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Abstract

Ovarian cancer is the fifth leading cause of cancer death for women in the U.S. and the seventh most fatal worldwide.
Although ovarian cancer is notable for its initial sensitivity to platinum-based therapies, the vast majority of patients
eventually develop recurrent cancer and succumb to increasingly platinum-resistant disease. Modern, targeted cancer drugs
intervene in cell signaling, and identifying key disease mechanisms and pathways would greatly advance our treatment
abilities. In order to shed light on the molecular diversity of ovarian cancer, we performed comprehensive transcriptional
profiling on 129 advanced stage, high grade serous ovarian cancers. We implemented a, re-sampling based version of the
ISIS class discovery algorithm (rISIS: robust ISIS) and applied it to the entire set of ovarian cancer transcriptional profiles. rISIS
identified a previously undescribed patient stratification, further supported by micro-RNA expression profiles, and gene set
enrichment analysis found strong biological support for the stratification by extracellular matrix, cell adhesion, and
angiogenesis genes. The corresponding ‘‘angiogenesis signature’’ was validated in ten published independent ovarian
cancer gene expression datasets and is significantly associated with overall survival. The subtypes we have defined are of
potential translational interest as they may be relevant for identifying patients who may benefit from the addition of anti-
angiogenic therapies that are now being tested in clinical trials.
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Introduction

Advanced epithelial ovarian cancer is notable for initial

sensitivity to platinum- and taxane-based chemotherapy [1,2],

but the vast majority of women will develop recurrent ovarian

cancer within 12 to 24 months and will eventually die from

increasingly platinum- and chemotherapy-resistant disease. One

possible reason that ovarian cancer remains refractory to therapy

is that there are distinct molecular subtypes, which different

cellular properties, each of which may require different therapeutic

approaches to effectively treat the disease.

Gene expression profiling data represents the largest source of

genomic data that might be of use in identifying clinically-relevant

subtypes in ovarian cancer, and multiple studies have explored its

use for finding predictive biomarkers and clinically-relevant

subtypes in ovarian cancer [3,4,5,6,7,8,9,10,11]. Tothill et al.

[10] used an unsupervised clustering of gene expression profiles

and proposed the existence of six subtypes in epithelial ovarian

cancer (denoted C1–C6) and a seventh group of unclassifiable

tumors (NC); the C1 subtype, which had the poorest prognosis,

was found to be characterized by expression of a responsive

stromal signature. Dressman and colleagues [5] used a supervised

statistical approach to predict response to platinum-based

treatment from gene expression data; they found evidence linking

chemoresistance to Src and Rb/E2F pathway activity. Recently

the ‘‘The Cancer Genome Atlas’’ (TCGA, http://cancergenome.
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nih.gov) consortium released a set of 500 gene expression profiles

from 500 serous ovarian cancer tumor samples that they used to

infer the existence of multiple subtypes [12]. However, none of the

subtypes identified to date have seen widespread clinical

application and often fail to validate in independent datasets.

Our goal was to identify robust molecular subtypes of high-

grade serous ovarian cancer and sets of functionally defined

classification genes that might give insight into potential therapies.

We began with a collection of 129 clinically-annotated formalin-

fixed, paraffin-embedded (FFPE) FIGO stage III and stage IV

high grade serous ovarian samples previously used to construct a

tissue microarray [13,14] and used the Illumina DASLTM

BeadArrayTM platform to profile mRNA expression in these

patients; in parallel, we profiled the expression level of 743 non-

coding micro-RNAs.

Having collected and normalized the gene expression data, we

ran the rISIS class discovery algorithm [15] and subjected the

resulting candidate subtypes to a rigorous validation and

evaluation scheme including bootstrap based stability evaluation

and integration of microRNA profiles, and then validated the

resulting subtypes and associated gene signature on ten indepen-

dent gene expression data sets representing data from 1,606

ovarian cancer patients.

Methods

Patient identification
Approval was obtained from the Dana-Farber/Harvard Cancer

Center Institutional Review Board (IRB) to review all pathology

reports between January 1999 and December 2005 in the Brigham

and Women’s Hospital Department of Pathology database that

included the diagnosis of ‘‘ovarian cancer’’ and collect clinical data

associated with those patients. Eligible patients had a diagnosis of

late stage (all FIGO stage III–IV except 1 case of IIc) high grade

papillary serous ovarian carcinoma, pathology blocks available for

generation of a high-density tissue microarray (HTMA) [13].

