.5 1.0 1.5 2.0
�3

�2

�1

0

1

2

3

E
��

SO

�b�

0.0 0.5 1.0 1.5 2.0
�3

�2

�1

0

1

2

3

B�Bc

E
��

SO

FIG. 3. �Color online� Schematic magnetic-field dependence of
�a� antisymmetric and �b� symmetric multiplets.

TABLE I. Spin-valley multiplets, here ��1s1 ,�2s2��

= ���1s1 ,�2s2�� ��2s2 ,�1s1�� /�2. The states in each multiplet are
grouped in three columns according to their spin-orbit energy.

−�SO 0 �SO

AS states, ��1s1 ,�2s2�−

�K↓ ,K�↑ �− �K↓ ,K↑ �− �K↑ ,K�↓ �−

�K↓ ,K�↓ �−

�K↑ ,K�↑ �−

�K�↑ ,K�↓ �−

S states, ��1s1 ,�2s2�+

�K↓ ,K↓ � �K↓ ,K↑ �+ �K↑ ,K↑ �
�K↓ ,K�↑ �+ �K↓ ,K�↓ �+ �K↑ ,K�↓ �+

�K�↑ ,K�↑ � �K↑ ,K�↑ �+ �K�↓ ,K�↓ �
�K�↑ ,K�↓ �+
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tS and antisymmetric tAS configuration and the detuning ef-
fects �. The dependence of the interaction on the symmetry
is introduced by an effective exchange term Vex that favors
the antisymmetric spin-valley configuration. Equations �9�
and �10� describe the energy related with the orbital part of
the wave function. The total energy also contains the contri-
bution of the spin-valley part ESV=��
E1

c�Vg�+E��n�, where
E� was defined in Eq. �6� and n� denotes the occupation of
states with spin-valley �.

To gain qualitative understanding of the interaction and
tunneling terms in the effective Hamiltonian, we analyze the
limiting behaviors of the low-energy spectrum. First, we con-
sider the limit of zero detuning and large local Coulomb
interactions and we obtain that the lowest symmetric and
antisymmetric spin-valley multiplets have energies,

EAS
g � ESV + VLR −

2tAS
2

V − VLR − Vex
+ ¯ , �11�

ES
g � ESV + VLR −

2tS
2

V − VLR + Vex
+ ¯ . �12�

In the strong interaction regime, our numerical calculations
indicate that, to a good approximation tS� tAS� t12. This ap-
proximation allows to obtain a simple expression for the en-
ergy splitting between different multiplets, �=ES

g−EA
g

�4t12
2 Vex / �V−VLR�2 in the limit of zero detuning and for

Vex�V−VLR.
For a biased double-dot system, the single-particle ener-

gies acquire an energy shift of �� /2 and in the limit of large
detuning the two electrons occupy the same dot. In this limit,
energies of the lowest symmetric and antisymmetric spin-
valley multiplets are

EAS
g � ESV − � + V − Vex + ¯ , �13�

ES
g � ESV − � + V + Vex + ¯ . �14�

Thus, the energy splitting �=ES
g−EA

g �2Vex in the �2,0� con-
figuration is mainly controlled by the exchange mechanism.

This effective model allows a simple and intuitive under-
standing of the underlying physical behavior of the double-
dot system. However, to extract the parameters V, VLR, Vex,
and t12 we need to solve exactly the single- and double-dot
system. In the next Section, we analyze the behavior of the
double-dot system at different magnetic field, detuning and
interaction regimes by comparing the exact diagonalization
solutions discussed in the previous section with the model
Hamiltonian. From this comparison, we extract the param-
eters of the model.

III. RESULTS

In this section, we analyze the energy spectrum of two
interacting electrons in a double dot in three different detun-
ing regimes: �A� small detuning, with one electron in each
dot; �B� strong detuning, with both electrons in the same dot;
and �C� at the crossover between both regimes. In Sec. III D,
we study the transport properties of the double dot.

An important energy scale of the two-particle spectrum is
the energy spacing � between the lowest energy states with
an antisymmetric orbital part and the lowest state with a
symmetric orbital part at zero magnetic field B=0. In all
detuning regimes, we find ��0, in agreement with the Lieb-
Mattis theorem.27 However, Coulomb correlations can sig-
nificantly reduce �.

In our analysis, we have considered different double-dot
configurations by changing the length and depth of the dots
as well as the interdot distance and found the same scaling of
interaction effects as discussed in Ref. 18. In this section, we
present results for the parameters L=70 nm, a=20 nm, Vg
=78 meV, and R=2.5 nm. A single well with these param-
eters supports five bound states and has an energy splitting
between the lowest two of them of ��0�10.6 meV. The
dielectric constant kd is varied between �1.5�kd�3.5�
which allows us to explore the strongly interacting regime
where new transitions occur. Experimentally, however, it is
easier to change the length of the dots. The parameter that
characterize the strength of the interactions is the ratio
U / ���0�, where U is the characteristic intradot interaction
energy U=e2 /kdL. This ratio is typically between 1

U / ���0�
5 implying a moderate/strong interaction re-
gime. Another relevant parameter that determines the spin-
valley nature of the ground state is, as we will discuss below,
the ratio 2Vex /�SO that reflects the competition between in-
teractions and spin-orbit effects.

