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Abstract: The effects of a job-training program on both employment and wages are evaluated,

using data from a randomized study. Principal stratification is used to address, simultaneously,

the complications of noncompliance, wages that are only partially defined because of nonem-

ployment, and unintended missing outcomes. The first two complications are of substantive

interest, whereas the third is a nuisance. The objective is to find a parsimonious model that can

be used to inform public policy. We conduct a likelihood-based analysis using finite mixture

models estimated by the EM algorithm. We maintain an exclusion restriction assumption for

the effect of assignment on employment and wages for noncompliers, but not on missingness.

We provide estimates under the Missing at Random assumption, and assess the robustness of

our results to deviations from it. The plausibility of meaningful restrictions is investigated by

means of scaled log-likelihood ratio statistics. Substantive conclusions include the following.

For compliers, the effect on employment is negative in the short term; it becomes positive in

the long term, but these effects are small at best. For always employed compliers, i.e., com-

pliers who are employed whether trained or not trained, positive effects on wages are found

at all time periods. Our analysis reveals that background characteristics of individuals differ

markedly across the principal strata. We found evidence that the program should have been

better targeted, in the sense of being designed differently for different groups of people, and

specific suggestions are offered. Previous analyses of this data set, which did not address all

complications in a principled manner, led to less nuanced conclusions about Job Corps.
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1 The Job Corps Study and its complications

Evaluations of government-sponsored job-training programs have typically been undertaken using

data from nonrandomized studies (e.g., Dehejia and Wahba, 1999). Some social experiments have

also been conducted, because a perfect randomized experiment is the generally accepted tool to

infer causal effects, although this topic has been the subject of debate in the economic literature

(e.g., Heckman et al., 1999; Deaton, 2010; Heckman, 2010; Imbens, 2010).

In a randomized experiment, units are randomly assigned to the treatment group or to the con-

trol group, which ensures that treated and control units have the same expected distribution of

all pre-randomization individual characteristics. Experiments, however, and social experiments in

particular, often suffer from a number of substantially relevant complications, most notably non-

compliance with assigned treatment and partially defined outcomes (e.g., quality of life when dead,

called truncation by death, Rubin, 2000, 2006; McConnell et al., 2008), as well as unintended

missing outcomes. The presence of such complications can shift the focus to causal estimands that

differ from the ones the experiment was originally designed to address, but the randomization still

allows one to estimate some original causal effects for specific subgroups.

Here, we evaluate the effects of Job Corps, which is the largest, most comprehensive US ed-

ucation and job training program for disadvantaged youths between the ages of 16 and 24, using

data from a randomized study, the National Job Corps Study, conducted by Mathematica Policy

Research, Inc., involving a national random sample of all eligible applicants in late 1994 and 1995.

Sampled youths were assigned randomly to the program (treatment) group (9, 409) or the control

group (5977), which was essentially embargoed from the program for three years. Interviews were

planned at three subsequent points in time: 52, 130, and 208 weeks after random assignment. We

focus on the effect of the program on employment and wages at these specific weeks.

Regarding the three complications, first, compliance with assigned treatment was imperfect,
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with only 68% of those assigned to the program group immediately enrolling (within the first

semester after assignment) and participating in the program for at least 1 week. Second, wages

are not well defined for those who are not employed. Third, outcome variables are missing for

some participants in the study at the various weeks. Most previous analyses of these data ignored

noncompliance by focusing on intention-to-treat effects of being offered participation in Job Corps

(Lee, 2009; Flores-Lagunes et al., 2007; Flores and Flores-Lagunes, 2009; Zhang et al., 2009);

an exception is Schochet (2001), who estimated average effects for compliers using the standard

econometric IV estimator of LATE (Imbens and Angrist, 1994), also called the Complier Average

Causal Effect (CACE, Imbens and Rubin, 1997). However, all previous analyses dropped units

with unintended missing outcomes, restricting the analysis to the subsample of individuals who

both completed the 208-week interview and had no missing relevant outcome values on employ-

ment and wages (Burghardt et al., 2003; Lee, 2009; Zhang et al., 2009; Flores and Flores-Lagunes,

2009), thereby implicitly assuming that the missing data mechanism was Missing Completely at

Random (MCAR; Little and Rubin, 2002).

In our analysis, we include all randomized units and explicitly address all three complications.

The framework we adopt uses potential outcomes to define causal effects regardless of the mode

of inference, often referred to as the Rubin Causal Model (RCM; Holland, 1986); causal effects

are defined by comparisons of potential outcomes on a common set of units (Rubin, 1974, 1978,

2005). We apply Principal Stratification (PS; Frangakis and Rubin, 2002), which was originally

introduced to address post-treatment complications within the RCM. PS has often been used to

represent and solve single complications, but few papers have dealt with more than one complica-

tion simultaneously. In general, the analysis is more complicated than that in the presence of each

of the complications separately, and complexity tends to grow exponentially with the number of

distinct complications.

The three complications have different implications for causal analysis. Specifically, noncom-

pliance and partially defined outcomes limit meaningful estimands to particular principal strata,

and so require new definitions of causal estimands. Missing outcomes are tackled within the same

general framework, but, in contrast, the parameters governing the missingness are considered to
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be nuisance parameters. Because access to Job Corps was essentially denied to those assigned to

the control group, we define compliers to be those individuals who would have immediately en-

rolled if offered the program and all others noncompliers. We further classify the individuals into

principal strata according to the joint values, when assigned to be trained and when assigned not to

be trained, of their (1) potential compliances, (2) potential employment statuses, and (3) potential

missingness behaviors.

Our primary causal estimands are: the average causal effect on employment for compliers and

the average causal effect on wages for the always-employed compliers (i.e., those compliers who

would be employed irrespective of treatment assignment), and those estimands within subgroups

defined by observed characteristics. Other policy-relevant estimands are the relative sizes of the

various principal strata and, when employed, the within-principal-stratum distributions of wages,

under treatment or under control, as well as the distribution of covariates within principal strata.

We proceed as follows. Section 2 presents some descriptive statistics, showing how some

naive conclusions regarding the effects of the program can be misleading. Section 3 discusses

the framework needed to address the three complications simultaneously. Section 4 outlines the

likelihood approach used to characterize the effects of Job Corps. Section 5 presents the results of

the empirical analysis and provides some concluding remarks.

2 General considerations and descriptive univariate summaries

For all units in the National Job Corps Study, covariates, variables unaffected by treatment assign-

ment, were collected (X). Some subpopulations defined by X were randomized into the program

versus control group with varying, but known, probabilities. We use all units from the original

research sample: we eliminated only the few units who did not complete the baseline interview,

the units who died during the follow-up, and the units who, although assigned to the control group,

were admitted to the program and excluded from the Job Corps study.

Summary statistics for many of the covariates used in our analysis are displayed in Table 1

(N = 13, 987), and reveal some missing values. We addressed this missing data problem using
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the MICE (van Buuren and Oudshoorn, 1999) procedure in R to multiply impute the incomplete

multivariate data. We used only the baseline covariates as predictors in the chained equations, and

included as fully observed covariates indicators of missingness for each of the covariates with a

percentage of missing values above 20%. Linear regressions were used for numerical covariates;

binary/multinomial logistic models for dichotomous/polytomous variables. Ten different imputa-

tions were generated; given the very small variability of results across multiple imputations, as

found also in Zhang et al. (2009), we only present the results from one singly imputed data set

(Rubin, 1987).

Table 2 presents summary statistics for compliance and outcome variables: employment, total

earnings, weekly hours, and hourly wages at the three follow-up interviews. We use a single

missing data indicator at each time point because hours worked (employment status) and wages

are nearly always either both observed or both missing. There is actually a small number of units

(38, 34, 60 at the three weeks, respectively) for whom the employment status is observed but

information on wages is partially missing (e.g., wages are known only for some jobs but not for

others). For these situations, wages were constructed using the same imputation strategy used by

Schochet (2001) in the publicly released data for the subsample of respondents to the 208-week

interview.

Some naive conclusions about the effects of the training program can be drawn from Table

2. For example, by comparing the employment rate of respondent treated units with that of re-

spondent control units, we observe a negative effect at week 52 (−6%), and a small but positive

effect at weeks 130 and 208 (2% and 4%, respectively). These contrasts can be formally inter-

preted, however, neither as estimates of the effect of participation in the program, because they

neglect noncompliance, nor as estimates of ITT effects, because they also neglect nonresponse,

unless under the implausible MCAR assumption. Similarly, we can naively compare the average

hourly wage of respondent employed treated units with that of respondent employed control units,

showing positive effects on wages ranging from 0.24 $/hour to 0.34 $/hour. Again, these estimates

neglect missing data, noncompliance, and partially defined wages due to nonemployment, thus

contrasting averages in groups that are not comparable. Some additional informal comparisons can
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be computed in the form of moment-based IV estimates of local average treatment effects (LATEs,

Imbens and Angrist, 1994), as the ratio of ITT effects for outcomes (i.e., comparisons by treatment

assignment) to the proportion of compliers, still neglecting missing data. For employment, these

estimated LATEs are equal to −0.10, 0.03, and 0.06 at week 52, 130 and 208, respectively. In the

case of wages, estimated LATEs were computed using only the employed units, thus neglecting

missing outcomes and partially defined wages; they are 0.43, 0.48, and 0.34 $/hour at the three

weeks respectively.

3 Technical framework

3.1 General setup

Consider a large hypothetical super-population of individuals, each of whom can potentially par-

ticipate in Job Corps and be assigned treatment z, with z = 1 for active treatment (i.e., offered

enrollment in Job Corps), z = 0 for control. A probability sample of N individuals from this

super-population comprises the participants in the study.

We adopt the Rubin Causal Model as a framework to define causal effects. Assuming SUTVA

(Stable Unit Treatment Value Assumption; Rubin, 1978, 1980, 1990), we define, for each unit i and

each post-treatment variable, two potential outcomes, each associated with one of the two treatment

levels that unit i can potentially receive. SUTVA states that potential outcomes for individual i are

unaffected by the treatment assignments of other individuals (no interference), and, for each unit,

that there are no hidden versions of treatment or control being considered.

It is, in principle, feasible to use the PS framework to analyze the three weeks jointly; this,

however, would imply a far larger number of possible principal strata and a consequent growing

complexity of model specification and inference (as in Jin and Rubin, 2009). Although we consider

each of the three weeks independently, our model is still quite complicated. Compared to analyses

conducted by others, however, ours allows one to compare results over the three weeks under

study, because all three are derived using all randomized units, without restriction to those with

complete outcome data at the different weeks (available-case analysis). For unit i, we let Di(1)
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denote the binary compliance indicator when assigned treatment; i.e., Di(1) = 1 implies unit i

would immediately enroll in Job Corps if offered it, and Di(1) = 0 otherwise; Di(0) = 0 ∀i

by definition, and so is suppressed notationally; Di(1) = 1, 0 implies that the ith unit “does” or

“does not” do as assigned. Compliance status does not change over time by definition and can be

considered a covariate, which is not observed for units assigned to the control group. As for the

other post-assignment variables, we suppress notation for the three outcome periods. Respectively,

let S i(z), Wi(z), and Mi(z) represent the potential employment status indicators (1 = employed, 0 =

nonemployed; “S ” for “salaried”), the potential wages, and the potential missingness indicators,

if individual i is assigned to treatment z, z = 0, 1. Following Zhang et al. (2008), because wages

are well-defined only if S i(z) = 1, we define the wages to be Wi(z) = ∗ when S i(z) = 0. In our

study, wages and employment status are either both observed or both missing, so that Mi(z) = 0

when S i(z) and Wi(z) are both observed, and Mi(z) = 1 when S i(z) and Wi(z) are both missing and

are coded as “?”. Individual causal effects are defined as comparisons of potential outcomes, e.g.,

Mi(1) − Mi(0), S i(1) − S i(0), and Wi(1) −Wi(0), where this last quantity is defined to be ∗ if either

Wi(1) or Wi(0) is ∗. At most three of the six potential outcomes are observed, those corresponding

to the treatment level to which unit i is assigned.

