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Design of Control Policies for Spatially Inhomogeneous Robot Swarms
with Application to Commercial Pollination

Spring Berman, Vijay Kumar, and Radhika Nagpal

Abstract— We present an approach to designing scalable,
decentralized control policies that produce a desired collective
behavior in a spatially inhomogeneous robotic swarm that
emulates a system of chemically reacting molecules. Our ap-
proach is based on abstracting the swarm to an advection-
diffusion-reaction partial differential equation model, which
we solve numerically using smoothed particle hydrodynamics
(SPH), a meshfree technique that is suitable for advection-
dominated systems. The parameters of the macroscopic model
are mapped onto the deterministic and random components of
individual robot motion and the probabilities that determine
stochastic robot task transitions. For very large swarms that
are prohibitively expensive to simulate, the macroscopic model,
which is independent of the population size, is a useful tool for
synthesizing robot control policies with guarantees on perfor-
mance in a top-down fashion. We illustrate our methodology
by formulating a model of rabbiteye blueberry pollination by
a swarm of robotic bees and using the macroscopic model to
select control policies for efficient pollination.

I. INTRODUCTION

Tasks that require parallelism, redundancy, and adaptation
to dynamic environments can potentially be performed very
robustly and efficiently by a swarm robotic system, which
would consist of hundreds or thousands of autonomous
robots with limited sensing, communication, and computa-
tion capabilities. Key challenges in the development of such
systems include the accurate prediction of swarm behavior
and the design of robot controllers that can be proven
to produce a target macroscopic outcome. The controllers
should be scalable, meaning that they maintain the successful
operation of the system regardless of the number of robots.

To ensure scalability, we propose a control approach that
is decentralized, in which robots make decisions using only
local information obtained via sensing and/or communication
without knowledge of the global system state. The robots
that we consider are unidentified and each programmed
with the same set of control algorithms. We assume a
broadcast architecture [26] in which a supervisory agent
computes the parameters that govern the robots’ motion and
task transitions and transmits them to the swarm, without
requiring knowledge of the population size or individual
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robot actions. This paradigm facilitates the communication
of information to all the robots while avoiding the lossiness
and inefficiencies of a multi-hop ad-hoc network.

In previous work [5], [24], we described a methodology
for producing target swarm behaviors that can be imple-
mented using this control paradigm. Our approach consists
of developing an abstraction of a swarm and using this
model to analyze system performance and synthesize robot
control policies that cause the populations of different swarm
elements, defined as robots at various tasks and objects of
different types with which they interact, to evolve in a desired
way. The methodology was developed for swarms in which
robots execute task transitions stochastically, which allows
us to produce any of a range of population distributions by
designing an appropriate set of transition probability rates.
For systems in which there are task transitions that are
triggered by encounters between elements, we specified that
swarm elements are always uniformly randomly distributed
throughout the environment, which can be realized when
the robots execute random walks. This allowed us to model
the swarm as a well-mixed chemical reaction system, which
could be abstracted to a set of ordinary differential equations.

In this paper, we extend our methodology to spatially
inhomogeneous swarms, in which elements are arbitrarily
distributed throughout space. We consider systems in which
robots follow a deterministic velocity field in addition to
random motion. We generate the continuous dynamics of
individual elements as they move and interact in a physical
environment using a micro-continuous model. In this model,
we define the robots’ motion using the technique of random
walk particle tracking [10], [33], a method from statistical
physics, and implement the robot task-switching using the
formulation given in [4]. In the limit of infinite swarm pop-
ulations, the system abstracts to a set of advection-diffusion-
reaction (ADR) partial differential equations (PDE’s) [8], the
macro-continuous model, which governs the time evolution
of concentrations of different elements over a spatial domain.
Similar to this approach is the work [15] on developing rig-
orous abstractions of a swarm to a PDE model based on the
Fokker-Planck equation, which describes the time evolution
of the probability density function of the position of a robot.
By designing the parameters of the macro-continuous model
and using them to define the robot motion controllers and
stochastic policies for task transitions, a supervisory agent
can produce a target collective behavior. This constitutes
a novel application of a “top-down” controller synthesis
approach to spatially inhomogeneous swarms.

