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Abstract

An analytic boundary layer model for thermal convection with a finite-strength plate

and depth-dependent viscosity is developed. The model includes a specific energy balance

for the lithosphere and accounts for coupling between the plate and underlying mantle. Mul-

tiple solutions are possible with three solution branches representing three distinct modes

of thermal convection. One branch corresponds to the classic boundary layer solution for

active lid plate tectonics while two new branches represent solutions for sluggish lid convec-

tion. The model is compared to numerical simulations with highly temperature dependent

viscosity and is able to predict both the type of convection (active, sluggish, or stagnant lid)

as well as the presence of single and multiple solution regimes. The existence of multiple

solutions suggests that the mode of planetary convection may be history dependent.

The dependence of mantle viscosity on temperature and water concentration is found

to introduce a strong dynamic feedback with plate tectonics. A dimensionless parameter is

defined to quantitatively evaluate the relative strength of this feedback and demonstrates

that water and heat transport may be equally important in controlling present-day plate-

mantle dynamics for the Earth. A simple parameterized evolution model illustrates the

feedback and agrees well with our analytic results. This suggests that a simple relationship

may exist between the rate of change of water concentration and the rate of change of

temperature in the mantle.

This study concludes by investigating the possibility of a magnetic field dynamo in

early solar system planetesimals. The thermal evolution of planetesimals is modeled by

considering melting, core formation, and the onset of mantle convection and then employing

thermal boundary layer theory for stagnant lid convection (if possible) to determine the
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cooling rate of the body. We assess the presence, strength and duration of a dynamo for a

range of planetesimal sizes and other parameters. We find that a minimum radius of O(500)

km is required for a thermally driven dynamo of duration O(10) My. The dependence of the

results on model parameters is made explicit through the derivation of an analytic solution.
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Chapter 1

Introduction

The classic boundary layer model for plate tectonics was proposed 45 years ago and provided

a reasonable theoretical framework for understanding the motion of the Earth’s tectonic

plates (Turcotte, 1967; Turcotte and Oxburgh, 1967). The theory suggested that buoyant

forces in the Earth’s mantle would be sufficient to deform mantle rock and produce thermal

convection over large distances and geological timescales. Tectonic plates were considered

the surface manifestation of the convective flow in the mantle and the sinking of cold thick

plates at subduction zones and upwelling of warm mantle material at ridges provided an

efficient means for cooling the Earth’s mantle. The boundary layer theory is based on the

physics of thermal convection in a fluid layer with homogeneous material properties. The

dynamics predicted by this theory are governed by the material properties and thermal

state of the mantle and the model contains no information regarding the properties of the

plate itself. The theory predicted values for tectonic plate speeds and surface heat flow that

were in reasonable agreement with those observed for the Earth.

Other ideas were put forth regarding a dynamical theory for plate tectonics. Elsasser

(1969) proposed that plates would be cold and, as a result of the strong temperature de-

pendence of viscosity, would have sufficient mechanical strength to transmit stresses over

hundreds to thousands of kilometers. He suggested that tectonic plates moved faster than

the underlying mantle and that drag on the base of the plate was balanced by forces trans-

mitted through the plate from the sinking of the cold (negatively buoyant) plate at the

1
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subduction zone. This started a debate that remains alive to this day on whether plates

drive mantle convection or mantle convection drives plates. Neither of the theories could

address the nature of the coupling between the plate and mantle as the boundary layer

theory did not explicitly contain any strong plate and the idea of Elsasser (1969) remained

only a conceptual one (no dynamical theory was ever developed).

The classic boundary layer theory provides a simple means of estimating the tectonic

plate speed and surface heat flow for a planet with a convecting mantle. If the Earth’s

mantle temperature and properties are approximately known (or specified) at some time

in the past then the boundary layer theory can be used to estimate the surface heat flow

at that time. The latter can then be used to determine the rate of cooling of the mantle

from that time onwards. Boundary layer theory thus allows for the calculation of simple

thermal histories for the Earth (e.g., Davies, 1980; Sharpe and Peltier, 1979; Spohn and

Schubert, 1982). The historical temperatures predicted by these models were found to be

very sensitive to the amount of internal heating in the mantle and the models were unable to

achieve reasonable thermal histories consistent with present day mantle temperature, heat

flow, and the geochemically inferred concentration of radiogenic elements in the mantle

(see, for example the recent review by Korenaga, 2008). These thermal history calculations

emphasized the importance of the temperature dependence of mantle viscosity and identified

it as a key controlling factor in planetary thermal histories. If the Earth began hot, the

mantle would have a low viscosity and boundary layer theory predicted a heat flow that

was much greater than the heating supplied by radionuclides. The mantle would rapidly

cool until the surface heat flow closely balanced the rate of internal heating. Conversely, if

the Earth began cool, the mantle would have a high viscosity and boundary layer theory

predicted a heat flow that was less than that supplied by internal heating. In this case

the mantle warmed with time until the surface heat flow was close to the rate of internal

heating in the mantle. This self-regulating feedback or ‘mantle thermostat’ is the result of

the strong temperature dependence of viscosity and was first pointed out by Tozer (1970).

Calculations using the classic thermal boundary layer theory for plate tectonics always
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resulted in a mantle that cooled too quickly, requiring a higher rate of internal heating to

account for the present day heat flow than is consistent with cosmochemical constraints.

The key results of the early thermal history calculations are summarized in Christensen

(1984). A great deal of work has been devoted to developing variations of these boundary

layer models and thermal history calculations in the hopes of circumventing this discrepancy.

Early studies of mantle convection with strongly temperature dependent viscosity (see

for example Booker, 1976; Christensen, 1984; Morris and Canright, 1984) demonstrated that

mantle convection could still occur beneath a strong immobile cold boundary layer (so-called

‘stagnant-lid’ convection) and that plates were not required for mantle convection. However,

this demonstrated only that mantle convection need not always be driven by plate tectonics.

The question of whether convective flow in the mantle drives or resists plate motions has

thus far remained unanswered.

Given the limited observations available at the time, the classic boundary layer theory of

Turcotte and Oxburgh (1967) was a significant and important step in understanding plate

tectonics and mantle convection. Moreover, it was likely that the simplicity of the dynamical

theory contributed to its widespread acceptance and ultimately ended the long standing

geological debate over whether plate tectonics was physically possible (most geodynamics

texts, such as Davies, 1999, contain a discussion of this). However, this theory, while applied

widely and often, is not appropriate for addressing problems involving strong tectonic plates

and plate-mantle coupling. There is no plate in the classic boundary layer theory; the model

assumes a free surface that offers no resistance to motion. This thesis will demonstrate that

the presence of a strong surface boundary layer fundamentally changes the dynamics of

the problem. Only under specific circumstances will the classic boundary layer model of

Turcotte and Oxburgh (1967) still provide a viable solution when mechanically strong plates

are present.

The need for a dynamical model that incorporates strong plates in a self consistent

way was first realized by Conrad and Hager (1999) who developed a global energy balance

model that included the energy required to deform and subduct strong plates. However,
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they found that for reasonable (Wu et al., 2008) plate strengths the energy required to

deform the plates had little effect on the global energy balance. Moreover, they pointed out

that this effect would have been further diminished earlier in the Earth’s evolution when the

mantle was warmer and plates presumably moved faster (Conrad and Hager, 1999). Faster

moving plates have less time to diffusively cool at the surface and are therefore thinner

when they subduct. Thinner plates require less energy to bend and thus contribute less to

the global energy balance. Thus, it seemed unlikely that the presence of strong plates would

affect plate speeds or heat flow during the Earth’s early evolution and this model offered no

resolution to the issues regarding the Earth’s thermal history discussed above. A variation

of this global energy balance model suggested that the mechanical thickness of a plate might

sometimes be controlled by dehydration rather than the thermal profile of the plate (Hirth

and Kohlstedt, 1996; Korenaga, 2003). Partial melting in the mantle releases volatiles and

results in a dehydrated lithosphere. Due to the sensitivity of rheology to water content,

this may lead to an increase in mechanical plate strength that is more significant than the

increase in strength due to temperature. In this model the effect of plate bending would

be larger during Earth’s early evolution if the mantle was warmer and melting occurred

deeper. Korenaga (2003) presented thermal history calculations that implemented this idea

and demonstrated the effect of lithospheric dehydration on limiting plate speeds, slowing

the cooling of the Earth’s mantle, and possibly satisfying the present day constraints on

mantle temperature, heat flow, and internal heating. Davies (2009), however, pointed out

that the model of Korenaga (2003) was extremely sensitive to the parameter values used.

As such, this model, and in general the thermal history calculations for the Earth produced

thus far, remain unsatisfactory. In Chapter 3, we will see that the energy required to bend

plates, while very small in the global energy balance, plays an important role in the local

energy balance of the plate.

The primary goal of this thesis is to develop a dynamical theory for plate tectonics

and mantle convection in the presence of strong plates. Chapter 2 will re-derive the classic

boundary layer solution for thermal convection in an isoviscous fluid layer and further extend
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it to develop a new and more general solution that allows for mixed heating.

In Chapter 3 we will derive the energy balance equations for a new analytic model for

plate-mantle dynamics. The model will be used to show that plate dissipation, while a small

term in the global energy balance, can be a dominant term in the local lithospheric energy

balance and control the plate speed and energy available for mantle convection. We will

demonstrate that multiple solutions may occur for the same planetary properties and ther-

mal state, with each solution corresponding to a distinct mode of thermal convection. The

new modes will be shown to represent sluggish-lid convection in which plates move slowly

over a more rapidly convecting mantle. These boundary layer solutions, or mantle con-

vection modes, can be simply captured in analytical equations, which further demonstrate

that mantle convection may drive or resist plate motions depending on the specific mode

of convection. The existence of multiple solutions adds a new dimension of complexity to

thermal history calculations for the Earth and other planets. Our model suggests that plan-

ets may transition between different states throughout their evolution, as first conceptually

suggested by Sleep (2000) and that the state of a planet, when multiple states are possible,

will depend on its earlier evolution. This raises questions regarding what defines a tectonic

state of a planet and suggests that, if multiple solutions are possible, the presence of plate

tectonics on a planet such as a super-Earth (O’Neill and Lenardic, 2007; Valencia et al.,

2007), may depend more on the evolution of the planet than it does on its thermal state

and material properties. Chapter 3 will conclude by comparing our new analytic model to

numerical simulations of thermal convection that provide further evidence of the existence

of sluggish-lid convection, multiple solutions and history dependence.

The secondary goal of this thesis is to explore interesting feedbacks associated with

plate tectonics and mantle convection. Chapter 4 will examine a feedback that manifests

itself through the dependence of mantle viscosity on water concentration in the mantle

and consider how the transport of water to and from the mantle, via plate tectonics, may

modify the evolution of a planetary body such as the Earth. The results suggest that a

simple relationship may exist between the rate of change of water concentration and the rate
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of change of temperature in the mantle. Chapter 5 will discuss the classic thermal feedback

between temperature and viscosity in determining the cooling rate of planetesimals and the

ability of these small bodies to support strong magnetic field dynamos over millions of years.

We will demonstrate that the duration of a dynamo depends foremost on the planetesimal’s

radius and that bodies smaller than ∼ 500 km are likely unable to maintain strong dynamos

for millions of years.

In an early paper on numerical convection simulations (McKenzie et al., 1974), the

authors made the comment that “although the equations and boundary conditions are

highly simplified [...] the computations already display a wealth of complicated behavior.

The simplification is deliberate: it is more profitable to begin with a carefully planned

study of idealized models than to program every detail and generate results that are nei-

ther comprehensible nor accurate.” Sophisticated numerical methods and readily available

computational power have markedly improved the ‘accuracy’ of many numerical models.

Nevertheless, many of the physically ‘realistic’ numerical convection models used today re-

main difficult to understand and obscure a full understanding of any results they produce.

Our approach is to pursue simplicity and to solve problems analytically when feasible. If

done carefully, we hope the gain in physical insight will outweigh the cost of having to settle

for results that are considered ‘approximate’.



Chapter 2

Simple convection scalings

“Chance favors the prepared mind.”

–Louis Pasteur

I present here solutions to a few simple convection problems. These will provide insight and

prepare us for the more involved problems to be discussed in the following chapters.

Before considering the complex dynamics of thermal convection in planetary systems

with temperature dependent rheology, phase transitions, and other such complications, we

will first consider the basic physics of 2D thermal convection in simple fluids. We will

start by working out the dynamics of thermal convection in a fluid layer with homogeneous

material properties. We will then consider the case when viscosity is temperature dependent

and a strong cool thermal boundary layer is present at the surface. Finally, we will discuss

thermal convection in an ‘open’ layer which may be useful for modeling the Earth’s lower

mantle.

Throughout this thesis we will repeatedly refer to various ‘modes’ of thermal convec-

tion and will rely on the following definitions to distinguish them from each other. A

planet/system will be said to be in the mobile-lid convective mode when the surface (plate)

velocity is comparable to or exceeds the maximum laterally averaged horizontal velocity in

the convective flow beneath it. In other words, the plate moves at a rate comparable to

the convective flow beneath it. The active-lid mode is the same as the mobile-lid mode

and these two terms will be used interchangeably. A planet/system is in the sluggish-lid

7
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Figure 2.1: Diagram for thermal convection in a fluid layer. (a) Illustration of thermal
boundary layers. (b) Simplified flow structure with horizontal surface velocity u. (c) Av-
erage temperature structure in the convective cell. (d) Heat flow as a function of depth in
the convective cell. The heat flow increases from the base of the layer to the surface owing
to internal heating.

convective mode when the surface (plate) velocity is non-zero and is moving slower than the

laterally averaged horizontal flow in the convective flow beneath it. If the surface thermal

boundary layer (plate) is strong (the notion of ‘strong’ will be discussed and defined in

Chapter 3) and moving slowly enough, thermal convection beneath it may erode the base of

the plate. The thickness of the plate will no longer be determined by the plate velocity and

diffusive cooling from the surface (half-space cooling model), but rather by the growth and

detachment of small scale thermal instabilities at its base (see for example Korenaga, 2009).

In this case the system is said to be in the stagnant-lid regime. It should be noted that the

plate velocity is not necessarily zero in the stagnant lid regime and this terminology can be

misleading.

2.1 Thermal convection in a fluid layer with mixed heating

In this section we will solve the convective heat transport problem for an isoviscous fluid

layer with mixed heating using an energy balance approach. This problem is generally

worked out assuming either boundary or internal heating and this is the first time, to our

knowledge, that the problem has been solved with both boundary and internal heating (i.e.

mixed heating). We will find that this general solution can be used to obtain both the
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boundary and internally heated end member cases and provides further insight into the

behavior of the system when both forms of heating are present. We consider a convecting

fluid layer, shown in Figure 2.1, with average convective cell width L and depth d. The fluid

layer is homogenous and has density ρ, specific heat Cp, thermal conductivity k, thermal

diffusivity κ = k/(ρCp), and viscosity µ.

A small Reynolds number and large Prandtl number are assumed and the flow is con-

sidered to be incompressible. As such, the rate of change of potential energy is required

to exactly balance the total dissipation in the fluid. The basic approach is addressed in

most geodynamics texts, such as Turcotte and Schubert (2002), and the equations and

other details can be found therein. Both the rate of change of potential energy and the

viscous dissipation in the convecting fluid will be related to the convective velocity u. An

energy balance will then be used to solve for u. We assume that the system is evolving

slowly enough that changes in temperature, viscosity, etc., are small over the time scale of

convective overturn. All energy terms are calculated per unit distance along the axis of the

convective roll.

All external boundaries are considered to be free slip. The temperatures at the base

and surface of the layer are TB and TS , respectively, and give a temperature drop of ∆T =

TB −TS across the fluid layer. The fluid layer may also have internal heating at a rate of H

and in units of W/m3 (from, for example, the radiogenic decay of the elements 238U , 235U ,

232Th, and 40K). The interior of the convective cell is assumed to be well mixed and of

temperature TM . The temperature drop across the cold thermal boundary at the surface is

∆TS = TM − TS . The temperature drop across the hot thermal boundary layer at the base

is ∆TB = TB − TM . The sum of the temperature drop across the two thermal boundary

layers is equal to the temperature drop across the fluid layer

∆T = ∆TB + ∆TS (2.1)

The surface heat flow QS can be calculated using thermal boundary layer theory (Tur-
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cotte and Schubert, 2002) and is given by

QS = 2k∆TS

(

uL

πκ

)
1
2

(2.2)

Similarly, the heat flow through the base of the layer is

QB = 2k∆TB

(

uL

πκ

)
1
2

(2.3)

It is important to keep in mind that the relationships given by equations (2.2) and (2.3)

are kinematic relationships between the boundary velocity, temperature drop across the

thermal boundary layer, and heat flow through the boundary layer. A useful relationship

between the two heat flows and the temperature drop across the thermal boundary layers

is obtained by taking the ratio of equations (2.2) and (2.3)

QS

QB
=

∆TS

∆TB
(2.4)

The rate of change of potential energy for a single convecting cell ΦP is given by

ΦP =
αgd

Cp
〈Q〉 = Di 〈Q〉 (2.5)

where 〈Q〉 = 1
d

∫ d
0 Q(z)dz is the depth averaged vertical heat flow through the convective

cell and Di is the dissipation number (note that advection within the convective cell is

the dominant mode of heat transport and we have assumed Q = Qadv + Qcond ≈ Qadv in

equation (2.5)). Equation (2.5) is derived in full and discussed in section 3.2.1. In cartesian

geometry and with uniformly distributed internal heating the depth averaged heat flow is

simply

〈Q〉 =
QS + QB

2
=

1

2

(

QS +
∆TB

∆TS
QS

)

=
QS

2

∆T

∆TS
(2.6)

where we have used the relations in equations (2.1) and (2.4). If the convective cell is

entirely internally heated then ∆T = ∆TS and 〈Q〉 = QS/2 (zero heat flow at the base of
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the layer with a linear increase up to QS at the surface). If the convective cell is entirely

boundary heated than the thermal boundary layers at the base and surface will be equal in

thickness (symmetry of the problem), ∆T = 2∆TS , and 〈Q〉 = QS (constant vertical heat

flow through the layer).

Using equations (2.2), (2.5), and (2.6) the total rate of change of potential energy for

the convective cell is then

ΦP =
αgd

Cp
k∆T

(

uL

πκ

)
1
2

(2.7)

The rate of change of potential energy will be balanced by viscous dissipation in the fluid.

For a Newtonian fluid, the viscous dissipation in the convective cell can be calculated as

ΦV = 2

∫ L

0

∫ d

0
µε̇2ijdzdx (2.8)

where ε̇ij is the deviatoric strain rate tensor

ε̇ij =
1

2

(

∂u

∂z
+
∂v

∂x

)

(2.9)

Equations (2.8) and (2.9) are discussed in more detail in section 3.2.1. The strain rate tensor

may be approximated by assuming that ∂u/∂z ≈ 2u/d and ∂v/∂x ≈ 2v/L (see Figure 2.1).

Conservation of mass requires ud = vL. Then the strain rate tensor for the convective cell

may be approximated as

ε̇ij ≈
1

2

(

2u

d
+

2v

L

)

=

(

u

d
+

(ud/L)

L

)

=
u

d

(

1 +

(

d

L

)2
)

(2.10)

Substituting equation (2.10) into equation (2.8) and integrating then yields

ΦV = 2µ
L

d
u2

(

1 +

(

d

L

)2
)2

(2.11)

Using equations (2.7) and (2.11) and ΦP = ΦV (conservation of mechanical energy) the

plate velocity can be solved for to provide the relationship
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u =
κ

d

(L/d)7/3

(1 + (L/d)2)4/3

(

RaT

2
√
π

)2/3

(2.12)

where we define the Rayleigh number RaT as

RaT =
αρg∆Td3

µκ
(2.13)

Turcotte and Schubert (2002) derived the following for the boundary heated case (∆TS =

∆T/2)

uT&S =
κ

d

(L/d)7/3

(1 + (L/d)4)2/3

(

RaT√
π

)2/3

(2.14)

Note that the solutions differ by a factor of 22/3. This difference arises from the fact

that Turcotte and Schubert (2002) overestimate (double) the contribution from buoyancy.

The derivation is made more sound by use of equation (2.5) which removes the need (and

confusion) of assessing the internal density structure of the convective cell and relates the

total energy available to the heat flow. Also note that the convective velocity in equation

(2.12) depends only on the temperature drop across the layer and is independent of the rate

of internal heating.

A second small difference between equations (2.12) and (2.14) is the dependence on

aspect ratio (note the powers in the denominators). This is due to small variations in

our approach for calculating the viscous dissipation (see Turcotte and Schubert, 2002, for

details). Both approaches make different approximations and this difference in equations

is much smaller than the error introduced by the approximations themselves. Thus, this

minor difference in equations should not concern us. We will use equation (2.12) in most

of the discussions that will follow. We can use equations (2.2) and (2.12) to calculate the

heat flow out of the convective cell

Qconv = QS = k∆TS

(

2

π

)2/3 (L/d)5/3

(1 + (L/d)2)2/3
Ra1/3

T (2.15)
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It will sometimes be simpler to use the average heat flux (W/m2) instead of the heat flow

given by equation (2.15). We can obtain an average heat flux qconv by dividing by the length

of the convective cell L

qconv = qS =
k∆TS

d

(

2

π

L/d

1 + (L/d)2

)2/3

Ra1/3
T (2.16)

Both the heat flow and the heat flux depend on the temperature drop across the upper

thermal boundary layer ∆TS. If the system is at steady state then the heat flow out of

the surface must balance the heat flow in through the base plus any contribution due to

internal heating. We then require

qS = qB + Hd =
∆TB

∆TS
qS + Hd (2.17)

where we have again used equation (2.4) to relate the surface and basal heat flow (in this

case heat flux). Rearranging equation (2.17), assuming that there is some internal heating

(H (= 0), and solving for the surface heat flux qS gives

qS =

(

∆TS

2∆TS − ∆T

)

Hd (2.18)

where equation (2.1) has again been used to relate ∆TB to ∆TS and ∆T . We now equate

the surface heat flux in equations (2.16) and (2.18) and solve for ∆TS

∆TS =
∆T

2
+

1

2

Hd2

k

(

π

2

1 + (L/d)2

L/d

)

2
3

Ra
−

1
3

T (2.19)

Equation (2.19) demonstrates that ∆TS → ∆T/2 as H → 0, as the symmetry of the problem

requires. Equation (2.19) holds as long as

H ≤ Hcrit =
k∆T

d2

(

2

π

L/d

1 + (L/d)2

)2/3

Ra1/3
T (2.20)

For H > Hcrit the internal temperature TM is larger than the basal temperature, a stable

cool thermal boundary layer would form at the base of the fluid layer and the relationship
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for the basal heat flow would change. Substituting ∆TS from equation (2.19) back into

equation (2.16) gives

qconv =
1

2

k∆T

d

(

2

π

L/d

1 + (L/d)2

)2/3

Ra1/3
T +

1

2
Hd (2.21)

At this point we can also ask what the temperature drop ∆T would be if the system

were entirely internally heated. In this case there would be no lower thermal boundary

layer, i.e. ∆T = ∆TS , qconv = Hd, and equation (2.21) can be used to solve for ∆Tint

∆Tint =
Hd2

k

(

2

π

L/d

1 + (L/d)2

)1/2

Ra
−

1
4

H (2.22)

where the subscript on ∆Tint is a reminder that this is the temperature difference for the

case with internal heating only and RaH is defined as

RaH =
αρgHd5

ηkκ
(2.23)

Equation (2.22) is consistent with the classic boundary layer solution for a purely internally

heated layer (see for example O’Connell and Hager, 1980). The dimensionless convective

heat flux (and flow) for the system, also known as the Nusselt number Nu, is given by

dividing the convective heat flux given by equation (2.21) by the conductive heat flux

k∆T/d that would occur in the absence of convection for the boundary heated case

Nu =
1

2

(

2

π

L/d

1 + (L/d)2

)2/3

Ra1/3
T +

1

2

RaH

RaT
(2.24)

The dimensionless plate velocity ũ = u/(κ/d) is, from equation (2.12)

ũ =
(L/d)7/3

(1 + (L/d)2)4/3

(

RaT

2
√
π

)2/3

(2.25)

Again, note that the velocity is independent of the internal heating H and depends only on

the temperature drop ∆T across the layer. The dimensionless temperature drop ∆T̃S across

the cold thermal boundary layer at the surface is obtained by dividing equation (2.19) by
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Figure 2.2: Nonlinear relation between Nu, RaT , and RaH for thermal convection with
mixed heating. (a) Nu as a function of RaH for various fixed RaT . Results are plotted up
to the RaH in which equation (2.27) is violated. (b) Dimensionless heat flow as a function
of RaH for RaT = 105. (c) Dimensionless temperature drop across the upper and lower
thermal boundary layers as a function of RaH for RaT = 105. Note that as RaH increases

and RaH ≈ O
(

Ra4/3
T

)

both the basal heat flow and the temperature drop across the lower

thermal boundary layer approach zero.

∆T and gives

∆T̃S =
∆TS

∆T
=

1

2
+

1

2

RaH

Ra4/3
T

(

π

2

1 + (L/d)2

L/d

)

2
3

(2.26)

This is valid as long as (equation (2.20) rearranged and using the definitions of RaT and

RaH)

RaH ≤ Ra
4
3
T

(

2

π

L/d

1 + (L/d)2

)2/3

(2.27)

Figure 2.2 demonstrates several important properties of the system. Figure 2.2 (a) shows
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the calculated Nusselt number as a function of RaH for various fixed RaT and an aspect

ratio of L/d = 1. Within the blue shaded region RaH << O
(

Ra4/3
T

)

, there is little internal

heating compared to heat entering the base of the layer, and the Nusselt number scales as

Nu ∝ Ra1/3
T and is independent of RaH . Physically, this is what we would expect and is

predicted by equation (2.24) for small RaH . For RaH ≈ O
(

Ra4/3
T

)

the contribution to the

surface heat flow from internal heating is no longer negligable and the Nusselt number is

increased up to a maximum of

Numax =

(

2

π

L/d

1 + (L/d)2

)2/3

Ra1/3
T (2.28)

The red shaded region of Figure 2.2 shows the region where RaH ≈ O
(

Ra4/3
T

)

and the

Nusselt number is a function of both RaT and RaH . In this region equation (2.24) needs

to be used to calculate the Nusselt number as it does not follow a simple scaling relation

with either RaT or RaH .

The maximum Nusselt number (surface heat flow) occurs when the left and right hand

sides of equation (2.27) are equal. At this point the temperature of the interior of the

convective cell TM is equal to the temperature at the base of the fluid layer TB. For this

maximum heat flow there is no thermal boundary layer at the base of the convecting layer

(∆TB = 0), internal heating accounts for the entire surface heat flow, and the basal heat

flow is equal to zero.

Figure 2.2 (b) and (c) show the dimensionless heat flow and dimensionless temperature

drop across the surface and basal thermal boundary layers for the case of RaT = 105 from

Figure 2.2 (a). As RaH approaches O
(

Ra4/3
T

)

the heat flow and temperature drop across

the upper thermal boundary layer grow while the heat flow and temperature drop across

the lower thermal boundary layer decrease. The depth averaged vertical heat flow < Q >

remains constant throughout the change in RaH . As the energy available to drive the

system depends only on < Q > (see equation (2.7)) the change in QB and ∆TB as RaH

increases has no effect on the available energy or the convective velocity u. This explains
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Simulation RaT RaH/RaT Tmean Qt

# (Hs) (dimensionless) (dimensionless)
1 105 0 0.500 10.42 (2)
2 105 10 0.885 (10) 13.60 (15)
3 2 × 105 0 0.500 12.86 (19)
4 5 × 105 0 0.500 17.15 (11)
5 5 × 105 6 0.668 (6) 17.86 (18)
6 5 × 105 10 0.766 (2) 19.03 (31)
7 5 × 105 20 0.932 (4) 25.03 (38)
8 5 × 105 30 1.084 (5) 31.38 (18)
9 106 0 0.500 21.24 (19)
10 106 10 0.721 (5) 22.57 (23)
11 106 20 0.866 (3) 27.93 (59)
12 106 30 0.995 (3) 34.41 (26)
13 106 40 1.117 (3) 40.86 (41)
14 2 × 106 35 0.967 (4) 40.22 (74)
15 3 × 106 0 0.500 28.59 (37)
16 3 × 106 15 0.726 (7) 31.36 (59)
17 3 × 106 20 0.793 (3) 33.67 (36)
18 3 × 106 50 1.064 (3) 52.87 (59)
19 5 × 106 40 0.920 (3) 49.24 (63)
20 107 0 0.500 39.46 (65)
21 107 10 0.630 (4) 38.71 (65)
22 107 20 0.718 (4) 43.14 (90)

Table 2.1: Numerical results for convection with mixed heating from Sotin and Labrosse
(1999).

why the convective velocity is independent of the amount of internal heating. The depth

averaged vertical heat flow for the mixed heating case depends only on RaT (and some

geometrical terms).