Patient clinical and demographic characteristics were extracted

including: age at diagnosis, stage of disease, surgical procedures,

chemotherapy treatment given, response to chemotherapy, date of

diagnosis, date of first disease recurrence, and date of death or last

documented visit to a medical provider.

RNA extraction and microarray hybridization
RNA was extracted from FFPE blocks originally used for TMA

construction. H&E slides were reviewed by a dedicated gyneco-

logic pathologist (MSH), and three 0.8 mm tissue cores were taken

from the corresponding FFPE samples at locations adjacent to the

original TMA cores; selected areas for sampling were based on

having low levels of infiltrating, necrotic, or other contaminating

non-tumor tissue. Messenger RNA was extracted using the Qiagen

RNeasy FFPE kit with; RNA quality and integrity was assessed

using profiles on the Agilent BioAnalyzer and 129 samples passing

this basic QC analysis were analyzed using a prototype Illumina

DASL BeadArray containing approximately 12,000 selected

mRNAs (ArrayExpress Array Design Accession A-MEXP-931)

[16]; twelve samples were run in duplicate to allow estimation of

the reproducibility of the assay. In addition, we used a prototype

DASL-based microRNA expression profiling BeadArray contain-

ing probes to 743 microRNAs (ArrayExpress Array Design

Accession A-MEXP-1678) [17] to survey patterns of microRNA

activity in the samples. The resulting data were normalized using a

variance stabilizing transformation combined with quantile

normalization as implemented in the Bioconductor lumi package

[18,19]. Both data sets were submitted to the ArrayExpress data

repository (ArrayExpress Experiment Accession E-MTAB-386).

Data analysis
To identify ovarian cancer subtypes, the 129 tumor samples

were divided into a training set (n = 82) and a model selection set

(n = 47). Genes on the microarray were filtered to select the 1000

most highly variable in their expression levels across samples but

which also had low variability among the twelve sets of duplicates.

We used the rISIS class discovery algorithm with these 1000 genes

to identify distinct partitions of the 82 training samples and to

select the 100 genes that provided the most significant statistical

support for the partition. We then tested our initial candidate set of

partitions against the 47 model selection test set of samples and

retained four that retained statistical significance (classification

stability .95% during bootstrap) in the model selection set.

MicroRNA expression data from 743 known human miRNAs

profiled in the same 129 tumor samples were tested using PAM

(predictive analysis of microarrays) [20] in combination with a

nested cross validation approach [21] for their ability to

independently predict the rISIS class assignment labels.

Gene set enrichment analysis (GSEA) of GO biological

processes was applied to identify biological themes associated

with the candidate subtypes (FDR,10%).

The validity of the rISIS subtypes was further validated in ten

independent datasets (Table 1). Data from each study were

normalized, probes mapped to EnsEMBL identifiers, gene

expression levels robustly scaled to the range [21, +1], and samples

classified using a score based on weights determined from our linear

discriminant analysis on the original dataset. Additional details of

the computational methods used are provided in Text S1.

Results

Patient stratification based on 4 independent gene
expression signatures

Gene expression-based stratification of cancer into transcription-

ally distinct subtypes has proven to be extremely powerful in

separating patients with unique clinical characteristics, and in

shedding light on the genes and mechanisms responsible for driving

subtype distinctions. However no robust molecular classification in

ovarian has been found, despite a large number of available

expression datasets. This may be due to the fact that many studies

include multiple histological subtypes, reducing their power to

effectively identify new molecular phenotypes [22,23,24,25,26].

To overcome the limitations of these previous studies, we

generated a large gene expression data set from tumors consisting

only of high grade, late stage serous carcinomas and used these for

subtype discovery. We focused on high grade serous tumors as

they represent, by far, the most common histologic subtype of

ovarian cancer and the one most responsive to chemotherapy. We

deviated from the widely-used strategy of clustering the patients

based on the global similarity of their gene expression profiles as

described in Tothill et al. [10] because such approaches can be

cofounded by background gene expression and instead focused on

finding compact modular features within the tumor expression

profiles. Our approach is consistent with mechanistic models of

cancer subtypes in which the expression of distinct functionally-

related groups of genes and distinct pathways can define

phenotypically and clinically distinct groups [27].