The general ADR equations that define the macro-



continuous model cannot be solved analytically, and instead
must be solved using numerical methods [17]. A widely
applied technique is a grid or mesh-based method such as
finite difference, finite volume, and finite element methods
[6]. Grid-based methods are unsuitable for systems that
consist of discrete physical entities (such as robots) rather
than a continuum [21], and they can suffer from numer-
ical dispersion and artificial oscillations when simulating
advection-dominated systems [16], [33], which we may want
to design. A more appropriate technique to use for our type
of system is a meshfree method [20], which solves integral
equations and PDE’s with all kinds of boundary conditions
using a set of arbitrarily distributed nodes or particles without
imposing connectivity among these elements with a mesh.
We numerically solve the ADR equations using smoothed
particle hydrodynamics (SPH), a meshfree particle method
that was originally developed to simulate astrophysical phe-
nomena and has been extended to a variety of problems in
computational fluid dynamics and solid mechanics [21], [22].

We apply our methodology to synthesize control policies
for a swarm of insect-inspired micro air vehicles [37] to
pollinate an orchard of rabbiteye blueberries (Vaccinium
ashei), a scenario of interest to the Robobees project [1],
whose objective is to develop a colony of robotic bees. Insect
pollination is necessary for adequate commercial yields of
this crop; almost all rabbiteye cultivars are self-sterile and
require cross-pollination with a compatible cultivar, of which
at least two should be interplanted [9], [25]. Our investiga-
tion of effective swarm strategies and their required robot
capabilities will inform the design of the robotic bees. We
describe micro-continuous and macro-continuous models of
the scenario, demonstrate a close correspondence between
the models, and illustrate how the macro-continuous model
can be used to select motion controllers and stochastic
policies for the robots that produce efficient pollination.

II. MICRO-CONTINUOUS MODEL

A. Robot Motion and Concentration Distribution

We consider systems in which the position qi ∈ Y ⊂ Rd,
d ∈ {1, 2, 3}, of each robot i (and any other swarm element)
evolves according to a deterministic velocity field v(qi) and
a Brownian motion that drives diffusion, where D is the
associated diffusion coefficient. The velocity field can be
designed, and it may have a component that is fixed by
the bulk motion of the medium, such as wind or water, in
which the robots operate. Here diffusion models randomness
in robot movement that either arises from inherent noise due
to sensor and actuator errors or is actively added by the
robot’s motion controllers, or both. D is the sum of Dinh, a
constant determined by the first source of randomness, and
Dact, a tunable parameter that produces the second source.
A robot i, which can be represented as a point kinematic
agent, updates its displacement at each (very small) timestep
∆t according to the Itō-Taylor integration scheme [12]

qi(t+ ∆t) = qi(t) + v(qi(t))∆t+
√

2D∆t I Z(t) , (1)

where I ∈ Rd×d is the identity matrix and Z ∈ Rd is a vector
of independent, normally distributed random variables with
zero mean and unit variance.

A swarm of N robots that move according to equa-
tion (1) can be viewed as a random walk particle track-
ing (RWPT) scheme, a Lagrangian approach to solving
advection-diffusion problems. In the limit N → ∞, the
Fokker-Planck equation becomes equivalent to the advection-
diffusion PDE (defined in Section III), which governs the
time evolution of the concentration of robots over the do-
main, x(q, t) [10], [33]. Using the particle tracking analogy,
we consider the robots to be a discrete distribution of the
mass of the swarm and associate each robot i with a mass
mi = m. The robot masses can be mapped to concentration
values as described in [2], [36]. The concentration x(q, t) at
a point q ∈ Y can be approximated by the smoothed integral
interpolation

x(q, t) =
∫
Y

x̃(q′, t) ζ(q− q′) dq′, (2)

x̃(q, t) =
N∑
i=1

mδ(q− qi(t)), (3)

where δ(q) is the Dirac delta function and ζ(q) is a projec-
tion function with finite support that satisfies

∫
Y
ζ(q)dq = 1

and is ideally invariant with respect to coordinate transfor-
mations. A particle approximation for x(q, t) is given by

x(q, t) =
N∑
i=1

mζ(q− qi(t)). (4)

Most particle tracking implementations use ζ(q) = 1/V for
points within a small cube of volume V around q and ζ(q) =
0 otherwise [16]. This corresponds to dividing the domain
Y into a grid of G cubic cells with volume Vc, finding the
mass of all particles inside each cell c, Mc, and defining
the concentration at all points q inside cell c as x(q, t) =
Mc/Vc.