Equations (2.24) and (2.26) may be compared to the results of Sotin and Labrosse

(1999). They performed numerical convection simulations with mixed heating and found

that the dimensionless mean temperature θ and surface heat flow Nu were reasonably fit

by the equations

Nu = 0.3446Ra
1
3
T θ

4
3 (2.29)
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θ =
1

2
+ 1.236

Ra3/4
H

RaT
(2.30)

The results of their numerical simulations are summarized in Table 2.1 which is repro-

duced from their paper. Both the powers and coefficients in equations (2.29) and (2.30)

were found by fitting power law scalings to the results from the numerical simulations. The

red markers in Figure 2.3 show the predicted values for θ and Nu, using equations (2.29)

and (2.30), compared to the values from the numerical simulations. The fit is very good

with the exception of points 1, 3, 4, 9, 15, and 20, which correspond to cases with no internal

heating. For these points their scaling considerably underestimates the surface heat flow.

Without any loss of generality, equations (2.24) and (2.26) of this study may also be

written as

Nu =
A(L/d)

2
Ra1/3

T +
1

2

RaH

RaT
(2.31)

∆T̃S =
1

2
+

A−1(L/d)

2

RaH

Ra4/3
T

(2.32)

where A(L/d) is some undetermined function of the aspect ratio. Sotin and Labrosse (1999)

do not mention any significant change in aspect ratio as the form of heating is varied. Let

us assume that A(L/d) is approximately constant and equal to some value A for all of the

cases considered by Sotin and Labrosse (1999). Then we may calculate A using equation

(2.31) and a least squares fit to the numerical simulation heat flow data in Table 2.1. This

gives A ≈ 0.35. The theory developed in this chapter (see equation (2.24)) suggests that

A(L/d) ≈
(

2

π

L/d

1 + (L/d)2

)
2
3

(2.33)

If we assume that L/d ≈
√

2 (marginal stability for a thermally convecting isoviscous fluid

layer) then equation (2.33) predicts A ≈ 0.45. Thus, the value predicted from theory and

equation (2.33) is in surprisingly good agreement with the value obtained using the least
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Figure 2.3: Comparison of mixed heating equation with the numerical simulations and
scaling of Sotin and Labrosse (1999).

squares fit to the numerical simulation data.

The blue markers in Figure 2.3 compare the predicted values for ∆T̃S and Nu, us-

ing equations (2.31) and (2.32) and A = 0.35, to the values obtained from the numerical

simulations.

We expect the mean temperature of the convective cell θ to be approximately equal to

the temperature drop across the upper thermal boundary layer ∆T̃S . Sotin and Labrosse

(1999) note that there is sometimes a small temperature overshoot at the inner side of the

boundary layers. The observed overshoot in temperature is attributed to the accumulation

at each boundary of material coming from the other boundary. In this case we do not

expect θ and ∆T̃S to be exactly equal. This may partially explain some of the discrepancy

between the theoretically predicted values of ∆T̃S and the mean temperature θ. It is

also possible that the function A(L/d) is not constant and depends weakly on the form

of heating. Nonetheless, the trend in predicted temperatures is reasonably good. The

agreement between the predicted and numerical heat flow is improved over the scaling of

Sotin and Labrosse (1999) as it works for both cases with and without internal heating.
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The scaling laws of Sotin and Labrosse (1999) result from a best fit with 5 degrees of

freedom (two coefficients and three exponents) for 22 data points. They fit the temperature

well but fail to properly fit the heat flow for cases with no internal heating. The exponents

and functional form in our equations arise from conservation laws rather than from a best

fit. We are able to obtain a reasonably good fit for temperature and an improved fit for heat

flow with only one free parameter. Furthermore, the value obtained for this parameter using

a least squares fit to the numerical data agrees well with the theoretically predicted value.

Based on this, we are confident that equations (2.24) and (2.26) properly describe Nu and

∆T̃S for the mixed heating case. A more detailed statistical comparison with additional

data will be the subject of future work.

Let us summarize the key results for the mixed heating case. The convective velocity

was found to be independent of the amount of internal heating and depends only on RaT ,

as well as a geometrical factor. The heat flow (Nusselt number) depends on both RaT and

RaH and for RaH ≈ O
(

Ra4/3
T

)

the heat flow cannot be captured through a simple power

law scaling with either RaT or RaH . The heat flow for the mixed heating case is given

by equation (2.24). In addition, we found that a large internal heating can suppress or

altogether prevent a basal heat flow regardless of the size of RaT . A final point to make has

to do with comparing the energetics of basal and internal heating. In order to produce the

same convective velocity as an entirely boundary heated case with a Rayleigh number of

RaT , an entirely internally heated system must have a Rayleigh number of RaH ∝ Ra4/3
T .

As an example, a purely internally heated system would require a Rayleigh number of

RaH ≈ 108 to achieve the same convective velocity as a purely boundary heated case with

a Rayleigh number of RaT ≈ 106. Thus, RaT and RaH are not comparable measures of the

energetics of a convecting system.

2.2 Stagnant lid convection

Most materials in the real world have physical properties that depend on temperature and

pressure. For the Earth, the temperature dependence of mantle viscosity leads to many
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orders of magnitude change in viscosity throughout the mantle and lithosphere. We will

discuss this dependence in more detail in following chapters.

In some cases, the cold upper thermal boundary layer of a convecting system may be

too strong to allow for surface recycling. In these cases a ‘stagnant’ lid forms at the surface

of the fluid layer. Heat flows through the lid by conduction and can still provide enough

energy to drive thermal convection beneath the stagnant lid. This type of convection occurs

often in cases with highly temperature dependent viscosity and large viscosity variations.

We will review the basic physics and scaling for stagnant lid convection, mainly following

Solomatov (1995), as it will be used in Chapter 5 when we consider the cooling of small

planetary bodies.

Let the thickness of the upper thermal boundary layer be δ. For simplicity we will

assume that there is no basal heat flow and that the temperature drop across the upper

thermal boundary layer ∆TS is equal to the temperature drop across the entire fluid layer

∆T . We consider a fluid layer with a temperature dependent viscosity of the form

η = η0e
−γ∆T (2.34)

where η0 is a reference viscosity, ∆T = T −TS , and TS is the surface temperature. The fluid

beneath the surface boundary layer is well mixed with a temperature of TM and viscosity of

µm. The warm and weak lower portion of the thermal boundary layer participates in and

drives thermal convection beneath the boundary layer. The temperature drop across the

actively convecting lower portion of the thermal boundary layer may be approximated as

∆Trh ≈ 1/γ (2.35)

∆Trh is the temperature drop over which viscosity increases (and strain rate decreases) by

a factor of e. The colder upper portion of the thermal boundary layer will be too strong

to actively participate in convection. Convective heat transport through the well mixed

isoviscous layer beneath the lid is then calculated using equation (2.16) with ∆TS replaced
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with ∆Trh

qS ≈
k∆Trh

d

(

2

π

L/d

1 + (L/d)2

)2/3 (

αρg∆Trhd3

µmκ

)1/3

(2.36)

At steady state the convective heat flux supplied to the base of the thermal boundary layer

must be equal to the conductive heat flux of k∆T/δ through the boundary layer. This

implies

k
∆T

δ
≈

k∆Trh

d

(

2

π

L/d

1 + (L/d)2

)2/3 (

αρg∆Trhd3

µmκ

)1/3

(2.37)

Solving for δ in equation (2.37) gives

δ ≈ d p
4
3

(

π

2

1 + (L/d)2

L/d

)
2
3

Ra
−

1
3

T (2.38)

where RaT is the mantle Rayleigh number defined in equation (2.13) using the total tem-

perature drop across the thermal boundary layer of ∆T and the viscosity of the mantle µm.

The parameter p is defined as p = γ∆T and is useful for quantifying the total viscosity

contrast across the thermal boundary layer as

log

(

max(µ)

min(µ)

)

= log

(

µ(TS)

µ(TM )

)

= log (exp (γ∆T )) = log (exp (p)) = p (2.39)

Thus, the parameter p is equal to the natural logarithm of the total viscosity contrast (ratio)

across the cold thermal boundary layer. Using equation (2.38) for the thermal boundary

layer thickness the heat flux through the boundary layer is then given by

qS = k
∆T

δ
=

1

p4/3
k
∆T

d

(

2

π

L/d

1 + (L/d)2

)2/3

Ra1/3
T (2.40)

It is worth also pointing out the relationship between the stagnant lid heat flux in equation

(2.40) and the isoviscous convective heat flux given by equation (2.16)
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qSstg = p−4/3 qSmbl (2.41)

where we have used the subscripts “stg” and “mbl” to distinguish the heat fluxes for stagnant

lid and mobile lid convection respectively. Equation (2.41) reveals a simple scaling between

the two forms of heat flow.

In Chapter 3 we will see that there are other solutions for the convective flow when a

strong surface layer is present in which the surface (plate) velocity is much smaller than

the mantle velocity. These sluggish lid solutions have thicker plates and reduced heat flow

compared to the mobile lid solutions. If the plate moves too slowly then we expect the

erosional process that we have been discussing, and thus stagnant lid convection, to control

the heat flow rather than the slow diffusive cooling of the plate as it moves away from

the ridge. It is therefore useful to calculate the critical plate velocity, uc, at which the

diffusive half-space cooling model gives a comparable heat flow to that predicted by the

stagnant lid scaling. Should any of our models predict plate speeds less than uc then we

will know that the average plate thickness and heat flow are likely controlled by stagnant

lid convection and should be treated independent of the plate velocity. Thermal boundary

layer theory and equation (2.2) gives the kinematic relation between the plate velocity u,

the temperature drop across the thermal boundary layer ∆T , and the heat flow QS. Setting

QS from equation (2.40) (multiplied by L to get the heat flow) equal to the heat flow given

by equation (2.2) and solving for the plate velocity gives

uc ≈ p−
8
3 umbl (2.42)

where umbl is the plate velocity for the isoviscous case given by equation (2.25). For a

viscosity contrast 103 across the thermal boundary layer, equation (2.42) suggests that

the plate velocity of the system would have to be approximately 200 times less than that

predicted by the isoviscous scaling in order for stagnant lid convection to control the plate

thickness and heat flow.
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Figure 2.4: (A) Temperature field and velocity streamlines for a numerical simulation of
thermal convection using a low viscosity upper mantle and run with a modified version of the
thermal convection code MC3D (Gable, 1989; Gable et al., 1991). Streamlines calculated
using the ‘open’ layer delta function solution (blue) are also included in the high viscosity
lower mantle for comparison. (B) Vertical velocity calculated at mid depth (where the
viscosity changes) from the numerical simulation (red) and using the delta function solution
(blue). See Appendix A for details regarding the delta function solution.

2.3 Convection in an ‘open’ layer

Figure 2.4 shows the temperature field from a numerical simulation of boundary heated

thermal convection in a cell of aspect ratio L/d = 2 and with a viscosity increase of a

factor of 103 in the lower half of the fluid layer. Velocities are highest in the upper half of

the layer where the viscosity is lower. Despite the large increase in viscosity with depth,

the plot of the temperature field, as well as the streamlines for the flow, demonstrate that
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Figure 2.5: Numerical simulation run with a modified version of MC3D (Gable, 1989; Gable
et al., 1991) that demonstrates the ‘open’ layer convective flow. (A) Temperature field.
(B) Magnitude of Velocity. Vectors indicate magnitude and direction of velocity for the
numerical simulation (green) and calculated using the delta function approximation (red).
See Appendix A for details regarding the delta function solution.
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some material still circulates into the lower half of the convective cell where it warms and

eventually rises back up into the upper half. Figure 2.5 shows a similar situation with only

internal heating. If the viscosity increase at mid depth is large enough then stresses at the

surface of the high viscosity layer will be negligible compared to stresses within the layer

and the boundary condition at the surface of the high viscosity region will be essentially

stress free. This kind of flow may be relevant for the Earth where a significant increase in

viscosity is observed to occur with depth (see for example Mitrovica and Forte, 2004). We

would like to estimate the flow rates in the high viscosity lower region. This motivates the

idea of a case which has not yet been considered - the ‘open layer’ case in which we consider

the flow in the lower (high viscosity) portion of the convection cell in Figure 2.4.

The fluid layer we consider has a uniform viscosity and material is free to flow into

and out of the upper boundary of the layer. Figure 2.6 shows streamlines for fluid layers

with ‘open’ upper boundaries calculated using the analytic delta function solution (see

Appendix A for details regarding this solution). This idea was first discussed by Crowley

and O’Connell (2008).

The solution is fundamentally different from the closed layer solution worked out in

section 2.1. The difference is in the thermal boundary condition at the surface. For the

closed layer heat flow out of the layer is accomplished via conduction across a thermal

boundary layer and scales with the square root of the convective velocity (see equation

(2.2)). For the open layer, heat flow out of the system is accomplished via advection and

scales linearly with the convective velocity.

We again consider a fluid layer of depth d and length L. The fluid layer has density

ρ, specific heat capacity Cp, thermal conductivity k, thermal diffusivity κ = k/ρCp, and

viscosity µ. The upper surface of the fluid layer is open and the viscous stresses on this

boundary are considered to be equal to zero. Material flows in at a temperature of Tin and

leaves at a temperature of T . The temperature difference is ∆T = T − Tin.

Let the convective velocity again be u. The strain rate may be approximated as ε̇ ≈ u/d

and the local viscous dissipation as 2µε̇2 ≈ 2µ(u/d)2. Dissipation in the flow will occur
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Figure 2.6: Streamlines for flow in a convecting open layer for various aspect ratios using the
delta function solution. Symmetric cases on the left are for open cells driven by equivalent
magnitude upwelling and downwelling density anomalies. Non symmetric cases on the right
are driven entirely by an upwelling or downwelling at the center of the cell. See Appendix
A for details regarding the delta function solution.

mainly in the ends of the cell (within ≈ d of the ends of the cell) where the fluid changes

direction (Morris, 2008). Dissipation will then be mainly distributed over an area of 2d2

(the two ends of the cell). The total viscous dissipation in the convective cell may then be

approximated as (see equation (2.8))

ΦV ≈ 2µ
(u

d

)2
· 2d2 = 4µu2 (2.43)

Again, we are calculating all energetic quantities per unit distance in the third dimension

and along the axis of the convective roll. The mass flow rate into (and out of) the convection

cell is approximately

Ṁ ≈
1

2
ud (2.44)

The average advective heat flow through the surface may then be approximated as
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QS ≈ ρCp∆TṀ =
ρCp∆Tud

2
(2.45)

The total rate of change of potential energy in the cell is again given by equation (2.5) and

is

ΦP =
αgd

Cp
〈Qadv〉 =

αgd

Cp

BQS

2
(2.46)

where B is equal to 1 if entirely internally heated and 2 if entirely boundary heated. Requir-

ing that the total rate of change of potential energy be equal to the total viscous dissipation,

i.e. ΦP = ΦV , using equations (2.43) through (2.46), and solving for the convective velocity

yields

u ≈
B

24

κ

d
RaT (2.47)

where the Rayleigh number RaT is once again defined as

RaT =
αρg∆Td3

µκ
(2.48)

Substituting equation (2.47) into equation (2.45) gives a surface heat flow of

QS ≈
B

25
k∆TRaT (2.49)

or an average surface heat flux of

qS ≈
B

25

(

d

L

)

k∆T

d
RaT (2.50)

Both the convective velocity and the heat flow scale linearly with the Rayleigh number. This

makes the heat flow and convective velocity much more sensitive to the Rayleigh number

than was the case for convective heat transport out of a closed layer (and through a thermal

boundary layer). To get a sense of how significant this is, we can compare the Rayleigh
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number required to achieve the same heat flow for both the closed (section 2.1) and open

convecting layers.

We will assume that the temperature difference ∆T , layer thickness d, and thermal

diffusivity κ are the same for each. The closed convecting layer has a Rayleigh number of

Raclosed while the open layer has a Rayleigh number of Raopen. We can calculate Raopen as

a function of Raclosed by using equations (2.15) and (2.49) and requiring that the heat flow

out of each layer be equal. This gives

Raopen = 25

(

2

πB

)2/3 (L/d)5/3

(

1 + (L/d)2
)2/3

Ra
1
3
closed (2.51)

Using B = 2 (all boundary heating) and L = 2d gives Raopen ≈ Raclosed/102 for the

case where Raclosed = 106 or Raopen ≈ Raclosed/104 for the case where Raclosed = 109.

Thus, the Rayleigh number of the open layer may be many orders of magnitude less than

the Rayleigh number of the closed layer and still achieve the same heat flow. This has

important implications for the Earth as it may allow the lower mantle to have a much

higher viscosity (lower Rayleigh number) and still efficiently transport heat to the upper

mantle.

Let us now consider the difference in convective velocities that would occur when the

heat flow in both cases is identical (i.e. the above relationship holds). To do this, we can use

equation (2.12) to calculate the convective velocity of the closed layer, uclosed, as a function

of Raclosed. Equations (2.47) and (2.51) may then be used to calculate the convective

velocity of the open layer, uopen, also as a function of Raclosed. These relationships lead to

uopen ≈ 2

(

4
(

1 + (L/d)2
)

L/d

)
2
3

(BπRaclosed)
−

1
3 uclosed (2.52)

Again using B = 2 and L = 2d gives uopen ≈ 0.06uclosed for the case where Raclosed = 106

or uopen ≈ 0.006uclosed for the case where Raclosed = 109. Thus, to achieve the same

heat flow, the convective velocity in the open layer may be orders of magnitude less than
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the convective velocity in the closed layer. This could have important implications for

the chemical evolution of the mantle as it may permit the lower mantle to efficiently cool

without requiring a significant degree of mixing between the upper and lower mantle (small

mass flux). This effect, however, will be considered in separate future studies.



Chapter 3

Thermal convection with strong plates

“Everything should be made as simple as possible, but no simpler.”

–Albert Einstein

In this chapter an analytic boundary layer model for thermal convection with a finite-

strength plate and depth-dependent viscosity will be developed. The model will allow for

solutions in which convective flow rates in the mantle exceed the plate velocity by incorpo-

rating a separate energy balance for the lithosphere and solving for the coupling between

the plate and underlying mantle. The model will predict the plate velocity, plate thickness

and heat flow, as well as the laterally averaged horizontal flow profile for a convective cell.

3.1 Introduction

The Earth’s thermal and chemical evolution is largely regulated by plate tectonics. Although

plate tectonics is a surface manifestation of mantle convection, convection can also occur

in a planet with a stationary lid and in the absence of plate tectonics. The development

of simple models for understanding how mantle convection and plate tectonics interact is

critical for understanding planetary dynamics and evolution.

An amended version of this Chapter was published with Richard J. O’Connell in Geophysical Journal
International, vol. 188, p. 61-78, 2012.

31
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The development of a boundary layer model to relate plate tectonics to thermal convec-

tion (Turcotte and Oxburgh, 1967) was a major advance, in that it provided a mechanism

that quantitatively related plate tectonics, mantle convection, and the thermal evolution

of the Earth and set the stage for further developments (as well as the wider acceptance

of plate tectonics). The first model was a classic boundary layer model with a conductive

thermal boundary layer at the surface overlying a deeper convective layer that was essen-

tially isothermal. The horizontal speed of the boundary layer matched the horizontal speed

of the top of the convecting layer. The boundary layer cooled by conduction as it moved

from ridge to trench on the surface, and the sinking boundary layer provided the energy

to balance viscous dissipation in the convecting region. The average surface heat flow, per

unit length in the third dimension, for a plate of length L with constant (uniform) speed

UP is

Qconv = 2kc∆T

(

UP L

πκ

)1/2

, (3.1)

where kc is the thermal conductivity, ∆T is the temperature difference across the boundary

layer, and κ is the thermal diffusivity. The maximum thickness of the boundary layer is

given by

dL = Co

(

κL

UP

)1/2

, (3.2)

where Co is a constant ≈ 2.32 (Turcotte and Schubert, 2002).

The boundary layer model gives a dimensionless heat flow (the Nusselt number) and

dimensionless plate velocity of (for fixed aspect ratio)

Nu =
Qconv

Qcond
∼ Ra1/3 (3.3)

and
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ŨP =
UP

κ/d
∼ Ra2/3 (3.4)

where d is the thickness of the fluid layer, Qcond = kc∆TL/d is the conductive heat flow in

the absence of convection, and Ra is the mantle Rayleigh number,

Ra =
αρg∆Td3

κµM

. (3.5)

Here α is the coefficient of thermal expansion, ρ is the density, g is the gravitational accel-

eration, and µM is the mantle viscosity.

This model has only two dimensionless parameters: the Rayleigh number Ra and the

aspect ratio (width/depth) λ = L/d of the rectangular convection cell. Dimensional analysis

requires that the (dimensionless) characteristics of convection in the model must be func-

tions of only these two dimensionless parameters. Relationships for Nu, UP , and dL/d have

been derived for convection in a fluid layer using a variety of thermal boundary conditions

(O’Connell and Hager, 1980).

McKenzie et al. (1974) performed numerical calculations of convection and confirmed

that steady convection results agreed with the results of boundary layer models. They also

addressed cases of constant heat flux boundary conditions and internal heating, and made

careful comparisons with geophysical observations. They found that numerical solutions for

large aspect ratios tended to be unstable, and noted that a strong layer (lithosphere) on

the surface might be needed to stabilize large aspect ratio cells similar to those observed.

It is interesting to note that Howard (1966), in considering the growth of thermal in-

stabilities in the atmosphere from heating of the Earth’s surface, obtained the same scaling

given in equation (3.3). This model was based on the growth of a static conductive bound-

ary layer on the heated surface that became unstable to convection when its thickness δ

grew to the critical value for convection to occur, i.e.

Raδ =
αρg∆T δ3

κµ
≈ Rac (3.6)
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where Rac is the critical Rayleigh number ∼ 103. Applying the same condition to the

mantle convection situation gives the same Nu ∼ Ra1/3 scaling as before, as was proposed

by Elder (1976). In both cases the boundary layer thickness δ would be limited by its

convective stability, and its (dimensional) thickness would be independent of the total layer

thickness d used to define the Rayleigh number. (In fact, in Howard’s case, the region is a

half space and there is no larger layer). The fact that the heat transport of the system can

be derived from the local conditions and material properties of the boundary layer raises

questions about how to apply the scaling relations to more complicated systems arising in

mantle convection.

Concerns were raised regarding the fact that rigid plates, and thus plate tectonics, was

not present in a model that only included a single fluid layer with a uniform free surface.

Nevertheless, the surface velocity profiles of the boundary layer models were reasonably

uniform (McKenzie et al., 1974) and the heat flow could be well represented by the model

for lithospheric heat flow (McKenzie, 1967). However, a separate lithospheric layer with

different mechanical properties, or viscosity layering in the mantle were not included in such

models. In fact, there was a substantially different conceptual model of plate tectonics that

had been proposed by Elsasser (1969), who suggested that the lithosphere was a “stress

guide” sliding over the asthenosphere from ridge to subduction zone. Thus, unlike the

boundary layer model where the surface is the top part of a uniformly convecting layer, the

lithosphere in Elsasser’s model moved faster than the mantle, which tended to impede its

motion. The mechanics of this model were not worked out, although it remained in the

vocabulary of discussions of plate tectonics.

In spite of these concerns, the boundary layer model was generally accepted as a first

order approximation of plate tectonic rates and heat flow and was the basis for a number

of thermal evolution models for the Earth (e.g. Davies, 1980; McKenzie and Weiss, 1975;

Schubert et al., 1980; Sharpe and Peltier, 1979). However, these thermal evolution models

predicted extremely high temperatures for the Earth’s early mantle, clearly suggesting that

something was lacking in the model (for discussion see Korenaga, 2008). Experimental (e.g.
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Booker, 1976) and numerical (e.g. Torrance and Turcotte, 1971) convection experiments

with temperature dependent viscosities also demonstrated that the classic scalings given in

equations (3.3) and (3.4) did not apply for large viscosity variations when a strong boundary

layer was present. It was soon recognized that the strength of the plates could play a role

in limiting plate velocities.

Conrad and Hager (1999) added a term in the energy balance for lithospheric dissipa-

tion and several studies focused on plate bending dissipation followed (e.g. Buffett, 2006;

Capitanio et al., 2009; Davies, 2009; Korenaga, 2003; Wu et al., 2008). These studies have

focused on the idea that the work needed to bend plates during subduction may be large

and could considerably reduce plate velocities. The analytic models, however, all assumed

that the plate velocity was representative of the mantle flow velocity. We will demonstrate

that this assumption is only valid if the plate is very weak and the mantle isoviscous, i.e.

no asthenosphere.

The existence of a low viscosity zone beneath the lithosphere adds additional complexity

to the system. In an effort to study the dynamical effects of an asthenosphere, Busse et al.

(2006) and Lenardic et al. (2006) used a modification of established boundary layer theory to

include symmetric low viscosity channels at the top and bottom of a convection cell. Their

models assumed a Couette–type flow in the low viscosity channels and that velocities would

be highest at the surface. Similarly, Morris (2008) looked at flow in a semi–infinite length

viscosity–stratified layer driven by shear stresses at the ends of the cell in order to study

wavelength dependence and the effect of a low viscosity channel. These studies, however,

lacked a strong lithosphere and surface velocities in the bounding channels were predicted

to be high. Numerical convection simulations have demonstrated that a near-surface plate

analog can move slower than the peak velocity in the asthenosphere and that flow in the

asthenosphere, although still channelized, was not necessarily of Couette-type (Höink and

Lenardic, 2010). This seemed to indicate that the plate analog was providing a resistance

to motion that was not accounted for in the analysis of Busse et al. (2006), Lenardic et al.

(2006), or Morris (2008).
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The existence of an asthenosphere, or in general any low viscosity layer, requires a change

in viscosity with depth. Studies of mantle viscosity (e.g. Mitrovica and Forte, 2004) also

indicate a viscosity increase in the deep mantle well beneath the base of the asthenosphere.

The role of viscosity gradients on the thermal evolution of a deeply convecting mantle with

mechanically strong plates has also not been addressed by current analytic models.

While many of the recent parameterized models mentioned above have focused on the

addition of either a strong lithosphere or a weak asthenosphere, none have accounted for

the effects of both simultaneously. The model we describe here will address this issue and

demonstrate that both are important in determining the behavior of the system. The utility

of our analytic model is to provide physical insight into the behavior of the system and to

provide as simple as possible a relation between the model behavior and the parameters

that describe it.

Our model includes a finite-strength lithosphere, defined by either an effective viscosity

and/or a yield stress, and a low viscosity layer (LVL) above a mantle of constant viscosity.

The low viscosity layer can represent either a low viscosity upper mantle or an asthenosphere

depending on its thickness. Plate-mantle coupling occurs by means of viscous stresses

between the plate and the mantle which depend on the vigor and pattern of flow there, as

well as its viscosity. The average shear stress on the base of the plate can be calculated

using a laterally averaged velocity profile and viscosity structure. A depth-dependent lateral

pressure gradient allows for convective flow beneath the plate without requiring the plate

to be in motion. This will be further explained in section 3.2. Two energy balances are

constructed: a global energy balance for the entire convective cell and a local lithospheric

energy balance. All energy terms in the system are expressed as functions of the model

variables: the plate velocity UP , and the stress on the base of the plate τP . The global

and lithospheric energy balances are then solved together to yield UP and τP . The model

provides the depth-dependent horizontal velocity profile for the convective cell, and allows

for the evaluation of the heat flow, internal temperature, interior mass flux, and dissipation

rates. Results will be presented in section 3.3 followed by a discussion in section 3.4.
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Figure 3.1: Geometry and model variables. (a) The system is divided into three layers
of thickness dL , dA , and dM that represent the lithosphere, low viscosity layer (LVL), and
lower mantle, respectively. The total thickness and width of the convective system is d and
L. The three layers have effective viscosities of µL , µA , and µM . The lithosphere moves at
a horizontal velocity of UP and bends with a bending radius of R. The base of the mantle
moves at a velocity of UM . The mantle is assumed to be well-mixed with a temperature of
TM . The temperatures on the upper and lower boundaries are T0 and T1 , respectively. The
system has a basal heat flow of QB , surface heat flow of QS , and internal heating rate of
H. The volumes of the lithosphere, LVL, and lower mantle are VL , VA , and VM . (b) The
lithosphere and its boundaries. The shear stress on the base of the plate is τP , the shear
stress on the fault is τF , and the deviatoric normal stress due to slab pull is τSP .

3.2 Model

We consider a single closed thermally convecting cell at steady state. Figure 3.1 (a) illus-

trates the geometry, viscosities, and flow patterns in the model. The plate moves over the

surface as a rigid body and deformation occurs only at the subducting end of the cell. The

model allows for a strong convective flow in the LVL (if present) and mantle flow rates that

may exceed the plate velocity. All external boundaries are free-slip except for the fault zone.

Figure 3.1 (b) shows the volume enclosing the lithosphere that will be used to construct a

local lithospheric energy balance.