We used the unsupervised class discovery algorithm ISIS [15],

which splits the sample set into subsets and tests the significance of

the partitions using linear discriminant analysis with the 100 most

significant genes. In contrast to more widely used clustering

An Angiogenic Subtype of Serous Ovarian Cancer
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algorithms, which always return a partition of a dataset, ISIS does

not report a result if the data do not support the presence of

subtypes within a specified cohort.

In the analysis presented here we implemented a robust version

of the ISIS algorithm, rISIS, that includes an additional bootstrap

step to identify only those partitions of the samples in the test set

that are not dependent on the composition of the initial training

sample set. To do this rISIS chooses random subsets of the training

samples, searches for subtype partitions and trains classifiers for

each of these, and monitors the consistency of the predictions on

the independent test samples. Only predicted partitions were

consistent on the independent test samples are kept and used for

further analysis.

Using rISIS we found four independent, robust binary

partitions, or ‘‘Splits,’’ in our ovarian cancer gene expression

profiling data (S1–S4), each supported by expression of a defined

set of 100 genes (modules) as shown in Figure 1. For each of these

binary partitions, the two patient subtypes were labeled g0 and g1,

for the larger and smaller subsets, respectively, so that S1 consists

of S1g0 and S1g1, S2 is divided into S2g0 and S2g1 for Split2, etc.

The list of genes in the modules that define each of the binary

partitions is included in the File S1.

MicroRNA expression profiles provides support for Split 1
The expression profiles for the 743 known microRNAs

represented on the Illumina DASL platform [17] provided an

independent source of data to test the robustness of our subtype

assignments. We used Prediction Analysis of Microarrays (PAM)

[20], which uses a nearest-centroid method, to test whether the

nicroRNA expression was able to predict the subtype membership

for each of our four binary partitions. Nested cross-validation was

used to build a PAM classifier for each Split and compute an

unbiased estimate of its performance [21]. As can be seen in

Table 2, the microRNA expression profiles provide strongest

support for the subtypes defined by Split 1; only three samples of

S1g1 are misclassified within the cross-validation. The cross-

validated misclassification error of S1g0 was larger, but still below

20%. Much larger misclassification error rates were observed for

Splits 2–4, suggesting that these may represent either artifacts in

the original mRNA expression data or subtypes of patients

characterized by more complex substructure than cannot be

discovered with the binary splitting approach used by rISIS.

Because the microRNA data provides the greatest independent

support for Split 1, we chose to focus the remainder of our analysis

on this subtype assignment. The consensus set microRNAs

significant in classifying the samples as S1g0 or S1g1 in all cross-

validation classifiers are included in File S2.

Gene set enrichment analysis of Split 1
We then performed Gene Set Enrichment Analysis using Gene

Ontology (GO) Biological Process terms to functionally charac-

terize the gene module responsible for the Split 1 classification.

Table 1. Microarray datasets used as training and validation sets.

Contributors Year Set
Microarray
platform

# Patients
with ovarian
tumor

# Patient with high grade,
late stage, serous ovarian
tumor PMID Source

Bentink et al.
[This study]

2011 Training Illumina DASL
BeadArray 12k

129 129 E-MTAB-386

Dressman
et al. [5]

2007 Validation Affymetrix
GeneChip HG-
U133A

118 114 17290060 http://data.cgt.duke.edu/platinum.php

Yoshihara
et al. [36]

2010 Validation Agilent G4112A 110 43 20300634 GSE17260

Tothill
et al. [10]

2008 Validation Affymetrix
GeneChip HG-
U133A

285 139 18698038 GSE9899

Birrer et al.
Bonome
et al. [37]

2008 Validation Affymetrix
GeneChip HG-
U133A

185 185 18593951 GSE26712

TCGATCGA
[12]

2011 Validation Affymetrix
GeneChip HG-
U133A

510 402 21720365 http://tcga-data.nci.nih.gov/tcga/
tcgaHome2.jsp

Spentzos
et al. [9]

2004 Validation Affymetrix
GeneChip HG-
U95v2

53 41 15505275 GSE19161

Zhang et al. [38]2008 Validation Affymetrix
GeneChip HG-
U133PLUS2

55 46 18458333 GSE19161

Denkert
et al. [26]

2009 Validation Affymetrix
GeneChip HG-
U133A

80 41 19294737 GSE14764

Crijns
et al. [39]