A. Low-energy spectrum of symmetric double dot

First, we analyze the numerical results obtained with the
multiband treatment. Figure 4 shows the low-energy spec-
trum as a function of B for kd=2.5 in a double dot with �
=0 �zero detuning�. In the low-energy spectrum, we can rec-
ognize the symmetric and antisymmetric spin-valley multi-
plets discussed in Fig. 3. The energy difference � between
the two multiplets is not observable in the energy range of
Fig. 4. Since interdot tunneling is very small compared with
the interaction energy, the two electrons occupy different
dots to avoid strong intradot interactions. The interdot inter-
action is almost independent of the orbitals occupied in each

|M
�
�

|A f
�
F�

FF
�
�

0.0 0.1 0.2 0.3 0.4
188.5

189.0

189.5

190.0

190.5

191.0

191.5

B �T�

E
�m

eV
�

FIG. 4. �Color online� Low-energy spectrum of a double dot as
a function of B. Solid symbols �red online� correspond to states
belonging to the antisymmetric spin-valley multiplet and open sym-
bols �blue online� to the symmetric spin-valley multiplet. The solid
curves correspond to the effective Hamiltonian description.
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dot. Thus, at small detuning there is a negligible occupation
of higher bands.

In Fig. 4, we identify three states that will be relevant for
the discussion of Pauli blockade. One of them has mixed

valley-spin symmetry and we label it as �M̃�. The second
state is antiferromagnetic in spin and ferromagnetic in valley

degree of freedom and we label it as �Af̃F�. The third state,

labeled �FF˜�, is ferromagnetic in both spin and valley de-

grees of freedom. States �M̃�, �Af̃F� belong to the antisym-

metric spin-valley multiplet and �FF˜� belongs the symmetric
spin-valley multiplet. Their configurations are approximately

�M̃� � �1L,1R�+�K↓;K�↑�−, �15�

�Af̃F� � �1L,1R�+�K↓;K↑�−, �16�

and

�FF˜� � �1L,1R�−�K↓;K↓� . �17�

Using exact diagonalization, we extract the wave function
and conclude that the states �1L ,1R�� are given, to a very
good approximation, by a single Slater determinant formed
with left and right orbitals in the lowest band.

We can approximate the energies of �M̃�, �Af̃F�, and �FF˜�
using Eqs. �7�, �11�, and �12�,

E�M̃� � 2E1
c�Vg� − 2t12

2 /�V − VLR − Vex� + VLR − �SO,

�18�

E�Af̃F� � 2E1
c�Vg� − 2t12

2 /�V − VLR − Vex� + VLR − 2B�orb,

�19�

E�FF˜� � 2E1
c�Vg� − 2t12

2 /�V − VLR + Vex� + VLR − �SO

− 2B��orb + �spin� . �20�

At B=0, the ground state �M̃� is only separated by the very
small superexchange energy ��4t12

2 Vex / �V−VLR�2 from the

lowest spin-valley symmetric triplet that contains �FF˜�.
These four states are separated from the rest of the spectrum
by a much larger energy scale given by �SO. This energy
structure resembles the singlet-triplet splitting in GaAs

double quantum dots. At finite fields, �F̃F� is the ground
state. The first excited state changes with increasing mag-

netic field from �M̃� to �Af̃F� at Bc=�SO / �2�orb�, as shown in
Fig. 4. This crossing between two antisymmetric spin-valley
states has no analogous in standard GaAs quantum dots.

From the analysis of the single- and double-dot spectrum,
we can obtain the parameters of the charge effective Hamil-
tonian 
Eqs. �9� and �10��. Figure 5 presents the parameters
V, VLR, t12, and Vex for a double dot with L=70 nm, a
=20 nm, Vg=78 meV, R=2.5 nm, and �=0. The V and Vex
are obtained from the two-electron spectrum in a single dot
and VLR and t12 obtained from double-dot spectrum. The
black solid curves in Fig. 4 show the prediction from the
model using the parameters from Fig. 5.

B. Low-energy spectrum for large detuning:
Two electrons in a single dot

When the detuning becomes larger than the intradot inter-
action, both electrons occupy the same dot, and the charge
degree of freedom of the low-energy eigenstates can be de-
scribed by the �2L ,0R� configuration. In this regime, the en-
ergy spectrum resembles the one obtained for two electrons
in an isolated dot.18

Figure 6 presents the low-energy spectra for large detun-
ing for kd=2.5. The solid curves represent the effective
Hamiltonian predictions. The multiband structure of the so-
lutions introduce corrections to the spin-valley dependence
of the spectrum which can be absorbed in effective �orb and
�SO. However, these corrections are small and correspond to
a few percent changes to the bare �orb and �SO values.