3.2.1 Mechanical energy

The linear momentum balance for a system with a small Reynolds number (Re = ρvl/µ <<

1) is given by
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0 = fi +
∂σij

∂xj
. (3.7)

where σij is the stress tensor and fi is the body force. Multiplying equation (3.7) by

the velocity and integrating over the volume (Conrad and Hager, 1999) yields the integral

formulation of the mechanical energy equation

0 =

∫

S
uiσijdSj −

∫

V
σij
∂ui

∂xj
dV +

∫

V
uifidV, (3.8)

where ui is the velocity. The first term represents work done on the boundaries of the system

by stresses. The second term represents work done in the system from deformation. The

third term accounts for work done by body forces and is responsible for driving convection.

Using

σij = −P δij + τij, (3.9)

where P is the pressure, δij is the Kronecker delta function, and τij is the deviatoric stress,

the second term in equation (3.8) may be written as

∫

V
σij
∂ui

∂xj
dV =

∫

V
(−P ε̇ii + τij ε̇ij) dV, (3.10)

where the deviatoric strain rate tensor is

ε̇ij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

. (3.11)

The first term on the right-hand side of equation (3.10) is zero for an incompressible flow.

We also assume that the material is a fluid with an effective Newtonian viscosity of µ, and

τij = 2µε̇ij . (3.12)

We can separate dissipation in the lithosphere from dissipation in the asthenosphere and
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mantle. Then

∫

V
σij
∂ui

∂xj
dV = ΦL + ΦM , (3.13)

where ΦL is the total volumetrically integrated dissipation in the lithosphere and

ΦM = 2

∫

VM

µε̇ 2
ijdV (3.14)

is the total dissipation in the underlying mantle. Equation (3.13) allows for the insertion

of a simple parameterized representation of the lithospheric dissipation and will be further

addressed in section 3.2.2.

The third term in equation (3.8) is the rate of change of potential energy, ΦP , and

represents work done on the system by body forces. The body force fi is the force of

gravity acting on density anomalies and is given by f = ∆ρg, where g is the gravitational

acceleration and ∆ρ is the density anomaly. The body force will be directed vertically, and

with the vertical velocity component v, the rate of change of potential energy in the system

is then given by

ΦP =

∫

V
∆ρgvdV. (3.15)

We consider only the thermal density variation, with ∆ρ = αρδT , where α is the thermal

expansion coefficient and δT is the temperature anomaly relative to the average mantle

temperature, TM . We can rewrite equation (3.15) as

ΦP =
αgd

Cp

[

1

d

∫ d

0

[∫ ∫

ρCpδTv dxdz

]

dy

]

. (3.16)

The quantity enclosed within the inner square brackets is the vertically advected heat flow,

Qadv(y). The quantity enclosed within the outer square brackets is the depth-averaged

vertically advected heat flow and can be defined as
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〈Q〉adv =
1

d

∫ d

0
Qadv(y)dy. (3.17)

The rate of change of potential energy in the system is then

ΦP =
αgd

Cp
〈Q〉adv = Di 〈Q〉adv , (3.18)

where Di = αgd/Cp is the dimensionless dissipation number. Equation (3.18) is exact and

applies for any incompressible flow. Advective heat transport dominates at high Rayleigh

numbers and in the limit Ra >> Rac ≈ 103 the depth-averaged advective heat flow 〈Q〉adv

can be considered equal to the depth-averaged total heat flow 〈Q〉 (Golitsyn, 1979).

Equation (3.18) provides a simple way of relating the heat flow through the system to

the rate of change of potential energy that drives convection. Only the heat flow is required

and for several simple cases the calculation of 〈Q〉adv is straightforward. For a high Rayleigh

number system at steady state and with uniform internal heating, equation (3.17) can be

used to show that 〈Q〉adv is

〈Q〉adv ≈ 〈Q〉 =

(

qb +
1

2
Hd

)

L =

(

qs −
1

2
Hd

)

L, (3.19)

where H is the internal heating per unit volume, qb is the basal heat flux, qs is the surface

heat flux, and all quantities are per unit length in the third dimension. Equation (3.17) can

of course also be used to calculate 〈Q〉adv for more complicated systems with non-uniform

internal heating and time dependence. However, for most simple thermal convection models,

equation (3.19) is adequate.

Using equations (3.9), (3.13), and (3.18), the integral form of the mechanical energy

equation for the convective cell, given by equation (3.8), may now be expressed as

Di 〈Q〉adv = −
∫

S
(uiP δij − uiτij) dSj + ΦL + ΦM (3.20)

The form of ΦL will be considered in the following section. ΦM will be calculated using
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Figure 3.2: Models for plate bending. (a) Geometry and variables for the bending model
parameterization for lithospheric dissipation. (b) Geometry and variables for the shearing
model parameterization for lithospheric dissipation.

equation (3.14) and a simplified flow structure that will be developed in sections 3.2.4 and

3.2.5. The first term on the RHS of equation (3.20) represents work done on the external

boundaries of the system and will be addressed in section 3.2.6.

It is worth noting that equation (3.20) does not require any information about the

density or temperature field for calculating the amount of energy available to drive the

system. Only the depth averaged advective heat flow is necessary.

3.2.2 Dissipation in the plate

Conrad and Hager (1999) parameterized dissipation in the plate by treating the plate as a

bending beam with an effective lithospheric viscosity of µL , a thickness of dL , and a radius

of curvature R. The dissipation is

ΦL = µL

(

dL

R

)3

U2
P

(3.21)

where UP is the plate velocity. Numerical simulations (Capitanio et al., 2009) have suggested

that the radius of curvature of the plate adjusts to minimize plate bending dissipation during

subduction. The exact functional form of R is still debated and is not considered in this

study.

Dissipation in the lithosphere can also be approximated using a model suggested by

Valencia and O’Connell (2009), in which the subducting plate is continuously sheared into
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the mantle, as illustrated in Figure 3.2. At subduction zones, an infinitesimally small block

is sheared from the plate into the mantle. For a yield stress of τy, a plate thickness of dL,

and a plate velocity of UP , the dissipation for such a deformation mechanism is given by

ΦL = τydLUP . (3.22)

The two dissipation models for the lithosphere represent end member models for how

the plate would behave if it deformed either entirely viscously (equation (3.21)) or entirely

plastically (equation (3.22)). The behavior of a real plate is expected to lie somewhere

between these two end members. If the thickness of the plate is defined by its thermal

thickness (equation (3.2)) then the dissipation for the viscously deforming plate scales as

d3
L
U2

P
∝ U−3/2

P
U2

P
∝ U1/2

P
. The dissipation for the plastically deforming plate scales as

dLUP ∝ U1/2
P

and the models scale the same way with the plate velocity. In general, both

models give the same result (for a fixed aspect ratio) when dL ∝ U−1/2
P

. Thus, either

deformation model captures the physics of both deformation mechanisms. Furthermore,

the models give the same result when the radius of curvature is related to τy, µL, L, and κ

by

R =

(

C2
o
κLµL

τy

) 1
3

. (3.23)

We can define an effective stress for the plate τY equal to

τY = µL
d2

L

R3
UP (3.24)

for the bending model and

τY = τy (3.25)

for the plastic model. Note that the effective stress is not a function of the plate velocity

or thickness when the lithospheric thickness is determined by the thermal thickness since
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dL ∝ U−1/2
P

and τY will be a constant model parameter. With τY defined by equation (3.24)

or (3.25) the dissipation in the lithosphere for either parameterization is given by

ΦL = τY dLUP . (3.26)

3.2.3 Dissipation in the fault zone

Dissipation occurs at the interface between the subducting and overriding plates. This

dissipation may be parameterized using an effective shear stress on the fault zone, τF . We

assume that the surface area of the interface will be proportional to the thickness of the

overriding plate (other criteria could be used). As in Conrad and Hager (1999) we can

parameterize the dissipation in the fault zone, per unit length along strike, as

ΦF = τF dLUP . (3.27)

3.2.4 Interior cell flow and lateral dissipation

Flow beneath the plate will produce viscous dissipation and will be coupled to the plate by

stresses on the lithosphere-mantle boundary. The plate in the convecting system simplifies

the flow by driving a cell wide circulation and stabilizing the upper thermal boundary layer.

Subduction of the plate at one end of the cell is balanced by an upwelling at the opposite

end. We model the flow as a vertical flow that is restricted to the ends of the cell, and

a horizontal flow across the entire length of the cell. Figure 3.3 illustrates the flow in the

convective cell.

We consider first the interior horizontal flow. Flow in the interior of the cell is driven

by the motion of the plate on the surface and by pressure gradients across the cell that

arise from density gradients. The equation to be solved is the momentum equation given

by equation (3.7) with the strain rate and stress defined by equations (3.11) and (3.12) and

the vertical velocity set to zero (vertical flow between layers occurs only at the end of the

cell). The horizontal velocity is then governed by
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Figure 3.3: Flow structure of the model convection cell. The convective cell can have a
low viscosity layer (LVL) or any number of layers of unique viscosity beneath the plate.
Results in this paper will deal with a system with three layers. Velocity gradients and flow
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lithosphere over length scales of lu and ld. The vertical velocity in the mantle changes over
a length scale of dM and corner flow occurs over an area of d2

M
. Flow is assumed to be

entirely horizontal at distances greater than dM from the ends of the cell.
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0 = −Px(y) + µ(y)
∂2

∂y2
U(y) (3.28)

where Px = dP/dx. The plate moves at a velocity of UP (for d − dL ≤ y ≤ d) and exerts

a shear stress of τP on the fluid below. The lower boundary of the mantle is free-slip and

the shear stress and velocity are continuous at all interfaces. The boundary conditions for

solving for U(y) are

U(d − dL) = UP . (3.29)

µA

∂U

∂y

∣

∣

y=d−dL
= τP . (3.30)

µM

∂U

∂y

∣

∣

y=0
= 0. (3.31)

The integrated horizontal mass flow rate must vanish for a closed system:

∫ d

0
U(y)dy = 0. (3.32)

We approximate the pressure gradient in the mantle with a simple linear dependence

on the depth. Thus

Px =
∂P

∂x
= Ay + b, (3.33)

with constants A and b. This allows a pressure driven flow to exist beneath the plate

regardless of whether the plate is moving or not. This assumption is equivalent to assuming

a density anomaly field in the mantle of (see vertical component of equation (3.7))

∆ρ = −
A

g
x + f(y), (3.34)

where A is the same constant from equation (3.33), g is the gravitational acceleration,
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and f(y) is an arbitrary function depending on the depth y but independent of the lateral

position in the cell x. The functional form of equation (3.34) is a reasonable first order

approximation for the density anomaly field in the convecting cell. The linear increase in

density anomaly with lateral position captures, to first order, the increase in density anomaly

that occurs through the cell moving from the warm buoyant upwelling to the cold dense

downwelling (essentially we are keeping the first term in a polynomial expansion for the

laterally varying density field). The linear depth-dependence of the pressure gradient also

satisfies the condition that the pressure gradient should be anti-symmetric about y = d/2

for the boundary heated isoviscous case when no plate is present (all properties symmetric

about y = d/2).

The viscosity and layer thicknesses control the shape of the flow profiles. The pressure

gradient drives the flow and other simple depth-dependent pressure gradients could be used

without significantly changing the results. We will demonstrate, in section 3.3.6, that the

above assumption produces flow profiles that are in excellent agreement with numerical

convection simulations.

Substituting equation (3.33) into equation (3.28) and integrating for the depth-dependent

horizontal velocity yields an equation with the two unknown constants A and b from equa-

tion (3.33) and two unknown constants of integration. Using constraints (3.29) - (3.32)

provides the depth-dependent horizontal velocity in the convective cell as a function of the

viscosity structure, plate velocity UP , and the basal shear stress τP . As such, A and b are

completely determined by the boundary conditions and the mass conservation constraint.

They are not free parameters in the model. The analytic solution for U(y) is a third order

polynomial in depth y. The coefficients of U(y) are a complicated function of the layer

thicknesses and viscosities and do not provide any physical insight (see Appendix B for

details). Thus, we will continue to express the horizontal velocity field as U(y) to avoid

unnecessarily large equations. Then U = U(y, UP , τP ) and the dissipation from lateral flow

in the asthenosphere and mantle, using equation (3.14), is given by
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ΦMH =
L

2

∫ dM+dA

0
µ(y)

(

∂U(y, UP , τP )

∂y

)2

dy. (3.35)

Equation (3.35) provides the dissipation rate for the horizontal flow in the mantle, ΦMH ,

as a function of the viscosity structure µ(y), the plate velocity UP , and the shear stress on

the base of the plate τP .

3.2.5 Corner flow dissipation

Dissipation in the corner flow of the cell is difficult to calculate without a more complex flow

model that accounts for the vertical flow in the ends of the cell. Morris (2008) found that

dissipation in the corners was often larger than dissipation in the lateral flow. However,

his model did not include a plate and lateral flow in his cells was localized near the ends

of the cell. Including a plate forces a cell-wide flow and increases lateral flow dissipation.

Nonetheless, corner flow will likely be a dominant term when the cell aspect ratio is small.

Vertical flow is contained within ∼ d/2 of the ends of the cell (e.g. Busse et al., 2006; Grigné

et al., 2005; Lenardic et al., 2006). We estimate the velocity gradient in the corner flow by

assuming that the vertical velocity decreases linearly away from the ends of the cell and

over a length scale of lM ≈ dM (see Figure 3.3). The vertical flow at the ends must balance

the horizontal flow in the middle. If the maximum vertical velocity at the ends of the cell

is VM then the vertical flow rate is VM lM /2. We can then estimate VM by calculating the

total horizontal flow rate in the cell from U(y) and equating it to the total vertical flow

rate. Then

VM =
2

lM

∫ dr

0
|U(y)|dy, (3.36)

where dr denotes the distance from the base at which the mantle return flow begins (i.e.

U(y) < 0 in the mantle). The strain rate in the corners is then ∂v/∂y ≈ VM /lM over an area

of ∼ l2
M

and we can use equation (3.14) to calculate the mantle dissipation in the corners

of the cell, ΦMC , as
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ΦMC ≈ 2µM V 2
M

, (3.37)

The total dissipation in the asthenosphere and lower mantle is then given by the sum of

ΦMH and ΦMC , from equations (3.35) and (3.37) respectively

ΦM = ΦMH + ΦMC . (3.38)

For simplicity, ΦMH is evaluated over the entire length of the cell L even though this flow is

only expected to be present over a length of L − 2 lM (see Figure 3.3). This simplification

is reasonable as the corner flow dissipation dominates for small aspect ratios (ΦM ≈ ΦMC

for L ≈ d, (see Morris, 2008)) and L ≈ L − 2 lM for larger aspect ratios (L >> lM ).

ΦM is completely determined by specifying the viscosity structure µ(y), the plate velocity

UP , and the basal stress for the lithosphere τP .

3.2.6 Energy balance equations

All dissipation terms have now been expressed as a function of the viscosity structure µ(y),

the plate velocity UP , and the plate basal shear stress τP . We now return to the mechanical

energy equation from section 3.2.1 and construct two energy balance equations, one for the

lithosphere alone and one for the entire convective cell (lithosphere and mantle), which will

be solved together to obtain UP and τP .

We begin with the local energy balance for the lithosphere. Using equation (3.20)

without ΦM (since we are considering only the lithosphere), the energy balance for the

lithosphere may be written as

DiL 〈Q〉
L

= −
∫

SL

(uipδij − uiτij) dSj + ΦL, (3.39)

where ΦL is the dissipation in the lithosphere, 〈Q〉
L

is the depth averaged vertical advec-

tive heat flow through the lithosphere, DiL = αgdL/Cp is the dissipation number defined

using the thickness of the lithosphere, and all energy terms, unless otherwise stated, are
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per unit length in the third dimension. The boundary term for the lithosphere will have

contributions from stresses on the base of the lithosphere and from stresses on the fault

zone. The contribution from the fault zone is given by equation (3.27) in section 3.2.3. The

contribution from the base of the lithosphere can be further divided into contributions from

the pressure gradient across the cell, the basal shear stress on the plate, and the deviatoric

normal stress from an attached slab. Evaluating the boundary term yields (see Appendix

B for details)

∫

SL

− (uiP δij − uiτij) dSj (3.40)

=

∫

SL−LV L

− (uiP δij − uiτij) dSj + τF dLUP (3.41)

≈ dLUP PxP L − dLUP τSP + dLUP τF + LUP τP ,

where SL−LV L is the surface defining the lithosphere-LVL interface. The lithospheric energy

balance then becomes

DiL 〈Q〉
L

=

[

LPxp +
L

dL

τP − τSP + τY + τF

]

dLUP ,

where Pxp is the lateral pressure gradient evaluated at the base of the plate (y = d − dL),

τSP is the magnitude of the deviatoric normal stress on the lithosphere from the slab, and

τY and τF are the magnitude of the effective yield stress for the plate and the shear stress

on the fault, as discussed in sections 3.2.2 and 3.2.3. Equation (3.42) deals only with the

magnitude of the stresses (see Figure 3.1 (b) for their orientations).

Work done on the plate by buoyancy may be separated into internal and external sources.

The contribution from the density variation internal to the lithospheric volume is expressed

as a local rate of change of potential energy and results from lateral variations in density

within the lithospheric volume. Note that the volume used for the lithospheric energy

balance extends to a constant depth equal to the maximum thickness of the plate (see Figure



Model 50

3.1). Thus, lateral variations in plate thickness, from cooling or other causes, will result

in an internal buoyancy source and will contribute to the local rate of change of potential

energy for the lithosphere. The LHS of equation (3.42) is the local rate of change of potential

energy in the lithosphere. This term is always positive and provides energy to drive the

motion of the lithosphere. The rate of change of potential energy in the lithosphere can be

shown to be equivalent to work done by the apparent force that was considered by Hager

(1978) to arise from the thickening of the lithosphere and is also sometimes referred to as

ridge push or gravitational sliding (although, for simplicity, we omit the small contribution

that arises from surface topography).

‘Slab-pull’ is somewhat loosely defined (Forsyth and Uyeda, 1975) as the negative buoy-

ancy force of the slab acting on the lithosphere. For our purposes, we define slab as the

portion of the lithosphere that has been subducted and is deeper than the maximum thick-

ness of the lithosphere dL . The density anomaly external to the lithospheric volume, i.e.

the attached slab, does work on the lithosphere through the normal stress that it exerts

on the base of the lithosphere (τSP in Figure 3.1). We define slab-pull as the energetic

contribution to the motion of the plate from the normal deviatoric stress of the attached

slab (third term on the RHS of equation (3.42)).

The first term on the RHS accounts for work done on the lithosphere as material flows

into the lithospheric volume at a high pressure and leaves the lithospheric volume at a

lower pressure. LPxp gives the horizontal pressure difference across the cell at the base of

the lithosphere and dLUP is the flow rate. The second term on the RHS represents work

done on the lithosphere by basal stresses. This term may be either positive, if the plate

leads the flow beneath it, or negative if the plate lags behind it. The third term accounts

for work done on the system by the slab-pull normal stress. The fourth and fifth terms on

the RHS represent rates of dissipation for deforming the lithosphere and overcoming stress

on the subduction zone fault.

The energetic contribution due to stresses on the base of the plate from flow driven

by detached slabs is commonly referred to as ‘slab-suction’ (see for example Conrad and
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Lithgow-Bertelloni, 2002). In our model the LτP UP term in the lithospheric energy balance

accounts for the work done by shear stresses on the base of the plate. τP is the laterally

averaged basal shear stress and represents the net stress resulting from drag on the base

of the plate, from the plate-driven component of the flow, and driving stresses from the

density-driven component of the flow.

As the slab-pull, plate deformation, and fault-zone terms all scale in the same way,

equation (3.42) may be further simplified by combining them and defining an effective net

resistive stress for the plate, τR , as

τR = τY + τF − τSP . (3.42)

τR then represents a net stress that must be overcome to move the plate. This demonstrates

that the individual values for slab-pull, plate yield stress, and fault zone stress are not

important. Rather, it is the difference in these terms that matters. This effectively groups

many of the large uncertainties in the model parameters τSP , τF , τy , µL , and R into a single

model parameter τR which may be varied to explore the behavior of the system. If the

thickness of the lithosphere is determined by its thermal thickness (equation (3.2)), then

τY , as discussed in section 3.2.2, will be independent of the plate velocity and τR will be a

constant model parameter. The lithospheric energy balance can thus be written as

DiL 〈Q〉
L

= LPxpdLUP + LτP UP + τRdLUP . (3.43)

If τY + τF > τSP then τR > 0 and the τRdLUP term may be thought of as a net dissipation

in the lithosphere. On the other hand, if τY + τF < τSP then τR < 0 and the τRdLUP term

may be thought of as a negative dissipation or energy source term for driving the motion

of the lithosphere.

The global energy balance is much simpler. The only contribution to the boundary term

in equation (3.20) is the fault zone dissipation term discussed in section 3.2.3. Substituting

equations (3.26) and (3.27) into equation (3.20), the global energy balance is given by
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Di 〈Q〉 = τF dLUP + τY dLUP + ΦM (3.44)

The analytic form of ΦM , from evaluating the integral in equation (3.35), is lengthy and

does not provide any real insight. Thus, we simply leave it as ΦM in equation (3.44). The

solution for ΦM is given in Appendix B.

At this point it is useful to non-dimensionalize the energy balances. The velocity and

stresses can be non-dimensionalized using a characteristic velocity and stress of κ/d and

µMκ/d
2, respectively. There are two choices for the dimensionless heat flow. The first

uses a given temperature difference in the system, such as the temperature difference ∆T

between the upper and lower boundaries of the cell, and is Q̃T = Q/(kc∆Td), where the ’∼’

denotes a dimensionless quantity. The second uses the internal heating rate H and is given

as Q̃H = Q/(Hd3). For a system with both boundary and internal heating, ∆T and H can

be independent and the choice of non-dimensionalization has an effect on the magnitude of

the dimensionless heat flow. The lithospheric and global energy balances are then

Ra
˜〈Q〉

L
=

(

d2LPxp

µMκ
+

L

dL

τ̃P + τ̃R

)

ŨP , (3.45)

and

Ra
˜〈Q〉 =

dL

d
τ̃F ŨP +

dL

d
τ̃Y ŨP +

ΦM

µM

(

d

κ

)2

. (3.46)

Ra is either

RaT =
αρg∆Td3

κµM

(3.47)

if the heat flow is non-dimensionalized using the temperature scale ∆T or

RaH =
αρgHd5

kcκµM

(3.48)

if the heat flow is non-dimensionalized using the internal heating rate H. The form of the
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Rayleigh number that enters the energy balance is specifically linked with the form of the

non-dimensionalization used for the heat flow. Either Rayleigh number may be used as long

as the heat flow is non-dimensionalized in a consistent way. Generally, the choice of Ra is

based on parameters in the model that are prescribed (for example, as boundary conditions)

and other formulations of Ra exist (for details, see O’Connell and Hager, 1980). Note that

the two Rayleigh numbers RaT and RaH are not energetically equivalent, as discussed in

section 2.1. Thus, the larger of RaT and Ra4/3
H should be used to give the Rayleigh number

that is most appropriate (from an energetic view).

Equations (3.45) and (3.46) can now be solved together to yield solutions for the plate

velocity UP and the basal stress τP .

3.3 Results

We begin by demonstrating that the model reproduces the classic scaling law given by

equation (3.4) for a boundary-heated isoviscous fluid layer with a weak plate. The behavior

of the system with a strong plate is then investigated. This demonstrates how the model

differs from classic parameterizations and allows for new solutions in the sluggish-lid con-

vective regime. The existence of multiple solutions and their behavior is addressed. We

then demonstrate how a low viscosity layer beneath the plate can have a significant impact

on the dynamics of the system. Finally, we end with a comparison of our analytic model

with some numerical convection simulations.

3.3.1 Multiple solutions

Combined, equations (3.45) and (3.46) offer multiple roots for the plate velocity UP . The

exact number of roots depends on the functional form of the lithospheric thickness and the

heat flow and whether they depend on the plate velocity. Unphysical complex or negative

roots are discarded. The remaining roots may however, and in many cases do, represent

multiple solutions for the state of the system. Each unique solution for the plate velocity has

a corresponding unique basal stress, flow profile, heat flow, etc. The multiple solutions are
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For both two and three layer models

ρ 3500 kg/m3 Density
kc 3.2 W/m·K Thermal conductivity
Cp 1200 J/kg·K Specific heat
κ 7.6 × 10−7 m2/s Thermal diffusivity
α 2.5 × 10−5 1/K Thermal expansion
g 10 m/s2 Gravitational acceleration
E 200 kJ/mol Activation Energy
Rg 8.31 J/mol·K Ideal gas constant
µM eq. (3.49) Pa·s Mantle viscosity
To 1300 K Reference temperature
d 3000 km Total layer thickness
dL eq. (3.2) km Plate thickness
L 6000 km Convective cell length
R 300 km Radius of curvature
τF 0 MPa Fault zone stress
C0 2.32 Plate thickness parameter

Two layer model (lithosphere and mantle)

µo 1021 Pa·s Reference viscosity
τSP 0 MPa Slab-pull normal stress
dM d − dL km Lower mantle thickness
dA 0 km LVL thickness

Three layer model (lithosphere, LVL and lower mantle)

µo 1023 Pa·s Reference viscosity
τSP 200 MPa Slab-pull normal stress
dM 2400 km Lower mantle thickness
dA d − dL − dM km LVL thickness

Table 3.1: Fixed parameters for model calculations in sections 3.3.3 through 3.3.5.

all energetically equivalent and each of them satisfy the energy balance and flow equations.

Physically, the multiple solutions emerge as distinct balances between different terms in the

lithospheric energy balance. This will be shown in the following examples.
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3.3.2 Thermal boundary conditions

We assume that the surface heat flux and lithospheric thickness can be determined by ther-

mal boundary layer theory (equations (3.1) and (3.2)) and implicit in this is the assumption

that the plate is moving. This excludes the zero plate velocity solution from our results.

Other scalings for stagnant-lid or dehydration thickening could also be used for the heat

flux and lithospheric thickness but a full exploration of these is beyond the scope of this

study.

This study will consider a fluid layer with a surface temperature of TS = 0 and an

internal potential mantle temperature of ∆T = TM − TS . The surface heat flow QS is

determined by equation (3.1) and the basal heat flow QB is assumed to be zero. This is

appropriate for a system that is internally heated or is cooling over time. We consider a

high Rayleigh number convective cell and as such the advective heat flow 〈Q〉adv is assumed

to be equal to the total heat flow 〈Q〉 (conductive heat flow is small within the layer).

With zero basal heating the depth-averaged heat flow will be equal to half the surface

heat flow and 〈Q〉adv = QS/2. The heat flow at the base of the lithosphere (bottom red

dashed line in Figure 3.1 (b)) will be entirely advective. The heat flow at the top surface

of the lithosphere (upper red dashed line in Figure 3.1 (b)) will be entirely conductive. We

therefore assume the depth-averaged advective heat flow through the lithosphere will be

〈Q〉L = QS/2 as conduction accounts for approximately half of the heat flow. Our model

can be applied just as easily to the boundary heated case. For a boundary heated system at

steady state 〈Q〉adv = QS = QB and again 〈Q〉L = QS/2. However, a complete treatment

of the lower thermal boundary layer (present for boundary heated cases) leads to more

complicated energy balance equations and would provide no further insight beyond that

which the internally heated or cooling cases offer.

Table 3.1 provides a list of model parameters that are fixed at a constant value for all

calculations in this paper. Table 3.2 lists parameters that are varied for several different

cases that we consider.

Both the bending and shearing models for plate dissipation scale as U−1/2
P

when the
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Two layer model (lithosphere and mantle)

Case ∆T µL τY RaM

(K) 1021 (Pa·s) (MPa)

VaryRa1 33 30
VaryRa2 1100 − 1800 100 90 106 − 1010

VaryRa3 300 270
LithStr1 1100 106

LithStr2 1360 10 − 1000 9 − 900 108

LithStr3 1800 1010

Three layer model (lithosphere, LVL, and lower mantle)

Case ∆T µL τY RaM

(K) 1021 (Pa·s) (MPa)

WkPlate 1360 100 90 106

StPlate 1360 300 270 106

Table 3.2: Variable parameter values for model calculations in sections 3.3.3 through 3.3.5.
The bending and plastic models for plate deformation scale in the same way and the strength
of the plate may be equivalently described by specifying either an effective lithospheric
viscosity or a yield stress. Both µL and τY are given for reference.
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Figure 3.4: Model results for an isoviscous mantle with a finite strength plate. (a) Predicted
plate velocity, UP , as a function of the mantle Rayleigh number for cases V aryRa1 (black),
V aryRa2 (red), and V aryRa3 (blue). (b) Horizontal velocity profiles for solutions marked
with points in (a). (c) Predicted plate velocity, UP , as a function of the effective lithospheric
viscosity for cases LithStr1 (black), LithStr2 (red), and LithStr3 (blue). The plate velocity
for the lower branch of solutions, predicted by equation (3.51), is plotted as a thin dashed
line.

plate thickness is determined by its thermal thickness. As such, both models behave in

the same way and the strength of the plate can be equivalently described by referring

to either the effective lithospheric viscosity or the effective yield stress of the plate. The

effective lithospheric viscosity will be varied in the results that follow and the effective yield

stress for the plate, calculated using equation (3.23), will be given for reference. Table 3.2

shows that the effective yield stress considered ranges from ∼ 10MPa for weak plates to

∼ 103 MPa for very strong plates.