2009 Validation Operon human v3
35K

157 85 19192944 GSE13876

Mok
et al. [40]

2009 Validation Affymetrix
GeneChip HG-
U133PLUS2

53 53 19962670 GSE18520

doi:10.1371/journal.pone.0030269.t001

An Angiogenic Subtype of Serous Ovarian Cancer
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Figure 1. Four binary classifications of high grade ovarian serous cancer. The ISIS algorithm identified four independent binary partition
classifications (splits) of 129 ovarian cancer samples. Each binary classification is supported by an independently selected set of 100 genes (module).
The top panel of this figure shows four horizontal bars representing the classification of the 129 tumor samples (columns) with respect to the gene
modules. Red indicates that a patient was classified into the smaller group resulting from the respective split (g1) and white indicates the
classification into the larger group (g0). The heatmap in the lower panel represents the expression profiles of the gene modules supporting the four
binary classifications. Each row represents a gene, each column a patient and each cell correspond to a gene and its expression level; yellow indicates
an expression level of a gene above its mean across the patients and blue below its mean.
doi:10.1371/journal.pone.0030269.g001

Table 2. Cross-validation performance of microRNA expression based on predictors of the four binary molecular classifications
(Splits 1–4).

Split 1 g0 (predicted$) g1 (predicted$) Error rate& Split 2 g0 (predicted$) g1 (predicted$)
Error
rate&

g0 (true*) 80 16 0.167 g0 (true*) 71 12 0.14

g1 (true*) 3 30 0.091 g1 (true*) 17 29 0.37

Split 3 g0 (predicted$) g1 (predicted$) Error rate& Split 4 g0 (predicted$) g1 (predicted$)
Error
rate&

g0 (true*) 73 17 0.19 g0 (true*) 89 12 0.12

g1 (true*) 18 221 0.46 g1 (true*) 8 20 0.29

*True labels of the 4 independent classifications identified by mRNA expression profiling.
$Labels of the 4 independent classifications identified by miRNA expression profiling.
&Unbiased estimate of error rate of classifiers predicting Splits 1–4 from miRNA expression profiles.
The contingency tables show numbers of samples in groups defined by Splits 1–4 and predicted from miRNA expression.
doi:10.1371/journal.pone.0030269.t002
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GSEA significant processes included angiogenesis and extracellu-

lar matrix proteins, inducing the GO categories ‘‘vascular

development’’ (GO:0001944; FDR = 2.5%) and ‘‘regulation of

cell adhesion’’ (GO:0030155; FDR = 2.4%), both of which had

relatively higher expression levels in S1g1, the smaller of the two

classes comprising Split 1. The larger sample group, S1g0, showed

relatively higher expression for genes involved in ‘‘single stranded

DNA binding’’ (GO:0003697; FDR = 9.5%) and ‘‘structure

specific DNA binding’’ (GO:0043566; FDR = 5.0%). Because of

the significance of angiogenesis in defining the groups, we refer to

S1g1 as the ‘‘angiogenic’’ and S1g0 as the ‘‘non-angiongenic’’

subtypes.

Robustness and prognostic value of the angiogenic
subtype classification

We tested our angiogenic subtype classification for reproduc-

ibility and association with clinical variables in our original dataset

and ten previously published gene expression datasets collected on

a number of diverse microarray platforms (Table 1). We

normalized and scaled data from each study and assigned an,

angiogenic subtype score to each of the 1,606 samples in the

published gene expression datasets (see Text S1 for detailed

description of the methods). The results of these assignments are

shown in Figure 2 for our initial set of 129 samples (Figures 2A,

2D, 2G), for the 1,090 patients from the ten published studies

having high grade ($3), late stage ($3), serous ovarian tumors

(Figures 2B, 2E, 2H), and for all 1,606 patients in the published

datasets (Figures 2C, 2F, and 2I). The top figures show heatmaps

for the 100 classification genes, the middle row show the bimodal

distribution of classification scores in each dataset, and the bottom

row of figures shows the significantly poorer survival for the

angiogenic subtype relative to the non-angiogenic subtype. An

independent validation that the most robust number of subtypes in

the data, estimated using the Bayesian Information Criteria (BIC),

is shown in Figure S1.