The distribution of Z conditional on the observable potential outcomes and observed covariates

defines the assignment mechanism, which allows us to draw inferences about causal estimands

from the observed data. The random assignment of Z in our study within subpopulations defined

by X means that:

Pr (Z|D(1),S(0),S(1),W(0),W(1),M(0),M(1),X) = Pr (Z|X) , (1)

where the bold indicates column vectors of the corresponding unit indicators (e.g., Z = (Z1, ..., ZN)T ).

The observable potential outcomes for a sampled unit are a joint draw from the super-population

distribution. Their distribution is, by definition, unit exchangeable, that is, invariant under a per-

mutation of the unit indices. Therefore, appealing to deFinetti’s theorem, with essentially no loss

of generality, their joint distribution can be written as (Rubin, 1978):

f (D(1),S(0),S(1),W(0),W(1),M(0),M(1),X) = (2)
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∫ ∏

i

f (Di(1), S i(0), S i(1),Wi(0),Wi(1),Mi(0), Mi(1)|Xi, θ) f (Xi|ϕ)p(θ)p(ϕ)dθdϕ,

where the global parameter θ has prior distribution p(θ), and the parameter ϕ governing the distri-

bution of X, is a priori independent of θ. In what follows we will conduct a likelihood analysis for

θ, assuming the value of θ that governed the distribution of observable data has been drawn from a

prior distribution with compact support.

In this framework, D, S, and M play the role of intermediate variables, which allow us to clas-

sify units into some principal strata, which are generally latent. Ignoring, for now, the missingness

mechanism, units can be cross-classified by compliance status and employment status: [{c, n}×
{EE, EN,NE,NN}], into eight groups, where we define:

• c = {i : Di(1) = 1}, the subpopulation of compliers;

• n = {i : Di(1) = 0}, the subpopulation of noncompliers;

• EE = {i : S i(1) = S i(0) = 1}, those who would be employed regardless of their treatment

assignment; for this stratum, Wi(1) and Wi(0) are defined in<+;

• EN = {i : S i(1) = 1 and S i(0) = 0}, those who would be employed only if assigned treatment;

for this stratum, Wi(1) ∈ <+ and Wi(0) = ∗;

• NE= {i : S i(1) = 0 and S i(0) = 1}, those who would be employed only if assigned to the

control group; for this stratum, Wi(1) = ∗ and Wi(0) ∈ <+;

• NN = {i : S i(1) = S i(0) = 0}, those who would be nonemployed regardless of their treatment

assignment; for this stratum, Wi(1) = Wi(0) = ∗.

Without additional assumptions, group membership for unit i, Gi = (Di(1), S i(0), S i(1)), which

takes on values in {c&EE, c&EN, c&NE, c&NN, n&EE, n&EN, n&NE, n&NN}, is unobserved

for all units; by the randomization, however, the eight types have, in expectation, the same distri-

bution in both treatment groups. The strata can be considered covariates unaffected by treatment

assignment, so that, in the same way randomization allows us to compare treated and control units

with the same values of any X variable (e.g., females), we can compare treated and control units
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belonging to the same principal stratum. The only complication is that principal strata can, in

general, be only partially observed, so that conditioning on principal strata is not as simple as con-

ditioning on fully observed covariates. Consequently, assumptions can play far more important

roles with principal strata than with fully observed covariates. Some of these assumptions reduce

the number of principal strata; others impose certain restrictions on the distribution of outcomes

within or among strata: these include various forms of exclusion restrictions.

Without any assumptions on the missingness mechanism, each of the above eight principal

strata is a mixture of four subgroups, according to the pair of potential missing indicators Mi(1),

Mi(0) (units with outcomes never missing (Mi(1) = 0 and Mi(0) = 0), units with outcomes always

missing (Mi(1) = 1 and Mi(0) = 1), units with outcomes missing only under control (Mi(1) = 0

and Mi(0) = 1), and units with outcomes missing only under treatment (Mi(1) = 1 and Mi(0) = 0)).

Among the assumptions about the missing data process proposed in the literature, one that appears

to be plausible in our context is Missing at Random (MAR; Rubin, 1976). MAR cannot be tested

without auxiliary information, and its plausibility depends on the information available in a specific

study. In general, MAR is more reasonable when the set of covariates contains rich information on

units. MAR allows the missingness probabilities to depend on observed values but, given those,

not on any missing values. If MAR holds and the parameters of the missing data mechanism

are distinct from those of the outcome distribution, then the missing data process is said to be

ignorable (Rubin, 1976), meaning that valid likelihood inference ignores the missing data model.

The compliance indicator Di(1) is missing for 1% of units in the treatment group, presumably

due to data coding errors. Throughout, we assume those indicators to be MAR, thus avoiding an

explicit missingness indicator for them.

3.2 Assumptions and estimands

We assume exclusion restrictions for noncompliers for both W and S ; that is, for noncompliers,

potential outcomes do not depend on treatment assignment:

Exclusion restriction for S for noncompliers

If Di(z) = 0 (z = 0, 1), then S i(0) = S i(1).
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Exclusion restriction for W for noncompliers

If Di(z) = 0 (z = 0, 1), then Wi(0) = Wi(1).

These assumptions are substantive ones that may be violated depending on the empirical setting:

Here, they appear rather plausible. The offer to be trained should not alter the activities or the

labour market behavior of those units who are not willing to accept the offer within a reasonable

length of time; in addition, potential employers are plausibly unaware of the assignment status of

noncompliers, so that future job and wage offers cannot be affected by the assignment (see Angrist,

1990, and Angrist et al., 1996, for discussions of possible violations, and see also Schochet, 2001,

for further discussion of them in Job Corps). By virtue of the exclusion restriction on the employ-

ment status, S , we can eliminate the n&EN group and the n&NE group, which would imply an

effect of Z on S for noncompliers. The eight principal strata thus reduce to six: c&EE, c&EN,

c&NE, c&NN, n&EE, n&NN.

Causal estimands of interest are usually, but not always, summaries of individual causal effects

on a common set of units. Here we focus on the following average treatment effects in the super-

population, because participants are randomly drawn from the population of eligible applicants,

and the study has been conducted in order to inform policy makers on the effects of the program

on such target super-populations. Specifically our estimands are:

• the average treatment effect of Z on program participation, D:

∆(ZD) = E[Di(1)|θ] = Pr[Di(1) = 1|θ],

which equals the proportion of compliers in the super-population;

• the average treatment effect of Z on employment, S :

∆(ZS ) = E[S i(1)|θ] − E[S i(0)|θ],

which, by the exclusion restrictions, equals the difference of the proportions of EN and NE

compliers in the super-population

Pr[Gi = c&EN; θ] − Pr[Gi = c&NE; θ];
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• the average treatment effect of Z on employment, S , for compliers, which is usually inter-

preted as the effect of participation, D, on S :

∆(DS ) = E[S i(1)|Di(1) = 1; θ] − E[S i(0)|Di(1) = 1; θ]

= Pr[Gi = c&EN |c; θ] − Pr[Gi = c&NE|c; θ].

In our analysis of JC, the effect of assignment for compliers is interpreted as the effect of

immediate participation in JC relative to non-immediate participation, which may include no

participation in any training program, participation in other training programs available on

the market, or later participation in JC.

• the average treatment effect of Z on wages, W, for the always employed compliers, which is

interpreted as the effect of participation on wages for the always-employed:

∆(DW) = E[Wi(1)|Gi = c&EE; θ] − E[Wi(0)|Gi = c&EE; θ].

In the last two formulas, the expectations are taken over a subset of the entire super-population, the

compliers for ∆(DS ) and the always-employed compliers for ∆(DW).

The relative sizes in the population of the six principal strata are themselves relevant descriptive

estimands:

Pr[Gi = g|θ], g ∈ G.

All previous estimands can be defined also conditional on specific values of some of the covariates.

Policy-relevant information can also be obtained from our likelihood analysis about the distribution

of baseline characteristics within each principal stratum, for example, the means of the covariates

within strata:

µX,g = E[Xi|Gi = g; θ], g ∈ G.

The ability to characterize the latent subgroups of units in terms of their initial conditions is an

advantage of the approach we adopt, and may be particularly useful for targeting future interven-

tions.
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4 Mode of inference

4.1 Observed groups of units

Inference can be viewed as a missing data problem, because we cannot observe which stratum

each unit belongs to. For each unit i, the treatment assignment indicator Zi and the covariates Xi

are always observed. Further, for unit i the other observed values are Mi(Zi) = Mi,obs; if Mi(Zi) = 0,

S i(Zi) = S i,obs and Wi(Zi) = Wi,obs; and for 99% of the units, we also observe Di(1) when Zi = 1.

We denote by D(1), Mobs, Sobs and Wobs the corresponding vectors of observed values; note that

if Mi,obs = 1 then S i,obs =? and Wi,obs =?; if S i,obs = 0 then Wi,obs = ∗; if Z1 = 0 then Di(1) =?; if

Zi = 1 and Di(1) is missing, then Di(1) =?.

Among units with observed outcomes, we can observe the following groups, defined according

to different combinations of observed Z, D and S :

• O(1, 1, 1) = {i : Zi = 1,Di(1) = 1 and S i,obs = 1}, those who are assigned to the treatment

group, take the treatment, and are employed; they are a mixture of the two principal strata

c&EE and c&EN;

• O(1, 1, 0) = {i : Zi = 1,Di(1) = 1 and S i,obs = 0}, those who are assigned to the treatment

group, take the treatment, and are nonemployed; they are a mixture of the two principal strata

c&NE and c&NN;

• O(1, 0, 1) = {i : Zi = 1,Di(1) = 0 and S i,obs = 1}, those who are assigned to the treat-

ment group, do not comply with assignment, and are employed; they belong to the principal

stratum n&EE;

• O(1, 0, 0) = {i : Zi = 1,Di(1) = 0 and S i,obs = 0}, those who are assigned to the treatment

group, do not comply with assignment, and are not employed; they belong to the principal

stratum n&NN;

• O(1, ?, 1) = {i : Zi = 1,Di(1) =? and S i,obs = 1}, those who are assigned to the treatment

group, with missing compliance status, and are employed; they are a mixture of the three
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principal strata c&EE, c&EN, n&EE;

• O(1, ?, 0) = {i : Zi = 1,Di(1) =? and S i,obs = 0}, those who are assigned to the treatment

group, with missing compliance status, and are not employed; they belong to the three prin-

cipal strata c&NE, c&NN, n&NN;

• O(0, ?, 1) = {i : Zi = 0,Di(1) =? and S i,obs = 1}, those who are assigned to the control group

and are employed; they are a mixture of the three principal strata c&EE, c&NE, n&EE;

• O(0, ?, 0) = {i : Zi = 0,Di(1) =? and S i,obs = 0}, those who are assigned to the control group

and are not employed; they are a mixture of the three principal strata c&EN, c&NN, n&NN.