3.3.3 Behavior with a weak plate

If the plate is made sufficiently weak and the mantle is isoviscous (either by setting dA = 0

or µA = µM ), then the model should behave in the same way as the classic boundary layer

model (Turcotte and Oxburgh, 1967) that is based on a simple isoviscous fluid layer.

Plot (a) of Figure 3.4 shows results for a convective cell with a fixed aspect ratio of

L/d = 2 and where the temperature difference between the surface and the mantle, ∆T , is

varied. The (uniform) mantle viscosity is determined by
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µM = µoe
E

Rg

“

1
∆T −

1
To

”

(3.49)

and will be consistent with the temperature of the mantle. The model results are then

plotted as a function of the mantle Rayleigh number (defined by equation (3.47)) for three

different lithospheric viscosities. The variation of parameters for these three runs is given

in Table 3.2 as cases V aryRa1 − V aryRa3.

The predicted plate velocities for the cases with the lower lithospheric viscosities (V aryRa1

and V aryRa2) are almost identical and follow the classic parameterized scaling of ŨP ∝

R2/3
a , as given in equation (3.4). These cases are independent of the lithospheric viscosity.

The lithosphere is weak and dissipation in the plate (< 10%) does not significantly affect the

energy balances. Thus, the model recovers the classic parameterized scaling in the absence

of an asthenosphere and strong plate.

The model produces flow profiles, shown as black and red lines in Figure 3.4 (b), that

are identical to those of a simple isoviscous convection cell and have UP ≈ UM (see for

example the many solutions in Schubert et al., 2001). The velocity gradient at the surface

is near zero and the presence of the weak plate has little effect on the mantle flow.

3.3.4 Behavior with a strong plate

As the lithospheric viscosity increases further its effect on the predicted plate velocity be-

comes apparent. The results in Figure 3.4 (a) for the case with the high lithospheric viscosity

(case V aryRa3) show a reduced plate velocity as well as multiple solutions at high Rayleigh

numbers. Dissipation in the plate is now a significant term (up to 25%) in the global en-

ergy balance. Three branches of solutions exist at high Rayleigh numbers and all three

branches satisfy the flow and energy balance equations. The three solutions differ in their

plate velocity, and thus also in the thickness of the plate and the surface heat flow.

Plot (b) of Figure 3.4 shows the horizontal flow profiles for the solutions indicated by dots

in (a). These profiles are part of the analytic model and represent the laterally averaged

horizontal flow profiles that would be expected in a convecting cell. As the lithospheric
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Figure 3.5: Results for an isoviscous mantle with a finite strength plate. (a) Dimensionless
plate velocity (black) and mantle velocity (red) for case LithStr3. The plate velocity for
the lower branch, predicted by equation (3.51), is plotted as the dashed black line. (b)
Lithospheric dissipation (black), work done by basal tractions (red), work done by the
pressure gradient (light blue), and the rate of change of potential energy in the lithosphere
(dark blue), all from the lithospheric energy balance and normalized by the total rate
of change of potential energy in the system. (c) Lithospheric (black) and mantle (red)
dissipation from the global energy balance and normalized by the total rate of change of
potential energy in the system. Dashed lines indicate negative values (work done by the
lithosphere) while solid lines indicate positive values (work done on the lithosphere).

viscosity increases the plate begins to resist and the plate velocity is decreased relative to

the lower lithospheric viscocity cases. Three possible solutions are present for the high

lithospheric viscosity case (blue) and their plate velocities range over almost three orders

of magnitude. Of the three, the fast solution (upper branch) has a thin plate that moves

at a similar velocity to the flow beneath it. The other two solutions (intermediate and

lower branches) have mantle flow rates that exceed the slower plate velocities and therefore

represent sluggish-lid solutions.

Figure 3.4 (c) shows predicted plate velocities as a function of the effective lithospheric

viscosity (or yield stress) for a range of Rayleigh numbers from 106 to 1010. The variation

of parameters for these three runs is given in Table 3.2 as cases LithStr1 − LithStr3.

The low Rayleigh number case (black) is single-valued for the entire range of lithospheric

viscosities considered. The higher Rayleigh number cases (red and blue) are multi-valued

for large lithospheric viscosities. The range of lithospheric viscosity that leads to multiple
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solutions increases for increasing Rayleigh number. Larger Rayleigh numbers allow for

multiple solutions at lower lithospheric strengths.

Figure 3.5 looks at case LithStr3 in more detail. Plot (a) shows both the plate (black)

and mantle (red) velocities as a function of the effective lithospheric viscosity. The mantle

velocity varies much less than the plate velocity. Figure 3.5 (c) plots the relative dissipation

in the plate (black) and mantle (red) as a percentage of the total rate of change of potential

energy in the system (total available energy). The global dissipation curves have only

a single branch when divided by the total energy. This demonstrates that the multiple

solutions have the same ratio of plate dissipation to mantle dissipation, regardless of which

solution branch they are on. Only for very large effective lithospheric viscosities does the

plate dissipation approach the mantle dissipation. Multiple solutions for the system can

occur for reasonable lithospheric viscosities when the lithospheric dissipation is still a small

term in the global energy balance (≈ 10%).

Figure 3.5 (b) shows the various terms from the lithospheric energy balance for case

LithStr3 and demonstrates the different dominant energy balances that give rise to the

multiple solutions. For low lithospheric viscosities dissipation in the plate is small, the plate

is fast and thin, and thus the local rate of change of potential energy in the lithosphere is

also small. The boundary energy terms dominate for weak plates and the plate is driven

by the mantle pressure gradient and resisted by drag from the mantle. As the lithospheric

viscosity is increased the plate begins to lag, the basal shear stress becomes negative, and

tractions from the flow beneath provide the additional work to overcome the increase in

lithospheric dissipation. The upper branch represents a branch of solutions in which the

plate is driven by the mantle coupling terms. The mantle flow rate determines the speed

of the plate, and as a result, this branch of solutions depends entirely on the material

properties of the mantle.

The upper branch of plate velocity solutions resembles a simple cellular flow with UP ≈

UM . This branch cannot continue indefinitely as the lithospheric viscosity is increased. The

lithospheric dissipation scales linearly with the effective lithospheric viscosity. Thus, as
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lithospheric viscosity increases dissipation in the plate becomes significant and slows the

system down. A slower plate becomes thicker and a thicker plate has more dissipation.

This positive feedback leads to a rapid increase in plate thickness that quickly slows the

system as lithospheric viscosity is increased and no solutions of the form UP ≈ UM exist

for large lithospheric viscosities. Termination of the upper branch for large lithospheric

viscosity is clearly seen in Figure 3.5 (a). Conrad and Hager (1999, 2001) also found that

solutions with UP ≈ UM were not possible for very large lithospheric viscosities and their

model provided no solution. Our model predicts a transition from the cellular flow with

UP ≈ UM to a sluggish-lid flow and provides a feasible mode of convection for plates with

large lithospheric viscosities.

The intermediate branch of plate velocity solutions exists as a dominant energy bal-

ance between lithospheric dissipation and work done by basal tractions. Solutions on the

intermediate branch represent a sluggish-lid convective state (as shown in Figure 3.4 (b)).

Solutions on the lower branch represent a convective state in which the dynamics of the

system are entirely controlled by the lithosphere and not affected by the flow beneath it. The

contribution from the plates’ local buoyancy is large for thick plates and the lower branch

exists due to a dominant energy balance between the rate of change of potential energy in

the plate (from buoyancy) and work done against the net resisting stress τR (recall that

τR = τY +τF −τSP and includes the contribution from the deformation of the plate, the stress

on the fault, and the normal deviatoric stress on the base of the lithosphere). The pressure

and traction boundary terms are negligible for this branch of solutions. The lithospheric

energy balance controls the motion of the plate and the surface heat flow. As the energy

available for convection in the mantle is proportional to the heat flow, mantle flow rates

are also regulated by the lithospheric energy balance. Thus, while plate-mantle coupling

through boundary stresses is negligible, the lithosphere-mantle system remains energetically

coupled. Setting the pressure gradient and basal traction terms to zero in the lithospheric

energy balance (equation (3.43)) gives
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DiL 〈Q〉
L

= τRdLUP . (3.50)

Using 〈Q〉
L

= QS/2, equation (3.1) for QS, and solving for the plate velocity yields the

simple relationship

ŨP =
1

π

L

d

(

Ra

τ̃R

)2

. (3.51)

The plate velocity predicted by equation (3.51) is shown as dashed lines in Figures 3.4 (a)

and (c) as well as Figure 3.5 (a) and accurately captures the behavior of the lower branch.

While equation (3.51) scales with Ra2 it is important to recall that the stresses, including the

effective resistive stress τR , are nondimensionalized by dividing by the characteristic mantle

stress of µMκ/d
2. Thus the ratio Ra/τ̃R and equation (3.51) are independent of the mantle

viscosity. The small increase in predicted plate velocity for the lower branch in Figure 3.4

(a) is due to the change in temperature. The dynamics of the lower branch depend only on

the lithospheric material properties and the heat flow through the lithosphere.

3.3.5 Behavior with a low viscosity layer

We now consider the behavior of the system when a low viscosity layer (LVL) is present

beneath the plate. The LVL could represent either a low viscosity upper mantle or an

asthenosphere, depending on its thickness. The thickness of the plate, LVL, and lower

mantle are given by dL , dA = d − dL − dM , and dM , respectively, with dL again defined by

equation (3.2).

One of the fundamental parameters required to determine the behavior of the plate is

the effective net resistive stress τR = τY + τF − τSP (equation (3.42)), and more specifically,

the sign of τR . We consider two cases: one with τR < 0 in which the slab-pull stress is

larger than the combined fault-zone and bending stresses, and one with τR > 0 in which

the fault-zone and bending stresses exceed the stress provided by slab-pull.

Figure 3.6 shows the results for the first case with τR < 0 and plotted as a function
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Figure 3.6: Results for case WkPlate. (a) Dimensionless plate (black) and mantle (red)
velocities. Flow profiles, normalized by the maximum velocity in each profile, are shown
below. (b) Lithospheric dissipation (black), work done by basal tractions (red), work done
by the pressure gradient (light blue), work done by slab-pull (green), and the rate of change
of potential energy in the lithosphere (dark blue), all from the lithospheric energy balance
and normalized by the total rate of change of potential energy in the system. (c) Lithospheric
(black), LVL (light blue), and mantle (red) dissipation from the global energy balance and
normalized by the total rate of change of potential energy in the system. Dashed lines
indicate negative values in the energy balances (work done by the lithosphere) while solid
lines indicate positive values (work done on the lithosphere).

of the viscosity contrast between the lower mantle and the LVL. For this case a slab-pull

normal stress of 200MPa is used and roughly corresponds to the expected weight of an

attached slab of 400km length. The effective viscosity of the lithosphere is 1023 Pa · s.

All parameters are held fixed with the exception of the LVL viscosity µA which is varied

between the viscosity of the lower mantle µM and µM /104. A decrease in the viscosity of the

LVL lubricates the base of the plate, reducing drag from basal tractions, and allowing the

plate velocity to increase relative to the lower mantle peak velocity. For very large viscosity

contrasts a counter flow develops in the LVL and the pressure gradient driving flow beneath

the plate switches sign.

Figure 3.6 (b) plots the individual energy terms in the lithospheric energy balance,

all normalized by the total dissipation in the system. The slab-pull and the lithospheric

dissipation terms do not depend on the viscosity in the mantle and, when normalized by the

total dissipation in the system, are also independent of the plate velocity. Thus, they remain
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Figure 3.7: Results for case StP late. (a) Dimensionless plate (black) and mantle (red)
velocities. Flow profiles, normalized by the maximum velocity in each profile, are shown
below. (b) Lithospheric dissipation (black), work done by basal tractions (red), work done
by the pressure gradient (light blue), work done by slab-pull (green), and the rate of change
of potential energy in the lithosphere (dark blue), all from the lithospheric energy balance
and normalized by the total rate of change of potential energy in the system. (c) Lithospheric
(black), LVL (light blue), and mantle (red) dissipation from the global energy balance and
normalized by the total rate of change of potential energy in the system. Dashed lines
indicate negative values in the energy balances (work done by the lithosphere) while solid
lines indicate positive values (work done on the lithosphere).

constant as a function of µM /µA . As τR < 0, the energy provided by slab-pull is larger than

the energy lost to dissipation in the lithosphere (τR acts as a net driving stress) and both the

net resisting stress and the rate of change of potential energy drive the plate (see equation

(3.42)). This energy must be transferred through the lithosphere back to the mantle via

(positive) basal tractions and, for very small µA , by generating a negative pressure gradient

that drives a return flow in the LVL. In order to generate a positive average basal traction

and mantle pressure gradient, the plate must be moving faster than the mantle beneath it.

Therefore, solutions with τR < 0 are always of the mobile-lid type. Furthermore, the lower

the LVL viscosity, the larger the plate velocity that is required to produce the necessary

stresses and pressure gradient to balance the driving terms.

We now consider the results when τR > 0 and dissipation in the plate exceeds the

energy supplied by slab-pull. Figure 3.7 shows the results for this case. The slab-pull

normal stress remains at τSP = 200MPa and the effective lithospheric viscosity is now
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µL = 3 × 1023 Pa · s, a factor of 3 higher than the results of Figure 3.6. Initially, for low

viscosity contrasts, the results appear similar. Decreasing the viscosity of the LVL provides

lubrication for the lithosphere and the plate velocity increases relative to the peak lower

mantle velocity. However, for a very low LVL viscosity the plate moves slower than the

flow in the LVL, leading to a channelized flow beneath the plate. For the calculation shown

in Figure 3.7, with a mantle Rayleigh number of Ra = 106, the maximum plate velocity

occurs at a critical viscosity contrast of µM /µA ≈ 200. At higher mantle Rayleigh numbers,

such as Ra = 1010 (not shown), the critical viscosity contrast can be as low as µM /µA ≈ 20.

For viscosity contrasts less than this critical value the LVL acts as a lubricating layer and

decreasing the LVL viscosity increases the plate velocity. For viscosity contrasts greater than

the critical value a sluggish-lid solution exists and decreasing the LVL viscosity decreases

the plate velocity.

With τR > 0, energy needs to be supplied to overcome the net dissipation in the plate.

This energy can be provided in three different ways, each corresponding to one of the three

boundary layer solutions. For low viscosity contrasts, the mantle pressure gradient provides

the additional energy. However, for a very low LVL viscosity, the LVL cannot support a

large pressure gradient and the contribution from the pressure term becomes too small.

Basal tractions can provide the required energy to drive the plate. But in order to generate

a negative shear stress the plate must be moving slower than flow in the mantle and a

sluggish-lid solution is obtained. Finally, the plate can be driven by the local rate of change

of potential energy in the lithosphere. This term is small and again results in a slow moving

sluggish-lid solution.

For very low LVL viscosities, the traction and pressure terms are too small and plates

are driven by the local rate of change of potential energy, leading to slow moving sluggish lid

solutions. This example demonstrates that while a LVL can promote plate tectonics, it can

also inhibit plate motions by reducing the available energy from mantle coupling. Figure 3.7

also demonstrates that, when a LVL is present, the plate velocity of a sluggish-lid solution

can be of the same order of magnitude or larger than the isoviscous mobile-lid solutions.
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Thus, a sluggish-lid solution does not necessarily imply a slow moving and thick plate, as

was the case for the isoviscous solutions considered in section 3.3.4.

For very large viscosity contrasts, and thus very low µA , the model predicts either a

return flow in the LVL with fast moving plates when τR < 0 or a channelized flow in the

LVL with slow moving plates when τR > 0. Thus, the sign of τR is critical in determining

the behavior of the system. τR < 0 could result from a large amount of slab-pull or a weak

plate. τR > 0 can occur for either a strong plate or a plate that has little slab-pull. The

results of Figures 3.6 and 3.7 demonstrate that the difference in dynamics may only be

noticeable for large viscosity contrasts.

It is also worth noting that most of the terms in the lithospheric energy balance are of

comparable size. The behavior is complex and is best captured by solving the full energy

balance equations. Simplified scalings that balance only two or three terms will not capture

these solutions and transitions.

3.3.6 Sluggish-lid solutions in numerical simulations

While the intermediate and lower branches of solutions are theoretically and conceptually

viable steady-state solutions (they satisfy the energy and fluid flow equations), the stability

of solutions on these branches has not yet been determined. As such, it is reasonable to ask

whether there is any evidence of these forms of solutions in nature or in the large body of

literature on numerical mantle convection simulations. We now compare our model to the

2D and 3D numerical convection results of Höink and Lenardic (2010).

Höink and Lenardic (2010) solved the Boussinesq equations governing thermal convec-

tion in an incompressible, infinite-Prandtl number fluid with CitcomCU (Moresi and Gurnis,

1996; Zhong, 2006), and used a finite element full multigrid solver for 3-D simulations and

the conjugate gradient solver for 2-D simulations. All outer boundaries were free slip. Their

model had a simple depth-dependent viscosity structure with a high viscosity lithosphere

(upper 10%), a low viscosity channel for the asthenosphere (10%), and an intermediate

viscosity lower mantle (lower 80%). Their numerical simulations focussed on the effects of
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Figure 3.8: Comparison of model with finite strength plates to numerical simulations. (a)
Plate velocities from the numerical simulations of Höink and Lenardic (2010) (black mark-
ers) and plate (black line) and mantle (red line) velocities from our analytic model. (b) and
(c) Flow profiles from the numerical simulations (black) and analytic model (red) for aspect
ratios of 4 and 10 respectively. Inset figures show the RMS average of the horizontal veloc-
ity profiles through the convective cell. (d) Lithospheric dissipation (black), work done by
basal tractions (red), work done by the pressure gradient (light blue), and the rate of change
of potential energy in the lithosphere (dark blue), all from the lithospheric energy balance
and normalized by the total rate of change of potential energy in the system. Dashed lines
indicate negative values in the energy balances (work done by the lithosphere) while solid
lines indicate positive values (work done on the lithosphere).

changing aspect ratio. See Höink and Lenardic (2010) for further details.

Their results demonstrated a channelization of flow in the asthenosphere at low aspect

ratios and a rapid increase in plate velocity with increasing aspect ratio. Their calculated

plate velocities from their paper (Höink and Lenardic, 2010) are shown as the black symbols

in Figure 3.8 (a). They noted that two scaling regimes exist, one at low wavelength and

one at larger wavelengths. They proposed that the negative buoyancy increases with cell

wavelength and at the regime transition it overcomes the bending resistance.

As in their study, we use dimensionless parameters µ̃L = 10, µ̃A = 0.01, µ̃M = 1,

RaT = 106, RaH = 107, d̃ = 1, d̃L = 0.1, d̃A = 0.1, d̃M = 0.8. The simulations of Höink

and Lenardic (2010) were primarily internally heated (> 85% of heating). For simplicity we

assume that internal heating is the main mode of heating and we use a dimensionless heat

flux of 10. Thus, the dimensionless heat flow is given by QS = 10L/d, with L/d being the

aspect ratio for the convective cell. Again, the depth averaged advective heat flow through
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both the convective cell and the lithosphere are assumed to be 〈Q〉 = QS/2.

In all previous calculations the thermal and mechanical thickness of the lithosphere was

assumed to be the same. For this case they are independent and we define the thickness of

the lithosphere, dL , using the (fixed) mechanical thickness. Their simulations did not include

lateral viscosity variations. As such, the slab has little strength in the asthenosphere and we

set the slab-pull normal stress, τ̃SP , to zero. A consequence of the absence of slab-pull is that

deformation in the lithosphere is not focused at the ends of the cell and can be diffuse (see

surface velocity in Figure 5 of Höink and Lenardic (2010)). As a result, the plate does not

deform like a bending viscous beam and we treat dissipation in the lithosphere by using the

constant stress model given in equation (3.22), with τy representing a characteristic stress

in the lithosphere. The characteristic stress for the lithosphere is τy ≈ µLUM /dL , where UM

is the mantle velocity (a characteristic velocity for the problem), µL is the effective viscosity

of the lithosphere, and dL is the thickness of the lithosphere. From their simulations, we

use ŨM = 1200 for the characteristic mantle velocity.

Figure 3.8 (a) shows the calculated plate (black line) and mantle (red line) velocities

from our analytic model as a function of the aspect ratio and agrees well with the nu-

merical simulation results (black markers). Figure 3.8 (b) and (c) show flow profiles from

their numerical simulations (black lines) for convective cells with aspect ratios of 4 and

10, respectively (these are the same flow profiles shown in Figure 1 of Höink and Lenardic

(2010)). A channelized flow occurs in the asthenosphere for small wavelengths. For larger

wavelengths the asthenosphere acts as a lubricating layer for the plate and the flow in the

asthenosphere is Couette-like. The inset plots in (b) and (c) show the RMS horizontal

velocity averaged over the convective cell for the numerical simulations (black line) and

calculated from our model (red line). Given the simplicity of the our analytic model, the

agreement is quite good. The analytic model slightly overestimates mantle flow rates for

the small aspect ratio cell. Nonetheless, the model does a reasonable job at getting the

plate velocity and characteristic flow profiles correct.

Figure 3.8 (d) plots the various terms in the lithospheric energy balance, again normal-
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ized by the total dissipation in the system (Di 〈Q〉). For small aspect ratios, the short and

low viscosity asthenosphere cannot support a large pressure drop and work done by the

mantle pressure gradient is small. Both the magnitude of the shear stress on the base of

the plate and the surface area over which the stresses can be applied are small for a low

viscosity asthenosphere and a small aspect ratio convective cell. Thus, energy provided by

basal tractions is also very small. All that remains to drive the motion of the plate at small

aspect ratios is the local rate of change of potential energy in the lithosphere. This term

is small and results in a solution that is a slow moving self-driven plate. This is another

example of how the presence of an asthenosphere can inhibit plate motions by effectively

decoupling the plate and mantle.

As the aspect ratio of the convective cell increases, so does the length of the astheno-

sphere. A longer channel can, for similar flow rates, support a larger pressure drop across

the mantle and work done by the mantle pressure gradient is larger for large aspect ratio

cells. Similarly, a longer channel provides more surface area for tractions to act on the

lithosphere and the contribution of tractions to the lithospheric energy balance is larger for

large aspect ratios. The boundary terms drive the plate at large aspect ratios and result in

a solution that is a fast moving mantle-driven plate.

Our analytic model predicts that tractions help to drive the plate at low aspect ratios

but can provide drag that inhibits the motion of the plate at larger aspect ratios. The sign

of the average basal stress changes at an aspect ratio of L/d ≈ 10. At this aspect ratio

the flow in the asthenosphere changes from mainly Poiseuille flow to mainly Couette flow.

This explains the transition in flow style observed in the numerical simulations of Höink

and Lenardic (2010). Furthermore, our energy balance results suggest that the transition

between the two different scaling regimes noted by Höink and Lenardic (2010) is not the

result of an increase in plate buoyancy relative to plate resistance (which actually decreases),

but is instead due to the dominant plate driving force changing from the local rate of change

of potential energy (gravitational sliding) at small aspect ratios to work done by the mantle

pressure gradient (mantle coupling) at large aspect ratios. This transition in dominant plate
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driving force is responsible for the transition from the sluggish lid mode of convection to

the active lid mode.

3.3.7 Multiple states and hysteresis in numerical simulations

We now consider a series of thermal convection simulations that exhibit multiple solutions

and demonstrate a path dependence, and thus hysteresis, of the convective state. The

convection simulations and results that we will discuss here were both carried out and

supplied by Adrian Lenardic (personal communication, 2012). The methods and equations

are those of Moresi and Solomatov (1998).

The fluid domain is a box of aspect ratio L/d = 1 and the layer is entirely boundary

heated. The temperatures of the lower and upper boundaries are TB and TS , respectively,

and the total temperature difference across the layer is fixed at ∆T = TB −TS . For stresses

below the yield stress, τY , the viscosity in the fluid is temperature dependent and is given

by

µ(T ) = µSe−θ(T−TS) (3.52)

At the yield stress the flow law switches to a plastic branch with a viscosity given by

µplastic =
τY

ε̇
(3.53)

where ε̇ is the strain rate. This allows localized zones of failure to form and allows for weak

zones and plate-like behavior in a self-consistent manner. The yield stress is a function of

depth and is given by

τY = τ0 + τ1z (3.54)

where τ0 is the yield stress at the surface, τ1 is a depth dependent component, and z is the

depth below the surface.

In the simulation results shown in Figure 3.9, the surface Rayleigh number, defined using
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the total temperature difference ∆T and the fixed surface viscosity µS , is fixed at RaS = 10.

The dimensionless surface yield stress is fixed at τ̃0 = 0.1. Figure 3.9 (a) indicates the mode

of thermal convection, either active-lid (blue), episodic (green), or stagnant-lid (red), that

the convective cell evolves to at steady state (statistical steady state for time dependent

cases) for different values of the total viscosity variation µ(TS)/µ(TB) and dimensionless

depth dependent yield stress τ̃1.

Results from numerical simulations are shown for total viscosity contrasts of 105, 3×105,

6 × 105, 106, 2 × 106, and 3 × 106, with each viscosity variation having two branches of

solutions slightly offset from each other. The simulation suites on the lower branches begin

with a simulation with zero depth dependent yield stress and produce the active lid mode

of convection. The depth dependent yield stress is slowly increased and the steady state

solution of the previous run (smaller yield stress) is used as the initial condition for the

next. This generates the suite of convection simulations that occupy the lower branches for

each viscosity contrast. The upper branches of results are generated in a similar way, but by

beginning with a very high yield stress and a stagnant lid solution and slowly decreasing the

depth dependent yield stress, each time using the previous case (higher yield stress) as the

initial condition. The light blue shaded regions indicate where multiple convective modes are

found for the same model parameters. Within this range, active lid convection occurs only

if the system began in the active lid mode and the plate strength was increased. Similarly,

within this range stagnant lid convection occurs if the system began in the stagnant lid

regime. Specifying the model parameters is not sufficient to determine the state of the

system. The history of the system is also required. The numerical results also demonstrate

that the region of multiple solutions grows with increasing viscosity contrast, allowing for

episodic convection at lower yield stresses and active lid convection at higher yield stresses.

Let us compare our analytic model to these numerical results to see if we can capture

any of the complex behavior exhibited. The situation we now consider is quite different from

the cases we explored earlier in this study, where the viscosity was, at its most complicated,

a simple function of depth. We now have a convecting system with a fully temperature
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Figure 3.9: Convective mode as a function of plate strength and viscosity contrast. (a)
Results from numerical simulations supplied by Adrian Lenardic. (b) Solutions predicted
using the analytic model. (c) Convective mode predicted by the analytic model. An open
marker represents the active lid mode, a small closed marker indicates stagnant lid mode,
and an open marker around a closed marker corresponds to multiple solutions.
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dependent viscosity and a depth dependent yield stress.

Let us model this case as a strong plate above a well mixed isoviscous layer. Both the

strength of the plate as well as the viscosity of the well mixed interior will be related to the

yield stress and temperature dependence of the viscosity below. In order to better compare

with the numerical simulations shown in Figure 3.9 (a) and ensure that we are using the

correct values for all dimensionless parameters, we non-dimensionalize the energy balance

equations (3.43) and (3.44) of section 3.2.6 with the surface viscosity µS instead of the

mantle viscosity µM . The lithosphere and global energy balances are then

d̃LL̃RaS〈Q̃L〉 = d̃L∆P̃P ŨP + L̃τ̃P ŨP + d̃L τ̃Y ŨP (3.55)

and

L̃RaS〈Q̃〉 = d̃L τ̃F ŨP + d̃L τ̃Y ŨP + Φ̃m (3.56)

where all terms in the energy balances are expressed in dimensionless form using the charac-

teristic length d, velocity κ/d, and stress µSκ/d
2. For simplicity we have assumed that the

net resistive stress in equation (3.55) is τR ∼ τY . Φ̃m is the total dissipation in the mantle

flow, divided by µS/(κ/d)2 (to make it dimensionless) and the surface Rayleigh number

RaS is defined in this section as

RaS =
αρg∆Td3

κµS

(3.57)

Due to the large viscosity contrast, we expect solutions with a plate velocity that is smaller

than the velocity at the base of the mantle. The temperature drop across the upper thermal

boundary layer will therefore be larger than the temperature drop across the lower thermal

boundary layer. As a first guess, let us assume that the temperature of the well mixed

interior of the convective cell is close to the base temperature TB . The viscosity of the well

mixed interior of the convective cell will then be µM ∼ µ(TB) = µS/(viscosity contrast).
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Let us again use thermal boundary layer theory and equations (3.1) and (3.2) for calculating

the average heat flow 〈Q〉 and thermal thickness dL for the cold surface thermal boundary

layer. Again, as a first guess, let us assume that the maximum yield stress in the plate is

approximately equal to the depth dependent yield stress evaluated at a depth equal to the

thickness of the plate dL . Then we have τY = τ0 + dLτ1.