Within our patient set, those with angiogenic subtype tumors

had a hazard ratio (HR) = 1.3 (95%CI [0.8,2.2], logrank p-

value = 0.28) relative to the non-angiogenic subtype. We saw

similar, and highly significant differences for the published high-

grade, late stage, serous tumors (HR = 1.3, 95%CI [1.1,1.6],

Figure 2. Validation of angiogenic ovarian cancer classification in our dataset and ten independent validation datasets. Panels A, D
and G display the gene expression of the 100 genes used to classify ovarian tumors into angiogenic and non-angiogenic subtypes in our dataset (129
patients), the high grade, late stage, serous tumors (1,090 patients) and all tumors (1,606 patients) in the validation set, respectively. Panels D, E and F
report the corresponding distribution of the scaled subtype scores. Panels B, D and F reports the (overall) survival curves of patients having tumors of
angiogenic or non-angiogenic subtype in the corresponding datasets.
doi:10.1371/journal.pone.0030269.g002
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logrank p-value,0.001) and the entire published ovarian dataset

(HR = 1.4; 95%CI [1.2,1.6], logrank p-value,0.001). Additional

plots, including classification of the ten individual published

datasets can be found in Figure S2 and Figure S3.

Association with clinical parameters
We then tested the association of the angiogenic subtype

classification with the clinical information, including stage, grade,

optimal debulking during surgery, and age, available for the

compendium of datasets (Table 1). In our set of 129 high grade,

late stage, serous ovarian cancer patients we observed no

significant association with any of these clinical parameters

(Fisher’s exact test p-value.0.05). Similarly, in the validation set

of 1,090 high-grade, late stage serous ovarian cancer patients, we

found no significant association with subtype and these parameters

(Fisher’s exact test p-value.0.05).

However, in the validation set of 1,606 ovarian cancer patients

we found significant association with grade (only 19% of grade 1

tumors are of the angiogenic subtype, Fisher’s exact test p-

value = 0.0025; Table 3A), stage (only 10% of stage I and II

tumors are of the angiogenic subtype, Fisher’s exact test p-

value,0.001; Table 3B) and debulking (debulking is suboptimal

for 60% versus 44% for the angiogenic and the non-angiogenic

subtype tumors respectively, exact test p-value = 0.001, Table 3C).

No significant association between the angiogenic subtype

classification and age at diagnosis has been found.

Comparison with published ovarian cancer subtypes
We then compared our angiogenic subtype classification to the

expression-based molecular subtypes assigned by Tothill and

colleagues [24] using k-means clustering. These subtypes, which

they called C1 (n = 83), C2 (n = 50), C3 (n = 28), C4 (n = 46), C5

(n = 36), C6 (n = 8), and NC for a set of ‘‘unassigned’’ cases

(n = 34), were reported to correspond to different clinical and

pathological features. The most significant of these was C1 which

Tothill found to have significantly poor prognosis and which they

described as characterized by a ‘‘reactive stroma signature.’’

When we classified the Tothill samples using our angiogenic

subtype classification, we observed a highly significant association

with Tothill’s clusters (Fisher’s exact test p-value,0.001; Table

S1A). Of the 115 samples classified as having the angiogenic

subtype, 82 (71%) were from the C1 subtype, 18 were C2, 11 were

NC, and the remaining four were from C5; none of the C3 and C4

samples were classified as angiogenic. This suggests that Tothill’s

C1 class is largely concordant with our angiogenic subtype.

We also compared our angiogenic subtype classification with

the four subtypes (‘‘differentiated’’, ‘‘immunoreactive’’, ‘‘mesen-

chymal’’, and ‘‘proliferative’’) recently defined from the gene

expression dataset generated by the TCGA consortium (Table 1;

[12]). These four subtypes were validated only in two datasets

(TCGA and Tothill; Table 1) and did not exhibit any differences

in overall survival [12]. However, we observed a significant

association between our angiogenic subtype classification and

TCGA’s subtyping (Fisher’s exact test p-value,0.001; Table S1B),

where the majority of the tumors identified as angiogenic are from

the TCGA mesenchymal (58%) and immunoreactive (20%)

subtypes, although using our angiogenic/non-angiogenic classifi-

cation they have significantly worse survival as described

previously.

Discussion

There have been many published studies that have attempted to

find robust, clinically-relevant molecular subtypes in ovarian

cancer, but there has been no clear consensus as to what subtypes

exist. One reason for this may be that most analyses have used

methods that are sensitive to subtle variations in the data, resulting

in putative subtypes that cannot be generalized to independent

validation datasets [28,29]. Many studies have also used mixed

histological types in their analyses, reducing the power to discover

new classes and potentially confounding the results.