B. Robot Task Switching

The robots’ transitions between tasks can be modeled as
chemical reactions: the robots switch stochastically, either
spontaneously or upon encountering certain objects or other
robots, at rates that are determined by constants that are
analogous to reaction rate constants. Borrowing chemical
reaction terminology, a species Xi symbolizes a robot that is
performing task i or an object of type i with which the robots
interact, and a complex is a combination of species that
appears before or after a reaction arrow. The rate constant
kij associated with a reaction that converts complex i into
complex j is a function of a parameter cij , where cijdt
is the average probability that a particular combination of
reactant elements will transition to product elements in the
next infinitesimal time interval dt.

A robot’s decision to switch tasks spontaneously is mod-
eled as a unimolecular reaction, for which kij = cij [13].
The robot control policy that implements this transition has
no dependence on spatial properties of the system: a robot



that is performing task i computes a uniformly distributed
random number in [0, 1], u ∼ U(0, 1), at each timestep ∆t
and executes the transition if u < cij∆t.

A robot’s decision to switch tasks upon encountering
another element is modeled as a bimolecular reaction. Let
r = qo(t)−qp(t) be the initial relative displacement of two
reactants o and p and let ∆q = qp(t+∆t)−qo(t+∆t)+r.
The probability of the reactants occupying the same position
at time t+∆t is P (∆q = r). Defining p(r) as the probability
density of ∆q and specifying that all reactants are associated
with the same arbitrary mass m, cij is given by [4]

cij = kijmp(r). (5)

We consider reactions in which one reactant is a robot that
moves according to equation (1) and the other is stationary.
The function p(r) is then the probability density of the
moving reactant’s displacement ∆qi(t) = v(qi(t))∆t +√

2D∆tIZ(t), which is a bivariate normal distribution
with mean v(qi(t))∆t and covariance matrix 2D∆tI. The
standard deviation of the robot’s displacement is σ =
(2D∆t)1/2.

As in the case of a well-mixed system [14], the robot
control policy that implements the transition can be defined
by decomposing the probability cij∆t into the product of
ceij , the probability that the robot will encounter a particular
reactant within its sensing range in the next ∆t, and cdij∆t,
the probability that the robot will decide to follow through
with the transition given an encounter. We assume that a
robot’s sensing range is a sphere in Rd whose radius r is
on the order of the robot’s typical random displacement per
timestep, reflecting the robot’s very limited sensing capacity.
The probability that a robot will encounter a reactant at a
position r relative to the robot in the next timestep is ceij =∫

Ω
p(r′)dr′, where Ω ⊂ Rd is a sphere of radius r centered

at the relative position r. For small r,
∫

Ω
p(r′)dr′ ≈ p(r)VΩ,

where VΩ is the volume of Ω. Using equation (5), we can
decompose cij as

cij = cdij · ceij , cdij =
kijm

VΩ
, ceij = p(r)VΩ. (6)

At each timestep, a robot moves according to equation (1)
and, if it senses a reactant, computes u ∼ U(0, 1) and
executes the transition if u < cdij∆t. The robot then becomes
a species in the product of the reaction and may follow a
different displacement equation of the form (1).

In simulation, we may implement an encounter-based
transition in an alternate way. At each timestep ∆t, robot i is
moved a deterministic displacement v(qi)∆t from equation
(1). We define a sphere of radius rsim, centered at the robot’s
new position, which contains the vast majority of reactants
that the robot is likely to reach in ∆t due to its diffusive
motion. For instance, we may set rsim = 2σ. The value of
cij is computed from equation (5) for each potential reactant
in this region, along with u ∼ U(0, 1), and the reaction is
executed with the reactant for which u < cij∆t, if any. The
robot is moved to the position of the chosen reactant. If no

reaction occurs, the robot’s diffusive motion is simulated as√
2D∆tIZ(t) from equation (1).