At zero magnetic field, the antisymmetric spin-valley
multiplet is favored. This is in agreement with Lieb-Mattis
theorem27 that states that the two-particle ground state al-
ways has a symmetric orbital part. In our two-electron sys-
tem, we can understand this prediction from the analysis of
the orbital symmetry of the wave function. In the noninter-
acting limit, the orbital ground state is constructed with both
electrons in the lowest band corresponding to a symmetric
orbital wave function, i.e., an antisymmetric spin-valley
wave function. To form an antisymmetric orbital wave func-
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tion, at least one electron has to occupy an excited state. If
the electrons were noninteracting, � would be given by the
level splitting, ��0, between the first two bands. However,
interactions substantially reduce the energy difference � be-
tween the two multiplets as shown in Fig. 6. Consequently, �
can be changed by tuning the ratio U /��0, which can be
achieved by changing the dielectric constant �modifying U�
or changing the dot length �modifying both U and �0�. In the
limit of infinite interactions, the electrons are strongly local-
ized at the positions that minimize the interaction energy.
Then the orbital symmetry of the wave function becomes
irrelevant and � vanishes. This effect is a signature of a for-
mation of a Wigner molecule.18–20

In the effective Hamiltonian, the formation of a Wigner
molecule is manifested in the reduction in the parameter Vex.
This is evident in Fig. 5 that shows that Vex is a growing
function of the dielectric constant. Even though the results of
Fig. 5 are for �=0, we note that V and Vex depend weakly on
the detuning and can be approximated by �=0 predictions
for all detunings studied here �
35 meV. In contrast, the
tunneling t12 is strongly affected by the detuning and is re-
duced almost by approximately a factor of 2 in comparison
with the �=0 case.

The reduction in � implies that the exact eigenstates be-
come strongly correlated and cannot be written as noninter-
acting wave functions to characterize them. However, we can
still label the low-lying �2,0� states according to their con-
served quantum numbers,

�M� = �2L,0R�+�K↓;K�↑�−, �21�

�AfF� = �2L,0R�+�K↓;K↑�−, �22�

and

�FF� = �2L,0R�−�K↓;K↓� . �23�

Here the states �2L ,0R�� are correlated orbital states of
two electrons in the left dot. Our numerical calculations
shows that several bands are needed to represent these states
accurately. We note that Secchi and Rontani found qualita-
tively the same correlation effects for a parabolic well with
weak confinement,20 which suggests the robustness of these
correlation effects. We note that because of the conserved

symmetries, the eigenstates at small detuning �M̃�, �Af̃F�, and

�FF˜� will evolve in �M�, �AfF�, and �FF� for large detuning.
Using the effective Hamiltonian along with the approxi-

mate description of the single-particle energies 
Eqs. �7�,
�13�, and �14��, we can obtain simple expression for the �2,0�
configuration energies,

E�M� � 2E1
c�Vg� + V − Vex − �SO − � , �24�

E�AfF� � 2E1
c�Vg� + V − Vex − 2B�orb − � , �25�

and

E�FF� � 2E1
c�Vg� + V + Vex − �SO − 2B��orb + �spin� − � .

�26�

At B=0, �M� is the ground state. Above a critical magnetic
field, there is a ground-state transition to either �AfF���SO

�� or �FF���SO��� due to the orbital Zeeman term. Thus,
the reduction in � leads to a ground-state transition to the
ferromagnetic state �FF� at finite magnetic field. In practice,
the formation of a ferromagnetic ground state can be experi-
mentally controlled by changing the length of the dots.

C. Transition from a double-dot to a single-dot regime

We now analyze the transition between the limiting be-
haviors discussed in the previous two sections. Figure 7
shows the crossover between �1L ,1R� states and �2L ,0R�
states of the double-dot system at B=0. In absence of inter-
dot tunneling, the two-electron spectrum shows sharp cross-
ings between the �1L ,1R� states and �2L ,0R� states with in-
creasing detuning. Because of the interdot tunneling,
crossings between states with the same symmetries turn into
avoided crossings. The avoided crossings occur at the same
critical detuning for states of the same multiplet. The avoided
crossings within the multiplet with an antisymmetric orbital
part occur at relatively larger detuning since the tunneling
electron is forced to occupy an excited band.

The crossover regime, presented in Fig. 7, is strongly af-
fected by interactions. The difference between the critical
detunings belonging to the avoided crossings of states with
symmetric and antisymmetric orbital part is a direct measure
for the energy splitting �. Furthermore, correlations in the
�2L ,0R� states decrease the tunneling coupling to the corre-
sponding �1L ,1R� state, leading to a sharper avoided cross-
ing.

In the effective Hamiltonian description, the lowest
�1L ,1R� and �2L ,0R� configurations are close in energy
when ��V−VLR. In this regime, the �0L ,2R� configurations
are energetically suppressed and do not affect the low-energy
spectrum. Within this approximation, we can obtain a simple
expression for �,
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FIG. 7. �Color online� Zoom of first crossing of �1,1� and �2,0�
states for B=0. Solid symbols �red online� correspond to states
belonging to the antisymmetric spin-valley multiplet, and open
symbols �blue online� to the symmetric spin-valley multiplet.
Curves represent the model predictions.
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� = Vex +
1

2
��4t12

2 + �� − Vex − V + VLR�2

− �4t12
2 + �� + Vex − V + VLR�2� . �27�

This expression compares well with the numerical prediction
as shown in Fig. 8.