For units with missing outcomes, the values of S and W are not observed; the observed groups are:

• O(1, 1, ?) = {i : Zi = 1,Di(1) = 1 and S i,obs =?}, those who are assigned to the treatment

group and take the treatment; they are a mixture of the four principal strata c&EE, c&EN,

c&NE, c&NN;

• O(1, 0, ?) = {i : Zi = 1,Di(1) = 0 and S i,obs =?}, those who are assigned to the treatment

group and do not comply with assignment; they are a mixture of the two principal strata

n&EE, n&NN;

• O(0, ?, ?) = {i : Zi = 0,Di(1) =? and S i,obs =?}, those who are assigned to the control group

and therefore have unknown compliance status; they are a mixture of all the principal strata

in G.

In Table 3, the correspondence between observed and latent groups is summarized.

4.2 Distributions for groups and potential outcomes given covariates

In order to form the likelihood function, we need to specify, first, a model for the principal stratum

membership, G, given X and, second, the distribution of the potential wages conditional on G and

X. Note that X includes all the covariates, as defined in Table 1. For the covariates with a proportion
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of missing data larger than 20% (parents’ education and household income), we also included

the missing indicators as well as interaction terms of those indicators with the covariates. The

missing indicators may capture some salient features of the subjects: e.g., ignorance of parents’

education may be associated with loss, absence of the parents’ influence or extremely low parent’s

education, and thus may indicate a more disadvantaged situation. For the same reasons, missing

indicators of these three variables were also used as fully observed covariates in the initial multiple

imputation of missing covariates’ values. Following Zhang et al. (2009), design weights are

also included as a covariate in the models. By integrating the complete-data likelihood over the

missing potential outcomes, under MAR, the observed data likelihood function is a finite mixture

model likelihood (see, e.g., Imbens and Rubin, 1997), which can be maximized using the EM

(Expectation-Maximization) algorithm (Dempster, Laird and Rubin, 1977). The steps of the EM

algorithm used in the estimation procedure are derived and presented in the Appendix.

To simplify the notation, we assume that X includes the constant term – that is, a column

containing the unit vector. We specify a multinomial logistic model for the k-dimensional vector

of principal strata memberships:

Pr(Gi = g|Xi;α) =
exp{Xiαg}∑k

h=1 exp{Xiαh}
= πi:g

where g ∈ G, and the kth principal stratum (n&NN) is taken as the baseline (that is, αk = 0), and

let πi:g be the probability of belonging to stratum g for unit i, given the vector of pre-treatment

covariates Xi. Alternative specifications, such as sequential logistic models, multinomial probit

models, or their t-based extensions (Liu, 2004), could also be used.

We specify a Normal distribution for log-wages conditional on covariates X:

i f Gi = c&EE, log[Wi(1)] ∼ N(Xiβc&EE,1, σ
2
c&EE,1),

log[Wi(0)] ∼ N(Xiβc&EE,0, σ
2
c&EE,0),

i f Gi = c&EN, log[Wi(1)] ∼ N(Xiβc&EN,1, σ
2
c&EN,1),

i f Gi = c&NE, log[Wi(0)] ∼ N(Xiβc&NE,0, σ
2
c&NE,0),

i f Gi = n&EE, log[Wi(1)] ∼ log[Wi(0)] ∼ N(Xiβn&EE, σ
2
n&EE).
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Notationally, we let Ni(µ, σ) be the probability density function of a Normal distribution with mean

µ and variance σ evaluated at log(Wi). Zhang et al. (2009) already showed, for the same study, that

alternative Box-Cox transformations (other than the logarithmic one and corresponding to different

parametric families of distributions for wages) do not alter results significantly; so we maintained

the assumptions of log-normality of wages conditional on principal strata, treatment assignment

and a large set of covariates.

For the c&EE group, the parameters of the wage distribution vary between the treatment

groups; for the c&EN group, wages are only defined on <+ if Zi = 1; for the c&NE group,

wages are only defined on <+ if Zi = 0. The exclusion restriction implies that for the n&EE

group, the distribution of wages is the same in the two treatment groups, therefore the parameters

of their wage distributions are restricted to be the same irrespective of treatment assignment. For

the c&NN and n&NN groups, there are no associated wage distributions defined on<+ (i.e., they

are ∗).
We denote by θsci = {α,β,σ} the vector parameter of scientific interest, a function of θ assumed

to be distinct from the function of θ, θmis, governing the missingness mechanism, where

α = (αc&EE,αc&EN ,αc&NE,αc&NN ,αn&EE),

β = (βc&EE,1,βc&EE,0,βc&EN,1,βc&NE,0,βn&EE),

σ = (σc&EE,1, σc&EE,0, σc&EN,1, σc&NE,0, σn&EE).

Assuming MAR, the observed data likelihood function is proportional to the joint distribution of

(D(1),Sobs,Wobs|Z,X, θsci):

L(θsci|D(1),Sobs,Wobs,Z,X) ∝
∏

i∈O(1,1,1)

[
πi:c&EENi(Xiβc&EE,1, σ

2
c&EE,1) + πi:c&EN Ni(Xiβc&EN,1, σ

2
c&EN,1)

]

×
∏

i∈O(1,1,0)

[πi:c&NE + πi:c&NN] ×
∏

i∈O(1,0,1)

[
πi:n&EENi(Xiβn&EE, σ

2
n&EE)

]
×

∏

i∈O(1,0,0)

[πi:n&NN]

×
∏

i∈O(1,?,1)

[
πi:c&EENi(Xiβc&EE,1, σ

2
c&EE,1) + πi:c&EN Ni(Xiβc&EN,1, σ

2
c&EN,1) + πi:n&EENi(Xiβn&EE,1, σ

2
n&EE,1)

]
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×
∏

i∈O(1,?,0)

[πi:c&NE + πi:c&NN + πi:n&NN]

×
∏

i∈O(0,?,1)

[
πi:c&EENi(Xiβc&EE,0, σ

2
c&EE,0) + πi:c&NENi(Xiβc&NE,0, σ

2
c&NE,0) + πi:n&EENi(Xiβn&EE, σ

2
n&EE)

]

×
∏

i∈O(0,?,0)

[πi:c&EN + πi:c&NN + πi:n&NN]

×
∏

i∈O(1,1,?)

[πi:c&EE + πi:c&EN + πi:c&NE + πi:c&NN] ×
∏

i∈O(1,0,?)

[πi:n&EE + πi:n&NN] .

The units in the O(0, ?, ?) group do not carry any information and vanish from the likelihood

function (because
∑

g πi:g = 1). The likelihood function of normal mixture models is not a bounded

function on the usual parameter space (Kiefer and Wolfowitz, 1956; Day, 1969). However, in

spite of this unboundedness, Peters and Walker (1978) prove that, given any sufficiently small

neighborhood of the true parameter, with probability one, the MLE exists, it is unique and it is

(locally) strongly consistent. Redner (1981) proves that the MLE exists and it is globally consistent

in every compact parameter subset containing the true value of the parameter. Consequently, we

can exploit standard mixture model analysis (e.g., see Titterington et al., 1985) for identification

and inference. Except in the very special case when the proportions of the mixture components

are the same, we can uniquely estimate the mixture parameters (see also Everitt and Hand, 1981,

Gelman et al., 2004, and Zhang et al., 2009).

As a robustness check, alternative nonignorable missingness assumptions are considered in

the empirical analysis, based on different behavioral hypotheses on the missingness mechanism.

Details on these assumptions and the ML analysis under them are presented in the Appendix.

4.3 Estimation of causal estimands

Causal effects are estimated in each principal stratum as functions of the observed data and the

ML estimates of parameters, averaging over the estimated population distribution of covariates in

that principal stratum using the design weights to weight the N units in the sample to represent the

superpopulation. More explicitly, letting π̂i:g = Pr(Gi = g|Xi, α̂), we estimate the proportion in

each stratum as

π̂g =

∑N
i=1 ωiπ̂i:g∑N

i=1 ωi
,
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where ωi are design weights in the original survey. Then, the causal effect of Z on D is estimated

as the proportion of compliers: ∆̂(ZD) = π̂c&EE + π̂c&EN + π̂c&NE + π̂c&NN = π̂c, and the causal effect

of Z on S is estimated as the difference of the estimated proportions of EN and NE compliers:

∆̂(ZS ) = π̂c&EN − π̂c&NE. Similarly, estimates of the average treatment effects on employment for

compliers, and on wages for always-employed compliers are obtained as:

∆̂(DS ) =
π̂c&EN − π̂c&NE

π̂c

and

∆̂(DW) =

∑N
i=1 ωiπ̂i:c&EE exp

{
Xiβ̂c&EE,1 + 1

2σ̂
2
c&EE,1

}
∑N

i=1 ωiπ̂i:c&EE
−

∑N
i=1 ωiπ̂i:c&EE exp

{
Xiβ̂c&EE,0 + 1

2σ̂
2
c&EE,0

}
∑N

i=1 ωiπ̂i:c&EE

respectively.

In order to characterize the latent subgroups, the means of the covariates within each principal

stratum are estimated as follows:

µ̂X,g =

∑N
i=1 ωiπ̂i:gXi∑N

i=1 ωiπ̂i:g
.

By using the estimated principal strata membership proportion π̂i:g, we are implicitly imputing the

potential outcome for given ωi and Xi an infinite number of times, thus estimating superpopulation

parameters. If the asymptotic covariance matrix of the estimates were obtained, the asymptotic

standard errors of the above quantities could be computed using the Delta method or methods such

as the SEM algorithm (Meng and Rubin, 1991). However, even in relatively large samples, the

sampling distribution of ML estimators is usually not well approximated by the standard asymp-

totic normal distribution because the likelihood function for mixture models is generally not close

to normal. For this reason, we focussed on comparisons of the maximized likelihood function

under the general model and under various meaningful restrictions using a direct likelihood ap-

proach advocated in some situations by Fisher (1921), Barnard et. al (1962), Barnard (1965),

Hacking (1965), Edwards (1972), Royall (1997), and recently discussed in Boyles (2008) and used

in Zhang et al. (2009) in a related problem.
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5 Likelihood-based estimation: results

5.1 Likelihood estimation of causal estimands under MAR

We discuss results obtained by maximizing the likelihood function and provide ML estimates of

the average treatment effects on employment (∆(DS )) and wages (∆(DW)) for each week separately,

together with the estimated proportions of the principal strata, as described in Section 4.3. We do

not report maximum likelihood estimates of the model parameters, which are however available

upon request from the authors. Most of the covariates’ coefficients have the expected sign; for

example, higher educated people tend to have higher wages irrespective of their principal stratum.