III. MACRO-CONTINUOUS MODEL

The macro-continuous model of the time evolution of the
species concentrations, xs(q, t), s = 1, ..., S, is given by a
set of advection-diffusion-reaction (ADR) equations, which
describe the conservation of chemical species in a fluid. De-
fine vs(q) as a velocity field that specifies the deterministic
motion of species s, Ds as the diffusion coefficient of species
s, Ks as the set of rate constants kij that are associated
with the reactions involving species s, and Rs(Ks,x) as the
sum of the corresponding reaction rates evaluated at local
concentrations x(q). The ADR equations are:

∂xs
∂t

+∇· (vs(q)xs) = Ds∇2xs +Rs(Ks,x), s = 1, ..., S
(7)

The ADR equation for xs is known as the advection-diffusion
equation when Rs(Ks,x) = 0 and the reaction-diffusion
equation when vs = 0. To synthesize a target macroscopic
behavior in a swarm modeled by equations (7), a supervisory
agent computes the kij and the tunable components of vs(q)
and Ds, s = 1, ..., S.

The technique of smoothed particle hydrodynamics (SPH)
can be used to numerically solve the ADR equations (7). In
this method, a function f(q, t) over a domain is represented
in terms of its values at a set of arbitrarily distributed
particles. This converts the governing PDE equations of a
system into a set of ODE’s, each of which describes the
time evolution of a variable associated with a particle. The
value of a variable at a particle is influenced by values at
particles within a local neighborhood only.

The SPH formulation is derived by first approximating
f(q) with a smoothed integral interpolation, similarly to
equation (2):

f(q) =
∫
Y

f(q′)w(q− q′, h) dq′ . (8)

Here w(q − q′, h) is a differentiable kernel function with
smoothing length h and compact support. The kernel w
satisfies the properties

lim
h→0

w(q− q′, h) = δ(q− q′) , (9)∫
Y

w(q− q′, h) dq′ = 1 , (10)

w(q− q′, h) = 0 for ||q− q′|| > κh , (11)

where κ is a constant that defines the support domain of the
kernel of point q. The kernel function is frequently defined
as a Gaussian or a spline that approximates a Gaussian [21].

The integral (8) can be approximated using a Monte Carlo
integration scheme as follows. The spatial distribution of the
mass in the system is represented by a set of Q particles.
Particle i has position ri, mass mi, and density ρi, where
mi/ρi is the volume associated with the particle. The number



of particles per unit volume, ni = ρi/mi, is calculated as
[35]

ni =
Q∑
j=1

w(rij , h), rij = rj − ri. (12)

Replacing dq′ in equation (8) by the volume mi/ρi = 1/ni
at the particle locations, the particle approximation for f(q)
is given by

f(q) =
Q∑
i=1

1
ni
f(ri)w(q− ri, h) . (13)

The error in approximating equation (8) by equation (13)
is O(h2) [27]. Computing the gradient of f(q) using the
particle approximation entails differentiating the kernel w
rather than the function itself.

In recent years, the SPH technique has been used to
define decentralized motion control laws for robot swarms
at the micro-continuous level to achieve pattern generation
in obstacle-filled environments [30], [31] as well as deploy-
ment, sensor coverage, patrolling, flocking, and formation
control behaviors [28], [29]. These works model a swarm
as a fluid, which may be subjected to an external force, and
represent each robot as an SPH particle that has an associated
position, velocity, mass, density, energy, and pressure. The
robots use the SPH formulations of the governing equations
for the conservation of mass, momentum, and energy, along
with an equation of state for pressure, to update their associ-
ated quantities and compute their control law. The approach
is scalable because these updates only require information
from robots within a local neighborhood that corresponds to
the support domain of w.

In contrast, our application of the SPH method at the
macro-continuous level does not associate particles with
robots, but rather employs the particles as computational
elements that track concentration values at points in space.
We use an SPH scheme similar to those that have been
recently applied to model solute transport in porous media
[16], [35]. We define a set of particles for each of the S′ ≤ S
distinct velocity fields vs in equations (7). The set associated
with vs′ , s′ ∈ {1, ..., S′}, tracks the concentrations of all
species s for which vs = vs′ . The velocity of each particle
i ∈ {1, ..., Qs′} in this set is

dri
dt

= vs′(ri). (14)

The diffusion term in equations (7), Ds∇2xs, could be
evaluated by differentiating the interpolated concentration
twice. However, the resulting expression contains the second
derivative of w, which can be noisy and sensitive to particle
disorder, so instead we use an SPH discretization of the
Laplace operator that involves only first order derivatives of
w [18]:

∇2xs|ri
= −2

Qs′∑
j=1

1
nj

(xs(rj)− xs(ri)) F (rij), (15)

F (rij) =
rij · ∇rijw(rij , h)

||rij ||2
, (16)

where ∇rij
w(rij , h) is the directional derivative of w along

rij . For a set of irregularly spaced particles, ni 6= nj in
general, which produces an asymmetry in the magnitude of
the contribution of concentration from particle i to particle
j and vice versa. To rectify this, nj is replaced by either the
arithmetic or harmonic average of ni and nj [16]. Choosing
the harmonic average and multiplying equation (15) by Ds,
the particle approximation of the diffusion term becomes

Ds∇2xs|ri
= Ds

Qs′∑
j=1

ni + nj
ninj

(xs(ri)− xs(rj)) F (rij).

(17)
In the reaction rate terms of equations (7), the concentration
at ri of a species that is not tracked by particle i is evaluated
using the particle approximation (13) with the set of particles
that do track the species.

The SPH formulation of the ADR equation for each
species s that is tracked by particle i ∈ {1, ..., Qs′} is

dxs
dt

∣∣∣∣
ri

= Ds∇2xs|ri +Rs(Ks, x1(ri), ..., xS(ri)). (18)

The SPH method is implemented by initializing the particle
positions and concentrations and then numerically integrating
equations (14) and (18) using standard techniques such as
Runge-Kutta methods and the Velocity Verlet scheme [21].

IV. APPLICATION: COMMERCIAL POLLINATION

A. Micro-Continuous Model

We simulate a 50 ft× 18 ft section of a rabbiteye blueberry
orchard that consists of alternating rows of two cultivars, as
is commonly recommended in the literature [23]. The section
contains four rows of three plants each, which are spaced 6 ft
apart within a row and 12 ft apart between rows, the industry
standard [32]. Each plant has 104 flowers, the quantity for a
mature rabbiteye plant [34], which are uniformly randomly
distributed throughout the plant canopy. Initially, a colony of
robotic bees occupies a 2 ft × 3 ft hive to the left of the rows;
the robots are uniformly randomly distributed throughout
the hive. Fig. 1 illustrates the orchard layout and the initial
placement of the robots.

The supervisory agent in our architecture can be a com-
puter at the hive [3] with the computational resources to
calculate the robot motion and task transition parameters for
a specific macroscopic objective, which may involve solving
the ADR equations to predict the system performance. The
robots would have sufficient power to undertake brief flights
away from the hive [19]. They would return to the hive to
recharge, upload data, and receive parameters from the hive
computer. Here we simulate a portion of one flight.

We assume that each robotic bee is equipped with a
compass and thus can fly with a constant heading. The robots
search for flowers by flying with a deterministic component
to the right superimposed with a random walk according to
equation (1), with v(qi) = v = [v 0]T . We specify the robot
flight speed as v + 2σ/∆t = 16.4 ft/s, which is believed
to be a realistic speed for robotic bees as it falls within the
upper range of speeds attainable by wild orchid bees [7].



The robotic bees in this scenario are assumed to be capable
of recognizing a flower that is very close by, potentially using
an ultraviolet light sensor; flying to the flower; and hovering
briefly while vibrating the flower to release its pollen as
is done by efficient blueberry pollinators [9]. The flower
visits are modeled as being instantaneous. We assume that a
rabbiteye flower, each of which produces 8000-17000 pollen
grains [11], transfers pollen to each robot that visits it and
that sufficient pollen remains on the robot to pollinate an
arbitrary number of flowers on subsequent visits.