From the analysis of the low-energy spectrum, e.g., Fig. 7,
we can extract the phase diagram as a function of the detun-
ing � and the magnetic field B. The phase diagrams for
strong �kd=1.5� and weak �kd=3.5� interactions, presented in
Fig. 9, exhibit clear differences. At exactly zero magnetic
field, the ground state always has a symmetric orbital wave

function ��M� and �M̃��. This state is preferred with respect to
other states within the same multiplet by the spin-orbit cou-
pling �SO and, with respect to states of the other multiplet,
by the energy gap �. The ground state changes at a critical
magnetic field to a valley-polarized state. The valley-
polarized ground state has symmetric orbital part for �SO

� and an antisymmetric orbital part for �SO��. For small
detuning �, the energy splitting � is caused by the small
superexchange and �
�SO. However, for large detuning,
both electrons are on the same dot, and the value of � can be
larger or smaller than �SO. Thus, if 2Vex��SO, there is a
transition to a valley-polarized state with a symmetric orbital
part, �AfF�, as detuning is increased 
as observed in Fig.
9�b��.

D. Sequential transport

In this section, we discuss how the two-electron
eigenspectrum affects sequential transport through a double
dot. In particular, we analyze the existence of Pauli blockade
in serially coupled dots that would lead to a current rectifi-
cation in dc transport.6,7 Figure 10 shows a schematic de-
scription of two situations when a Pauli blockade occurs. In
both cases, the double-dot system is detuned such that there
is always at least one electron in the left dot. States relevant
for transport through the double dot are the �2L ,0R� states

�M� and �FF� as well as the �1L ,1R� states �M̃� and �FF˜�. In
Fig. 10, the vertical axes denote energy and the horizontal
axes denotes the spatial coordinate along the nanotube. The
center of each figure shows the double dot created by tunnel
barriers to the contacts and between the dots. The gray rect-
angles to the left and right of the double dot are the Fermi
seas in the contacts.

For a positive bias voltage 
opposite to Fig. 10�a��, the
electrochemical potential in the left contact is larger than in
the right one, and current flows via a sequential tunneling
process �1L ,0R�→ �2L ,0R�→ �1L ,1R�→ �1L ,0R�. Interdot
tunneling is assumed to conserve the spin-valley degree of
freedom and allows for transitions between states �M� and

�M̃� or �FF� and �FF˜�. Because of the sequential transport
setup, the left dot couples to the left reservoir, allowing for
transitions between the �1L ,0R� and �2L ,0R� states. Analo-
gously, the right contact allows for transitions between the
�1L ,0R� and �1L ,1R� states. Figure 10�a� considers Pauli
blockade at B=0.

In this scenario, the current is blocked when the state �FF˜�
is occupied by an electron tunneling in from the right reser-

voir. Once in state �FF˜�, the electron cannot tunnel back
because of the filled Fermi sea in the right contact. Also, if �
is large, the electron cannot tunnel to the left dot since a
transition to the �FF� state is energetically suppressed 
see
Fig. 10�a��. However, � can be strongly reduced, allowing for

a finite exit rate from state �FF˜�. This effect might explain
the absence of a Pauli blockade in Ref. 11. This Pauli block-
ade implies a rectification of the current since, by inverting
the bias voltage, a finite current can flow.28
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FIG. 8. �Color online� � as a function of detuning, symbols
correspond to the numerical results and the curve is the effective
Hamiltonian prediction.

FIG. 9. �Color online� Phase diagram for a double quantum dot
with five bands and �a� kd=1.5 and �b� kd=3.5. Black solid lines
separate regions with different spin-valley symmetry. Regions with
the same grayscale characterize the ground state.

ε

(a) B=0 Blocked (b) B=B* Blocked

ε

|M |M̃

|FF 

|F̃F  |FF 
|M |F̃F 

|M̃

FIG. 10. �Color online� Schematic representation of a Pauli
blockade for �a� zero magnetic field and negative bias and �b� finite
magnetic field and positive bias. The white areas in the center of
each figure correspond to the two dots. The black circle in the left
dot stands for the position and energy of one of the electrons. The

states �M� and �M̃� are represented by solid lines, and the states �FF�
and �FF˜� by dashed lines. These states are organized vertically ac-
cording to their energies, and also represent the possible positions
of the second electron. The wide gray rectangles next to the left and
right dots correspond to the energy bias.
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In order to make these statements more quantitatively we
calculate the stationary current with a rate equation
approach.29–31 We describe the regime of possible blockade
depicted in Fig. 10�a� while assuming spin-orbit coupling to
be much bigger than temperature, transport voltage and ex-
ternal coupling the reservoirs.

The rate equations and the resulting stationary current are
given in Appendix B. The dependence of the stationary cur-
rent Ibl in the blockade setup and the probability to be in any
of the three degenerate �FF� states are given by

Ibl =
tS
2A

B + C�2tS
2 + �2�

, �28�

PF̃F =
C�tS

2 + �2� + D

B + C�2tS
2 + �2�

. �29�

Here � denotes the energy splitting between the states �M�
and �FF� and tS is the interdot tunneling rate between states

�FF� and �FF˜�. The constants A ,B ,C ,D depend on the cou-
pling strength to the contacts and spectral weights for the
tunneling probabilities and their form is given in Appendix
B.