We also compare the maximized likelihood under the general model with the maximized likeli-

hoods under three meaningful restrictions: (a) monotonicity of employment: πc&NE = 0; (b) no

effect of assignment on employment for compliers: ∆(DS ) = 0; and (c) no effect of assignment on

wages for the always-employed compliers: ∆(DW) = 0. Specifically, Table 4 presents values of the

scaled log-likelihood ratio statistic, λ, for the general model versus models with restrictions, cal-

culated as −2log(Λ)/d f , where Λ is the ratio of the maximized likelihood under the general model

and under a model with specific restrictions, and where d f is equal to the difference of the number

of parameters in the models. A strong deviation of this quantity from one provides evidence that

the corresponding restriction is not supported by the data.

The overall results on average causal estimands suggest the following summaries.

First, monotonicity of employment is not supported by the data at any week (see the values

of λM in Table 4), suggesting that all assumed six latent strata exist, and that there is a positive

proportion of compliers, πc&NE, for whom training appears detrimental in terms of employment. A

possible conjecture is that these people might have raised their reservation wages as a consequence

of training, and refuse job offers that would be accepted with no training. As expected, the pro-

portions of c&NE decreases over time, and the non-negligible percentage of them four years after

assignment may be simply due to the structural mobility in and out of employment of American

youths.

Second, the proportions of πc&NE and πc&EN appear to be roughly equal to each other at all three
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time points, thus suggesting that the average effect of assignment on employment for compliers is

absent. In fact, the restriction of no average effect of assignment on employment appears to be

plausible at all three weeks (see the values of λ0W in Table 4). However, the point estimates of

these effects are larger than the ITT effects on employment found in Zhang et al. (2009) at week

208, which were diluted by noncompliance to treatment assignment. The negative point estimate

of the effect on employment in the short term (of about −2.4% at week 52) and the positive ones in

the long term (of about 2.2% at week 130 and 1.3% at week 208) are consistent with the empirical

literature on the effect of active labor market policies, which suggests that almost all programs

reduce employment in the short run (e.g., Lechner and Wunsch, 2007; van Ours, 2004). Note that,

by looking at the sizes of the two groups of c&NE and c&EN, instead of at the overall effect on

employment for compliers, our analysis offers a more refined understanding of how such a small

estimated effect on employment was produced.

Third, no effect of assignment on wages for the always-employed compliers is rejected by the

data at all weeks (see values of λS 0 in Table 4): From Table 5, we see that the average effect of

assignment on wages is found to be small but positive (about 0.28, 0.25 and 0.29 $/hour at weeks

52, 130 and 208, respectively), corresponding to approximately 4 to 5% increases relative to the

average wage with no JC. Again, this is a different finding from Zhang et al. (2009), where the ef-

fect of assignment on wages for the always-employed at week 208 was found to be negligible, after

discarding units with missing outcomes, thus not adhering to the ITT principle. Note that, although

the effect on employment is ideally estimated for the same group of units over the three weeks, i.e.,

compliers, the effects on wages are for the latent group of the always-employed compliers, which

includes different units at different weeks.

Our results deviate from the naive conclusions one could draw from simple descriptive contrasts

presented in Section 2; naive comparisons and simple IV comparisons, which neglect some of

the complications, appear to overestimate the impact of the program. Differences between these

contrasts and the estimated causal effects are larger at week 208, especially for wages, possibly

due to the larger missingness rate observed at this week.

These are general overall results, which offer information on the effects of assignment for
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compliers, and thus the effects of participation in the program. However, simply looking at average

effects limits the usefulness of the results, which do not offer particularly strong evidence in favor of

the effectiveness of Job Corps, yet do not provide any constructive information to help understand

what could be improved in the implementation of such a program. The framework we adopted,

however, is not only a proper one for formally dealing with the complications of JC, but it also

allows one to exploit the presence of these complications to extract additional information from

the data. Specifically, further insights into the principal strata can be obtained by analyzing both

the distribution of background characteristics and the distribution of wages within the strata; those

analyses can generate useful suggestions for the re-design of the program. In Table 5, the estimated

average wages for all strata under treatment and under control are reported, along with asymptotic

standard errors, in order to have a rough quantification of the sampling variability. In Tables 6, 7

and 8, the estimated means of the covariates within each stratum are reported, obtained using, for

each unit, the design weights and the estimated membership probabilities.

The distribution of covariates among noncompliers suggests that the reasons for noncompliance

may differ, implying that better suited programs should have been offered to different subjects.

The average characteristics of the n&EE individuals show that they are in general older and better

educated with longer labour market experience: most of them already worked, had longer tenure

in previous jobs and were better paid. They thus appear to be people, on average, who should not

have been targets of the program in the first place. Conversely, the never-employed noncompliers,

n&NN, are in general less likely to be white and more likely to be female and have children;

they appear to be the right target of the program, and so their decision to not participate in the

program may be partly explained by objective difficulties of participation due to family constraints,

suggesting a more flexible training schedule for them may have satisfied their requirements.

Regarding the groups who participated in the program, the never-employed compliers, c&NN,

are, in general, less likely to be well educated or white, they had shorter tenure in previous jobs

and were paid less. They appear to be mostly disadvantaged individuals, with the worst average

initial conditions. For them, participation in the program was not beneficial in terms of employ-

ment, suggesting a re-designed intervention for them, even more focussed on the disadvantaged
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participants, allowing them to improve their educational levels and acquire job-specific skills, or

providing help with their job-search activities.

Compliers who are “sometimes employed” (c&NE and c&EN) are generally less likely to be

female, to have children, or to have a partner; and more likely to be white. These characteristics

suggest that these subjects are more mobile in the labor market and have fewer constraints than

others; they are thus more likely to be observed without a job. This finding is also consistent

with the evidence from Table 5 that these compliers have higher post JC average wages than the

always employed compliers, c&EE, suggesting that these groups comprise individuals who are

more selective when deciding whether to accept a job offer: they tend to have better paid but

less stable jobs. This possibly mitigates the apparently disappointing result of a small effect of

participation on employment.

The group of the always-employed compliers, c&EE, for whom the effect on wages was

sought, does not show striking differences from the other compliers, except for the level of their

wages, which from Table 5 appears to be lower, under either treatment or control, than the other

groups when employed, c&NE, c&EN, and n&EE. The effect on wages for them is a positive and

stable one, so that, for the c&EE subgroup, the program was mildly successful, in absolute and

relative terms, in increasing labor productivity reflected in a wage increase.

In order to assess the robustness of our results to deviations from ignorability, we also provide

estimates of causal effects, as well as the values of the scaled LRT statistics, obtained by maximiz-

ing the likelihood under Latent Ignorability (LI) and two different sets of restrictions, as detailed

in the Appendix. Results, reported in Table 9, show that the estimates of the relevant treatment

effects are not sensitive to these three alternative assumptions on the missing data mechanism. In

addition, the values of the scaled LRT statistics show that the data, also under LI, neither sup-

port monotonicity of employment nor a null effect on wages for the always employed compliers,

but the data do support a null effect on employment for compliers. We argue that this substan-

tial similarity of results, under ignorable and simple nonignorable models, is because we always

condition on a rich set of baseline characteristics, which provide for relatively good predictions of

the latent principal strata and of the missing potential outcomes. They also mitigate distributional
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assumptions on the potential outcomes within strata. Once we condition on these covariates, the

missingness assumptions (as well as the distributional assumptions, as highlighted in Zhang at. al,

2009) make only minor differences, which stresses the importance of collecting baseline charac-

teristics in experimental studies: they may help deal with subsequent complications that ”break”

the initial randomization.

5.2 Discussion

The framework we used, and the tools we developed, are appropriate for conducting an even more

comprehensive longitudinal analysis. This, however, would have implied a growing number of

principal strata, so we analyzed the three weeks separately. Even so, consistent results were ob-

tained. For example, the percentage of noncompliers, which should be constant across all weeks,

but not constrained to be so in our analysis, is estimated from Table 3 to be around 28 −29% at all

weeks. This result can be seen as a simple diagnostic for the fit of our models.

Our analysis not only allowed the assessment of the overall effects of the program, but also the

assessment of whether the program was well targeted, for whom the program worked best, and for

which outcome. In fact, a policy relevant result obtained in this paper was the ability to characterize

the latent subgroups in terms of their initial pre-treatment conditions. The most disadvantaged

groups, with the worst average initial conditions in terms of education, labour market experience,

race and gender, are the never-employed (c&NN and n&NN), who did not benefit from the training

program even when they decided to participate (c&NN). The groups of compliers who benefited

from participation in terms of employment or wages appear to be less disadvantaged on average

than the never-employed.

These findings may be useful to help re-design the program for better effectiveness: the nu-

anced results resolve much of the interpretational issues because they directly inform the policy-

maker about whether the program was well-targeted, whether it was uniformly effective for all the

subjects, and about which of its objectives may have been achieved. In fact, as with most of the

large job-training programs, Job Corps had, and still has, different aims and employed a mixture

of instruments to try to reach them. Training activities may be specifically targeted at particular
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groups (e.g., the young or the disabled), may be designed to prevent long periods out of regu-

lar employment, or to integrate unemployed and disadvantaged individuals into the labour force,

or they may be more oriented towards augmenting participants’ human capital, either by helping

them earn a higher educational degree or by formal teaching of new vocational skills. Job Corps

employs “a holistic career development training approach which [sic] integrates the teaching of

academic, vocational, employability skills and social competencies through a combination of class-

room, practical and based learning experiences to prepare youth for stable, long-term, high-paying

jobs”. From our findings, Job Corps seems to have been successful only in augmenting partic-

ipants’ human capital, as measured by the effects on wages for the always-employed compliers,

although it does not seem to have enhanced the employability of the more disadvantaged.
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Appendix

Ignorable and nonignorable missing data mechanisms.

The joint distribution of observable potential outcomes given X, f (D(1),S(0),S(1),W(0),W(1),M(0),M(1)|X) (see

equation 2), can be decomposed into one factor modelling the quantities of scientific interest

fsci(D(1),S(0),S(1),W(0),W(1)|X, θsci),

and one factor representing the missingness mechanism, i.e., the distribution of the missing indicators given the other

potential outcomes and covariates: fmis(M(0),M(1)|D(1),S(0),S(1),W(0),W(1),X, θmis), where θsci and θmis are the

functions of θ governing the corresponding distributions. Under MAR and if the parameters of the missing data

mechanism, θmis), are distinct from those of the outcome distributions, θsci), the missing data process is ignorable

(Rubin, 1976), meaning that valid likelihood inference ignores the missing data model.

Nonignorable missing-data mechanisms are often difficult to specify because there is rarely direct evidence in

the data about the relationship between the missing-data mechanism and the missing values themselves. It is usually

advisable to consider several nonignorable models, and to explore the sensitivity of estimates of relevant causal es-

timands to the different models, using a baseline analysis under MAR as a primary benchmark for comparison. In

a PS framework, a plausible nonignorable missingness assumption is “Latent Ignorability” (LI), originally proposed

by Frangakis and Rubin (1999) in a setting with noncompliance. Because here the scientifically relevant principal

strata, Gi, are defined according to noncompliance and potential employment status, we formulate Latent Ignorability

to mean that, if we knew the group membership (Gi) of each unit, the missingness mechanism would be ignorable:

fmis(Mi(0), Mi(1)|Di(1), S i(0), S i(1),Wi(0),Wi(1),Xi, θmis) = (3)

fmis(Mi(0), Mi(1)|Gi,Wi(0),Wi(1),Xi, θmis) = fmis(Mi(0), Mi(1)|Gi,Xi, θmis).