We define a set of reactions that represents the actions of
pollen retrieval, pollination, and unproductive flower visits.
The robot species are defined as follows: B0 is a robot
without pollen, Bi is a robot carrying pollen from cultivar
i ∈ {1, 2}, and B3 is a robot carrying pollen from both
cultivars. Ui and Pi symbolize an unpollinated flower and a
pollinated flower, respectively, of cultivar i ∈ {1, 2}. W is a
“waste product” indicating that a flower visit has not resulted
in pollination or retrieval of a pollen type that is not already
on the robot. Each reaction is associated with the same rate
constant k, since it is unrealistic for the robots to be able to
distinguish between flowers of different cultivars or flowers
that have been visited by other robots. The reactions are:

B0 + U1
k−→ B1 + U1 B1 + U1

k−→ B1 + U1 +W

B0 + U2
k−→ B2 + U2 B1 + U2

k−→ B3 + P2

B0 + P1
k−→ B1 + P1 B1 + P1

k−→ B1 + P1 +W

B0 + P2
k−→ B2 + P2 B1 + P2

k−→ B3 + P2

B2 + U1
k−→ B3 + P1 B3 + U1

k−→ B3 + P1

B2 + U2
k−→ B2 + U2 +W B3 + U2

k−→ B3 + P2

B2 + P1
k−→ B3 + P1 B3 + P1

k−→ B3 + P1 +W

B2 + P2
k−→ B2 + P2 +W B3 + P2

k−→ B3 + P2 +W

(19)

The robot behavior of encountering a flower in very
close proximity with its limited sensing range and deciding
whether to visit it is simulated according to the procedure
described in the last paragraph of Section II-B.

We compute the concentration fields of the species as
described in Section II-A. The species initially present in the
simulation are B0, U1, and U2. The initial nonzero concen-
trations of B0 were set to 1 at the center qc of each grid cell c
within the hive region. The mass associated with each of the
NB0 robots was computed as m = 1

NB0

∑G
c=1 xB0(qc, 0)Vc.

The U1, U2 flowers were assigned the same mass m as
the robots by setting their initial nonzero concentrations to
x0
Uk

= (mNUk
)/(VcGUk

) at the center of each of the GUk

grid cells in the rows of cultivar k ∈ {1, 2}. To initialize the
robot and flower positions, we computed their populations
per cell as N c

s = xs(qc, 0)Vc/m, s ∈ {B0, U1, U2}, rounded
this number to the nearest integer, and distributed the N c

s

robots uniformly randomly inside the cell.

Fig. 1. An initial distribution of robotic bees (black) and unpollinated
flowers of cultivars 1 (yellow) and 2 (cyan) in the micro-continuous model.

B. Macro-Continuous Model

The time evolution of the concentrations of the species in
the set of reactions (19) is governed by the following ADR
equations,

∂xBi

∂t
+∇ · (vxBi

) = D∇2xBi
+RBi

(k,x),

i = 0, 1, 2, 3,
∂xU1

∂t
= −∂xP1

∂t
= −k(xB2xU1 + xB3xU1),

∂xU2

∂t
= −∂xP2

∂t
= −k(xB1xU2 + xB3xU2),

∂xW
∂t

= k(xB1xU1 + xB1xP1 + xB2xU2 +

xB2xP2 + xB3xP1 + xB3xP2),
(20)

where

RB0(k,x) = −k(xB0xU1 + xB0xU2 + xB0xP1 + xB0xP2),
RB1(k,x) = k(xB0xU1 + xB0xP1 − xB1xU2 − xB1xP2),
RB2(k,x) = k(xB0xU2 + xB0xP2 − xB2xU1 − xB2xP1),
RB3(k,x) = k(xB1xU2 + xB1xP2 + xB2xU1 + xB2xP1).

(21)

Our SPH formulation of the system uses a set B of QB
particles with positions ri that move with velocity v and
track the concentrations of robot species, as well as a set
F of QF stationary particles with positions sj that track
the concentrations of flower species and unproductive flower
visits. Each set is arranged on a lattice with particle spacing
∆r = h/h0, where h0 is a constant. The SPH formulation of
model (20), (21) consists of equation (14) with vs′(ri) = v
and vs′(sj) = 0 and the set of equations for dxBk

/dt|ri
, k =

0, 1, 2, 3; dxUl
/dt|sj

, dxPl
/dt|sj

, l = 1, 2; and dxW /dt|sj

that are defined by equation (18). In the reaction rate terms
of equation (18), the concentration of a species s that is
tracked by one set of particles at a particle in the other set
is approximated according to equation (13):

xs(ri) =
QF∑
k=1

xs(sk)
nFk

w(ri − sk, h), s ∈ {Ul, Pl,W}

xs(sj) =
QB∑
k=1

xs(rk)
nBk

w(sj − rk, h), s ∈ {Bm},



where l = 1, 2, m = 0, 1, 2, 3, and nPk is the number of
particles in set P per unit volume evaluated at particle k. We
define the kernel w as a cubic spline with compact support
and a shape similar to a Gaussian:

w(rij , h) = γ ·


2
3 −R

2 + 1
2R

3 if 0 ≤ R < κ/2
1
6 (2−R)3 if κ/2 ≤ R < κ
0 if R ≥ κ

(22)
where R = ||rij ||/h and γ = 15

7πh2 in two dimensions. This
function has been widely used in the SPH literature [21].