If � is the dominant energy scale then the current is sup-
pressed as Ibl�1 /�2 and the double dot gets stuck in states

�FF˜� with P�FF˜�→1. This is the regime of Pauli blockade.
However, we find that due to interaction effects interdot tun-
neling tS can even exceed the energy splitting �, thus remov-
ing the blockade mechanism.

Due to Pauli blockade, the double dot acts as a current
rectifier since by reversing the transport voltage in Fig. 10�a�
a finite current can flow. Figure 11 illustrates how effective
the double dot acts as current rectifier as a function of �.

At finite magnetic field, the transport behavior can also be
very interesting. For example, if interactions are strong
enough to suppress � to become on the order of the spin-orbit
coupling ��SO��� but still much larger than the interdot
tunneling ��� t�, then a current blockade can occur in the
opposite bias direction of the zero field case. This situation,
depicted in Fig. 10�b�, is achieved by changing both the

magnetic field and the detuning. A magnetic field B�

�� /2��orb+�spin� is applied so that states �FF� and �M� are
degenerate while in the �1L ,1R� charge configuration, the

state �FF˜� is ground state and separated from state �M̃� by the
energy � �because of the applied field B��. The physical situ-
ation of Fig. 10�b� resembles that of Fig. 10�a�, and also
results in a current blockade. This ability to control the di-
rection of the current rectification by varying the magnetic
field and detuning can have applications to carbon-nanotube-
based spintronic proposals.

E. 1D-quantum dot arrays

The rich physics associated with the strong correlations of
double occupied dots is expected to have significant impact
in the many-body behavior of a one-dimensional �1D� chain
of dots. The double-dot analysis carried out here can be used
as a starting point to study the behavior of a linear array of
coupled dots. According to our analysis, there exists an in-
teraction regime in which the behavior of two electrons in
the same dot is strongly correlated and controlled by � while
the behavior of electrons in different dots is weakly corre-
lated and can be accurately described considering only the
lowest orbital of each dot. In order to generate an effective
Hamiltonian that captures the essential effects of strong on-
site correlations, we apply the ideas of Hubbard operators to
describe double occupied dots or doublons �see, i.e., Ref.
32�. This description assumes that the strong on-site Cou-
lomb repulsion suppresses the probability to occupy a dot
with more than two electrons. This is a good approximation
for low enough fillings.

Formally, we start from the complete Hamiltonian that
describes a chain of dots. This Hamiltonian represents an
extension of the double-dot Hamiltonian introduced in Ap-
pendix A.

We introduce the operators ar,n,�
† which create an electron

in the r dot, in the n-orbital state and with a given spin-valley
configuration �. To simplify the notation we introduce ar,�

†

	ar,1,�
† for electrons in the lowest band which describe well

the singly occupied dots. The state that describes two elec-
trons in the r dot can be expanded in single-particle basis as

�d�,r,�,��� = f�,��
−1 �

n�m

��,n,m

�
ar,n,�
† ar,m,��

† + �− 1��ar,n,��
† ar,m,�

† �0�� . �30�

Here, � labels the spin-valley symmetry of the two-electron
state �=1 for antisymmetric spin-valley states and �=2 for
symmetric spin-valley states and f�,��=�1+��,��. Equation
�30� defines the doublon operator such that �d�,r,�,���
=d�,r,�,��

† �0� and d�,r,�,��
† = �−1��d�,r,��,�

† . Note that the ��,n,m

do not depend on � and ��. The coefficients ��,n,m can be
obtained by diagonalizing the local part of the Hamiltonian
which amounts to solve two electrons in a single dot. We
now assume that the occupation of higher excited two-
particle states, which are separated by an energy gap on the
order of the single-particle level spacing, can be neglected.
This should be a good approximation for the low-energy
spectrum.
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FIG. 11. �Color online� Ratio between leakage current Ibl 
Eq.
�28�� corresponding to setup in Fig. 10�a� and the finite current for
reversed transport voltage Iop 
Eq. �B3��, i.e., the current in the open
�unblocked� direction. Used parameters �L=�R=0.01 meV, tAS

= tS=0.1 meV and SM =0.7 SF=1.
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The effective Hamiltonian is obtained by projecting the
complete Hamiltonian onto the subspace of empty, singly,
and doubly occupied dots and can be written as

Hef f = P�He + Hd + Hed + Vc�P , �31�

where P	�iPi represent a projector to the physically al-
lowed subspace where Pi= �0�i�0�+�����i���+���d��i�d��
�see Ref. 33�. He describes the behavior of single occupied
dots, Hd describes the behavior of double occupied, Hed con-
tains a coupling between singly and doubly occupied dots
and Vc represents the Coulomb interaction between different
sites. The explicit form of these contribution is