Under this assumption, given the covariates and treatment assignment, units with the same compliance behavior and

potential employment status (and so with the same value of Gi) are expected to have the same distribution of wages,

regardless of their missingness behavior. However, because the true compliance behaviors and the potential employ-

ment statuses are partially unobserved, the missing data process is nonignorable. We assume that the joint distribution

of Mi(0), Mi(1), fmis(Mi(0), Mi(1)|Gi,Xi, θmis), has twelve independent parts, two for each of the six principal strata

defined by Gi, which are assumed to be conditionally independent. Specifically, let

ρi:g,z = Pr(Mi(z) = 1|Gi = g,Xi; θ
g,z
mis)

be the probability of missing outcomes for unit i, i = 1, ...,N, when assigned treatment z, conditional on principal

stratum membership g and Xi; θmis = {θg,z
mis}, (g ∈ G, z = {0, 1}). These probabilities can be regarded as nuisance

unknowns of little intrinsic scientific interest and, depending on the empirical context, modified versions of exclusion

restrictions for them found in the literature may be plausible.
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The first exclusion restriction assumes that compliers have the same probability of having a missing outcome

irrespective of treatment assignment and employment status; similarly noncompliers have the same same probability of

having a missing outcome irrespective of employment status, but these probabilities are allowed to differ by treatment

assignment. This is a similar assumption to the response exclusion restriction for compliers proposed in Mealli et al.

(2004):

ρi:c&EE,1 = ρi:c&EN,1 = ρi:c&NE,1 = ρi:c&NN,1 = ρi:c&EE,0 = ρi:c&EN,0 = ρi:c&NE,0 = ρi:c&NN,0,

ρi:n&EE,1 = ρi:n&NN,1 (4)

ρi:n&EE,0 = ρi:n&NN,0.

Because compliers are willing to follow the protocol in their assigned treatment, it seems more plausible that the

missingness mechanism would not be affected by that assignment and the subsequent employment status.

The second exclusion restriction posits that noncompliers have the same probability of having a missing outcome

irrespective of their treatment assignment and post-treatment employment status; similarly compliers have the same

probability of having a missing outcome irrespective of employment status, but these probabilities are allowed to

differ in the two treatment arms. This is a similar assumption to the response exclusion restriction for never-takers in

Frangakis and Rubin (1999):

ρi:c&EE,1 = ρi:c&EN,1 = ρi:c&NE,1 = ρi:c&NN,1

ρi:c&EE,0 = ρi:c&EN,0 = ρi:c&NE,0 = ρi:c&NN,0 (5)

ρi:n&EE,1 = ρi:n&NN,1 = ρi:n&EE,0 = ρi:n&NN,0.

Under LI and either of these two sets of Assumptions (4 or 5), the missingness mechanism is not ignorable because

the missingness probabilities do not factor out of the likelihood.

Specifically, let θ = {α,β,σ, θmis} denote the vector parameter, where θmis is the sub-vector of parameters govern-

ing the missingness probabilities in (3). Assuming LI, the likelihood function is derived as proportional to the joint

distribution of (D(1),Mobs,Sobs,Wobs|Z,X, θ):

L(θ|D(1),Mobs,Sobs,Wobs,Z,X) ∝ (6)

∏

i∈O(1,1,1)

[
ρ̄i:c&EE,1πi:c&EE Ni(Xiβc&EE,1, σ

2
c&EE,1) + ρ̄i:c&EN,1πi:c&EN Ni(Xiβc&EN,1, σ

2
c&EN,1)

]

×
∏

i∈O(1,1,0)

[
ρ̄i:c&NE,1πi:c&NE + ρ̄i:c&NN,1πi:c&NN

] ×
∏

i∈O(1,0,1)

[
ρ̄i:n&EE,1πi:n&EE Ni(Xiβn&EE , σ

2
n&EE)

]

×
∏

i∈O(1,0,0)

[
ρ̄i:n&NN,1)πi:n&NN

] ×
∏

i∈O(1,?,1)

[
ρ̄i:c&EE,1πi:c&EE Ni(Xiβc&EE,1, σ

2
c&EE,1)

+ρ̄i:c&EN,1πi:c&EN Ni(Xiβc&EN,1, σ
2
c&EN,1) + ρ̄i:n&EE,1πi:n&EE Ni(Xiβn&EE , σ

2
n&EE)

]

×
∏

i∈O(1,?,0)

[
ρ̄i:c&NE,1πi:c&NE + ρ̄i:c&NN,1πi:c&NN + ρ̄i:n&NN,1πi:n&NN

]
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×
∏

i∈O(0,?,1)

[
ρ̄i:c&EE,0πi:c&EE Ni(Xiβc&EE,0, σ

2
c&EE,0)

+ρ̄i:c&NE,0πi:c&NE Ni(Xiβc&NE,0, σ
2
c&NE,0) + ρ̄i:n&EE,0πi:n&EE Ni(Xiβn&EE , σ

2
n&EE)

]

×
∏

i∈O(0,?,0)

[
ρ̄i:c&EN,0πi:c&EN + ρ̄i:c&NN,0πi:c&NN + ρ̄i:n&NN,0πi:n&NN

]

×
∏

i∈O(1,1,?)

[
ρi:c&EE,1πi:c&EE + ρi:c&EN,1πi:c&EN + ρi:c&NE,1πi:c&NE + ρi:c&NN,1πi:c&NN

]

×
∏

i∈O(1,0,?)

[
ρi:n&EE,1πi:n&EE + ρi:n&NN,1πi:n&NN

] ×
∏

i∈O(0,?,?)


∑

g∈G
ρi:g,0πi:g

 .

where ρ̄i:g,z = 1 − ρi:g,z, and the missingness probabilities are specified using binary logistic models:

ρi:g,z =
exp{Xiθ

g,z
mis}

1 + exp{Xiθ
g,z
mis}

.

Missingness probabilities are regarded as nuisance unknowns, in contrast to parameters of the outcome principal strata

distributions, which define causal estimands of interest. We maximize the likelihood under each of the two sets of

restrictions (4) and (5).

EM steps under MAR

The complete-data log-likelihood function given the principal strata Gi, i.e. treating G as the missing data, under

ignorability can be written as follows:

l(θsci|D(1),Mobs,Sobs,Wobs,G,Z,X) ∝
∑

i∈O(1,1,1)

I(Gi = c&EE) log
[
πi:c&EE Ni(Xiβc&EE,1, σ

2
c&EE,1)

]

+
∑

i∈O(1,1,1)

I(Gi = c&EN) log
[
πi:c&EN Ni(Xiβc&EN,1, σ

2
c&EN,1)

]

+
∑

i∈O(1,1,0)

I(Gi = c&NE) log [πi:c&NE] +
∑

i∈O(1,1,0)

I(Gi = c&NN) log [πi:c&NN]

+
∑

i∈O(1,0,1)

I(Gi = n&EE) log
[
πi:n&EE Ni(Xiβn&EE , σ

2
n&EE)

]

+
∑

i∈O(1,0,0)

I(Gi = n&NN) log [πi:n&NN]

+
∑

i∈O(1,?,1)

I(Gi = c&EE) log
[
πi:c&EE Ni(Xiβc&EE,1, σ

2
c&EE,1)

]

+
∑

i∈O(1,?,1)

I(Gi = c&EN) log
[
πi:c&EN Ni(Xiβc&EN,1, σ

2
c&EN,1)

]

+
∑

i∈O(1,?,1)

I(Gi = n&EE) log
[
πi:n&EE Ni(Xiβn&EE , σ

2
n&EE)

]
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+
∑

i∈O(1,?,0)

I(Gi = c&NE) log [πi:c&NE]

+
∑

i∈O(1,?,0)

I(Gi = c&NN) log [πi:c&NN]

+
∑

i∈O(1,?,0)

I(Gi = n&NN) log [πi:n&NN]

+
∑

i∈O(0,?,1)

I(Gi = c&EE) log
[
πi:c&EE Ni(Xiβc&EE,0, σ

2
c&EE,0)

]

+
∑

i∈O(0,?,1)

I(Gi = c&NE) log
[
πi:c&NE Ni(Xiβc&NE,0, σ

2
c&NE,0)

]

+
∑

i∈O(0,?,1)

I(Gi = n&EE) log
[
πi:n&EE Ni(Xiβn&EE , σ

2
n&EE)

]

+
∑

i∈O(0,?,0)

I(Gi = c&EN) log [πi:c&EN]

+
∑

i∈O(0,?,0)

I(Gi = c&NN) log [πi:c&NN]

+
∑

i∈O(0,?,0)

I(Gi = n&NN) log [πi:n&NN]

+
∑

i∈O(1,1,?)

I(Gi = c&EE) log [πi:c&EE] +
∑

i∈O(1,1,?)

I(Gi = c&EN) log [πi:c&EN]

+
∑

i∈O(1,1,?)

I(Gi = c&NE) log [πi:c&NE] +
∑

i∈O(1,1,?)

I(Gi = c&NN) log [πi:c&NN]

+
∑

i∈O(1,0,?)

I(Gi = n&EE) log [πi:n&EE] +
∑

i∈O(1,0,?)

I(Gi = n&NN) log [πi:n&NN]

where I(·) is the general indicator function. The E-step of the EM algorithm computes the conditional probabilities of

each stratum, given the current estimate θ(t)
sci, t = 0, 1, ...:

• for i ∈ O(1, 1, 1)

P(t)(Gi = c&EE) =
π(t)

i:c&EE Ni(Xiβ
(t)
c&EE,1, σ

2(t)
c&EE,1)

π(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1) + π(t)

i:c&EN Ni(Xiβ
(t)
c&EN,1, σ

2(t)
c&EN,1)

P(t)(Gi = c&EN) =
π(t)

i:c&EN Ni(Xiβ
(t)
c&EE,1, σ

2(t)
c&EE,1)

π(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1) + π(t)

i:c&EN Ni(Xiβ
(t)
c&EN,1, σ

2(t)
c&EN,1)

P(t)(Gi = c&NE) = P(t)(Gi = c&NN) = P(t)(Gi = n&EE) = P(t)(Gi = n&NN) = 0

• for i ∈ O(1, 1, 0)

P(t)(Gi = c&NE) =
π(t)

i:c&NE

π(t)
i:c&NE + π(t)

i:c&NN
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P(t)(Gi = c&NN) =
π(t)

i:c&NN

π(t)
i:c&NE + π(t)

i:c&NN

P(t)(Gi = c&EE) = P(t)(Gi = c&EN) = P(t)(Gi = n&EE) = P(t)(Gi = n&NN) = 0

• for i ∈ O(1, 0, 1)

P(t)(Gi = n&EE) = 1

P(t)(Gi = c&EE) = P(t)(Gi = c&EN) = P(t)(Gi = c&NE)

= P(t)(Gi = c&NN) = P(t)(Gi = n&NN) = 0

• for i ∈ O(1, 0, 0)