Figure 3.9 (b) shows the calculated plate velocity as a function of the depth dependent

yield stress and for various viscosity contrasts, using all the same parameters as the numer-

ical simulations in plot (a) and the approximations discussed above for our analytic energy

balance equations. The analytic model predicts regions with active lid solutions for small

yield stresses and multiple solutions for intermediate yield stresses. Plot (c) of Figure 3.9

shows the convective mode as a function of the dimensionless depth dependent yield stress

and viscosity contrast. An open marker indicates that the only solution predicted by the

model was on the upper branch of solutions and is thus the active lid mode of convection.

A solid round marker indicates that the analytic model did not yield a result and that the

system must therefore be in the stagnant lid mode (recall that the physics of stagnant lid

convection is not incorporated into the energy balance equations in this study). An open

marker around a smaller solid marker indicates that the model found multiple solutions for

the given parameter values and that both the active lid and sluggish lid modes of convection

are predicted.

The analytic model predicts active lid solutions for small yield stresses, stagnant lid

solutions for large yield stresses, and a region with both active and sluggish lid solutions for

intermediate yield stresses. The analytic results show an increasing range of yield stresses

for which multiple solutions are possible as the viscosity contrast is increased. This is

consistent with the results of the numerical simulations. Furthermore, the yield stresses for

which transitions from single to multiple and multiple to single solution regimes occur agree

remarkably well with the numerical simulations. As an example, consider the case where

the viscosity contrast is 106. The numerical simulations demonstrate that only active lid

convection occurs for τ̃1 < 6. Episodic convection occurs, and thus multiple solutions, for
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τ̃1 > 6. The analytic model suggests that multiple solutions are possible for τ̃1 > 4. The

numerical simulations exhibit only stagnant lid convection for τ̃1 > 18. The analytic model

suggests that solutions with moving plates (active or sluggish) are not possible for τ̃1 > 21.

The qualitative and to some extent quantitative agreement between the numerical simu-

lations and the analytic model is remarkably good given the number of simplifications that

were made. This result is encouraging and suggests that the simple analytic model may be

correctly capturing the behavior of the different convective modes.

The representative stress τY used in the analytic model to calculate the dissipation in

the plate will not be exactly equal to the yield stress at the base of the plate. The base of

the plate will be warm and will have a lower viscosity than the shallow part of the plate. It

is therefore unlikely that stresses at the base of the plate would reach the yield stress and

the maximum stress likely occurs in the interior of the plate. The mean temperature and

interior of the convecting cell will not be exactly equal to the base temperature TB or there

would be no thermal gradient at the base of the fluid layer and no heat flow through the

base. Thus the interior temperature must be slightly less than the base temperature and the

mean viscosity of the interior will be larger than we have estimated above. These potential

(over)simplifications may explain some of the differences between the numerical convection

simulations and analytic model predictions. It should also be pointed out that solutions in

plot (a) of figure 3.9 are classified as either active or stagnant lid convection. The possibility

of sluggish lid convection was not considered there. The analytic model suggests that there

should be sluggish lid modes for intermediate yield stresses for which the plates are thick

and move slowly. It is possible that the numerical simulations with sluggish lid convection

been classified as stagnant lid convection due to their thick lids. A more detailed study that

considers the velocity and thermal structure of the numerical convection simulations and

focuses on the difference between sluggish and stagnant lid convection is beyond the scope

of this study and will be the subject of future work.
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3.4 Discussion

3.4.1 Implications for the Earth and planets

The Earth is a complex fluid dynamical system that has many plates, three dimensional

geometry, and time dependence. Neighboring plates interact and transfer energy to each

other through boundary forces. By comparison, our analytic model represents a much

simpler system that has a single plate and only two dimensions. As such, it would be

tenuous at best to use our model to try to predict plate velocities for specific plates on the

Earth. Nonetheless, if the first order physics is correct, then our model can be expected to

predict average values for plate velocity, heat flow, plate thickness, etc., for various times

in the Earth’s history and for planets with different properties.

The mantle Rayleigh number for present day Earth ranges from 106 − 108, the effective

lithospheric viscosity is likely between 3× 1022 − 3 × 1023 Pa · s (Wu et al., 2008), and the

upper and lower mantle viscosities are 1021 Pa ·s and between 1021−1023 Pa ·s, respectively

(Mitrovica and Forte, 2004). Our results suggest that solutions for this parameter range,

with an aspect ratio of L/d = 2 (plate length of ∼ 6000 km), and with attached slabs of

several hundred kilometers (see Figure 3.7) should be in the mobile-lid regime and have

plate velocities of order O(1 − 10) cm/year. Increasing the effective lithospheric viscosity

decreases the plate velocity. Increasing the amount of slab-pull increases the plate velocity.

This is all consistent with observations and our current understanding of present day plate

tectonics on the Earth.

The situation may have been very different when the Earth’s mantle was warmer and

less viscous. Figure 3.4 demonstrated that sluggish lid solutions can exist when the mantle

Rayleigh number is high and the contrast between the viscosity of the lithosphere and the

mantle is large. The added presence of a low viscosity upper mantle and/or asthenosphere

would further promote sluggish or even stagnant-lid behavior. During the Earth’s early

evolution the mantle viscosity may have been too low to allow for efficient coupling between

the mantle and the plates, thereby resulting in sluggish-lid plate tectonics and a reduced
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heat flow. The magnitude of the plate velocity in this sluggish lid regime would likely have

been similar to the magnitude of present day plate tectonics. This would have slowed the

cooling of the Earth and regulated plate tectonic rates through time. Eventually, due to

a slow cooling of the mantle and gradual increase in viscosity, the mantle viscosity would

become large enough that mantle flow could more efficiently couple to the plates. This

would cause plate tectonics to change from the sluggish-lid regime to the mobile-lid regime,

increasing heat flow. This has significant implications for the thermal evolution of the

Earth and for the present day Urey ratio (ratio of internal heating to heat loss from the

mantle). It also has significant implications for the geochemical evolution of the Earth, as

chemical differentiation of the mantle at ridges and the creation of large scale heterogeneity

as plates are subducted at trenches are both modulated by plate tectonic rates. A detailed

study of the thermal evolution of the Earth, with a heat flow scaling that allows for the full

stagnant-lid convective regime, will be the focus of a separate study.

The sluggish-lid solutions presented in section 3.3.4, with an isoviscous mantle, have

plate velocities that are orders of magnitude less than the mobile-lid solutions. The thickness

of these plates, through the dL ∝ U−1/2
P

dependence in equation (3.2), would then be

significantly larger. In fact, solutions on the lower branch plotted in Figure 3.4 have plate

thicknesses that are on the order of 500 km. For plates this thick, it is likely that other

physical processes, such as small scale convection (Korenaga, 2009), would take over and

might limit the thickness of the plate. However, section 3.3.5 demonstrated that plate

velocities for the sluggish-lid solutions can be of the same order of magnitude as the mobile-

lid solutions when a low viscosity layer is present beneath the plate (compare mobile-lid and

sluggish-lid solutions at viscosity contrasts of µM /µA = 1 and µM /µA = 104). Moreover, it

would be premature to dismiss these solutions, regardless of their plate thickness, as thick

plate solutions might be possible under different situations, such as early Earth or on other

planets.

While our analytic model makes no claims with regard to the episodicity (or any time

dependence) of convection, it does predict that a region of multiple solutions can exist
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(see for example Figure 4), separating the mobile-lid and sluggish-lid regimes. Episodic

convection could occur in this region as the system transitions between the different branches

of solutions due to either perturbations in the system (irregular) or a natural hysteresis

(periodic). Silver and Behn (2008) suggested that the Earth may have had intermittent

plate tectonics in the past. Such behavior might be explained by jumps between the various

solution branches. Transitions between branches could be smooth, such as the transitions

in Figures 6 and 7, or could be abrupt, as suggested in Figures 4 and 5. This behavior will

largely depend on the stability of the different solution branches and this will be the subject

of future work. It is worth noting again, however, that the sluggish-lid solutions shown in

Figure 8 correspond to stable sluggish-lid solutions in the numerical simulations of Höink

and Lenardic (2010). This suggests that at least some of the sluggish-lid solutions predicted

by our model are stable. Furthermore, the numerical convection simulations discussed in

section 3.3.7 exhibited both regions of single and multiple solutions, as well as regions in

which episodic convection was occurring. When applied to the same problem, our analytic

model predicted regions of multiple solutions that compared well to those of the numerical

simulations. Such a numerical counterpart to our analytic solution provides some vicarious

verification.

Multiple solutions also allow for the possibility that two planets with similar properties,

such as the Earth and Venus, could be on different solution branches and therefore exhibit

very different convective states. The particular state of the system, in a region of parameter

space with multiple solutions, could depend on the evolution of the system leading to that

region of parameter space. Different initial conditions or perturbations throughout two

similar planets’ evolutions could result in the two planets ending up in different convective

states. Such path dependency may be fundamental to our understanding of planetary

evolution.

It is important to note that the upper branch of solutions, and thus the classic boundary

layer solution (Turcotte and Oxburgh, 1967), does not exist throughout the entire parameter

space. This is demonstrated in Figure 5 where the mobile-lid solution terminates for large
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lithospheric viscosities and in Figures 7 and 8 where the solution transitions from a mobile-

lid solution to a sluggish-lid solution. Furthermore, there are regions of parameter space

where only the sluggish-lid boundary layer solution exists. Thus, while the classic boundary

layer scaling may capture the dynamics of present day plate tectonics on the Earth, it should

not be blithely applied to the early Earth, where conditions may have been very different, or

to other terrestrial planets with different properties, sizes (e.g. super-earths), etc, without

first verifying that such a particular boundary layer solution exists. Our analytic model

provides a tool that may be used to explore and map out the parameter space for the

different solution branches.

3.4.2 Limitations and extensions of the model

We have kept the model as simple as possible in order to keep the physics clear and we

recognize that it can be improved and made more accurate. Our aim has been to determine

the nature of the forces driving plates and to be able to extract simple analytic expressions

that capture the model behavior and reveal the effects of various parameters and features

of the model.

We have explored solutions where the lithospheric thickness is controlled by the thermal

thickness. Other models for predicting lithospheric thickness have been proposed. One such

model determines the lithospheric thickness based on dehydration of the lithosphere (Hirth

and Kohlstedt, 1996; Korenaga, 2003). Our model allows for the simple substitution of other

parameterizations for plate thickening and dissipation and provides a general framework for

studying a simple convection cell with a finite-strength plate.

We have used simple representations of the flow in the model. This could be made more

accurate by using eigenfunctions of solutions of the Navier Stokes equations, as in Busse

et al. (2006) or Hager and O’Connell (1981), although it would most likely not change the

basic scaling of the various parameters. We have also limited our analysis to a conductively

defined lithosphere with a thickness that can increase until it subducts. Hence we have not

limited the thickness of the plate, as Conrad and Hager (1999) did, even though this may
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be more realistic for the Earth.

Our model is steady state, and does not address the formation of subduction zones and

ridges that are necessary for plate tectonics, which is an important problem in its own

right. The plate resistance from bending and/or faulting in our model is that related to the

continued motion of plates. The depth of the frictional resistance at a subduction zone is

taken as the plate thickness, although other choices could be made from considerations of

the mechanics and state of material subducted. These may change the results somewhat,

but as our analysis shows (equation (3.42)), the resisting stresses combine in a single term,

so that the effect would not fundamentally change the results.

The results presented here have not included any effects of a boundary layer at the bot-

tom of the mantle. Nevertheless, the driving force for convection is related to the convected

heat flow through the mantle (equation (3.18)), and the nature of bottom heating does not

matter. The problem can be formulated for either constant temperature or heat flux lower

boundary conditions. For either boundary condition and the appropriate definition of the

Rayleigh number as ρα∆Td3/µκ or ρα(Qb/kc)d4/µκ, the temperature drop ∆Tb and heat

flow at the boundary Qb are related by (O’Connell and Hager, 1980)

∆T 4
b ≈

µ(Qb/kc)3κ

16ρgα
Ra (3.58)

This essentially gives the thermal impedance of the boundary layer.

Little attention was given to the effect of slab-pull in this study. Slab-pull is an important

driving force for plates (Wu et al., 2008). However, we demonstrated in section 3.2.6 that

both the effects of slab-pull and fault zone dissipation can be incorporated into the effective

strength of the plate. The presence of slab-pull simply reduces the effective yield stress

(or bending stress) of the plate. Thus, explicitly including slab-pull in the model will not

change the behavior of the system.
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3.5 Conclusions

Including the lithospheric energy balance is important for properly predicting the plate

velocity. The plate velocity modulates the heat flow out of the system (equation (3.1)).

As the rate of change of potential energy scales with the heat flow (equation (3.18)), the

plate velocity directly controls the total energy available to drive the system. Thus, even

though the magnitude of the lithospheric dissipation term may be small in the global energy

balance, the total energy available for driving mantle convection is determined by the plate

velocity and thus by the lithospheric energy balance.

We have demonstrated that the model reduces to the classic parameterization (Turcotte

and Oxburgh, 1967) and predicts a simple cellular convective flow when a weak plate and

isoviscous mantle are present. As the strength of the plate is increased the model deviates

from the classic parameterization and convective solutions in the sluggish-lid regime become

possible.

The strength of the lithosphere is determined by the effective lithospheric viscosity and

radius of curvature in the plate bending model, or the plate yield stress in the shearing

model. The two different models for calculating lithospheric dissipation are equivalent and

independent of the plate velocity when the thickness of the lithosphere is determined by its

thermal boundary layer thickness (for fixed aspect ratio). Thus, all of the results presented

are independent of the choice of model for calculating lithospheric dissipation. The contrast

between the strength of the lithosphere and the strength of the mantle determines the

convective regime of the solutions. Solutions in the mobile-lid convective regime (UP ≈ UM )

occur when either the plate is weak or the mantle viscosity is high and the contrast in

strength is low. Solutions in the sluggish-lid convective regime (UP < UM ) occur when the

contrast in strength is high and either the plate is strong or the mantle viscosity is low.

Multiple solutions for the plate velocity are present for intermediate contrasts in strength

between the lithosphere and the mantle.

The upper branch of plate velocity solutions corresponds to the classic form of convective
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cell in which a simple cellular flow carries a weak plate on the surface. The plate and mantle

velocities for the upper branch (UP ≈ UM ) are well described by the classic boundary layer

model of Turcotte and Oxburgh (1967) and the dynamics of the system are characterized

by the mantle Rayleigh number and the aspect ratio of the convective cell. This mode of

convection is controlled by the material properties of the mantle.

The intermediate branch of plate velocity solutions represents a convective cell in the

sluggish-lid regime with a plate velocity that is less than the mantle velocity. The plate-

mantle coupling terms (pressure and tractions) are the dominant driving forces on the plate

while deformation of the lithosphere is the dominant resistance. The dynamics for this

branch depend on both the mantle and lithosphere material properties.

The lower branch of plate velocity solutions represents a mode of convection in which

the lithosphere controls the dynamics of the system. The local negative buoyancy of a thick

and strong lithosphere drives the motion of the plate. Work done by basal tractions and

any mantle pressure gradient are negligible compared to the rate of change of potential

energy and local dissipation in the lithosphere. This mode of convection occurs for strong

plates and can exist with little slab-pull. Furthermore, it is controlled by the strength

of the lithosphere and is independent of the mantle properties. Although this is the only

possible mode of convection available to systems with very strong plates, it can also occur for

reasonably small amounts of lithospheric dissipation (< 10% of total dissipation in system).

The lithosphere modulates the heat flow out of the convective cell, regulating the amount

of energy available to drive mantle convection, and thus also controlling flow rates in the

mantle.

The lower branch of plate velocity solutions exists only for plates with a positive net

resisting stress τR and when the contrast in strength between the lithosphere and mantle

is high. The required net resisting stress for the lower branch of plate velocity solutions is

possible for plates on the Earth, especially earlier in the Earth’s history when the mantle

was likely warmer and less viscous.

The introduction of a low viscosity layer (LVL) can significantly change the dynamics by
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altering the plate-mantle coupling. Lowering the LVL viscosity, relative to the lower mantle,

can promote plate motion by providing a lubricating layer. However, a very low viscosity

LVL beneath a strong plate can inhibit plate motion and produce a slow moving plate with

a channelized flow in the LVL. Our model is able to capture and explain the transition in

plate driving forces responsible for this behavior. Thus, a LVL or asthenosphere does not

always promote plate tectonics.

The distinct multiple solutions that occur are all energetically equivalent. Thus, the

state of the system may depend on its history (this idea of transitioning between different

modes of convection is discussed by Sleep (2000)). It is also possible that the system

may transition between the various states due to natural perturbations in the velocity and

density fields that occur in high Rayleigh number thermal convection flows. Examining the

stability of the various solution branches will be the subject of future work.



Chapter 4

On the relative influence of heat and water transport

on planetary dynamics

The dynamics of a planet and its evolution are controlled to a large extent by its viscosity.

In this Chapter, we demonstrate that the dependence of mantle viscosity on temperature

and water concentration introduces strong dynamic feedbacks. We derive a dimensionless

parameter to quantitatively evaluate the relative strength of those feedbacks, and show

that water and heat transport are equally important in controlling present-day dynamics

for the Earth. A simple parameterized evolution model illustrates the strong feedbacks

and behavior of the system and agrees well with our analytic results. The analysis identi-

fies characteristic times for changes of viscosity, temperature, and water concentration and

demonstrates, for time scales greater than a few hundred million years, that the system

should either be degassing while warming or regassing while cooling. This yields a charac-

teristic evolution in which, after an initial period of rapid adjustment, the mantle warms

while degassing, and subsequently cools rapidly while regassing. As the planet continues

to cool, the entire surface ocean may eventually return to the mantle. Our results suggest

that a simple relationship may exist between the rate of change of water concentration and

the rate of change of temperature in the mantle. This connection is extended by deriving

an explicit equation for the Urey ratio that depends on both heat and water transport.

84
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4.1 Introduction

The importance of the deep water cycle for the Earth’s dynamics has been emphasized

by several studies, both experimental and numerical (e.g. Iwamori, 2007; Li et al., 2008;

McGovern and Schubert, 1989; Sandu et al., 2011). The presence of water has a significant

impact on the viscosity of the mantle (e.g. Mei and Kohlstedt, 2000a), which controls to

a large extent the Earth’s dynamics, its thermal evolution, and plate tectonics. Current

estimates of mantle temperatures and water concentrations suggest that both properties

can control mantle viscosity to a similar extent.

Iwamori (2007) suggested that regassing, the transport of water into the mantle, might

become more effective with time as the Earth cools down. This could provide a means of

sustaining mantle convection despite the diminution of internal heat sources. The purpose

of this study is to identify and quantify the interplay between the deep water cycle of a

planet and the heat transport that drives convection and plate tectonics. This study is not

intended to provide a detailed treatment of the Earth’s evolution in particular, but rather

to understand how water affects the evolution of a planet with active plate tectonics and

Earth-like material properties.

4.2 A model planet

The planet that we consider has a surface area S and mantle volume V . For simplicity, we

assume that the mantle is a single layer that is ‘well mixed’ by convection. By ‘well mixed’,

we mean that the scale of heterogeneity is small enough and evolving fast enough that the

large scale mechanical, thermal, and compositional properties of the mantle are reasonably

characterized by an average viscosity µ, potential temperature T , internal heating rate H,

and water concentration χm.

The mantle is heated internally and cools through a loss of heat from its surface. For

simplicity, we do not consider heat flow into the base of the mantle from the core. The

An amended version of this Chapter was published with Mélanie Gérault and Richard J. O’Connell in
Earth and Planetary Science Letters, vol. 310, p. 380-388, 2011.
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thermal state of the mantle is then determined by the balance (or imbalance) between the

rate of internal heating and the surface heat flow. Conservation of energy requires

CpρV Ṫ = −Qs + H (4.1)

where Ṫ is the rate of change of temperature with respect to time, ρ is the average mantle

density, Cp is the specific heat capacity, Qs is the total surface heat flow, and H is the

total heat production for the mantle. The system is in thermal equilibrium when the rate

of internal heating is exactly balanced by the surface heat flow i.e. Qs = H. The planet

has an ocean on its surface, and water is transported from the mantle to the surface by

degassing at ridges and returned to the mantle by regassing at subduction zones. The

concentration of water within the mantle is governed by the balance (or imbalance) in the

rate of regassing R and degassing D. Conservation of mass requires that

ρV χ̇m = R − D (4.2)

where χ̇m is the rate of change of the mass fraction of water in the mantle with respect to

time. The water cycle is in equilibrium when the rate of degassing is exactly balanced by

the rate of regassing and R = D. We assume that plate tectonics is mainly responsible for

driving the transport of both heat and water between the mantle and surface of the planet.

The mechanisms of transport are discussed in section 4.6.

Deriving the relative strength of the thermal and water feedbacks does not require a

dynamical theory for plate motion. We do however, rely on a few basic assumptions when

discussing the feedbacks present in the system. The first assumption is that the viscosity

is dependent on both temperature and water concentration, and decreases in response to

an increase of either. We assume that the plate speed increases with a decrease in mantle

viscosity. While several authors have pointed out that this may not always be the case

(Crowley and O’Connell, 2012; Korenaga, 2003; Sleep, 2000), it is a reasonable assumption

for a simple model. We assume that an increase in plate speed or mantle temperature leads
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Figure 4.1: Interaction of the thermal and water feedbacks during cooling and regassing.
Red arrows indicate changes resulting from the thermal feedback. Blue arrows indicate
changes resulting from the water cycle feedback. (a) Thermal feedback structure during
cooling. In the absence of the water cycle, feedback paths (1) and (2) both decrease the
surface heat flow and move the system towards thermal equilibrium. With the water cycle, a
decrease in viscosity (3) may result in an increase in surface heat flow that keeps the system
out of thermal equilibrium. (b) Feedback structure for the water cycle during regassing.

to an increase in surface heat flow. This is easily justified using kinematic thermal boundary

layer theory (e.g. Turcotte, 1967; Turcotte and Schubert, 1982). Finally, we assume that

an increase in mantle water concentration or plate velocity will lead to an increase in the

net rate of degassing, which is discussed in section 6.

4.3 Relative strength of the thermal and water feedbacks

We first consider the case where the viscosity depends only on temperature. In this case, the

relationship between temperature, viscosity, plate velocity, and heat flow, induces a strong

negative feedback. This is illustrated by the red feedback paths in Figure 4.1a. An increase

in surface heat flow, relative to the equilibrium state (Qs = H), results in cooling and

decreases the temperature of the system. This increases the mantle viscosity and decreases

the plate velocity. The surface heat flow then decreases in response to both the decreasing

temperature and the decreasing plate velocity. Thus, the feedback may be divided into two

separate feedbacks. The first is the direct feedback between heat flow and temperature and
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is illustrated in Figure 4.1a as feedback (1). The second is the feedback between heat flow

and plate velocity that arises through the temperature dependence of the viscosity and is

illustrated in Figure 4.1a as feedback path (2). In this case, both feedbacks are negative

and therefore return the system to equilibrium. This ‘thermostat’ effect was first proposed

by Tozer (1970).

We now consider the case where the viscosity only depends on the water concentration of

the mantle. An increase in the net regassing rate Rnet = R−D increases the concentration

of water in the mantle which decreases the viscosity. The increase in water concentration

increases the degassing rate D and helps to reduce Rnet. The decrease in viscosity leads

to an increase in plate velocity which decreases Rnet (this will be demonstrated in section

4.6). Thus, the water cycle feedback structure (Figure 4.1b) is conceptually the same as

the thermal feedback structure and consists of two parts: the direct feedback between

the net regassing rate and the water concentration of the mantle (feedback path (4)) and

the feedback between the regassing rate and the plate velocity that arises through the

dependence of viscosity on water (feedback path (5)). In this case, both feedbacks are

negative and decrease the net regassing. This returns the water cycle to equilibrium.

The blue feedback path in Figure 4.1a illustrates a possible behavior when both temper-

ature and water content affect viscosity. If the decrease in viscosity from regassing exceeds

the increase in viscosity from cooling, the effect of the increase in plate speed (feedback path

(3)) may outweigh the effect of the decrease in temperature and keep the surface heat flow

from decreasing. In this case, the thermal feedback is not able to reduce the surface heat

flow and approach equilibrium. If, however, the rate of change of viscosity from regassing is

less than the rate of change of viscosity from cooling, the viscosity increases as the system

cools and the feedback structure, while slightly weakened, operates as described above (red

feedback paths). Many of these aspects are described in the recent numerical work of Sandu

et al. (2011).

We now quantify the relative strength of the two feedbacks on viscosity. The coupling

between temperature and water concentration is controlled by changes in viscosity. The
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speed with which either heat or water transport is able to change the viscosity can be used

as a measure of the strength of the feedback. Thus, we consider the time rate of change of

viscosity:

η̇ =
∂η

∂T

dT

dt
+
∂η

∂χm

dχm

dt
= ηT Ṫ + ηχχ̇m

where ẋ denotes the derivative of the variable x with respect to time. Solving for Ṫ and

χ̇m in equations (4.1) and (4.2) and substituting them into equation (4.3) yields

η̇ = ηT
1

ρCpV
(H − Qs) + ηχ

1

ρV
(R − D) (4.3)

The first term on the right-hand side of equation (4.3) is responsible for producing the

strong thermal-viscosity feedback present in classic thermal evolution models (e.g. Davies,

1980). The second term represents the contribution of water to the viscosity feedback.

We now define the relative strength number SWT , a dimensionless parameter, as the

absolute value of the ratio of the water feedback term to the thermal feedback term in

equation (4.3):

SWT =

∣

∣

∣

∣

ηχ χ̇m

ηT Ṫ

∣

∣

∣

∣

=

∣

∣

∣

∣

ηχ (R − D)

ηT (H − Qs) /Cp

∣

∣

∣

∣

(4.4)

The viscosity feedback is dominated by the thermal feedback when SWT < 1. Recip-

rocally, the viscosity feedback is dominated by the water cycle feedback when SWT > 1.

Thus, the parameter SWT allows us to quantitatively evaluate the relative importance of

heat and water transport.

4.4 Relative strength of the feedbacks for present day Earth

While there are uncertainties associated with the rheology and present-day thermal and

volatile state of the Earth, SWT can still be estimated. This allows us to determine whether

or not the water cycle need be considered in thermal evolution models or if its influence is
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R − D Ur E r χm SWT
(

1011 kg
yr

)

(

kJ
mol

)

(ppm)

±9 0.5 300 0.68 300 1.3
±9 0.5 300 0.68 600 0.57
±9 0.5 300 0.68 900 0.34
±9 0.5 500 0.68 300 0.80
±9 0.5 300 1 300 2.0
±9 0.5 500 1 300 1.2
±9 0.25 300 0.68 300 0.89
±9 0.75 300 0.68 300 2.7
±6 0.5 300 0.68 300 0.89
±3 0.5 300 0.68 300 0.44

Table 4.1: Calculation of SWT for a range of parameters.

negligible.

The viscosity for either diffusion or dislocation creep may be written in the form (Mei

and Kohlstedt, 2000a,b)

η = ηo f
−

r
n

H2O exp

(

E

RgTn

)

(4.5)

where ηo is a reference viscosity, fH2O is the water fugacity, r is an experimentally de-

termined power law coefficient that ranges from 0.68 to 1.25 (depending on the assumed

activation volume), E is the activation energy, n ≈ 1 for diffusion creep or n ≈ 3 for

dislocation creep, and Rg is the ideal gas constant. The water fugacity is related to the

water concentration through the experimentally determined relation (equation 3 of Li et al.

(2008))

fH2O(χm) = eC0+C1ln(COH)+C2ln2(COH)+C3ln3(COH) (4.6)

where C0 = −8.0, C1 = 4.4, C2 = −0.57, and C3 = 0.033 are experimentally determined

constants, COH = 6.3 ·χm, and χm is the mass fraction of water. Equations (4.5) and (4.6)

yield
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ηT = −
E

RgT 2n
η (4.7)

and

ηχ =
−r η

nχm

(

C1 + 2C2ln (COH) + 3C3ln
2 (COH)

)

(4.8)

Considering the large uncertainties in many of these parameters for the Earth, we calcu-

late SWT (see Table 4.1) using several reasonable values for the net regassing rate R−D, the

Urey ratio Ur = H/Qs, the activation energy E, the power law exponent r, and the mantle

water concentration χm. We assume T = 1300K, Cp = 1200J/kg K, and Qs = 36TW

(total heat flow from the mantle only, see Davies, 1999). The ratio ηχ/ηT , and therefore

SWT , are independent of the exponent n and the reference viscosity η0.