He = �
r,�

Er,�ar�
† ar� + �

�r,r��,�

tr,r�ar�
† ar��, �32�

Hd = �
r,�,����

Er,�,��
2b,� d�,r���

† d�,r���

+ �
�r,r��,�,����

t�,r,r�
�d� d�,r���

† d�,r����, �33�

Hed = �
�r,r��,�,��,

�1,�2,�3

tr,r�
�,��f�1�3

f�2�3
d�r�1�3

† ar��2

† ar�1
d��r��2�3

+ �
�r,r���,�,��

f���g�,r,r�
d�,r,���
† ar,�ar�,�� + H.c.� ,

Vc = Uc �
r�r�

nrnr�

r − r�
. �34�

The diagonal part of He and Hd represent the electron and
doublons energies composed of the spin-valley energy and
on-site energies 
Er,�=E1

c�Vr�+E� and Er,�,��
2b,� =2E1

c�Vr�+E�

+E��+V+ �−1��Vex�, and t and t�d� the tunnelings of the elec-
trons and doublons. The Hed contains a term that describes
the hopping of an electron from the doubly occupied site to a
singly occupied site which in this language corresponds to an
exchange of a doublon and an electron. The second term in
Hed represents the hopping of an electron from a singly oc-
cupied site to a singly occupied site and vice versa, which is
represented as destroying two atoms and creating a doublon.
Finally, we have the offsite Coulomb interaction Vc in terms
of the dot density nr defined as

nr = �
�

ar�
† ar� + 2 �

�,��,���

d�,r���
† d�,r���. �35�

Here, the summation �� ,��� is restricted to �
�� for �=1
and ���� for �=2. For the offsite interaction, we assume
exclusively capacitive coupling and neglect a dependence on
the symmetry of the two-particle states.

Explicit expressions for the parameters g�,r,r�, and tr,r�
�,��

can be obtained by comparing matrix elements of the exact
and effective Hamiltonians. If the doublon solution is ex-

pressed as in Eq. �30�, the g�,r,r�, and tr,r�
�,�� can be expanded

in terms of the doublon expansion coefficient ��,n,m and the
many-body Hamiltonian matrix elements �see, e.g., Ref. 33�.

Alternatively, these parameters can be obtained from com-
parison between exact and effective Hamiltonian solutions
for two- and three-electron systems. These few-electron cal-
culations might be challenging but allow the determination
of the parameters needed for many-body calculations. The
extraction of these coupling parameters is beyond the scope
of the current article.

In the most general case, the parameters that describe the
effective Hamiltonian depend on lattice sites positions and
can be controlled by changing the detuning in each lattice
site �r. For example, an enhancement of the superexchange
interactions can be achieved by detuning some of the dots
and, therefore, reducing the energy cost of double occupan-
cies.

The effective Hamiltonian can be applied to describe an
array of coupled dots in many different regimes and its phase
diagram might exhibit novel phases. In particular, the exis-
tence of spin-valley “triplet” close in energy to the spin-
valley “singlet” can lead to phenomena richer in comparison
to the standard single-band Hubbard model.34 For example,
for one-particle per site �filling n=1�, it is known that the
ground state of the usual Hubbard model has infinite suscep-
tibility to spin dimerization,35 i.e., formation of singlet/triplet
bonds between nearest-neighbor sites. However, the ground
state is not dimerized since the formation of singlet bonds,
say at sites �2i ,2i+1�, is penalized by the large energy cost
of the remainder triplet components between sites �2i+1,2i
+2�. In carbon nanotubes operating in the strongly interact-
ing regime, ��1, even spin-valley triplet states can lower
their energy by virtual hoping. The later situation reduces the
energy cost of triplet formation and the infinite susceptibili-
ties to spin dimerization might in this case translate in actual
dimerization of the ground state.

Away from n=1, the presence of a spin-valley triplet can
also significantly affect the magnetic structure of the system.
In particular, for systems which already exhibit ferromag-
netism in the standard single-band Hubbard model, the inclu-
sion of the spin-valley triplet can strengthen and extend the
ferromagnetic phase. For example, generic two- and three-
dimensional square lattice geometries, and others with simi-
lar connectivity conditions, exhibit Nagaoka
ferromagnetism36 when the gain of kinetic energy of a single
hole exceeds the decrease in superexchange energy. The lat-
ter condition is fulfilled at very large on-site interactions. In
quantum dots in carbon nanotubes with small �, Nagaoka-
type ferromagnetism might become stable at reduced value
of the interaction since the virtual hopping of the spin-valley
triplets reduces the superexchange penalty of having a polar-
ized state.

For arrays with filling 1
n
2 and zero detuning, the
low-energy physics consists of doubly and singly occupied
dots while the occurrence of empty sites is strongly sup-
pressed since it implies an increase in double occupancies.
This implies that the number of electrons and doublons will
be independently conserved and that the second term of Hed
can be neglected. Also, the tunneling of the electrons and the
doublons can be neglected. Thus, the only relevant terms in
the effective Hamiltonian are the on-site energies, the long-
range Coulomb and the electron-doublon exchange �first
term in Hed�. This regime can lead to interesting phenomena
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when the electron-doublon exchange becomes comparable
the multiplet splitting �.

Finally, it should be pointed out that the long-range Cou-
lomb interaction can have a preponderant influence in the
charge distribution in small arrays of quantum dots.