P(t)(Gi = n&NN) = 1

P(t)(Gi = c&EE) = P(t)(Gi = c&EN) = P(t)(Gi = c&NE)

= P(t)(Gi = c&NN) = P(t)(Gi = n&EE) = 0

• for i ∈ O(1, ?, 1)

P(t)(Gi = c&EE) =

=
π(t)

i:c&EE Ni(Xiβ
(t)
c&EE,1, σ

2(t)
c&EE,1)

π(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1) + π(t)

i:c&EN Ni(Xiβ
(t)
c&EN,1, σ

2(t)
c&EN,1) + π(t)

i:n&EE Ni(Xiβ
(t)
n&EE , σ

2(t)
n&EE)

P(t)(Gi = c&EN) =

=
π(t)

i:c&EN Ni(Xiβ
(t)
c&EN,1, σ

2(t)
c&EN,1)

π(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1) + π(t)

i:c&EN Ni(Xiβ
(t)
c&EN,1, σ

2(t)
c&EN,1) + π(t)

i:n&EE Ni(Xiβ
(t)
n&EE , σ

2(t)
n&EE)

P(t)(Gi = n&EE) =

=
π(t)

i:n&EE Ni(Xiβ
(t)
n&EE , σ

2(t)
n&EE)

π(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1) + π(t)

i:c&EN Ni(Xiβ
(t)
c&EN,1, σ

2(t)
c&EN,1) + π(t)

i:n&EE Ni(Xiβ
(t)
n&EE , σ

2(t)
n&EE)

• for i ∈ O(1, ?, 0)

P(t)(Gi = c&NE) =
π(t)

i:c&NE

π(t)
i:c&NE + π(t)

i:c&NN + π(t)
i:n&NN

P(t)(Gi = c&NN) =
π(t)

i:c&NN

π(t)
i:c&NE + π(t)

i:c&NN + π(t)
i:n&NN

P(t)(Gi = n&NN) =
π(t)

i:n&NN

π(t)
i:c&NE + π(t)

i:c&NN + π(t)
i:n&NN

33



P(t)(Gi = c&EE) = P(t)(Gi = c&EN) = P(t)(Gi = n&EE) = 0

• for i ∈ O(0, ?, 1)

P(t)(Gi = c&EE) =

=
π(t)

i:c&EE Ni(Xiβ
(t)
c&EE,0, σ

2(t)
c&EE,0)

π(t)
i:c&EE Ni(Xiβ

(t)
c&EE,0, σ

2(t)
c&EE,0) + π(t)

i:c&NE Ni(Xiβ
(t)
c&NE,0, σ

2(t)
c&NE,0) + π(t)

i:n&EE Ni(Xiβ
(t)
n&EE , σ

2(t)
n&EE)

P(t)(Gi = c&NE) =

=
π(t)

i:c&NE Ni(Xiβ
(t)
c&NE,0, σ

2(t)
c&NE,0)

π(t)
i:c&EE Ni(Xiβ

(t)
c&EE,0, σ

2(t)
c&EE,0) + π(t)

i:c&NE Ni(Xiβ
(t)
c&NE,0, σ

2(t)
c&NE,0) + π(t)

i:n&EE Ni(Xiβ
(t)
n&EE , σ

2(t)
n&EE)

P(t)(Gi = n&EE) =

=
π(t)

i:n&EE Ni(Xiβ
(t)
n&EE , σ

2(t)
n&EE)

π(t)
i:c&EE Ni(Xiβ

(t)
c&EE,0, σ

2(t)
c&EE,0) + π(t)

i:c&NE Ni(Xiβ
(t)
c&NE,0, σ

2(t)
c&NE,0) + π(t)

i:n&EE Ni(Xiβ
(t)
n&EE , σ

2(t)
n&EE)

P(t)(Gi = c&EN) = P(t)(Gi = c&NN) = P(t)(Gi = n&NN) = 0

• for i ∈ O(0, ?, 0)

P(t)(Gi = c&EN) =
π(t)

i:c&EN

π(t)
i:c&EN + π(t)

i:c&NN + π(t)
i:n&NN

P(t)(Gi = c&NN) =
π(t)

i:c&NN

π(t)
i:c&EN + π(t)

i:c&NN + π(t)
i:n&NN

P(t)(Gi = n&NN) =
π(t)

i:n&NN

π(t)
i:c&EN + π(t)

i:c&NN + π(t)
i:n&NN

P(t)(Gi = c&EE) = P(t)(Gi = c&NE) = P(t)(Gi = n&EE) = 0

• for i ∈ O(1, 1, ?)

P(t)(Gi = c&EE) =
π(t)

i:c&EE

π(t)
i:c&EE + π(t)

i:c&EN + π(t)
i:c&NE + π(t)

i:c&NN

P(t)(Gi = c&EN) =
π(t)

i:c&EN

π(t)
i:c&EE + π(t)

i:c&EN + π(t)
i:c&NE + π(t)

i:c&NN
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P(t)(Gi = c&NE) =
π(t)

i:c&NE

π(t)
i:c&EE + π(t)

i:c&EN + π(t)
i:c&NE + π(t)

i:c&NN

P(t)(Gi = c&NN) =
π(t)

i:c&NN

π(t)
i:c&EE + π(t)

i:c&EN + π(t)
i:c&NE + π(t)

i:c&NN

P(t)(Gi = n&EE) = P(t)(Gi = n&NN) = 0

• for i ∈ O(1, 0, ?)

P(t)(Gi = n&EE) =
π(t)

i:n&EE

π(t)
i:n&EE + π(t)

i:n&NN

P(t)(Gi = n&NN) =
π(t)

i:n&NN

π(t)
i:n&EE + π(t)

i:n&NN

P(t)(Gi = c&EE) = P(t)(Gi = c&EN) = P(t)(Gi = c&NE) = P(t)(Gi = c&NN) = 0

The expected log-likelihood lE(θsci|D(1),Mobs,Sobs,Wobs,Z,X) is obtained by replacing the I(Gi = g) with the

P(t)(Gi = g). The M-step maximizes lE(·) with respect to θsci, leading to a new estimate θ(t+1)
sci . Iterating this pro-

cess monotonically increases the likelihood function (6); the algorithm continues until a stopping criterion has been

satisfied.

The expected log-likelihood can be decomposed into two parts, one containing the parameters of the wage distri-

bution (β and σ), and the other containing the parameters of the strata membership probabilities (α), because

log
[
πi:gNi(Xiβg,z, σ

2
g,z)

]
= log

[
πi:g

]
+ log

[
Ni(Xiβg,z, σ

2
g,z)

]
.

As a consequence, the two sets of parameters can be updated separately. Standard routines for linear regression

(for β and σ) and multinomial logistic models (for α) can be exploited, weighting the observations with the current

probabilities (as estimated in the E-step). For example, updating βg,z and σg,z requires maximizing the following

function:

lE:βg,z,σg,z (βg,z, σg,z|·) =
∑

i:Zi=z,S i,obs=1

P(t)(Gi = g) log
[
Ni(Xiβg,z, σ

2
g,z)

]
,

with z = {0, 1} and g ∈ G, which is the log-likelihood of a normal model, where each observation is weighted with the

current probability of belonging to the principal stratum g. Weighted OLS can then be used for finding β(t)
g,z and σ(t)

g,z.

EM steps under nonignorable models

The EM algorithm can be easily extended to include nonignorable missing data processes, although this includes the

estimation of the parameters governing the missingness mechanism, θmis.
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Under Latent Ignorability, the complete-data log-likelihood function for θ = {θsci, θmis}, given the principal strata,

can be written as follows:

l(θ|D(1),Mobs,Sobs,Wobs,G,Z,X) ∝
∑

i∈O(1,1,1)

I(Gi = c&EE) log
[
ρ̄i:c&EE,1πi:c&EE Ni(Xiβc&EE , σ

2
c&EE,1)

]

+
∑

i∈O(1,1,1)

I(Gi = c&EN) log
[
ρ̄i:c&EN,1πi:c&EN Ni(Xiβc&EN,1, σ

2
c&EN,1)

]

+
∑

i∈O(1,1,0)

I(Gi = c&NE) log
[
ρ̄i:c&NE,1πi:c&NE

]
+

∑

i∈O(1,1,0)

I(Gi = c&NN) log
[
ρ̄i:c&NN,1πi:c&NN

]

+
∑

i∈O(1,0,1)

I(Gi = n&EE) log
[
ρ̄i:n&EE,1πi:n&EE Ni(Xiβn&EE , σ

2
n&EE)

]

+
∑

i∈O(1,0,0)

I(Gi = n&NN) log
[
ρ̄i:n&NN,1πi:n&NN

]

+
∑

i∈O(1,?,1)

I(Gi = c&EE) log
[
ρ̄i:c&EE,1πi:c&EE Ni(Xiβc&EE,1, σ

2
c&EE,1)

]

+
∑

i∈O(1,?,1)

I(Gi = c&EN) log
[
ρ̄i:c&EN,1πi:c&EN Ni(Xiβc&EN,1, σ

2
c&EN,1)

]

+
∑

i∈O(1,?,1)

I(Gi = n&EE) log
[
ρ̄i:n&EE,1πi:n&EE Ni(Xiβn&EE , σ

2
n&EE)

]

+
∑

i∈O(1,?,0)

I(Gi = c&NE) log
[
ρ̄i:c&NE,1πi:c&NE

]

+
∑

i∈O(1,?,0)

I(Gi = c&NN) log
[
ρ̄i:c&NN,1πi:c&NN

]

+
∑

i∈O(1,?,0)

I(Gi = n&NN) log
[
ρ̄i:n&NN,1πi:n&NN

]

+
∑

i∈O(0,?,1)

I(Gi = c&EE) log
[
ρ̄i:c&EE,0πi:c&EE Ni(Xiβc&EE,0, σ

2
c&EE,0)

]

+
∑

i∈O(0,?,1)

I(Gi = c&NE) log
[
ρ̄i:c&NE,0πi:c&NE Ni(Xiβc&NE,0, σ

2
c&NE,0)

]

+
∑

i∈O(0,?,1)

I(Gi = n&EE) log
[
ρ̄i:n&EE,0πi:n&EE Ni(Xiβn&EE , σ

2
n&EE)

]

+
∑

i∈O(0,?,0)

I(Gi = c&EN) log
[
ρ̄i:c&EN,0πi:c&EN

]

+
∑

i∈O(0,?,0)

I(Gi = c&NN) log
[
ρ̄i:c&NN,0πi:c&NN

]

+
∑

i∈O(0,?,0)

I(Gi = n&NN) log
[
ρ̄i:n&NN,0πi:n&NN

]

+
∑

i∈O(1,1,?)

I(Gi = c&EE) log
[
ρi:c&EE,1πi:c&EE

]
+

∑

i∈O(1,1,?)

I(Gi = c&EN) log
[
ρi:c&EN,1πi:c&EN

]
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+
∑

i∈O(1,1,?)

I(Gi = c&NE) log
[
ρi:c&NE,1πi:c&NE

]
+

∑

i∈O(1,1,?)

I(Gi = c&NN) log
[
ρi:c&NN,1πi:c&NN

]

+
∑

i∈O(1,0,?)

I(Gi = n&EE) log
[
ρi:n&EE,1πi:n&EE

]
+

∑

i∈O(1,0,?)