Because the lattice spacings do not change over time,
we can precompute the identities of a particle’s neighbors
in its lattice (i.e., those within the support domain of the
kernel w), as well as all quantities derived from its distance
to its neighbors. In general, however, these variables must
be updated at every iteration. The initial nonzero species
concentrations are xB0(ri) = 1 at B particles within the
hive region and xUk

(sj) = x0
Uk

at F particles in the rows of
cultivar k ∈ {1, 2}. At each timestep, the particle positions
and concentrations are computed by numerically integrating
the SPH equations using the Euler method.

C. Results

For the analysis in this section, we ran the micro-
continuous model and the SPH formulation of the macro-
continuous model with ∆t = 0.002 s. The micro-continuous
model used a grid of 50×18 cells over the domain [0 50] ft×
[0 18] ft. In the SPH method, set B was comprised of a
lattice of 53× 35 particles that initially covered the domain
[−11 15] ft× [0 17] ft, and set F was a lattice of 101 × 37
particles that covered the domain [0 50] ft×[0 18] ft. Using
the suggested values of h0 = 1.2 and κ = 2 [21] as a
guideline, we defined h0 = 2 and κ = 2.

1) Accuracy of the Macro-Continuous Model: To verify
that the macro-continuous model is an accurate abstraction
of the system, we compared concentrations computed by the
micro- and macro-continuous models for the four parameter
sets in Table I. The quantity σ/(v∆t) is a ratio of diffusive
to deterministic robot motion per timestep, where v and
σ are subject to the flight speed constraint in Section IV-
A. The micro-continuous model simulated 104 robotic bees.
Fig. 2 and 3 show that there is a close match between the
concentrations of B3, P1, P2, and W computed by the two
models at specified times for parameter sets 1 and 2. Note
that raising σ/(v∆t) results in a broader pollinated region
and higher maximum concentrations of both pollinated flow-
ers and unproductive flower visits. The first row of cultivar
1 is not pollinated because the robots visiting that row have
not yet acquired pollen from cultivar 2.

We quantify the degree of closeness between the models
with the error metric µs = 1

G ||x
micro
s − xmacros ||1, where

xmicros is the vector of concentrations of species s computed
at each of the G cell centers in the micro-continuous model
and xmacros is the corresponding vector computed at SPH
particles in set F that overlap the cell centers. Fig. 4 shows
that the concentration fields of P1 and P2 computed with

TABLE I
PARAMETERS USED IN THE MICRO- AND MACRO-CONTINUOUS MODELS

Set v (ft/s) D (ft2/s) k σ/(v∆t)
Par 1 8.20 0.01681 10 0.5
Par 2 3.28 0.04303 10 2
Par 3 8.20 0.01681 5 0.5
Par 4 3.28 0.04303 5 2

Fig. 2. Snapshots of the concentration distributions of B3 at time t = 3 s
and P1, P2, and W at t = 6 s over subsets of the domain [0 50] ft ×
[0 18] ft. Concentrations were computed for parameter set 1 using the
micro-continuous model (left column) with 104 robots and the SPH method
(right column).

parameter sets 3 and 4 have similar degrees of closeness to
those that are visually compared in Fig. 2 and 3, respectively.

2) Macro-Continuous Model as a Tool for Top-Down
Design: The correspondence between the micro- and macro-
continuous models demonstrates that the macro-continuous
model can be used to design the parameters v, D, and k
that will produce desired collective behaviors in the physical
system. The advantage of using the macro-continuous model
for this purpose is that, unlike the micro-continuous model,
its computational time is invariant to the sizes of the species
populations. Fig. 5 demonstrates this advantage with the ratio
of τmicro, the runtime on a standard 2.53 GHz laptop per
iteration of the micro-continuous model averaged over 201
iterations in the interval t = 1.6 − 2.0 s, to τmacro = 1.42
s, the same quantity in the macro-continuous model. As the
number of robots N increases above ∼ 3000, it is faster to
run the macro-continuous model.