IV. SUMMARY AND CONCLUSIONS

We have presented a detailed study of the two-electron
eigenspectrum of a double quantum dot in a semiconducting
carbon nanotube. We showed how the spin-valley physics
leads to the formation of multiplets. The internal energy
structure of the multiplet is practically unaffected by a
change in either the confinement potential or the interaction
strength but the energy gap between different multiplets is
strongly modified by both. We showed that for sufficiently
strong interactions, the spin-orbit coupling can exceed the
energy splitting between states with symmetric and antisym-
metric orbital parts for any detuning between the dots. This
situation modifies the two particle phase diagram. Above a
critical interaction strength, the ground state at small, finite
magnetic fields is always ferromagnetic independent of the
detuning. Furthermore, in this strongly interacting regime,
the blockade of linear transport gradually disappears since
the reduction in the multiplets’ energy splitting � allows a
finite tunneling probability from the �1L ,1R� state to the
�2L ,0R� state even for a symmetric spin-valley part. Pauli-
blockade physics will occur for weak enough Coulomb cor-
relations, which can be suppressed by either working with
short dots or by covering the nanotube by strong
dielectrics.18 We note that a well-developed Pauli blockade is
the precondition for realization of spin qubits in double dots
allowing for coherent singlet-triplet manipulation.1,10

Our understanding of the double-dot physics can be used
as a starting point to analyze the behavior of an array of
coupled dots. The effective Hamiltonian, as presented in Eq.
�31�, can be applied to describe an array of coupled dots in
certain regimes. In the future, we would like to explore the
many-body physics associated with the strong on-site corre-
lations and its consequences in the magnetic ordering of the
system.

In the analysis presented here, we neglected terms that flip
either the spin or valley degree of freedom, or both. How-
ever, such mechanisms could change the various level cross-
ings to avoided crossings and thus open new ways to control
the spin-valley degree of freedom as well as the transport
properties of this system.37–40
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APPENDIX A: COULOMB MATRIX ELEMENTS

We create an orthonormal set of localized single-particle
orbitals �i solving exactly the double-dot system and we use

this set to construct the many-body Hamiltonian for the in-
teracting double-dot system,

Ĥ = �
i

Eiâi
†âi + �

i�j

Tijâi
†âj +

1

2�
ijkl

Uijklâi
†âj

†âkâl. �A1�

Here Ei= ��i�H0��i� are the single-particle energies, Tij
= ��i�H0�� j� are the tunneling matrix elements, and Uijkl
= ��i� j�Vc��k�l� correspond to the interaction matrix ele-
ments. At zero detuning, the tunneling matrix elements, Tij,
are only nonzero between states with the same �, �, n and
located at different wells. For nonzero detuning, tunneling
between different bands becomes possible. The electrons in-
teract through the long-range Coulomb potential, Eq. �8�, and
the interaction matrix elements take the form

Unmpr =
e2

42kd
� �n

†��1� · �p��1��m
† ��2� · �r��2�

�
1

r
d�1d�1d�2d�2, �A2�

where

1

r
=

1

�r1 − r2�
=

1
�2R2
1 − cos��1 − �2�� + ��1 − �2�2

.

�A3�

To evaluate the interaction matrix elements, we use the fol-
lowing relation:

1

r
=

1


�

−�

�

eiq��1−�2�K0�R�2q sin
��1 − �2�/2���dq . �A4�

If the rest of the integrand does not depend on �1 and �2, the
integration over those coordinates can be done analytically,

1

42�
0

2 �
0

2

K0�R�2q sin
��1 − �2�/2���d�1d�2

= I0�R�q��K0�R�q�� . �A5�

Also, the integration over �1 and �2 can be done analytically

since �̄��� has a simple functional dependence that can be
written in terms of exponentials with real or imaginary argu-
ments. Once those integrals are obtained, we are left with the
momentum integration over q in Eq. �A4�. Defining

Fnp�q� =� eiq�1��n
†��1��p��1��d�1, �A6�

we can write the Coulomb interaction matrix as a one-
dimensional numerical integration over the momentum q,

Unmpr =
e2

kd
� Fnp�q�Fmr�− q�I0�R�q��K0�R�q��dq .

�A7�

In the calculation of the Coulomb matrix elements, we ne-
glect the dependence of the longitudinal wave vector kn on
spin, valley, and magnetic field. As discussed in Sec. II A,
this approximation is good for ���AB / ��0R� ,�SO / �2�v�,
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which is certainly true for the parameters used in this paper.
There is another effective interaction that takes into ac-

count intervalley scattering,

Unmpr
KK� =

1

42� �n
†��1� · �p��1��m

† ��2� · �r��2�

�VKK�d�1d�1d�2d�2, �A8�

where VKK� is a short-range interaction that can be taken

proportional to ���1−�2�. We have estimate the Unmpr
KK� terms

and we have concluded that they only introduces minor cor-
rections. For that reason, we neglect this contribution in the
present work.