I(Gi = n&NN) log
[
ρi:n&NN,1πi:n&NN

]

+
∑

i∈O(0,?,?)

∑

g∈G
I(Gi = g) log

[
ρi:g,0πi:g

]

where ρ̄i:g,z = 1 − ρi:g,z. The E-step of the EM algorithm computes the conditional probabilities of each stratum, given

the current estimates θ(t), t = 0, 1, ...:

• for i ∈ O(1, 1, 1)

P(t)(Gi = c&EE) =
ρ̄i:c&EE,1π

(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1)

ρ̄i:c&EE,1π
(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1) + ρ̄i:c&EN,1π

(t)
i:c&EN Ni(Xiβ

(t)
c&EN,1, σ

2(t)
c&EN,1)

P(t)(Gi = c&EN) =
ρ̄i:c&EN,1π

(t)
i:c&EN Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1)

ρ̄i:c&EE,1π
(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1) + ρ̄i:c&EN,1π

(t)
i:c&EN Ni(Xiβ

(t)
c&EN,1, σ

2(t)
c&EN,1)

P(t)(Gi = c&NE) = P(t)(Gi = c&NN) = P(t)(Gi = n&EE) = P(t)(Gi = n&NN) = 0

• for i ∈ O(1, 1, 0)

P(t)(Gi = c&NE) =
ρ̄i:c&NE,1π

(t)
i:c&NE

ρ̄i:c&NE,1π
(t)
i:c&NE + ρ̄i:c&NN,1π

(t)
i:c&NN

P(t)(Gi = c&NN) =
ρ̄i:c&NN,1π

(t)
i:c&NN

ρ̄i:c&NE,1π
(t)
i:c&NE + ρ̄i:c&NN,1π

(t)
i:c&NN

P(t)(Gi = c&EE) = P(t)(Gi = c&EN) = P(t)(Gi = n&EE) = P(t)(Gi = n&NN) = 0

• for i ∈ O(1, 0, 1)

P(t)(Gi = n&EE) = 1

P(t)(Gi = c&EE) = P(t)(Gi = c&EN) = P(t)(Gi = c&NE)

= P(t)(Gi = c&NN) = P(t)(Gi = n&NN) = 0

• for i ∈ O(1, 0, 0)

P(t)(Gi = n&NN) = 1

P(t)(Gi = c&EE) = P(t)(Gi = c&EN) = P(t)(Gi = c&NE)

= P(t)(Gi = c&NN) = P(t)(Gi = n&EE) = 0

• for i ∈ O(1, ?, 1)
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P(t)(Gi = c&EE) =

=
ρ̄i:c&EE,1π

(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1)

ρ̄i:c&EE,1π
(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1) + ρ̄i:c&EN,1π

(t)
i:c&EN Ni(Xiβ

(t)
c&EN,1, σ

2(t)
c&EN,1) + ρ̄i:n&EE,1π

(t)
i:n&EE Ni(Xiβ

(t)
n&EE , σ

2(t)
n&EE)

P(t)(Gi = c&EN) =

=
ρ̄i:c&EN,1π

(t)
i:c&EN Ni(Xiβ

(t)
c&EN,1, σ

2(t)
c&EN,1)

ρ̄i:c&EE,1π
(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1) + ρ̄i:c&EN,1π

(t)
i:c&EN Ni(Xiβ

(t)
c&EN,1, σ

2(t)
c&EN,1) + ρ̄i:n&EE,1π

(t)
i:n&EE Ni(Xiβ

(t)
n&EE , σ

2(t)
n&EE)

P(t)(Gi = n&EE) =

=
ρ̄i:n&EE,1π

(t)
i:n&EE Ni(Xiβ

(t)
n&EE , σ

2(t)
n&EE)

ρ̄i:c&EE,1π
(t)
i:c&EE Ni(Xiβ

(t)
c&EE,1, σ

2(t)
c&EE,1) + ρ̄i:c&EN,1π

(t)
i:c&EN Ni(Xiβ

(t)
c&EN,1, σ

2(t)
c&EN,1) + ρ̄i:n&EE,1π

(t)
i:n&EE Ni(Xiβ

(t)
n&EE , σ

2(t)
n&EE)

• for i ∈ O(1, ?, 0)

P(t)(Gi = c&NE) =
ρ̄i:c&NE,1π

(t)
i:c&NE

ρ̄i:c&NE,1π
(t)
i:c&NE + ρ̄i:c&NN,1π

(t)
i:c&NN + ρ̄i:n&NN,1π

(t)
i:n&NN

P(t)(Gi = c&NN) =
ρ̄i:c&NN,1π

(t)
i:c&NN

ρ̄i:c&NE,1π
(t)
i:c&NE + ρ̄i:c&NN,1π

(t)
i:c&NN + ρ̄i:n&NN,1π

(t)
i:n&NN

P(t)(Gi = n&NN) =
ρ̄i:n&NN,1π

(t)
i:n&NN

ρ̄i:c&NE,1π
(t)
i:c&NE + ρ̄i:c&NN,1π

(t)
i:c&NN + ρ̄i:n&NN,1π

(t)
i:n&NN

P(t)(Gi = c&EE) = P(t)(Gi = c&EN) = P(t)(Gi = n&EE) = 0

• for i ∈ O(0, ?, 1)

P(t)(Gi = c&EE) =

=
ρ̄i:c&EE,0π

(t)
i:c&EE Ni(Xiβ

(t)
c&EE,0, σ

2(t)
c&EE,0)

ρ̄i:c&EE,0π
(t)
i:c&EE Ni(Xiβ

(t)
c&EE,0, σ

2(t)
c&EE,0) + ρ̄i:c&NE,0π

(t)
i:c&NE Ni(Xiβ

(t)
c&NE,0, σ

2(t)
c&NE,0) + ρ̄i:n&EE,0π

(t)
i:n&EE Ni(Xiβ

(t)
n&EE , σ

2(t)
n&EE)

P(t)(Gi = c&NE) =

=
ρ̄i:c&NE,0π

(t)
i:c&NE Ni(Xiβ

(t)
c&NE,0, σ

2(t)
c&NE,0)

ρ̄i:c&EE,0π
(t)
i:c&EE Ni(Xiβ

(t)
c&EE,0, σ

2(t)
c&EE,0) + ρ̄i:c&NE,0π

(t)
i:c&NE Ni(Xiβ

(t)
c&NE,0, σ

2(t)
c&NE,0) + ρ̄i:n&EE,0π

(t)
i:n&EE Ni(Xiβ

(t)
n&EE , σ

2(t)
n&EE)
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P(t)(Gi = n&EE) =

=
ρ̄i:n&EE,0π

(t)
i:n&EE Ni(Xiβ

(t)
n&EE , σ

2(t)
n&EE)

ρ̄i:c&EE,0π
(t)
i:c&EE Ni(Xiβ

(t)
c&EE,0, σ

2(t)
c&EE,0) + ρ̄i:c&NE,0π

(t)
i:c&NE Ni(Xiβ

(t)
c&NE,0, σ

2(t)
c&NE,0) + ρ̄i:n&EE,0π

(t)
i:n&EE Ni(Xiβ

(t)
n&EE , σ

2(t)
n&EE)

P(t)(Gi = c&EN) = P(t)(Gi = c&NN) = P(t)(Gi = n&NN) = 0

• for i ∈ O(0, ?, 0)

P(t)(Gi = c&EN) =
ρ̄i:c&EN,0π

(t)
i:c&EN

ρ̄i:c&EN,0π
(t)
i:c&EN + ρ̄i:c&NN,0π

(t)
i:c&NN + ρ̄i:n&NN,0π

(t)
i:n&NN

P(t)(Gi = c&NN) =
ρ̄i:c&NN,0π

(t)
i:c&NN

ρ̄i:c&EN,0π
(t)
i:c&EN + ρ̄i:c&NN,0π

(t)
i:c&NN + ρ̄i:n&NN,0π

(t)
i:n&NN

P(t)(Gi = n&NN) =
ρ̄i:n&NN,0π

(t)
i:n&NN

ρ̄i:c&EN,0π
(t)
i:c&EN + ρ̄i:c&NN,0π

(t)
i:c&NN + ρ̄i:n&NN,0π

(t)
i:n&NN

P(t)(Gi = c&EE) = P(t)(Gi = c&NE) = P(t)(Gi = n&EE) = 0

• for i ∈ O(1, 1, ?)

P(t)(Gi = c&EE) =
ρi:c&EE,1π

(t)
i:c&EE

ρi:c&EE,1π
(t)
i:c&EE + ρi:c&EN,1π

(t)
i:c&EN + ρi:c&NE,1π

(t)
i:c&NE + ρi:c&NN,1π

(t)
i:c&NN

P(t)(Gi = c&EN) =
ρi:c&EN,1π

(t)
i:c&EN

ρi:c&EE,1π
(t)
i:c&EE + ρi:c&EN,1π

(t)
i:c&EN + ρi:c&NE,1π

(t)
i:c&NE + ρi:c&NN,1π

(t)
i:c&NN

P(t)(Gi = c&NE) =
ρi:c&NE,1π

(t)
i:c&NE

ρi:c&EE,1π
(t)
i:c&EE + ρi:c&EN,1π

(t)
i:c&EN + ρi:c&NE,1π

(t)
i:c&NE + ρi:c&NN,1π

(t)
i:c&NN

P(t)(Gi = c&NN) =
ρi:c&NN,1π

(t)
i:c&NN

ρi:c&EE,1π
(t)
i:c&EE + ρi:c&EN,1π

(t)
i:c&EN + ρi:c&NE,1π

(t)
i:c&NE + ρi:c&NN,1π

(t)
i:c&NN

P(t)(Gi = n&EE) = P(t)(Gi = n&NN) = 0

• for i ∈ O(1, 0, ?)

P(t)(Gi = n&EE) =
ρi:n&EE,1π

(t)
i:n&EE

ρi:n&EE,1π
(t)
i:n&EE + ρi:n&NN,1π

(t)
i:n&NN
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P(t)(Gi = n&NN) =
ρi:n&NN,1π

(t)
i:n&NN

ρi:n&EE,1π
(t)
i:n&EE + ρi:n&NN,1π

(t)
i:n&NN

P(t)(Gi = c&EE) = P(t)(Gi = c&EN) = P(t)(Gi = c&NE) = P(t)(Gi = c&NN) = 0

• for i ∈ O′(0, 0)

P(t)(Gi = g) =
ρ(t)

i:g,0π
(t)
i:g∑

g∈G ρ
(t)
i:g,0π

(t)
i:g

The expected log-likelihood, lE(θ|D(1),Mobs,Sobs,Wobs,Z,X), is obtained by replacing I(Gi = g) with P(t)(Gi = g).

The M-step maximizes lE(·) with respect to θ, to obtain θ(t+1).
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Treatment Control Difference

Variable Prop. non-miss. Mean Std. Dev. Prop. non-miss. Mean Std. Dev. Diff. Std. Err.