The results of Table 4.1 indicate that SWT is of order O(1) for a large range of parameter

values. This suggests that the water feedback may be just as important in controlling

present day dynamics for the Earth as the thermal feedback. In the following sections,

we demonstrate that SWT ≈ 1 may be a robust result for the evolution of an ’Earth-like’

planet.

4.5 Time scales and relative rates of change

The evolution of the system is determined by the relative rates at which the temperature,

water concentration, and viscosity change. If the water cycle is near equilibrium (χ̇m ≈ 0)

then equations (4.3) and (4.5) yield

dη

dt
=
∂η

∂T

dT

dt
=

(

−E

RgT 2
η

)

dT

dt
(4.9)

Rearranging equation (4.9) and non-dimensionalizing time using a characteristic time τ , we

find
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(

−
1

η

dη

d(t/τ)

)(

1

T

dT

d(t/τ)

)

−1

=
τT
τη

=
E

RgT
(4.10)

The quantity x−1 dx/d(t/τ) is the dimensionless rate of change of the variable x. Therefore,

the left-hand side of equation (4.10) provides the ratio of the dimensionless rate of change

of viscosity to the dimensionless rate of change of temperature, which is equal to the ratio

of their time constants τT and τη. For an Earth-like planet, we expect the parameters

E and T to be of the order E ≈ 300 kJ/mol and T ≈ 103 K, respectively. Then, using

Rg = 8.314, we find that τT /τη ≈ 36. A similar calculation can be performed to determine

τχ/τη. Using 0.68 < r < 1 in equation (4.5), and 300ppm < χm < 600 ppm for the mantle

water concentration, one obtains 9 < τχ/τη < 15. Therefore, the time constant for the rate

of change of viscosity is an order of magnitude smaller than the time constants for the rate

of change of the temperature and water concentration. Thus, the viscosity of the system

can evolve much faster than either temperature or water concentration.

We now estimate the time scale for the evolution of the viscosity in response to cool-

ing/heating. Using equation (4.9) and substituting in Ṫ from equation (4.1) yields

1

η

dη

dt
=

E

RgT 2

Qs − H

ρCpV
(4.11)

In estimating the instantaneous time constant for the viscosity, we can treat the terms on

the right hand side of equation (4.11) as constant, based on the above time scale analysis.

Integrating with respect to time yields

η = η0 · exp ((t − t0)/τη) (4.12)

where the instantaneous time constant for the viscosity is equal to

τη =
RgCpρV T 2

E(Qs − H)
(4.13)

Using, for example, Cp ≈ 1200J/kg K, ρ · V ≈ 3 × 1024 kg, T = 1300K, E ≈ 300 kJ/mol,
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and (Qs − H) ≈ 10 × 1012 W (cooling), the time constant is then τη ≈ 400My.

The radiogenic sources (238U , 235U , 232Th, and 40K) provide heat to drive mantle

convection. The time constants for their decay range from billions to tens of billions of

years and may be considered a natural time scale for planetary thermal evolution. With

this in mind, the viscous time scale τη estimated above is relatively short compared to

planetary evolution time scales.

The previous arguments provide two important pieces of information: the viscosity of

the system evolves faster than the temperature or water concentration and the time scale

for changes in viscosity is short on planetary evolution time scales. Thus, if the sum of the

terms in equation (4.3) is not close to zero, then the viscosity will change rapidly until the

positive (negative) rate of change of viscosity from heat transport balances the negative

(positive) rate of change of viscosity from the water cycle and η̇ ≈ 0. For a water dependent

rheology, if either the thermal state or the water cycle is out of equilibrium, i.e. either

Qs (= H or R (= D, the change in viscosity will force the other out of equilibrium in order to

balance the feedback terms and achieve η̇ ≈ 0. As a consequence, non-equilibrium behavior

of the water cycle can force the thermal state to be out of equilibrium as well, producing a

fundamentally different evolution than the case of a water independent rheology.

This basic time scale analysis suggests that the thermal and water feedback terms should

always approximately balance each other, and that SWT ≈ 1 may be a robust feature of the

evolution of Earth-like planets. The result of the previous section, suggesting that SWT ≈ 1

for the present-day Earth, supports this theory.

4.6 Heat and water transport for an Earth-like planet

The surface heat flow Qs and thermal plate thickness dl are well described by kinematic

thermal boundary layer theory (e.g. McKenzie and Weiss, 1975; Turcotte, 1967; Turcotte

and Schubert, 1982) and are given by
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Qs = 2SkcT

(

U

πLκ

)
1
2

(4.14)

dl = 2

(

κL

U

)
1
2

(4.15)

where L is the length of the plate from ridge to subduction zone (L may be treated as an

effective or average length when considering a spherical surface in 3D), S is the surface area

of the planet, kc is the thermal conductivity, κ is the thermal diffusivity, and U is the plate

velocity.

Water is transported out of the mantle by degassing and is returned to the mantle by

regassing. Degassing occurs primarily at ridges as melting releases water. The depth of

melting depends on the mantle temperature and water concentration (e.g. Dixon et al.,

2002; Hirose and Kawamoto, 1995; Hirschmann et al., 2009). If the depth of melting is

given by zm and the plate velocity by U , then the mass flow rate into the melt zone, per

unit length along the ridge, is given by ρ(U · zm). If a fraction Fd of water leaves the melt,

then the mass flux of water, in units of kg/s m2, due to degassing is given by

D = Fd
zm

L
Uρχm (4.16)

where χm is the mass fraction of water in the mantle. Fd is the degassing efficiency param-

eter; it is equal to unity if all water in the melt is released and is less than one otherwise.

In general, Fd will be very close to 1.

Regassing of the mantle occurs via subduction of a partially hydrated slab. Water is

transported to the deeper mantle mainly by hydrated basalt and serpentine layers. If the

plate has a thickness of dl, a density of ρ, and an average water concentration of χp, then

the average mass flux of water into the mantle, per unit length along the subduction zone,

is simply ρ(U · dl)χp. However, only a fraction Fr of this water is transported to depths

greater than a few hundred kilometers (Hacker, 2008; Hirschmann et al., 2005; Iwamori,
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2007; Rüpke et al., 2004). The remaining fraction of water 1 − Fr is released at shallow

depths in the mantle wedge and returns to the surface via volcanism. Thus, the mass flux

of water back into the mantle, in units of kg/s m2, is given by

R = Fr
dl

L
Uρχp (4.17)

Degassing and regassing occur simultaneously but rarely balance each other. This results

in a state of net regassing or net degassing. The ratio of regassing to degassing R/D is

R

D
= 2

(

L

d
·
κ/d

U

)
1
2 d

zm

Fr

Fd

χp

χm
(4.18)

where we have used equation (4.15) for the plate thickness dl. When R/D > 1, the mantle

is gaining water, otherwise it is losing water.

Equation (4.18) indicates a negative feedback in the water system. R/D depends in-

versely on χm. Thus, as the concentration of water in the mantle decreases (during de-

gassing), R/D increases and the system moves towards a state of net regassing. Conversely,

as the concentration of water in the mantle increases (during regassing), R/D decreases

and the system moves towards a state of net degassing.

The dependence of the regassing and degassing rates on the plate velocity also creates

a feedback. Taking the derivative of the net regassing rate Rnet = R − D with respect to

plate velocity yields

d

dU
Rnet = Fr

√
κL

L

1√
U
ρχp − Fd

zm

L
ρχm (4.19)

In evaluating equation (4.19), we have assumed that χp does not depend on the plate

velocity. This need not be the case, and other parameterizations of χp could be used. The

right-hand side of equation (4.19) is negative for

d

dU
Rnet < 0 for U > Uc =

(

Fr

Fd

)2 κL

z2
m

(

χp

χm

)2

(4.20)
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where Uc is the critical plate velocity for which the sign of the feedback switches. For

U > Uc, the sign of the derivative is negative and the net regassing of the system increases

with a decreasing plate velocity. Using Fr = 0.15, Fd = 1, κ = 10−6 m2/s, L = 6000 km,

zm = 150 km, χp = 2000 ppm, and χm = 400ppm, we find that Uc ≈ 0.5 cm/year. The sign

of the derivative is therefore likely to be negative for the majority of the planet’s evolution

until plate speeds become very low. This feedback, along with the water concentration

feedback discussed above, tends to move a system from a state of net degassing towards a

state of net regassing as both the water concentration and plate speed decrease (as shown

in Figure 4.1).

4.7 Evolution of an Earth-like planet

In this section, we illustrate the behavior described above by means of a simple numerical

model based on parameterized convection. The thermal evolution presented is only meant

to illustrate the behavior that our theory predicts and is not intended to represent the

specific thermal evolution of the Earth, which would involve significantly more model detail

and complexity.

The arguments made in the preceding sections do not depend on the model/parameterization

used for calculating the plate velocity as a function of the state of the mantle, or for calcu-

lating the amount of water transported to depth by the plate. We therefore choose to use

as simple a formulation as possible to illustrate the system’s behavior.

We numerically solve equations (4.1) and (4.2) for the evolution of the temperature and

water concentration. Equation (4.5) couples the thermal state and water cycle through

the temperature and water dependence of the viscosity. The surface heat flow and plate

velocity are calculated as a function of the viscosity and mantle temperature using classic

boundary layer theory. Degassing and regassing fluxes are calculated using equations (4.16)

and (4.17), respectively. The depth of melting zm is estimated using a simple linearized fit

of melting depth as a function of temperature and water concentration from Hirschmann

et al. (2009). Finally, we calculate the average water concentration in the plate by assuming
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Figure 4.2: Characteristic evolution for cases W-D (blue lines) and W-I (red lines): (a)
Temperature. (b) Plate velocity. (c) Surface heat flow (solid lines) and rate of internal
heating (dashed lines). (d) Absolute value of the volatile exchange rate |R−D|. Degassing
occurs during the first stage of the evolution and regassing during the later. A kink occurs
in |R−D| around t ≈ 6Gy as U becomes smaller than Uc (as defined in equation 4.20) and
the sign of dRnet/dU changes. (e) Mass of surface water reservoir normalized by the present
day mass of the ocean. At t ≈ 8Gy, all of the water has been returned to the mantle, and
no water remains on the surface. (f) Water concentration in the mantle.
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that the depth of the hydrated layer increases with increasing plate age and is proportional

to the thermal thickness of the plate. This is a reasonable approximation for the purpose of

this example as the mineral stability of serpentine is temperature dependent and the depth

of an isotherm scales with the thermal thickness of the plate. For simplicity, we assume

that the exponent n ≈ 1 as we are considering a single mantle reservoir, and it is likely that

dislocation creep is restricted to the uppermost mantle (e.g. Becker et al., 2008; McNamara

et al., 2001). The reader is referred to the appendix for full model details.

Figure 4.2 presents the results from two distinct model runs. The first has a viscosity

that depends only on temperature (red lines) and we will refer to this case throughout

as case W-I (water independent). The second case has a viscosity that depends on both

temperature and water concentration (blue lines) and we will refer to this case throughout

as W-D (water dependent). Water is present in the mantle for both simulations, but in

the W-I case, it does not affect the viscosity. All parameter values are the same for both

simulations except for the amount of internal heating and the initial amount of water. These

two parameters are tuned in each case such that the surface heat flow and surface mass of

the ocean at a time of t = 4.6Gy are equal to 36TW and 1OM (one present day ocean

mass), respectively. Both simulations begin with potential mantle temperatures of 1800oC.

The initial phase of the evolution is qualitatively similar for both cases. At the begin-

ning, the viscosity is low (shown in Figure 4.3a), due to the high temperature and water

concentration of the mantle, and the plate velocity and heat flow are large. The large heat

flow results in rapid cooling, increasing viscosity and reducing the heat flow towards the

rate of internal heating. As the surface heat flow approaches the rate of internal heating,

the thermal state nears equilibrium and the temperature-viscosity feedback becomes small.

At this point, the W-I case switches from a state of rapid cooling to a state of slow cooling,

in which Qs ≈ H, and the surface heat flow closely tracks the rate of internal heating for

the remainder of the simulation. This behavior has been noted in classic thermal evolution

calculations (for example, Davies, 1980) and results from η̇ ≈ 0 requiring Qs ≈ H when

ηχ = 0. For the W-D case, however, the surface heat flow does not stabilize as it approaches
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the rate of internal heating. This is due to the influence of the water cycle on the viscosity.

As the plate velocity and water concentration are initially very large, R/D begins small

and the system is in a state of net degassing (see Figure 4.2d). As the system continues

to lose water the viscosity increases further since η̇ ≈ ηχχ̇ > 0 (when Qs ≈ H), which

causes the plate velocity to continue to decrease. This drives the surface heat flow below

the internal heating rate and forces the thermal state away from equilibrium, resulting in

a net warming of the system. The rate of warming increases until η̇ ≈ ηT Ṫ + ηχχ̇ ≈ 0 and

the thermal state and water cycle both evolve out of equilibrium. Note that while η̇ ≈ 0, it

is not exactly equal to zero and the viscosity does still slowly evolve.

Degassing continues to decrease the mantle water concentration χm, increasing R/D to-

wards unity, and decreasing the net degassing. As R/D approaches unity, the net degassing

rate approaches zero and the strength of the water feedback term ηχχ̇m becomes negligible.

At this point the system operates as if the viscosity were only temperature dependent and

the thermal feedback forces Qs ≈ H. Thus, both temperature and water concentration

approach their equilibrium states at the same time. This point in time is marked with a

dashed black line in Figure 4.2. However, as the rate of internal heating decreases with time,

the system cools, causing a gradual increase in viscosity and a corresponding decreases in

the plate velocity. The decrease in plate velocity drives R/D above unity and the system

switches from a state of net degassing to a state of net regassing.

Regassing increases the water concentration of the mantle, resulting in a drop in viscosity

that counteracts the increase from cooling. Again, both the thermal state and the water

cycle are out of equilibrium and evolving such that η̇ ≈ ηT Ṫ + ηχχ̇ ≈ 0. For the W-D case,

the coupling of the thermal and water feedbacks results in a much more rapid release of

heat than in the W-I case, and the temperature of the mantle is not as strongly buffered by

the thermal feedback. The W-D case has less internal heating than the W-I case and this

difference cannot be used to explain either the warmer evolution or the more rapid cooling

of the W-D case.

A kink occurs in the W-D case late in the evolution as the plate velocity falls beneath
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the critical velocity calculated in section 4.6 and the feedback between plate velocity and

net regassing changes sign. At this point the water cycle feedback becomes less efficient

and the thermal feedback begins to dominate. This leads to a positive water cycle feedback

that reduces both the regassing rate and the plate velocity.

The system begins in a state of degassing and moves to a state of regassing. Regassing

decreases the mass of water in the surface reservoir, returning water to the mantle, and

eventually removing the surface ocean. This occurs in Figure 4.2e at t ≈ 8Gy for the W-D

case. Thus, the W-D evolution results in a cool planet with a dry surface. We do not

calculate the future evolution of such a system.

These sample model runs are presented to illustrate the significant differences that arise

from the addition of the water cycle. The results shown in Figure 4.2 are representative of

the behavior of a large number of numerical simulations that we performed (not shown).

The calculations begin with a period of rapid adjustment in which η̇ approaches zero.

Afterwards, if the mantle is sufficiently hydrated, a period of degassing and warming occurs

followed by a period of regassing and cooling. If the mantle begins with little water content,

the initial phase of rapid adjustment is followed directly by an evolution in which the mantle

regasses and cools. Clearly, the timing of events and magnitude of variables in the evolution

will depend on the parameter values used and the details of both the dynamical model and

the degassing/regassing parameterizations. However, the basic feedbacks described here

are likely to govern. A large number of thermal history calculations for the Earth that

include water cycling are presented by Sandu et al. (2011) and, while differing slightly in

their parameterizations and specific model results, agree well with our theory.

4.8 Discussion

Figure 4.3c shows the calculated value of the relative strength number SWT using the

output from the W-D case illustrated in Figure 4.2. After a brief period of adjustment, the

dimensionless parameter SWT is close to unity and the rate of change of viscosity due to

the thermal feedback is closely balanced by the rate of change of viscosity from the water
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Figure 4.3: (a) Mantle viscosity for the W-D (blue) and W-I (red) cases. (b) Simulation
plate velocity U (black) and theoretically determined plate velocities UT (orange), UW

(light blue), and UTW (green). As expected, U ≈ UTW for all times after an initial period
of rapid adjustment. (c) Relative strength number SWT evaluated using the output from
the sample evolution calculation shown in Figure 4.2. Note that SWT is almost identically
unity. Singularities occur, by definition, when QS = H.

cycle feedback (note that singularities in SWT occur, by definition, when Qs = H).

The fact that SWT ≈ 1 and η̇ ≈ 0 can be used to calculate a kinematic relation for the

plate velocity. This only requires that the assumptions stated in section 4.2 are reasonable.

We can define a plate velocity UT for a system with a viscosity that only has a temperature

dependence and a plate velocity UTW for a system with both temperature and water depen-

dence. UT is then found by solving for the plate velocity for which η̇ = 0 in equation (4.3)

with ηχ = 0. This plate velocity corresponds to the plate velocity for which Qs = H and

thermal equilibrium is achieved. We also define an equilibrium velocity UW for a system

with a viscosity that only has a dependence on water concentration. This will be useful

in understanding how the two feedbacks affect plate velocity. UW is found by solving for

the plate velocity for which η̇ = 0 in equation (4.3) with ηT = 0. UW represents the plate

velocity for which R = D and the water cycle is in equilibrium. UTW corresponds to a plate

velocity for which η̇ = 0 but with neither the thermal state or water cycle in equilibrium.

See Appendix C.2 for details.

Figure 4.3b plots UW (light blue), UT (orange), and UTW (green) using the output for

T , χm, H, Qs, R, and D from the W-D case. The simulation plate velocity U is also plotted
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(black line) and, after an initial period of rapid adjustment, it agrees very well with the

predicted plate velocity UTW . Note that while the plate velocity U depends on a specific

dynamic parameterization for plate speed (used in the simulation), UTW does not and is

predicted by solving for the plate velocity that gives η̇ = 0.

UTW is forced to lie between UT and UW such that the signs of the two feedback terms in

equation (4.3) are opposite. UTW is initially lower than UT and higher than UW . UTW < UT

corresponds to Qs < H and the system warms. UTW > UW corresponds to D > R and

there is a net degassing of the mantle. UTW provides the expected plate velocity for the

system and the magnitude of UTW , relative to UT and UW , provides information on the

state of heat and water transport. The predicted curves for UT and UW cross at a time

tc when both the thermal state and the water cycle are in equilibrium. The system then

evolves to a state of cooling and regassing.

Using η̇ ≈ 0 in equation (4.3) allows us to write

ηχχ̇m ≈ −ηT Ṫ (4.21)

Equation (4.21) simply relates, through the temperature and water dependence of the vis-

cosity, the rate of change of temperature and water concentration in the mantle and shows

the strong coupling that exists. Furthermore, the signs of the terms on the right and left

hand sides of equation (4.21) only match if the system is degassing while warming or re-

gassing while cooling. Thus, our theory predicts that degassing while cooling or regassing

while warming are not consistent with evolutions that are longer than the time scale for

the rate of change of the viscosity. The mantle may only cool once regassing begins, which

suggests that as an Earth-like planet cools, its surface ocean is emptied and water eventually

returns to the mantle. This is consistent with some estimates of the water fluxes for the

present-day Earth (Hacker, 2008; Iwamori, 2007; Parai and Mukhopadhyay, 2012).

The viscosity cannot respond instantaneously to changes in the rate of, for instance,

internal heating, temperature, or water concentration, but instead takes a finite amount
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of time that is of the order of the viscosity time constant τη (equation 4.13). Thus, we

expect a temporal lag in the dynamics of the system that can be reasonably approximated

by ∆t ≈ τη. Figure 4.3b shows that the simulation plate velocity U begins to depart from

the theoretically predicted plate velocity UTW and that the lag in time is approximately

400Ma at a time t = 4.6Gy, in agreement with the estimate made in section 4.5.

Setting η̇ ≈ 0 in equation 4.3 and solving for the Urey ratio, Ur = H/Qs, yields

Ur ≈ 1 −
ηχ
ηT

Cp

Qs
(R − D) (4.22)

If the mantle viscosity were to only depend on temperature, ηχ = 0 and equation (4.22)

would reduce to Ur ≈ 1. Ur would not be exactly one as the surface heat flow lags behind

(and remains higher than) the decreasing rate of internal heating by a time that is governed

by the viscosity time constant. The lag in time between the surface heat flow and the internal

heating rate results in a Urey ratio that is smaller than expected from equation (4.22).

Models that do not include the dependence of viscosity on water content will therefore

approach a Urey ratio that is close to, but less than one. If the viscosity does depend

on water content, equation (4.22) clearly demonstrates that the water cycle can further

decrease the Urey ratio when the system is regassing (R − D > 0).

For the Earth, equation (4.22) may offer a partial solution to the apparent discrepancy

in Urey ratio estimates that arise from geochemical (Ur ∼ 0.2 − 0.3) and most reasonable

geophysical models (Ur > 0.6) (see for example Korenaga, 2008). There is a limited amount

of heat that can be released over the evolution of the Earth. Admitting both a low present

day Urey ratio and an acceptable thermal evolution requires: (1) a high present day heat

flow with a small amount of internal heating and (2) a reduced or regulated heat flow in

the past. (1) provides the low Urey ratio and (2) ensures that heat is retained early in the

evolution and is available to supply the elevated (non-equilibrium) present day heat flow.

Using a present day net regassing rate of R − D = 4 × 1011 kg/yr (within current

bounds estimated by Parai and Mukhopadhyay (2012)) and E = 300 kJ/mol, r = 0.68,
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χm = 300 ppm, Cp = 1200J/kg · K, Qs = 36TW , and T = 1300K, equation (4.22) gives

Ur = H/Qs = 0.31. Thus, regassing of the mantle provides a natural mechanism to drive

the thermal state out of equilibrium, allowing for elevated cooling rates and a low Urey

ratio, and satisfying (1) above. The analytic results of section (4.6) suggest a transition

from an early state of degassing and warming to a subsequent state of regassing and cooling

(this is also seen in the simple evolution of Figure 4.2) and may help to satisfy (2) by

retaining heat early in the evolution and allowing it to be released later.

We have used a simple parameterization for the regassing flux that assumes that the

depth of hydration is proportional to the thickness of the plate. The feedback would be less

effective if hydration were controlled by mid-ocean ridge processes and if the total amount

of water in the plate were independent of the plate age and thickness. However, it has

also been suggested that the total amount of water retained by the mantle, and thus the

regassing efficiency Fr, is likely to depend on and increase with the age of the plate (Rüpke

et al., 2004). This would act to amplify the feedback of the water cycle by increasing Fr as

U decreases (see equation (4.18)).

Other important features that characterize the Earth and its evolution, such as a depth

dependent viscosity, strong plates, mantle plumes, heat flow from the core, treatment of

different convective regimes (plate tectonics, stagnant-lid, magma ocean) and transitions

between them, mixing, and multiple reservoirs were not considered. Changes in mantle

viscosity will alter the contrast in strength between the plate and the mantle and may

result in complex behavior through plate-mantle coupling (Crowley and O’Connell, 2012).

Furthermore, differential partitioning of water between multiple reservoirs (upper mantle,

transition-zone, lower mantle) or inefficient mixing may modify the time constants asso-

ciated with water transport, and therefore also the strength and timing of the feedbacks.

To provide meaningful values, a thermal evolution calculation for the Earth should incor-

porate all of the above features, which is beyond the scope of this study. While including

such complexities would certainly add to the richness of the dynamics, the basic feedbacks

presented here are still expected to govern.
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4.9 Conclusions

In this study, we have considered a simple planet with plate tectonics and a mantle viscosity

that is dependent on both temperature and water concentration. A dimensionless parameter

SWT was derived, defined as the ratio of the rate of change of viscosity due to the water

feedback to the rate of change of viscosity from the thermal feedback, and provides a

quantitative measure of the relative importance of the two cycles on the dynamics of the

system.

We then demonstrated, through an analysis of time scales, that the mantle viscosity for

an Earth-like planet changes faster than either temperature or water concentration. This

implies that SWT ≈ 1 should be a robust result, for times greater than the viscosity time

constant, and that water transport is then just as important in regulating the dynamics

as heat transport. We have showed that SWT ≈ 1 for the present-day Earth, assuming a

plausible range of values for all parameters.

One of the most general results of the study is that ηχχ̇m ≈ −ηT Ṫ , which relates the

rate of change of temperature to the rate of change of water concentration in the mantle.

This connection was further extended to demonstrate that the water cycle feedback leads

to the lowering of the Urey ratio while the mantle is in a state of net regassing. The theory

suggests that, over long time scales, the system should warm while degassing or cool while

regassing. The other combinations, warming while regassing or cooling while degasssing

are therefore not compatible states. This characteristic behavior was illustrated through

the evolution of a simplified parameterized convection model. The exact evolution of the

mantle temperature and water concentration will depend on the specific parameterizations

for heat flow, degassing, and regassing. Given the large uncertainties associated with these

processes, we do not attempt here to construct specific models of the evolution of the Earth.

Nevertheless, the general results described here should provide guidance for such models, as

well as for models of other planets whose evolution may depend on convection and recycling

of volatiles that affect rheology.
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The purpose of this study was to address, through the use of an analytic model, how

feedbacks induced by the temperature and water dependance of the viscosity play a role in

planetary dynamics and evolution. The theory provided in this paper has demonstrated that

the water cycle can have a significant effect on the dynamics of such a system. Conversely,

heat flow also has a strong effect on the dynamics of the water cycle. Addressing either

heat or water transport therefore requires the simultaneous treatment of both the thermal

evolution and the water cycle.



Chapter 5

Thermal evolution of early solar system planetesimals

and the possibility of sustained dynamos

In this Chapter we consider the possible presence and longevity of a stable dynamo powered

by thermal convection in early solar system planetesimals. We model the thermal evolution

of planetesimals starting from an initially cool state. After melting, core formation, and

onset of mantle convection have occurred we employ thermal boundary layer theory for

stagnant lid convection to determine a cooling rate and thermal boundary layer thickness

that are dynamically self consistent. We assess the presence, strength and duration of a

dynamo for a range of planetesimal sizes and other parameters. We will demonstrate that

the duration of a dynamo depends foremost on the planetesimal’s radius and that bodies

smaller than ∼ 500 km will be unable to maintain a sufficiently strong dynamo for a duration

of the order of ten million years. We will also show that dynamo duration, to a lesser extent,

also depends on the effective temperature dependence of the mantle viscosity and on the

rotation rate of the body. These dependencies will be made explicit through the derivation

of an analytical approximation for the dynamo duration.

This work is part of a collaborative effort with Glenn Sterenborg. An amended version of this Chapter
will be submitted to the journal Physics of the Earth and Planetary Interiors.

107
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5.1 Introduction

Our solar system began when the first solids condensed in the Sun’s protoplanetary disk and

the subsequent dust grains collected to form the first small bodies orbiting the Sun. Either

by means of gravitational instability (Cuzzi et al., 1993; Youdin and Shu, 2002) or through

gradual aggregation (Weidenschilling and Cuzzi, 1993) solid bodies several kilometers in

size, planetesimals, were generated (Chambers, 2004). In a process called runaway growth,

gravitational focusing and dynamic friction then served to accrete these planetesimals to-

gether, dwindling their numbers to a handful of oligarchic planetary embryos with masses

between 0.01 to 0.1 Earth masses (Chambers, 2004; Thommes et al., 2003). Gravitational

interactions between the oligarchs led to massive collisions, ultimately forming the final

terrestrial planets.

Of the eight planets, five dwarf planets, hundreds of moons and countless small solar

system bodies, thus far only a handful have been observed to possess a dynamo generated

magnetic field at one time (Stevenson, 2003). The understanding of the timing, origin

as well as the processes governing these dynamos, remains incomplete. However, in recent

literature an avenue of research has emerged which may yield new insights as paleomagnetic

arguments have been presented in support of early dynamos in meteorite parent bodies

(Weiss et al., 2008; Weiss et al., 2010). Uniformly magnetized angrites, i.e. achondritic

meteorites, revealed the potential for an angrite parent body with an internally generated

magnetic field present during their formation with an intensity up to a few tens of microtesla

(Weiss et al., 2008; Weiss et al., 2010). Building on this work, and relying on continuous

accretion of new chondritic material, a further argument was made in favor of a differentiated

planetesimal sustaining a dynamo whilst maintaining an undifferentiated outer crust in

accordance with observations of magnetized CV chondrites (Elkins-Tanton et al., 2011).

Such early solar system planetesimals may thus represent novel realizations of planetary

dynamos which may add to our understanding of them.