In the analysis presented here, we focused on a single

histological type—high-grade serous ovarian cancer. We chose

this because it is by far the most common histologic subtype of

ovarian cancer and the one that is most responsive to

Table 3. Association with clinical parameters.

A. Grade

1 2 3 4

Subtype Angiogenic 14 140 433 21

Non-angiogenic 59 200 668 37

B. Stage

1 2 3 4

Subtype Angiogenic 4 5 520 92

Non-angiogenic 43 39 779 115

C. Debulking

Suboptimal Optimal

Subtype Angiogenic 121 81

Non-angiogenic 143 176

Non-angiogenic 143 176

Contingency tables for the significant association between the angiogenic subtype classification and (A) histological grade, (B) Stage, and (C) debulking in our validation
set of 1,606 ovarian cancer patients. It is worth noting that different datasets are annotated using different histological grading and tumor staging systems, with scales
ranging from 1 to 3 and 1 to 4. In this study, we simply merged these clinical annotations because we do not have access to the original tumor tissues to perform a
standardized histological grading and tumor staging.
doi:10.1371/journal.pone.0030269.t003

An Angiogenic Subtype of Serous Ovarian Cancer
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chemotherapy. Moreover the vast majority of published gene

expression data, including that from the TCGA, is from patients

with high-grade serious cancer. Although there are other

recognized ovarian histological subtypes, including mucinous,

clear cell and endometrioid cancers, we did not have sufficient

numbers of these to search for subtypes or to robustly validate

their existence in independent datasets.

For subtype discovery, we used rISIS, a robust clustering

method that combines class discovery and feature selection by

searching for binary groupings of the samples that are strongly

supported by statistically significant differences in gene expression

[15]. Rather than relying on global patterns of expression, which

can be affected by noise in the data and by the initial choice of

samples, rISIS searches for separations of the initial sample set

together with the genes that are significantly different between

subgroups and support the separation. By design, rISIS reports

multiple, overlapping partitions of the original sample set and

associated classification genes, reflecting the complexity of

biological systems in which there are often common pathways or

functional gene groups that are activated in multiple phenotypic

groups. While we found four putative subtypes partitions, each of

which could be plausibly described by the genes that supported it,

we were only able to confirm the existence of the first bi-partition

of the samples using independently obtained microRNA expres-

sion data.

The corresponding two subtypes, defined by expression of genes

associated with angiogenesis has been shown to be robust and

reproducible in independently published gene expression datasets

including 1,090 high grade, late stage, serious (and 1,606 total)

ovarian tumors, with statistically significant differences in overall

survival. The angiogenic subtype was found to be fairly

concordant with Tothill’s C1 ‘‘reactive stroma’’ cluster [24] and

to overlap with mesenchymal and immunoreactive subtypes

identified by the TCGA consortium [12], but with better statistical

support and a well-defined, functionally-associated set of classifi-

cation gene modules. When we extended our analysis to all 1,606

patients, which include low grade and early stage patients, the

bimodality of the subtype score was preserved and the association

with survival was even stronger. Overall, this suggests that the

angiogenic subtype represents a true biological subset of serous

ovarian tumors that can be robustly identified across independent

datasets.

This identification of an angiogenesis-driven subtype is of

potential clinical and translational importance since several anti-

angiogenic agents (bevacizumab, cediranib) are being added to

chemotherapy both in newly diagnosed patients and those with

recurrent cancer. and inhibitors of DNA repair (Olaparib)

[30,31,32].

Bevacizumab is a humanized monoclonal antibody that

recognizes circulating vascular endothelial growth factor (VEGF)

and which has documented anti-cancer activity patients with

recurrent ovarian cancer [30,31,32,33,34,35]. Single agent bev-

acizumab demonstrates response rates of 18–20% suggesting

activity of this anti-angiogenic in ovarian cancer [30,31]. In these

studies, bevacizumab has been identified as an active drug in both

platinum-resistant and platinum-sensitive recurrent ovarian cancer.