Female 1.00 0.41 0.49 1.00 0.41 0.49 0.00 0.01

Age at baseline (yrs) 1.00 18.85 2.17 1.00 18.79 2.13 0.05 0.04

White 1.00 0.27 0.44 1.00 0.26 0.44 0.01 0.01

With a partner 0.98 0.06 0.24 0.97 0.06 0.24 0.00 0.00

Has children 0.99 0.18 0.38 0.99 0.18 0.38 0.00 0.01

Education (yrs of schooling) 0.98 10.07 1.53 0.97 10.08 1.51 −0.01 0.03

Ever arrested 0.98 0.26 0.44 0.98 0.26 0.44 0.00 0.01

Mother’s education (yrs of schooling) 0.80 11.52 2.56 0.78 11.54 2.61 −0.02 0.05

Father’s education (yrs of schooling) 0.60 11.46 2.87 0.59 11.55 2.86 −0.09 0.06

Household Inc. > 6000 0.62 0.55 0.50 0.63 0.54 0.50 0.01 0.01

Personal Inc. > 6000 0.91 0.09 0.28 0.91 0.08 0.27 0.01 0.01

At baseline:

Have Job 0.96 0.21 0.41 0.96 0.21 0.41 0.00 0.01

Had Job, prev. yr. 0.98 0.65 0.48 0.98 0.64 0.48 0.01 0.01

Months empl., prev. yr. 0.93 3.79 4.27 0.93 3.77 4.30 0.02 0.08

Earnings, prev. yr. (US dollars) 0.91 2904.89 4529.84 0.91 2867.17 4420.10 37.72 82.06

N 8688 5299

Table 1: Univariate descriptive statistics for pre-treatment covariates by treatment group, computed

using units with observed values for the specified variable and using design weights.
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Treatment Control Difference

Variable Prop. non-miss. Mean Std. Dev. Prop. non-miss. Mean Std. Dev. Diff. Std. Err.

Enrolled in Job Corps 0.99 0.68 0.47 − − − − −
within 6 months

from assignment

Week 52

Employed 0.97 0.38 0.48 0.96 0.44 0.50 −0.06 0.01

Weekly earnings 0.97 98.78 164.86 0.96 109.03 162.63 −10.25 2.91

Weekly hours 0.97 15.86 22.69 0.96 18.24 23.03 −2.38 0.40

Wage 0.37 6.20 3.10 0.43 5.93 2.72 0.28 0.02

Week 130

Employed 0.98 0.51 0.50 0.98 0.49 0.50 0.02 0.01

Weekly earnings 0.98 167.72 221.40 0.98 153.14 202.65 14.58 3.77

Weekly hours 0.98 22.74 24.91 0.98 21.60 24.62 1.14 0.44

Wage 0.50 7.37 3.53 0.48 7.03 2.94 0.34 0.02

Week 208

Employed 0.77 0.61 0.49 0.82 0.57 0.50 0.04 0.01

Weekly earnings 0.77 228.64 254.43 0.82 202.82 232.66 25.82 4.79

Weekly hours 0.77 27.38 25.03 0.82 25.24 24.95 2.14 0.49

Wage 0.47 8.30 3.94 0.47 8.06 3.77 0.24 0.03

Table 2: Univariate descriptive statistics for outcome variables by treatment group, computed using

units with observed values for the specified variable and using design weights.
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Observed subgroups O(Zi,Di(1), S i,obs) Latent strata

O(1, 1, 1) = {i : Zi = 1,Di(1) = 1, S i,obs = 1} c&EE, c&EN

O(1, 1, 0) = {i : Zi = 1,Di(1) = 1, S i,obs = 0} c&NN, c&NE

O(1, 0, 1) = {i : Zi = 1,Di(1) = 0, S i,obs = 1} n&EE

O(1, 0, 0) = {i : Zi = 1,Di(1) = 0, S i,obs = 0} n&NN

O(1, ?, 1) = {i : Zi = 1,Di(1) =?, S i,obs = 1} n&EE, c&EE, c&EN

O(1, ?, 0) = {i : Zi = 1,Di(1) =?, S i,obs = 0} n&NN, c&NN, c&NE

O(0, ?, 1) = {i : Zi = 0,Di(1) =?, S i,obs = 1} c&EE, c&NE, n&EE

O(0, ?, 0) = {i : Zi = 0,Di(1) =?, S i,obs = 0} c&EN, c&NN, n&NN

O(1, 1, ?) = {i : Zi = 1,Di(1) = 1, S i,obs =?} c&EE, c&EN, c&NE, c&NN

O(1, 0, ?) = {i : Zi = 1,Di(1) = 0, S i,obs =?} n&EE, n&NN

O(0, ?, ?) = {i : Zi = 0,Di(1) =?, S i,obs =?} c&EE, c&EN, c&NE, c&NN, n&EE, n&NN

Table 3: Correspondence between observed subgroups and latent strata

week πc&EE πc&EN πc&NE πc&NN πn&EE πn&NN ∆(ZS ) ∆(DS ) ∆(DW) λM λ0W λS 0

52 0.236 0.032 0.049 0.397 0.127 0.159 −0.017 −0.024 0.276 8.61 1.03 3.67

130 0.293 0.067 0.052 0.298 0.139 0.151 0.015 0.022 0.247 8.06 1.36 2.44

208 0.377 0.044 0.035 0.261 0.162 0.120 0.009 0.013 0.290 4.89 0.92 2.26

Table 4: Maximum likelihood estimates of the average effects of treatment assignment on em-

ployment (∆(ZS )) and of the average treatment effects on employment for compliers (∆(DS )) and

on wages for always-employed compliers (∆(DW)), at weeks 52, 130 and 208. For each week, we

provide the estimated proportions in the principal strata; λM is the scaled LRT statistic if the null

model assumes monotonicity of employment; λS 0, λ(0W) represent the scaled LRT statistics for the

null model with constraints ∆(DW) = 0 and ∆(DS ) = 0, respectively.

week W̄c&EE,0 (s.e.) W̄c&EE,1 (s.e.) W̄c&EN,1 (s.e.) W̄c&NE,0 (s.e.) W̄n&EE (s.e.)

52 5.52 (0.000) 5.80 (0.000) 7.32 (0.015) 6.80 (0.030) 6.51 (0.001)

130 6.44 (0.000) 6.69 (0.000) 9.22 (0.009) 7.22 (0.022) 7.94 (0.001)

208 7.47 (0.001) 7.76 (0.001) 9.27 (0.026) 8.99 (0.096) 8.97 (0.001)

Table 5: Maximum likelihood estimates of the average wages in USD at weeks 52, 130 and 208

(asymptotic standard errors in parentheses).
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Variable c&EE c&EN c&NE c&NN n&EE n&NN

Week 52 Female 0.41 0.26 0.25 0.44 0.40 0.45

Age at baseline 18.9 19.0 19.3 18.4 19.5 18.8

White 0.34 0.40 0.34 0.20 0.33 0.23

With a partner 0.07 0.03 0.04 0.04 0.10 0.08

Has children 0.17 0.09 0.11 0.17 0.21 0.25

Education 10.2 10.2 10.1 9.8 10.6 9.9

Ever arrested 0.24 0.29 0.32 0.24 0.28 0.31

Mother’s education 11.73 11.68 11.64 11.41 11.63 11.51

Fathers’ education 11.68 12.11 11.69 11.41 11.60 11.51

Household income > 6000 0.58 0.61 0.58 0.47 0.60 0.48

Personal income > 6000 0.10 0.14 0.07 0.05 0.14 0.06

Have job 0.29 0.29 0.30 0.14 0.32 0.16

Had Job, prev. yr. 0.75 0.76 0.72 0.55 0.80 0.58

Months in Job, prev. yr. 4.97 5.08 5.06 2.83 5.57 3.08

Earnings, prev. yr. 3889.6 4112.4 4379.8 1973.4 4780.8 2508.2

Table 6: Estimated means of covariates within principal strata, computed using design weights and

estimated membership probabilities, week 52.

Variable c&EE c&EN c&NE c&NN n&EE n&NN

Week 130 Female 0.42 0.25 0.19 0.47 0.40 0.46

Age at baseline 18.95 18.88 18.99 18.36 19.37 18.89

White 0.30 0.36 0.38 0.19 0.31 0.24

With a partner 0.05 0.06 0.06 0.04 0.08 0.10

Has children 0.16 0.14 0.15 0.16 0.22 0.25

Education 10.20 10.10 10.05 9.81 10.46 9.96

Ever arrested 0.23 0.29 0.32 0.25 0.28 0.31

Mother’s education 11.54 11.53 11.69 11.51 11.55 11.59

Fathers’ education 11.51 11.82 11.99 11.46 11.53 11.55

Household income > 6000 0.54 0.62 0.60 0.46 0.59 0.49

Personal income > 6000 0.08 0.11 0.10 0.05 0.12 0.08

Have job 0.25 0.27 0.24 0.15 0.28 0.19

Had Job, prev. yr. 0.69 0.74 0.70 0.55 0.76 0.60

Months in Job, prev. yr. 4.35 5.03 4.20 2.88 5.04 3.39

Earnings, prev. yr. 3221.18 4112.41 3755.92 2062.57 4290.66 2775.56

Table 7: Estimated means of covariates within principal strata, computed using design weights and

estimated membership probabilities, week 130.
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Variable c&EE c&EN c&NE c&NN n&EE n&NN

Week 208 Female 0.39 0.28 0.29 0.47 0.41 0.45

Age at baseline 18.93 18.42 18.54 18.45 19.31 18.85

White 0.29 0.44 0.41 0.18 0.30 0.23

With a partner 0.05 0.04 0.08 0.04 0.10 0.08

Has children 0.17 0.10 0.19 0.17 0.22 0.23

Education 10.17 10.01 9.93 9.79 10.41 9.94

Ever arrested 0.23 0.33 0.35 0.26 0.27 0.32

Mother’s education 11.57 11.72 11.59 11.44 11.61 11.55

Fathers’ education 11.54 11.96 11.44 11.50 11.60 11.50

Household income > 6000 0.54 0.71 0.73 0.43 0.57 0.49

Personal income > 6000 0.09 0.09 0.06 0.04 0.12 0.07

Have job 0.25 0.28 0.19 0.14 0.27 0.17

Had Job, prev. yr. 0.71 0.71 0.72 0.51 0.72 0.62

Months in Job, prev. yr. 4.47 4.17 4.21 2.67 4.84 3.34

Earnings, prev. yr. 3354.86 3666.80 3622.23 1884.33 4067.85 2731.00

Table 8: Estimated means of covariates within principal strata, computed using design weights and

estimated membership probabilities, week 208.

MAR LI and (4) LI and (5)

week ∆(DS ) ∆(DW) λM λS 0 λ0W ∆(DS ) ∆(DW) λM λS 0 λ0W ∆(DS ) ∆(DW) λM λS 0 λ0W

52 −0.024 0.276 8.61 3.67 1.03 −0.017 0.268 10.12 3.79 1.86 −0.016 0.263 8.65 3.69 1.93

130 0.022 0.247 8.06 2.44 1.36 0.022 0.252 7.99 2.43 1.33 0.023 0.246 8.09 2.35 1.36

208 0.013 0.290 4.89 2.26 0.92 0.009 0.303 4.72 2.39 0.87 0.008 0.278 4.97 2.15 0.87

Table 9: Maximum likelihood estimates of average treatment effects and scaled LRT statistics

under different assumptions about the missingness mechanism.

45