Several conditions must be met for a planet(esimal) to have a dynamo. The body
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must contain a sufficiently electrically conducting fluid layer. This fluid must experience

convective motions with enough vigour to render the magnetic Reynolds number Rem =

ucl/λ > O(10 − 102), where uc and l are the characteristic fluid speed and length scale,

respectively. l is typically chosen as the depth of the fluid layer, however, an appropriate

choice of uc depends on the dominant force balance in the fluid layer (Christensen, 2010).

λ = 1/µ0σ is the magnetic diffusivity, µ0 is the vacuum magnetic permeability and σ is the

electrical conductivity. A source of energy must be present to maintain these convective

motions against ohmic dissipation in the fluid (Buffett, 2002; Gaidos et al., 2010; Monteux

et al., 2011). This can take the form of a heat flow out of the layer that exceeds the amount

of heat that can be transported conductively (for a thermally driven dynamo), or a release

of latent heat and the expulsion of light, buoyant elements during iron solidification (for a

compositionally driven dynamo).

It is thus clear that any investigation into the presence and duration of a planetary dy-

namo ultimately reduces to several key questions. Did the body experience enough heating

to segregate the metal and silicate and form a liquid core? Is the body cooling sufficiently

fast to provide a source of energy for convective motions in the core? An understanding of

a body’s thermal history is therefore paramount to any dynamo investigation.

The thermal evolution of an early solar system planetesimal is governed by several

factors. The start time (relative to the formation time of CAIs) and rate of accretion of a

planetesimal determines the amount of short-lived radionuclides, 26Al and 60Fe (Urey, 1955),

that are present and contribute to internal heating, possible melting and differentiation of

the body. Furthermore, the accretion rate, and how it is treated in models, impacts the peak

central temperatures in the body, i.e., the maximum temperature the planetesimal cools

down from (Merk et al., 2002). To what extent, and how fast the planetesimal experiences

melting (Ghosh and McSween, 1998; Hevey and Sanders, 2006; Sahijpal et al., 2007) sets the

stage for planetesimal differentiation and core formation (Ghosh and McSween, 1998; Gupta

and Sahijpal, 2010; Sahijpal et al., 2007; Senshu et al., 2002). In practice, this sequence of

events may have occurred, to some degree, simultaneously (Merk et al., 2002). The dynamics
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and time scales of metal-silicate separation and core formation has been the subject of much

debate (Golabek et al., 2008; Monteux et al., 2009; Ricard et al., 2009; Samuel et al., 2010;

Stevenson, 1990) and will not be treated here. Models of planetesimal thermal evolution

tend to solve the 1D heat transport equation in some form (Elkins-Tanton et al., 2011;

Ghosh and McSween, 1998; Hevey and Sanders, 2006; Merk et al., 2002; Sahijpal et al., 2007;

Weiss et al., 2008; Weiss et al., 2010), and convection in the post-differentiated mantle, if

treated at all, is approximated by increasing the thermal diffusivity in the mantle by several

orders of magnitude at a certain melt or temperature threshold (Gupta and Sahijpal, 2010;

Hevey and Sanders, 2006). Furthermore, these models either fix the thickness of the outer

conducting thermal boundary layer (often referred to as the ‘lid’) or assume a steady state

process in order to determine its thickness. Neither of these approaches should be used

when addressing the transient (warming/cooling) state of the planetesimal.

The present work has several objectives. By explicitly accounting for mantle convection

we determine the thickness of the outer thermally conducting boundary layer that is dynam-

ically self-consistent with the convective heat flow from the interior of the planet(esimal).

We construct a thermal evolution model and address the requirements for the presence

of a thermally driven dynamo and the key model parameters involved in determining its

longevity for a range of planetesimal sizes. We then evaluate specific scenarios suggested in

the literature in support of the hypothesis that carbonaceous chondrites are the remains of

the crust of a partially differentiated magnetized body (Elkins-Tanton et al., 2011; Sahijpal

and Gupta, 2011).

Before discussing our model we present a simple energy balance calculation that places

lower bounds on the size of a planetesimal that is able to support a dynamo of a speci-

fied minimum magnetic field strength and duration. Given a specified accretion age for a

planetesimal we can a priori calculate the maximum temperature change ∆Tmax = Tc −Ti,

above the initial temperature of the core Ti, if we assume that all available heating went

into warming the core and neglect any latent heat effects. Clearly this is an upper bound

for ∆Tmax as some heat would have been lost due to cooling and heat would be also be re-
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quired to warm the mantle and overcome any latent heat requirements. A simplified energy

balance then yields

ρcVcCpc∆Tmax = Mp
H0C0

λAl
e−λAlta (5.1)

where ρc, Vc, and Cpc are the core density, volume and specific heat, respectively, Mp is the

mass of the planetesimal, H0 is the internal heating rate of 26Al, and C0 is the concentration

of 26Al in units of kg per unit kg of planetesimal. ta is the time after CAI at which accretion

occurs (assumed instantaneously) and λAl is the decay constant of 26Al. The right hand

side represents the energy provided by radiogenic heating. This can be simplified to

∆Tmax =

[

1 +
ρmVm

ρcVc

]

H0C0e−λAlta

CpcλAl
(5.2)

where we have used Mp = ρmVm + ρcVc for the mass of the planetesimal. Equation (5.2)

gives an upper bound on the temperature that the core could reach with the available energy

from internal heating. Figure 5.1 plots ∆Tmax (black lines) for accretion times of ta = 0

Myr, ta = 1 Myr, and ta = 2 Myr.

We now consider the minimum core temperature change ∆Tmin required to maintain a

minimum heat flux of Fcmin from the core for a duration of time ∆t. This is simply

∆Tmin =
AcFcmin

ρcVcCpc

∆t (5.3)

where Ac is the core surface area.

Different scaling laws may be deemed appropriate to estimate the core convective speed

uc depending on the leading order force balance in the core (Christensen, 2010). In all

cases (see Appendix D.5 for scaling laws) the core convective speed is related to the core

convective heat flux Fc. We can relate the magnetic Reynolds number Rem to Fc through

their dependence on uc and obtain a minimum core temperature change for a given mini-

mum (critical) magnetic Reynolds number. For example, using a scaling law based on the
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Figure 5.1: Calculation of the maximum dynamo time using a simple energy balance ar-
gument. The horizontal black lines represent the maximum achievable temperature in the
core above its melting temperature for different accretion times. The minimum required
core temperature for a dynamo of magnetic field strength 20 µT that persists for 10 Myr
is indicated by the colored lines. The blue line is based on a scaling law which derives
from a balance between magnetic, buoyancy and Coriolis forces in the core. Similarly, the
red and green lines are based on mixing length theory (ML) and a force balance between
Coriolis, inertial and buoyancy forces (CIA). The rotation period is 10 hours and the critical
magnetic Reynolds number required for a dynamo is 10.
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balance between the magnetic, buoyancy and Coriolis forces (MAC) we can express the

core convective speed as (Christensen, 2010)

uc =

(

4πGαcrcFc

3Ωcp,c

)1/2

(5.4)

which, using the definition of the magnetic Reynolds number Rem = ucrc/λ, can be recast

as

Fcmin = (Remλ)
2 3cp,cΩ

4πGαcr3
c

(5.5)

Fcmin is the minimum heat flux required to achieve a magnetic Reynolds number of Rem.

We can substitute this into equation (5.3) to obtain

∆Tmin =
9Ω

4πGαcρc

(Remλ)2

r4
c

∆t (5.6)

∆Tmin in equation (5.6) is the minimum core temperature drop required to maintain a

magnetic Reynolds number of Rem for a duration of ∆t. Note the strong r−4
c dependence

on the core radius. Thus, a factor of 3 decrease in core radius would require an initial

core temperature approximately 100 times larger to maintain the same magnetic Reynolds

number for the same duration.

By assuming that the thermodynamically available power per unit volume is completely

converted to magnetic energy we can write (Christensen, 2010)

B2

2µ0
∼

rc

uc

αcgcFc

cp,c
(5.7)

where we have used the core radius for the length scale l. We can now solve for the heat

flux in terms of a minimum magnetic field strength Bmin and use equation (5.3) to relate

the minimum core temperature change to Bmin and the duration ∆t

∆Tmin =
9B4

min

16µ2
0παcGΩρ3cr4

c
∆t (5.8)
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∆Tmin in equation (5.8) is the minimum core temperature drop required to maintain a

magnetic field strength of Bmin for a duration of ∆t.

In Figure 5.1 we also plot (colored lines) ∆Tmin required to obtain a core dynamo

(Rem ≥ Rem,cr) with a magnetic field strength of Bmin ∼ 20 µT and for a duration of

∆t ∼10 Myr (Weiss et al., 2008; Weiss et al., 2010), where we choose the ∆Tmin that is the

larger of equations (5.6) and (5.8) such that both magnetic Reynolds number and magnetic

field strength conditions are satisfied. Similarly, we plot the results for the two other scaling

laws that are often used in the literature (Christensen, 2010). For a particular accretion time

and choice of scaling law the permissible area in this plot is below the black line (maximum

core temperature that could be reached) and above a colored line (minimum temperature

required to release enough heat). Hence, the very simplified energy balance represented in

this plot indicates that the minimum required radius is approximately 100 km if it is to

have a dynamo of sufficient strength and duration for an accretion time of 0 Myr. A more

restrictive scenario is for an accretion time of 2 Myr and the MAC scaling law, for which

the minimum planetesimal radius becomes approximately 650 km. Furthermore, any energy

consumed by warming the mantle, overcoming latent heat, and cooling at the surface of the

planetesimal will subtract from the energy available to warm the core and for a realistic

case we expect ∆Tmax to be less than indicated in Figure 5.1. The extent to which ∆Tmax is

reduced will depend on the amount of cooling that occurs and properly accounting for this

is one of the primary goals of this study. Overall, this exercise suggests that we need not

look for meteorite parent bodies smaller than 100 km with an internally generated magnetic

field that can last for millions of years. Nonetheless, in the more sophisticated approach

below we will seek to confirm this tentative envelope by investigating the range of possible

sizes from 25 to 1000 km radius.

Our approach is to start with an initially cool chondritic body that has accreted all of its

mass. Its accretion age will determine how much of the short-lived radionuclides remain, the

decay energy of which will heat up the planetesimal until a critical temperature is reached

and differentiation, along with core formation, is thought to occur. The body will continue
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Figure 5.2: Stages of Planetesimal evolution.

to warm until thermal convection sets in. The thermal state of the planetesimal at this time

is considered the initial state with which we start our thermal evolution models. We carry

out such thermal evolutions for a range of parameters: planetesimal radius, core radius,

mantle reference viscosity, accretion age, critical melt fraction and temperature dependence

of viscosity. For each case we assess if a dynamo is present, its mean and peak magnetic

field strength, and its duration. We compile these results and compare them with analytical

predictions for dynamo duration and discuss the relevant parameters.

5.2 Model

5.2.1 The Initial State

In this study we are primarily interested in whether a planetesimal can develop and maintain

a thermally driven dynamo. A thermally driven dynamo requires the transport of heat out

of the core and therefore core cooling. As such, any phase during the thermal evolution of a

planetesimal prior to secular cooling is only of interest to us insofar as it provides information

regarding the planetesimal’s initial state just before cooling. We define the start of secular

cooling as the time at which the total surface heat flow out of the planetesimal exceeds

radiogenic heating integrated over the volume of the planetesimal. We first consider the

evolution during the warming phase that leads to the initial state for secular cooling.

Figure 5.2 shows the various stages of development a planetesimal is thought to go
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through from rapid accretion to ultimately conductively cooling down. The manner in

which a planetesimal undergoes accretion determines its thermal state to a great extent

(Kaula, 1979). There exists a trade-off between heating of the planetesimal by short-lived

nuclides and surface cooling, mediated by the rate of accretion. A rate that is high relative

to surface cooling will allow the body to heat up and may lead to a certain degree of

melting (Kleine et al., 2002; Yoshino et al., 2003), whereas a relatively low rate may leave

the body undifferentiated. In the latter case a core never forms and a dynamo is not

possible. We do not consider other sources of energy to heat the planetesimal such as

impact heating, which have been treated elsewhere (Monteux et al., 2011), or accretional

heating which yields enough energy to only marginally increase the temperature in the

planetesimal (Elkins-Tanton et al., 2011). In the present work we assume instantaneous

accretion. By ‘instantaneous’ we simply mean that the time scale involved is very small

compared to the time scales of millions to tens of millions of years that we are interested

in. The error we incur by making this assumption is to slightly overestimate the peak

central temperature in the planetesimal during accretion (Merk et al., 2002). This will not

extend or shorten the duration of any dynamo, instead it will simply delay its development.

In the following section we will explain why it is unlikely that continuous accretion will

permit any thick outer layer of undifferentiated material to persist for a planetesimal that

also maintains a dynamo, as suggested by Elkins-Tanton et al. (2011); Gupta and Sahijpal

(2010).

We assume a planetesimal with a chondritic composition (see Table 5.1 for material

properties and glossary) at an initial temperature equal to the ambient nebular temperature

of approximately 250 K (Woolum and Cassen, 1999). For heating by short-lived nuclides we

only consider that by uniformly distributed 26Al, which has a half-life of ∼0.73 Myr, a decay

energy of 3.12 MeV (Castillo-Rogez et al., 2009) and an initial 26Al/27Al ratio of 5 × 10−5

(MacPherson et al., 1995) . We neglect 60Fe as its energetic contribution is relatively small.

As the core radius is a free parameter in our model the metal-to-silicate ratio is assumed

to support this.
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As the system radiogenically heats up, the interior temperature uniformly increases as a

cold thermal boundary layer of thickness D grows diffusively inward. The thickness of this

boundary layer can be estimated with the simple diffusion relation D∼
√
κt where κ is the

thermal diffusivity and t is time after accretion. At a temperature of approximately 700

K sintering occurs at which time the initially porous body loses its porosity and decreases

in volume (Hevey and Sanders, 2006; Sahijpal et al., 2007). As this plays no role in the

consideration of dynamo presence and duration we do not consider the details of sintering.

If the planetesimal’s accretion time is sufficiently small, there will likely be enough 26Al to

guarantee partial to complete differentiation and the formation of an iron core, see (D) in

Figure 5.2. At around the eutectic temperature of the Fe-FeS system, 1213 K (Ghosh and

McSween, 1998; Larimer, 1995), but depending on the sulfur content (Neumann et al., 2012),

the metal fraction of the chondritic body will start to melt. We assume core formation to

occur instantaneously and any remaining 26Al will segregate into the differentiated silicate

mantle leaving the core without radiogenic heating. Naturally, we are only interested in

planetesimals in which a core forms. Following the formation of a core there are two possible

warming phases that could occur based on the development or absence of thermal convection

in the silicate mantle.

The conductive case

To gain insight into the conductive cooling rate of a planetesimal we can consider the simple

cooling of a sphere of radius a, uniform initial temperature Ti, surface temperature Ts = 0,

and thermal properties equivalent to our planetesimal. The solution, as a function of time

and radial position is given by (Carslaw and Jaeger, 1986)

T (r, t) =
2aTi

πr

∞
∑

n=1

(−1)n+1

n
sin

(nπr

a

)

e−κn2π2t/a2
(5.9)
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Parameter symbol value dimensions source

Radius of planetesimal r km -
Radius of core rc km -
Time of accretion after CAI ta
Gravity g 4πGrρ m s−2 -
Aluminium-26 percentage by mass ψ26 0.9 % (Hevey and Sanders, 2006)
26Al/27Al ratio c26/27 5 × 10−5 - (Sahijpal et al., 2007)
Decay energy 26Al dAl26 6.4×10−13 J atom−1 (Hevey and Sanders, 2006)
Half life 26Al τAl 0.73 Ma ibid.
Activation energy E 300 kJ mole−1 ibid.
Density of core ρc 9000 kg m−3 (Nimmo and Stevenson, 2000)
Specific heat capacity of core cp,c 800 J kg−1 K−1 ibid.
Temperature of core Tc K -
Thermal expansivity of core αc 2 × 10−5 K−1 ibid.
Thermal diffusivity of core κc 8 × 10−6 m2 s−1 ibid.
Thermal conductivity of core kc 43-88 W m−1 K−1 ibid.
Magnetic diffusivity of core λ 1.3 m2 s−1 -
Magnetic permeability of core µ 4π × 10−7 N A−2 -
Electrical conductivity of core σ 5 × 10−4 S m−1 (Weiss et al., 2008)
Viscosity of core ηc 0.001 Pa s -
Latent heat of core Lc 4 × 105 J kg−1 (Ghosh and McSween, 1998)
Density of mantle ρm 3400 kg m−3 (Nimmo and Stevenson, 2000)
Specific heat capacity of mantle cp 1200 J kg−1 K−1 ibid.
Temperature of mantle Tm K -
Thermal expansivity of mantle α 4 × 10−5 K−1 ibid.
Thermal diffusivity of mantle κ 8 × 10−7 m2 s−1 ibid.
Thermal conductivity of mantle k 4 W m−1 K−1 (Reese and Solomatov, 2006)
Latent heat of mantle Lm 4 × 105 J kg−1 (Ghosh and McSween, 1998)
Silicate solidus temperature Tm,s 1425 K (Hevey and Sanders, 2006)
Silicate liquidus temperature Tm,l 1850 K ibid.
Melt fraction in mantle φ
Critical melt fraction in mantle φcrit 0.3 - 0.5
Reference viscosity of mantle η̂o 1021 Pa s (Reese and Solomatov, 2006)

Table 5.1: Parameter values for thermal evolutions of planetesimals.
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The heat flux for the cooling sphere at depth r can be derived from the above equation and

is

q(r, t) = 2
kTi

a

∞
∑

n=1

(a

r

)2
[

(−1)n+1

πn
sin

(nπr

a

)

(5.10)

+
r

a
(−1)n cos

(nπr

a

)]

e−κn2π2t/a2

The heat flux at the surface (r = a) is

qs(t) = 2
kTi

a

∞
∑

n=1

e−κn2π2t/a2
(5.11)

This series converges for all times t > 0. The dominant time constant (for n = 1) for cooling

in equations (5.9) through (5.11) is τ = κ−1(a/π)2. The time constant for a planetesimal

with a radius of 100 km, conductivity k = 4 W/m/K, and thermal diffusivity κ = 10−6

m2/s is τ = 32 Myr. For an initial temperature of Ti = 1800 K the maximum heat flux

occurs at the surface and is equal to 0.6 W/m2 at a time of t = 1 Myr after the start of

cooling.

With the above heat flux (an overestimate since the heat flux at depth will be less), a

core radius of rc = a/2, a rotation period of 10 hours, and typical values for core density,

specific heat and magnetic diffusivity, see Table 5.1, we obtain with the MAC scaling a core

convective speed of uc = 2.8 × 10−5 m/s and a magnetic Reynolds number of Rem ≈ 1,

which is insufficient for a dynamo (Christensen et al., 1999; Stevenson, 2003).

The surface heat flux qs is inversely proportional to the planetesimal radius. As gravity

scales linearly with radius, the core convective speed depends on the ratio between core

and planetesimal radii. As a result Rem scales approximately linearly with the radius. A

magnetic Reynolds number of the order 10 could be obtained with a planet of radius of

1000 km that is cooling conductively and would support a dynamo for a duration of order

τ = κ−1(a/π)2 ≈ 3 Gyr.

As the surface heat flux scales inversely with radius, the total surface heat flow Qs =
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4πa2qs will be proportional to the radius. The total thermal energy available will scale with

the volume of the planetesimal, a3. The rate of change of temperature in the planetesimal

will then scale as a−2. A planetesimal with a radius of 100 km would thus cool approximately

100 times faster than a 1000 km radius planet. For the purely conductive case, the smaller

the planetesimal, the faster the cooling rate. Given the short half life of 26Al, ∼ 0.7 Myr,

a small planetesimal must heat up enough within the first few million years for thermal

convection to occur. If convection has not set in within that time it likely never will, as

conductive cooling will efficiently cool the planetesimal over longer time scales.

Onset of thermal convection

A fluid layer of thickness D and with uniform material properties will experience thermal

convection if the Rayleigh number across that layer is supercritical. The Rayleigh number

for the fluid layer is defined as

Ram =
αρg∆TD3

κη
(5.12)

where α is the thermal expansivity, ρ is the density, g is the gravitational acceleration,

∆T is the temperature difference across the layer, κ is the thermal diffusivity, and η is

the viscosity of the fluid. The Rayleigh number represents a dimensionless ratio between

buoyant and viscous forces. For an isoviscous fluid the critical Rayleigh number is of order

Rac ∼103 (Schubert et al., 2001).

The onset of convection in a fluid with a highly temperature dependent viscosity requires

a slightly modified criterion (Stengel et al., 1982). If the temperature dependence of viscosity

is strong enough, the upper cool portion of the thermal boundary layer will be too viscous to

deform and only the warm, less viscous base of the thermal boundary layer will participate

in convection. The criterion for the onset of thermal convection is then given by

αρg∆TD3

ηmκ
> p4 Rac

24
(5.13)
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where D is again the thickness of the fluid layer, p = β∆T = ln(∆η) with ∆η the viscosity

contrast across the surface thermal boundary layer, β is a constant and ηm = η (Tm) is the

viscosity evaluated at the warm base of the layer. The above is based on a temperature

dependent viscosity relation

η(T ) = η̂oe
−βT (5.14)

where η̂o is the mantle reference viscosity. In equation (5.13) ∆T = Tm−Ts where Ts is the

surface temperature. Equation (5.13) is derived in Appendix D.1 and is in agreement with

the results of Stengel et al. (1982) for the onset of convection in a variable viscosity fluid.

The onset of convection requires a thermal gradient. It will therefore occur at the

base of the cold thermal boundary layer that is diffusively growing from the surface of the

planetesimal and into its warm interior. Once the ‘local’ Rayleigh number in the thermal

boundary layer exceeds the effective critical Rayleigh number given in equation (5.13) the

lower part of the thermal boundary layer becomes unstable, detaches, and drives thermal

convection in the mantle. Once the onset of convection has occurred, thermal gradients

will exist throughout the full depth of the planetesimal mantle and thermal convection will

extend to the base of the mantle. The average thickness of the thermal boundary layer will

then be δo and is given by the stagnant lid scaling. This will be further discussed in the

following section.

If the interior of the planetesimal is sufficiently warm it may have a significant degree

of melt and a corresponding viscosity that is very small. One may wonder whether the

application of a solid state convection theory might be inappropriate for such a case. How-

ever, the thermal gradient through the cold thermal boundary layer and strong temperature

dependence of viscosity ensures that viscosity increases rapidly from the base of the thermal

boundary layer to the cold (sub solidus temperature) surface and there will always exist a

layer in which solid state convection can occur. Thus, a low viscosity planetesimal mantle

does not negate the use of such a scaling to determine the surface thermal boundary layer
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thickness.

It is important to point out that stagnant lid convection implies that heat transported

to the base of the cold thermal boundary layer by convection is balanced by the conductive

heat flow through the boundary layer. The thickness of the thermal boundary layer and the

convective heat transport are determined by the thermal expansivity, density, gravitational

acceleration, temperature, layer thickness, thermal diffusivity, and viscosity of the fluid,

all encapsulated in the Rayleigh number, as well as the temperature dependence of the

viscosity (Solomatov, 1995). The convective heat transport does not depend on and is not

required to balance the rate of internal heating.

Part of the thermal boundary layer may contain partial melt and as such would have

a different effective diffusivity than regions without any melting. This effective diffusivity

can be calculated as the sum of the regular diffusivity κ plus a contribution due to the

latent heat and is at most a factor of two larger than κ (see Appendix D.4). Thus, melting

could change the local Rayleigh number of the thermal boundary layer by a small factor,

however this will have little effect on the timing of the onset of convection since that is

mainly determined by changes in the viscosity which range over orders of magnitude.

We argued in the previous section that the onset of convection must occur within the

first few million years, when there is still a significant contribution to internal heating from

26Al, if it is to occur at all. The thickness of the thermal boundary will be of the order

of D ∼
√
κt ∼ 5 km where we have used κ = 10−6 m2/s and t = 1 Myr. Note that

the thickness D is independent of the radius of the planetesimal and depends only on the

diffusivity. Using this thickness for the thermal boundary layer D, a temperature difference

of ∆T = O(103) K, equation (5.13) and the properties listed in Table 5.1, one finds that

the viscosity at the base of the cold thermal boundary layer, and thus the interior of the

planetesimal, must be ηm ∼ 1014 Pa s. Planetesimals of this size and smaller will therefore

require high temperatures and partial melt if convection is to occur within their mantles.

In the presence of partial melt the mantle viscosity may undergo a rheologial transition

at a critical melt fraction φcrit, decreasing over many orders of magnitude as the temperature
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reaches a critical value Tcrit. As a result, the onset of convection occurs at Tonset ∼ Tcrit

as the sudden decrease in viscosity leads to satisfaction of equation (5.13) and this result

is largely independent of the radius of the planetesimal. The temperature is then the

controlling factor in determining the onset time of convection. Even in the absence of such

a rheological transition, the thickness of the cold surface boundary layer, D, prior to the

onset of convection, is independent of the radius of the planetesimal. Thus, the Rayleigh

number for the cold thermal boundary layer in equation (5.13) depends only weakly on the

radius of the planetesimal, through the linear dependence in the gravitational acceleration.

Decreasing the radius of a planetesimal by an order of magnitude will require only a small

temperature increase of ∼ 50 K to obtain a low enough viscosity to achieve the same

Rayleigh number and the onset of convection.

For a range of accretion times there will be enough radiogenic heat available to form

a core, but not enough to continue heating until the critical melt fraction is reached. In

practice, we expect this range to be quite small. Beyond this range, accretion will occur too

late to generate sufficient metal-silicate separation to form a core, rendering it not relevant

for consideration in this work.

In summary, we start the convective regime of the thermal evolution of a planetesimal

at a temperature Tonset ∼ Tcrit. For the consideration of the presence and duration of a

dynamo the thermal state of the planetesimal prior to this regime is irrelevant. Either a

planetesimal will have had enough radiogenic heating to reach Tonset, or not.

In the next section we discuss the thermal boundary model in more detail as well as the

viscosity law we use throughout the thermal evolution.
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Figure 5.3: Schematic representation of mantle convection defining various lengths used in
the thermal evolution model.

5.2.2 Thermal boundary layer model

Governing equations

Our thermal evolution model is based on two coupled first order differential equations we

solve for the core temperature Tc and mantle temperature Tm

dTc

dt
= −

AcFc

cp,cmc

dTm

dt
= −

AmFsurf

cpmm
+

AcFc

cpmm
+

Qr

cp
(5.15)

where Ac and Am are the core and mantle surface areas, Fc and Fsurf the core and surface

heat fluxes, mc and mm are the core and mantle masses, Qr is the amount of internal

radiogenic heating per unit mass, cp,c and cp are the core and mantle specific heat capacities.

We do not include mantle latent heat as it is equivalent to changing the mantle specific heat,

see Appendix D.4, which has a negligible effect on the duration of any present dynamo as

we will show in section 5.3.

We calculate the contribution of radiogenic heating to the planetesimal’s heat budget
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with

Qr(t) = H0C0e
−(t+ta) log(2)/τ (5.16)

where H0 is the rate of heat release in W/kg, C0 is the initial concentration of 26Al (kg

radiogenic element/kg mantle), τ is its half-life, ta is the time after CAI at which instanta-

neous accretion occurs and t is the time since accretion. See Table 5.1 for their respective

values.

The core heat flux is calculated using

Fc =
kc(Tc − Tm)

δb
(5.17)

where kc is the core thermal conductivity and δb is the thermal boundary layer thickness

at the core-mantle interface, see Figure 5.3 for a schematic of stagnant lid convection in

which we define various lengths. During stagnant lid convection a high viscosity thermal

boundary of thickness δ0 exists on the surface with a thin sub-layer of thickness δu actively

participating in a near isoviscous convection beneath the lid. The thickness of the actively

convecting upper and lower thermal boundary layers will be of the same order and we thus

set δb equal to the upper thermal boundary layer δu. δo and δu are given by (Solomatov,

1995)

δo = d

(

γ∆T

c1

)4/3 (

Ram

Racr

)

−1/3

(5.18)

δu = c1
δo
γ∆T

(5.19)

with the mantle Rayleigh number Ram given as

Ram =
αρmg∆Td3

κηm
, (5.20)

and where c1 ∼ 8, ∆T = Tm −Ts and Ts is the surface temperature. γ = E/RT 2
o , where To
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is a reference temperature for which the mantle viscosity is equal to a reference value, see

5.2.2. The layer thickness d is equal to the depth of the mantle, i.e., d = r − rc. E is the

activation energy and R is the gas constant. We use a Dirichlet boundary condition and

set the temperature at the surface Ts equal to that of the ambient environment. The effect

of a radiation boundary condition, albeit physically more appropriate, is negligible (Hevey

and Sanders, 2006).