In Gynecologic Oncology Group study 218, bevacizumab was

added to upfront chemotherapy for newly diagnosed patients with

advanced ovarian cancer, and the study design was comprised of 3

groups: carboplatin and paclitaxel given IV with placebo during

chemotherapy and maintenance, carboplatin/paclitaxel/bevaci-

zumab with placebo maintenance, and carboplatin/paclitaxel/

bevacizumab followed by 12 months of bevacizumab mainte-

nance. A statistically significant improvement of 4 months was

observed in the carboplatin/paclitaxel/bevacizumab plus bevaci-

zumab maintence arm compared to carboplatin/paclitaxel alone

[33].

ICON7 also demonstrated a statistically significant improve-

ment in PFS with the addition of bevacizumab to upfront

chemotherapy [35]. In patients with platinum sensitive recurrent

ovarian cancer, the addition of bevacizumab to carboplatin and

gemcitabine chemotherapy statistically improved PFS compared

to carboplatin and gemcitabine chemotherapy alone [34]. Thus,

increasing clinical data in both newly diagnosed and recurrent

ovarian cancer suggests some benefit in PFS with the addition of

bevacizumab [34,35].

Given the important toxicities of these agents such as

gastrointestinal bowel perforations, thromboembolic events such

as strokes and pulmonary emboli, and hypertension, as well as

their financial cost, a classification signature that could identify

and pre-select patients whose tumors would most likely benefit

from receipt of anti-angiogenic agents would be of tremendous

clinical importance. A retrospective assessment of gene expression

profiles of patients in the treatment arm of one of these clinical

trials would help establish the validity of this signature for

predicting relevant response.

There may be additional translational applications of our

angiogenic/non-angiogenic subtype assignments. The classifica-

tion gene set also was enriched for genes associated with the

extracellular matrix and a number of agents that interfere with the

ECM, including notch inhibitors and integrin modulators, are

currently being tested in ovarian cancer. Again, a retrospective

analysis of gene expression data from patients in the treatment

arms of these trials could help to establish a clinical application for

the subtypes we identified.

Although much remains to be done, we have developed a new

approach to robust subtype discovery, demonstrated its applica-

tion in disease in which subtype identification has proven

challenging, and validated that our subtype assignments are

robust in a large independent dataset—and more strongly

predictive of outcome than any previously reported signature in

ovarian cancer. Given the overlap between the genes that drive the

subtype classification, and the clinical trials underway in ovarian

cancer, we believe our classification has great potential to help

influence treatment and improve outcomes for patients.
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Figure S1 Identification of the most likely number of
Gaussians to model the subtype scores in the training
set (Figure 1A–B) and in the validation set for the 1,090
patients having high grade ($3), late stage ($3), serous
ovarian tumors (Figure 1C–B) and for all the 1,606
patients (Figure 1E–F). Panel A displays the distribution of the

subtype scores and the mixture of two Gaussians, what is the most

likely model given the data as estimated by the Bayesian

Information Criterion (BIC) in panel B. As can be seen in panels

C and E, the distribution of the subtype scores still exhibits a

bimodal pattern despite the heterogeneity of the validation

datasets (different microarray technologies and normalization

methods); this is confirmed by the estimation of the BIC in the

validation (panels D and F) where a mixture of two or three

Gaussians are the most likely models given the data.
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Figure S2 Subtype identification for high grade, late
stage, serous ovarian tumors in each of the ten
independent validation sets separately: from left to
right, a short description of the dataset is given along
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with the number of tumors in the angiogenic and non-
angiogenic subtypes, the bimodal distribution of the
rescaled subtype scores, and the survival curves of
patients having an angiogenic of non-angiogenic sub-
type.
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Figure S3 Subtype identification for all tumors (all
grades, all stages, all histological types) in the training
set and in each of the ten independent validation sets
separately: from left to right, a short description of the
dataset is given along with the number of tumors in the
angiogenic and non-angiogenic subtypes, the bimodal
distribution of the rescaled subtype scores, and the
survival curves of patients having an angiogenic of non-
angiogenic subtype.
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Table S1 Association between the angiogenic subtype
classifications and (A) the putative subtype clusters in
Tothill’s dataset, and (B) the proposed subtypes in the
ovarian TCGA dataset.
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Text S1 Angiogenic mRNA and microRNA gene expres-
sion signatures predict a novel subgroup of serous
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File S1 An Excel workbook containing the list of genes
in the modules that define each of the four binary
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S1g0 or S1g1 in all cross-validation classifiers.
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