Fig. 3. Snapshots of the concentration distributions of B3 at time t = 7.5 s
and P1, P2, and W at t = 15 s over subsets of the domain [0 50] ft ×
[0 18] ft. Concentrations were computed for parameter set 2 using the
micro-continuous model (left column) with 104 robots and the SPH method
(right column).

Hence, for very large populations, it is more suitable to
use the macro-continuous model in an optimization technique
such as a Monte Carlo method to compute the parameters
that maximize some metric of success. We illustrate this
concept by using the macro-continuous model to find the
value of k that maximizes a metric of pollination efficiency
for fixed v and D. Computing the mass of species s ∈
{U1, U2, P1, P2,W} as Ms =

∑QF

j=1 xs(sj)/n
F
j , the total

mass of flowers is M0 ≡ MU1 +MU2 +MP1 +MP2 . We
define ηpoll as the mass fraction of pollinated flowers,
(MP1 + MP2)/M0, and ηwaste as the ratio of the “mass”
of unproductive flower visits to the total mass of flowers,
MW /M0. Thus, ηpoll/ηwaste is a measure of the number of
pollination events to the number of unproductive visits. As
Fig. 6 shows, this metric is a maximum at k = 3 and then
decreases below 1 for k > 9, since ηwaste increases faster
than ηpoll.

V. CONCLUSIONS AND FUTURE WORK

We have described an approach to synthesizing robot
control policies that produce a target collective behavior in a
spatially inhomogeneous swarm that emulates an advection-
diffusion-reaction chemical system. Our approach relies on
a rigorous correspondence between two models of a swarm.
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Fig. 4. Normalized errors µP1 , µP2 over time for all four parameter sets
and 104 robots. Each plot ends at a time t when the robotic bees have
covered an average x distance slightly larger than vt = 50 ft, the width
of the field.
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Fig. 5. Ratio of averaged runtimes per iteration in the micro- and macro-
continuous models versus number of robots N for parameter set 1.

The micro-continuous model offers a realistic representation
of individual robot activities and captures variability in
macroscopic outcomes that an actual system would produce
over multiple trials. However, it becomes more computation-
ally intensive to run as the swarm population is increased,
and studying the effect of parameter variation requires simu-
lations under many different conditions. These factors moti-
vate us to abstract the system to a macro-continuous model,
which is independent of the population size and amenable to
techniques for analysis, control, and optimization that yield
theoretical guarantees on performance. This model becomes
a more accurate description as the swarm population in-
creases, and it does not capture variability in performance.
Using the application of commercial pollination with robotic
insects, we demonstrate the utility of this model in designing
the parameters that govern the deterministic and random
components of the robot motion and the robot probabilistic
task transitions.

Future work includes the investigation of analysis and
controller synthesis methodologies for the PDE macro-
continuous model. These may include nonlinear stability
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Fig. 6. Values of pollination metrics ηpoll, ηwaste, and ηpoll/ηwaste

computed at t = 6.2 s using the macro-continuous model over a range of
k with v = 8.20 ft/s, D = 0.01681 ft2/s.

analysis, nonlinear and robust control methods for parabolic
PDE’s, and stochastic optimization techniques. Parameter
optimization in higher dimensions can be facilitated by
speeding the simulation execution time with parallelization
of the SPH code [21] and the optimization technique.

We are also interested in applying our controller syn-
thesis methodology to expanded models of the pollination
scenario. We would like to model different hive placements,
more complex velocity fields, time delays associated with
pollination, and inter-robot communication. We can add
unimolecular reactions that represent a robotic bee failing
in the field or returning to the hive at a time-dependent rate
that is related to its energy consumption. The flower visit
rate constants can be modified to vary with time, depend
on the presence of pollen on a robot, and incorporate the
probability of fertilization given pollination [34]. Finally, we
would like to include feedback from the robots about their
flower visits upon their return to the hive. The hive computer
would use this data to recalculate the parameters for the next
round of flights to produce robot behavior that compensates
for pollination deficiencies due to environmental disturbances
and robot failures.
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