APPENDIX B: RATE EQUATIONS

Here we derive the rate equations and the stationary cur-
rent corresponding the setup depicted in Fig. 10�a�. At zero
magnetic field and large detuning, the single-particle ground
state consists of the Kramer doublet �L1K�↑� and �L1K↓�
localized in the left dot. The two-particle states are charac-
terized by their charge degree of freedom and by their spin-
valley symmetry. The �2L ,0R� and �1L ,1R� states with anti-
symmetric spin-valley part are nondegenarate and are called

�M� and �M̃�, respectively. They are defined in Eqs. �15� and
�21�. According to Fig. 3, the �2L ,0R� and �1L ,1R� states
with symmetric spin-valley part are each threefold degener-

ate and include the states �FF� and �FF˜�, respectively. Fol-
lowing Eqs. �17� and �23�, the structure of these states is
given by

�F−� = �FF� = �2L,0R�−�K↓;K↓� ,

�F0� = �2L,0R�−�K↓;K�↑�+,

�F+� = �2L,0R�−�K�↑;K�↑� ,

�F̃−� = �FF˜� = �1L,1R�−�K↓;K↓� ,

�F̃0� = �1L,1R�−�K↓;K�↑�+,

�F̃+� = �1L,1R�−�K�↑;K�↑� .

Due to the serial setup, each contact couples only to its ad-
jacent dot. The tunneling rates to the collector 
left contact in
Fig. 10�a�� depend on the correlated two-particle states,
which is accounted for by introducing the spectral weights SF
and SM that determine how easy an electron tunneling be-
tween the left dot and the left reservoir can cause a transition
between a two-particle and one-particle state on the dot,

SF = �
m

��L1K↓�aLmK↓�F−��2,

SM = �
m

��L1K↓�aLmK�↑�M��2.

Due to the simple form of the �1L ,1R� wave functions the
spectral weights corresponding to the tunneling between

right contact and right dot has trivial spectral weights SM̃

= ��L1K↓�aR1K�↑�M̃��2= 1
2 and SF̃= ��L1K↓�aR1K↓�F−��2=1.

We denote the reduced density matrix for the double dot

by P and denote off-diagonal matrix elements with Ps
s�

ª �s��P�s�= �Ps
s���, where s and s� are eigenstates of the

double dot and diagonal elements with Psª �s�P�s�. We ne-
glect processes that can mix states with different spin-valley
part39,41 since hyperfine interaction is small in carbon nano-
tube and spin-orbit coupling is mainly a spin-valley coupling
with a very weak effect on the longitudinal wave function.
Then degenerate states are equally populated and the relevant
matrix elements of the reduced density matrix for the double-
dot system are given by P1= P�L1K�↑�+ P�L1K↓�; PF= P�F+�

+ P�F0�+ P�F−�; PF
F̃= PF+

F̃+ + PF0

F̃0 + PF−

F̃−, etc.
The corresponding rate equations are given by

dtP1 = − 2�EP1 + �CSFPF + 2�CSMPM ,

dtPF = − �CSFPF − itS�P
F̃

F
− PF

F̃� ,

dtPF̃ =
3

2
�EP1 + itS�P

F̃

F
− PF

F̃� ,

dtPF
F̃ = �−

1

2
�CSF + i��PF

F̃ − itS�PF̃ − PF� ,

dtPM = − 2�CSMPM − itAS�P
M̃

M
− PM

M̃� ,

dtPM̃ =
1

2
�EP1 + itAS�P

M̃

M
− PM

M̃� ,

dtPM
M̃ = − �CSMPF

F̃ − itAS�PM̃ − PM� �B1�

with P1+ PF+ PF̃+ PM + PM̃ =1. Here �E denotes the coupling
strength to the emitter contact 
right contact in Fig. 10�a��
and �C denotes the coupling strength to the collector/left
contact.

These rate equations are solved analytically. The result for
the stationary current and the occupation of the states are
given by

Ibl = 2
e�E

�
P1 =

e�E

�
16SFSMtS

2tAS
2 �C/N ,

PFF˜ = 3SMtAS
2 �E�4tS

2 + �C
2 SF

2 + 4�2�/N ,

N = 12SMtAS
2 �E�2tS

2 + �2� + 3SF
2SMtAS

2 �C
2 �E

+ 2SFtS
2�4SMtAS

2 �C + 2tAS
2 �E + SM

2 �C
2 �E� . �B2�

Here tAS denotes the interdot tunneling between states �M�
and �M̃� and tS the interdot tunneling between the states �FF˜�
and �FF˜�. Spectral weights SF and SM account for the overlap
between an electron hopping onto the dot and the two par-
ticle eigenstates, and �C and �E are the coupling strength to
emitter and collector.
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The stationary current 
Eq. �B2�� vanishes as 1 /�2 for
large �. For reversed transport voltage, still a finite current
can pass through the double dot which implies that, for large
�, the double dot acts as a current rectifier. We calculate the
current for the unblocked voltage direction. Inverting the
bias voltage depicted in Fig. 10�a�, the current flows by elec-
trons hopping from the left reservoir through the double dot
to the right reservoir. Applying again the rate equation

approach, we obtain

Iop =
e�R

�
P1 =

2e�R
2 tAS

2

�2tAS
2 ��R + 2SM�L� + SM�L�R

2 . �B3�

We note that �L corresponds to �C in Eq. �B2� and �R cor-
responds to �E.
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