The surface heat flux is given by

Fsurf =
k∆T

δo
(5.21)

which gives, using equation (5.18),

Fsurf = k

(

c1

γ

)4/3 (

ρmαg

κηRacr

)1/3

(5.22)

Viscosity

Our thermal evolution model may track the thermal state of a planetesimal from partially

molten magma ocean to solid mantle, which, given the temperature dependence of viscosity,

implies a change in the mantle viscosity over a very large range from as low as ∼1 Pa s for

supercritical silicate melt fractions, to ∼1021 Pa s for the solid mantle. As such, it is clear

from equation (5.22) that the temperature dependence of viscosity will play an important

role in the thermal evolution.

Crystal formation and their subsequent distribution in the mantle as it cools is not well

understood (Reese and Solomatov, 2006). After crystallization, crystals may sink to form a

(possibly stable) layer above the core, or remain distributed in the mantle due to convective

flow. Sinking of crystals formed near the upper thermal boundary layer would effectively

decrease the thickness of the boundary layer and result in a higher surface conductive heat

flux. By neglecting crystal formation and sinking we pursue a lower bound on the heat flux,

yielding a slower cooling of the planetesimal, providing a conservative estimate of dynamo
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φcrit is obtained. To make the problem computationally more tractable the rheological
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duration.

We assume a linear melt gradient from mantle liquidus, Tm,l, to solidus, Tm,s, and a

well-mixed mantle that is cooling uniformly. We can write for the mantle melt fraction

(Reese and Solomatov, 2006)

φm =
Tm − Tm,s

Tm,l − Tm,s
(5.23)

which we use to vary the mantle viscosity η with changing temperature

η = η̂o exp (−γ∆Tη) exp (−αnφm) , Tm ≤ Tcrit

η = ηcrit, Tm > Tcrit (5.24)

where ∆Tη = Tm − To and the melt constant is either αn ∼25 or 30 in the case of diffusion

or dislocation creep respectively (Reese and Solomatov, 2006). Strictly speaking, this law is

only valid for 0.05 < φm < 0.25 (Reese and Solomatov, 2006). This means we underestimate
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the viscosity by up to 70% for melt fractions φm < 5% where this is not strictly applicable.

However, that is still within the same order of magnitude, and given the range over which

the viscosity varies, the error incurred will have a very small effect on the whole evolution.

We choose a reference viscosity η̂o = 1021 Pa s at a reference temperature equal to the

mantle solidus, To = Tm,s. Using equation (5.24) we let the viscosity vary between 1 Pa

s above the critical temperature Tcrit, rapidly changing over ∼ 20 orders of magnitude as

the mantle goes from partial melt to solid, and is 1021 Pa s for temperatures just below

the solidus, see Figure 5.4. We refer the reader to Reese and Solomatov (2006) for a more

complete description and background of our model of viscosity.

We have experimented with different melt constants between 15 < αn < 30 and found

that lower melt constants lead to higher mantle temperatures. This is expected as changing

the melt constant αn will have a similar effect (equation (5.24)) to changing the activation

energy E (and γ). For example, during the initial stages of the evolution, when radio-

genic heating is large, the mantle temperature adjusts until the viscosity is low and a thin

enough thermal boundary layer forms such that the surface heat flow approximately (but

not exactly) balances the radiogenic heating rate. Thus, for a weaker temperature depen-

dence of the viscosity (i.e., lower γ + αn), the system must reach a higher temperature to

arrive at the viscosity that approximately balances the heat flow. This is the same self-

regulating feedback between temperature, viscosity, and internal heating, often referred to

as the ‘mantle thermostat’, that was first noted by Tozer (1970) for the Earth. Changing

the melt constant changes the temperature but has little effect on the evolution of the heat

flow, which controls the duration of the dynamo.

We now proceed by considering several reference scenarios for which we investigate the

behavior of the thermal evolution model in depth. This is followed by the exploration of

a larger parameter space in which we vary parameters such as the accretion time, core

radius, reference viscosity and critical melt fraction, and determine the dynamo duration

as a function of planetesimal radius. We will then compare our results to an analytical

determination of dynamo duration.
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A reference scenario

Figure 5.5 (a-e) shows a typical planetesimal thermal evolution over 50 Myr, for a planetes-

imal with a radius of 400 km and a core radius of 200 km, starting from Tm = Tc = Tonset∼

1640 K and using parameters as specified in Table 5.1. For this case the planetesimal be-

gins with all of its radiogenic heating intact, i.e. ta = 0, so as to present an “end-member”

scenario. In essence, the planetesimal thus accreted and differentiated instantaneously at

ta = 0 Myr, at no cost to the radiogenic heating budget. Figure 5.5a shows Tm and Tc

as a function of time. The temperatures increase slightly beyond Tonset due to radiogenic

heating. However, the temperature cannot increase very much due to the temperature de-

pendence of the mantle viscosity, which is around the rheological transition as Tonset∼Tcrit.

This strong dependence means that the mantle temperature is effectively buffered at the

temperature where a critical melt fraction is reached. Any temperature increase beyond

that is immediately met with a strongly decreasing viscosity and a large increase in surface

heat flow, cooling the system. Once radiogenic heating has decayed enough, the mantle

enters its secular cooling phase at which time Tm starts to decrease.

In Figure 5.5b we show the planetesimal’s heat fluxes. It is clear that the dominant part

of the surface heat flux comes from the radiogenic heating in the first few million years,

with a small surplus for mantle cooling. After ∼ 6 Myr, the amount of radiogenic heating

becomes small due to the short half life of 26Al and the surface heat flux becomes mainly

devoted to cooling the mantle. In practice, the radiogenic heating does not decay to zero,

because of the presence of other radiogenic elements, not included in our model, which have

a much longer half-life than 26Al. The cooling phase is also reflected in the core heat flux

which sees an increase at ∼6 Myr. After this time, throughout the evolution the core heat

flux is consistently higher than the conductive core heat flux (Fcond,c ≈ 2 mW/m2, not

shown), yielding an always positive convective core heat flux.

Figure 5.5c shows the variation of the magnetic Reynolds number over time, as deter-

mined using the MAC scaling law. The shape of the curve is a reflection of the shape of

the core heat flux curve. In this scenario the magnetic Reynolds number does not exceed a
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Figure 5.5: A reference scenario of a thermal evolution for a planetesimal with a radius of
400 km, a core radius of 200 km, a rotation period of 10 hours and all other parameters given
in Table 5.1. The planetesimal accreted at 0 Ma. The initial core and mantle temperatures
are the same and equal to Tonset = 1638 K. (a) Evolution of core (black) and mantle (blue)
temperatures. (b) Evolution of core (black) and surface (blue) heat fluxes and radiogenic
heating Qr (red). (c) Evolution of magnetic Reynolds number. (d) Variation of thermal
boundary layer thickness. The boundary layer grows until it reaches a critical thickness
approximately equal to r−rc. After that the model becomes unphysical and the simulation
is stopped (red dashed line). (e) Evolution of mantle viscosity.
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critical value of 10 and no dynamo is present.

Evolution of the boundary layer thickness is illustrated in Figure 5.5d. The simulations

begin with thin thermal boundary layers as there is a substantial amount of heat in the

system, the viscosity of the mantle is very low and convective vigour is great. As the

system cools, the thermal boundary layers gradually thicken until thermal convection is no

longer possible, i.e. when the Rayleigh number drops below the critical value. This point

is indicated by the horizontal red dashed line in Figure 5.5.

Figure 5.5e shows the evolution of the mantle viscosity which starts at a value determined

by Tonset. However, as the system continues to heat up beyond that temperature, the

exponential dependence on temperature very rapidly decreases the viscosity several orders

of magnitude within the first 2,000 years. This is followed by a much slower increase along

with secular cooling of the planetesimal ending at a large value.

In Figure 5.6 we show the evolution of a planetesimal with a radius of 1000 km and

a core radius of 500 km. Here the magnetic Reynolds number does become supercritical

and a dynamo is present for ∼16 Myr. The vertical solid red lines in Figure 5.6c indicate

the times for which the magnetic Reynolds number first becomes subcritical and when the

dynamo shuts off.

In varying the mantle reference viscosity, which is typically set to 1021 Pa s, we found

that for increasing reference viscosity, Tm and Tc increase. Conversely, decreasing the mantle

reference viscosity resulted in a slight decrease in Tm and Tc. However, both cases predict

similar cooling rates and the duration of the dynamo is only slightly altered. Again, this is

the result of the self regulating thermal feedback between temperature and viscosity (Tozer,

1970).

Before further considering the dependence of the dynamo duration on various parame-

ters, we discuss the conditions for a dynamo in more detail and derive an analytical solution

for dynamo duration which we will compare to our results.
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Figure 5.6: A reference scenario of a thermal evolution for a planetesimal with a radius of
1000 km, a core radius of 500 km, a rotation period of 10 hours and all other parameters
given in Table 5.1. The planetesimal accreted at 0 Ma. The initial core and mantle tem-
peratures are the same and equal to Tonset = 1638 K. (a) Evolution of core (black) and
mantle (blue) temperatures. (b) Evolution of core (black) and surface (blue) heat fluxes
and radiogenic heating Qr (red). (c) Evolution of magnetic Reynolds number. Dynamo
duration is ∼16.1 Myr based on a critical magnetic Reynolds number of 10. (d) Variation
of thermal boundary layer thickness. The boundary layer grows until it reaches a critical
thickness approximately equal to r − rc. After that the model becomes unphysical and the
simulation is stopped (red dashed line). (e) Evolution of mantle viscosity. The red dot
in (d) illustrates what the lid thickness is when the magnetic Reynolds number becomes
subcritical.
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5.2.3 Conditions for a dynamo

As discussed in the introduction, a planetesimal may have a dynamo if it contains a suffi-

ciently electrically conducting fluid layer or core. A source of energy needs to be present

to maintain convective motions in this layer against ohmic dissipation, and the convection

must be sufficiently vigorous to ensure a supercritical magnetic Reynolds number (Gaidos

et al., 2010). In the present work we investigate the likelihood of thermal convection dy-

namos in planetesimals. Compositional convection is considered to be energetically more

efficient and has been studied elsewhere (Gubbins, 1977; Nimmo, 2009). However, it is

difficult to place bounds on compositionally driven dynamos due to uncertainties associated

with core compositions as well as the dynamics and thermodynamics of a freezing core.

The condition for convection is that the heat flux out of the core must exceed the heat

flux along the adiabat, i.e., the conductive heat flux .

Fcond,c = kcαcTc/cp,c ≈ 2 mW/m2 (5.25)

where kc is the core thermal conductivity, αc is the core thermal diffusivity and cp,c is

the core specific heat capacity. We can thus calculate the core convective heat flux as

Fconv,c = Fc − Fcond,c. If Fconv,c > 0 the core is convecting. Given how small Fcond,c is,

Fconv,c ≈ Fc which is easily satisfied in each of our thermal evolutions, see for example

Figures 5.5b and 5.6b.

In order to maintain a magnetic field, the induction effect must be able to at least

balance the diffusive losses, which, in practice, means that Rem has to exceed a critical

value Rem,cr = 10− 100 for a dynamo to operate (Christensen et al., 1999; Monteux et al.,

2011; Stevenson, 2003). The magnetic Reynolds number is typically defined as

Rem = ucrc/λ (5.26)

where λ is the magnetic diffusivity. We assess Rem by estimating the core convective speed
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uc. As discussed in the introduction, uc may be estimated by using different scaling laws,

each reflecting a different leading order force balance in the core (for a full discussion, see

Christensen, 2010) . Appendix D.5 lists three scaling laws.

The scaling law based on mixing length theory, in which inertial terms are balanced

against buoyancy terms, yields a velocity uc ∝ r2/3
c F 1/3

c , where the core radius rc was

used as the mixing length. This scaling law may be appropriate for systems with highly

turbulent convection and where rotation is not a dominant force in the core (Stevenson,

2003). The CIA scaling law represents a three-fold force balance between the Coriolis,

inertial and buoyancy terms, and the velocity scales as uc ∝ r3/5
c F 2/5

c . For the Boussinesq

approximation, the characteristic length scale is again the core radius. This scaling law

represents rapidly rotating convection well (Aubert et al., 2001), but it is not clear if it

would represent magnetohydrodynamic flow equally well, where the Lorentz force would

replace the inertial term in the force balance (Christensen, 2010). The MAC scaling law is

based on the magnetostrophic balance between the Lorentz, buoyancy and Coriolis forces.

The velocity scales as uc ∝ (rcFc)1/2. As discussed in the previous section, we monitor

the magnetic Reynolds number Rem throughout each thermal evolution. We assess Rem

using the MAC scaling law with the planetesimal rotation rate as a free parameter. In

the discussion we evaluate to what extent the mixing length and CIA scaling laws yield

different results.

To evaluate the magnetic field strength of any dynamo we rely on a balance between the

thermodynamically available power in the core and that which is lost by ohmic dissipation

(Christensen, 2010).

B2

2µ0
∝ fohm

L

U

αcgcFc

cp,c
(5.27)

where B is the magnetic field strength, µ0 is the magnetic permeability, fohm is the fraction

of the available power that is converted to magnetic energy, L is the characteristic length

scale, U is the characteristic speed in the core, λ is the magnetic diffusivity, Fc is the core

heat flux, αc is thermal expansivity and gc is the gravity in the core. Assuming L∼rc, we
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can then use a scaling law for uc and evaluate the magnetic field strength in the core, also

see Appendix D.5.

We calculate the dipole magnetic field strength at the surface of the planetesimal by

assuming that the dipole field at the core-mantle boundary is around 10% of the total field

which gives

Bsurf = 0.1Bcore

(rc

r

)3
(5.28)

As the mantle cools, convection becomes less vigorous and the Rayleigh number de-

creases, the thermal boundary layers increase in thickness, and there is a corresponding

decrease in the heat flow. We determine the duration of the dynamo in each thermal evo-

lution based on positive core convective heat flux and exceedance of the critical magnetic

Reynolds number. We also calculate both the mean and peak magnetic field strength.

5.3 An analytic solution for dynamo duration

An approximate analytic solution may be derived for the dynamo duration. Such a solution

is useful in that it explicitly demonstrates the dependence of the dynamo duration on the

various model parameters and initial conditions.

Let the mantle and core temperatures begin at a temperature T = T ∗. Initially, the

difference between the core and mantle temperatures is small and the core heat flow is also

small and may be neglected in mantle energy balance of equation (5.15). Furthermore, after

a short time, of order a few million years, internal heating from 26Al has sufficiently decayed

such that the surface heat flow is primarily due to cooling of the mantle. Then the rate of

change of the mantle temperature may be approximated as

ρmcpVm
dTm

dt
= −AmFsurf (5.29)

Using the definition of δo, equation (5.18), we can write

dTm

dt
= −χeβTm/3 (5.30)
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where β = γ + αn/(Tm,l − Tm,s) and

χ = κ

(

c1

γ

)
4
3 Am

Vm

(

αρmg

κη̃oRac

)
1
3

(5.31)

and we have used

η = η̃oe
−βTm (5.32)

with

η̃o = η̂o exp [γ To + αnTm,s/(Tm,l − Tm,s)] (5.33)

The solution to equation (5.30) with initial condition T (t = 0) = T ∗ is

Tm = −
3

β
log

(

βχ

3
t + e−βT ∗/3

)

(5.34)

The parameter β provides the effective dependence of viscosity on temperature and

affects both the magnitude of the temperature (the β−1 prefactor in equation (5.34)) as

well as the time scale of the evolution (Tm(t) is a function of the product β · t). Thus,

a decrease in either the activation energy E or the melt constant αn will decrease β and

will yield a warmer and slower evolution. Equation (5.34) also demonstrates the weak

dependence of the solution on the reference viscosity η̃o through the parameter χ ∝ η̃−
1
3

o .

Substituting equation (5.34) back into equation (5.30) gives

Fsurf =
−cpmmχ

βχ
3 t + e−βT ∗/3

(5.35)

Let us now consider the relative surface and core heat flux. The ratio of the core to

surface heat flux is equal to

Fc

Fsurf
=

k Tc−Tm
δb

k Tm−Ts
δo

=
Tc − Tm

Tm − Ts

δo
δb

(5.36)

=
Tc − Tm

Tm − To

γ(Tm − Ts)

c1
=
γ

c1
(Tc − Tm)
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Figure 5.7: Normalized heat flux for the analytic solution as a function of dimensionless
time t′ = t/τ .

where we have used equation (5.19). Then solving for the core heat flux gives

Fc =
γ

c1
(Tc − Tm)Fsurf (5.37)

During the initial cooling Tm changes much faster than Tc as the latter cannot change

until the former has changed enough that a sufficient thermal gradient exists to draw heat

out of the core. We may then approximate the core temperature during this initial stage

as approximately equal to the initial temperature Tc ≈ T ∗. Using equation (5.34) for the

mantle temperature, substituting in the stagnant lid heat flow Fsurf using equation (5.22)

and using the definition of χ in equation (5.31) gives

Fc =
γ

c1

(

3

β

)2 Vm

Am

cpρm

t + τ
log

(

t

τ
+ 1

)

(5.38)

with the time constant

τ =
3

βχ
e−βT ∗/3 (5.39)

Figure 5.7 shows the shape of the heat flux predicted by equation (5.38), with the magnitude

normalized and as a function of dimensionless time t′ = t/τ (i.e., (t′ + 1)−1 log (t′ + 1) is

plotted as a function of t′). The maximum heat flux occurs near t′ = 1 or t = τ . The shape

of the core heat flux evolution compares very well with any of our simulations.
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The parameters used in the present work, Table 5.1, give a time constant of τ = 0.4 Myr

for a planetesimal radius of r = 1000 km and τ ∝ r2/3. This is small so we can consider the

solution for large t. For t >> τ , equation (5.38) can be simplified to

Fc =
γ

c1

(

3

β

)2 Vm

Am

cpρm

t
log

(

t

τ

)

(5.40)

Using the MAC scaling law, equation (5.4), we can relate Fc to uc and to the magnetic

Reynolds number with equation (5.26). We may thus calculate the time at which the

magnetic Reynolds number is equal to the critical magnetic Reynolds number, Rem,cr,

required for a dynamo

tdyn =
γ

c1

(

3rc

βRemcλ

)2 Vm

Am

ρmcp

ρccp,c

αcgc

Ω
log

(

t

τ

)

(5.41)

This is equal to the dynamo duration. Eequation (5.41) is an implicit equation in terms of

the time t. However, due to the weak log(t/τ) sensitivity of the right hand side, this equation

is easily solved iteratively. Given that τ∼O(1) Myr, we expect that our approximation will

deviate from our numerical thermal evolutions around tdyn∼1 Myr.

Because Vm ∝ r3, Am ∝ r2 and gc ∝ r, (as rc ∝ r in our simulations), equation

(5.41) is strongly dependent on the radius of the planetesimal, tdyn ∝ r4, just as our simple

estimate in the introduction suggested. The time scale for the dynamo depends inversely

on β2 (which contains both the activation energy and the melt constant for the viscosity).

Furthermore, the time scale is inversely proportional to the rotation rate of the planet, or

proportional to the rotation period.

In the next section we discuss the results of the numerical thermal evolutions in which

we, among other parameters, calculate if and for how long the magnetic Reynolds number

is supercritical and compare with the above analytical approximation given by equation

(5.41).
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Figure 5.8: Dynamo duration as a function of planetesimal radius for a critical magnetic
Reynolds number of, Rem,cr = 10, rotating with a period of 10 hours. The reference
scenario (blue) is for: ta = 0 Myr; critical melt fraction φc = 0.5; and core radius rc = 0.6r.
Compared are cases with different reference viscosities (red and black), different critical melt
fractions (light blue and purple) and lower temperature-dependence of viscosity (green) as
well as their analytical approximations from Eq. (5.41).
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5.4 Results

Figure 5.8 shows how dynamo duration varies with planetesimal radius for planetesimals

with a rotation period of 10 hours. We investigate 6 different cases each consisting of 80

planetesimal radii between 25 to 3000 km and evaluate the presence of a dynamo with

a critical magnetic Reynolds number of 10. The reference case (blue circles) represents

planetesimals with a critical melt fraction φc = 0.5 and a large core radius rc = 0.6r.

Each circle represents the dynamo duration measured throughout the thermal evolution of

a single planetesimal. To illustrate an “end-member scenario” the planetesimals in this case

are accreted and differentiated instantaneously (ta = 0 Myr) and the mantle has retained

all radiogenic heating. We present this case, as well as the other end-member scenario

of no radiogenic heating from the onset of convection, in Figure 5.9, to demonstrate that

the amount of radiogenic heating, i.e., the age of accretion of the planetesimal, is only

relevant to the possible melting and differentiation of the body. It plays no role, however,

in determining the duration of the dynamo.

The general behavior of the reference case is indicative of most cases. Although the range

of planetesimal radii extends from 25 km to 3000 km, a dynamo is not obtained until ∼800

km. Planetesimals smaller than this do not achieve a high enough core heat flux to ever

obtain a dynamo (compare Figures 5.5b and 5.6b). The curvature of the lines for smaller

radii is due to the initial supercriticality of Rem, or of the core heat flux just becoming

large enough after the radiogenic heating has decayed (∼ 6 − 7 Myr in Figure 5.6b). For

larger bodies this initial effect plays a relatively smaller role and the longer, slow decay of

the core heat flux, and thus of Rem, governs the dynamo duration. As the planetesimal

radius is increased, the variation of dynamo duration with radius scales approximately as

r4, as predicted in the previous section. In fact, the predicted increase in dynamo time with

radii is slightly larger than a r4 power law scaling due to the logarithmic term in equation

(5.41). Towards the high end of the range of planetesimal radii the dynamo duration

appears to increase rapidly for some of the cases considered. The thermal evolutions of these
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larger planetesimals reach sub-solidus mantle temperatures. The temperature dependence

of viscosity for sub-solidus temperatures is reduced as the effect of partial melt no longer

contributes (see Figure 5.4). As such, the parameter β in equation (5.41) is reduced from

β = γ + αn/(Tm,l − Tm,s) to β = γ. This reduction in β results in an increase in dynamo

time, as is predicted by equation (5.41) and as such the observed increase for larger radii is

expected. This effect can only occur in planets that are larger than r ≈ 1000 km. Smaller

planets must have some degree of partial melt (super solidus temperatures) in order to

achieve low enough viscosities to counter the r3 dependency in the mantle Rayleigh number

and remain in the convecting regime. The numerical thermal evolutions are continued up

to 1 Gyr. The saturation of dynamo duration seen for large planetesimals is due to the fact

that these bodies have a dynamo that is present for longer than 1 Gyr.

Increasing the reference mantle viscosity to 1022 Pa s (black circles), with respect to the

reference case, results in higher core and mantle temperatures throughout the evolution.

However, it does not strongly affect the core heat flux and thus has little effect on the

dynamo duration. This is not unexpected given that the dynamo time in equation (5.41)

depends only on the natural log of the cubed root of the reference viscosity (the time

constant τ is proportional to the cubed root of the reference viscosity). For a larger reference

viscosity τ becomes larger and tdyn becomes slightly smaller. Conversely, for a smaller

reference viscosity (red circles), the planetesimal temperatures are slightly reduced and the

effect on dynamo duration is again small.

Changing the critical melt fraction has a more pronounced effect. For a larger φc (cyan

circles) we not only observe a small increase in dynamo duration, but also the presence of a

dynamo for smaller bodies. Planetesimals with a larger φc are able to reach higher temper-

atures before the critical transition in viscosity is able to effectively buffer temperature. As

a result the surface and core heat fluxes are initially higher when the planetesimal begins

to cool and a dynamo becomes possible for smaller bodies. For a smaller φc (purple circles)

the initial temperature and core heat flux is smaller and dynamos are only possible in larger

bodies.
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We also consider a case with a reduced temperature dependence of viscosity, as expressed

through the parameter β. For a value of β equal to half of that of the reference case we find

that planetesimals have to be larger than 1000 km in order for a dynamo to be present. These

cases have larger viscosities and must to be larger in size to allow for thermal convection

(supercritical Rayleigh number) and the sufficiently fast rate of cooling required to drive a

dynamo.

For each scenario we also plot the analytical approximation tdyn (solid lines) according

to equation (5.41) which matches the numerical results very well in terms of slope, tdyn ≈ r4,

curvature for small radii, and predicted termination of the curves at small radii. Note that

we have not allowed β to vary according to presence of melt, which is why the analytical

approximations do not follow the curvature for larger planetesimals that cool down to sub-

solidus temperatures.

We should note that although we investigate a range of planetesimal radii up to 3000 km

we cannot reasonably call these larger bodies planetesimals. Not only would it be highly

unlikely that such large bodies could be formed on such short time scales (Merk et al.,

2002), but pressure effects need to be taken into account as they affect such planetesimal

properties as viscosity and solidus and liquidus temperatures with depth.

In Figure 5.9 we compare several more cases to the reference case (blue circles). The

other aforementioned “end-member scenario” for internal heating represents thermal evo-

lutions in which no radiogenic heating occurred (green circles). Effectively, these evolutions

represent planetesimals that accreted late enough to just achieve the (partial) melting nec-

essary to reach the onset of convection. Clearly, the presence of radiogenic heating during

the start of the thermal evolution plays little to no role in the duration of a dynamo. This

scenario is virtually identical to the reference scenario in which the convective thermal

evolutions start with all the radiogenic heating. As the analytical approximation to the

reference scenario assumes no radiogenic heating, it also applies to this case.

The effect of smaller cores in the planetesimals is investigated as well (red and black

circles) and for increasingly smaller cores the duration of a dynamo strongly decreases. In
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Figure 5.9: Dynamo duration as a function of planetesimal radius for a critical magnetic
Reynolds number of, Rem,cr = 10, rotating with a period of 10 hours. The reference scenario
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other terms, the smaller the core, the larger a planetesimal needs to be in order to have

a dynamo. This is in complete agreement with equation (5.41). We can understand this

physically as a small core can be cooled faster than a large core. This also explains why

for smaller cores the analytical approximation starts to slightly overestimate the numerical

results. In the derivation of the analytical approximation we assumed that the core tem-

perature remains near the initial temperature during the initial cooling of the core (i.e. the

core cools slowly). For smaller cores, however, this assumption breaks down more rapidly.

The MAC scaling law depends on the rotation rate Ω. As such, we also plot the case

for a much longer planetesimal rotation period of 100 hours (purple circles). These results

exhibit a longer dynamo for smaller planetesimal radii, as expected from equation (5.41)

which shows that dynamo duration is proportional to rotation period. For these cases

planetesimals with radii ∼500 km are able to sustain dynamos for a duration of tdyn ∼ 10

Ma.

Whether the magnetic Reynolds number becomes supercritical depends on what is

apriori defined as the critical value. In all our thermal evolutions we have used Rem,cr = 10,

however this is considered to be low (Christensen et al., 1999; Monteux et al., 2011; Steven-

son, 2003). For the higher, and arguably more realistic value of Rem,cr = 100 (cyan circles)

the condition on minimum planetesimal radius to obtain a dynamo becomes considerably

more stringent.

To evaluate our use of the MAC scaling law we also plot the reference scenario for the

mixing length (ML) and the CIA scaling laws in Figure 5.10. The top panel shows the

calculated dynamo duration as a function of planetesimal radius and demonstrates that the

two other scaling laws are less stringent than the MAC scaling law, with the ML scaling

law allowing for dynamos to be present in planetesimals as small as 40 km. This relaxation

of the radius constraints is due to the alternative scaling laws which generally give higher

core convective speeds. This allows the magnetic Reynolds number, which is proportional

to uc, to remain supercritical for much longer. However, the magnetic field values obtained

from these dynamos are substantially lower for these scaling laws. In the lower panel we
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Figure 5.10: Top: Dynamo duration as a function of planetesimal radius for Rem,cr = 10,
rotating with a period of 10 hours. The reference scenario is for: ta = 0 Myr; critical melt
fraction φc = 0.5; and core radius rc = 0.6r. Compared are cases based on different scaling
laws for the core convective speed uc. Bottom: Magnetic field strength during thermal
evolutions. The peak magnetic field strength during the evolution plotted. Open circles:
Mean value during thermal evolution < 20 µT . Closed circles: Mean value during thermal
evolution > 20 µT ..
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plot the peak surface dipole magnetic field strength as calculated by equation (5.28) with

equations (D.34), (D.41) and (D.45) in Appendix D.5. The open circles represent mean

magnetic field values during the thermal evolution < 20 µT and the closed circles represent

mean values > 20 µT. The 20 µT threshold is approximately based on the magnetic field

strength required by Weiss et al. (2008); Weiss et al. (2010) for the angrite parent body

dynamo. This condition implies that a planetesimal with a dynamo of sufficient magnetic

field strength must have a radius of no less than ∼ 700 km for any of the scaling laws.

This demonstrates that while the other scaling laws may allow for dynamos in smaller

planetesimals, they also predict magnetic field strengths that are far weaker. As such, all

of the scalings are approximately consistent in their prediction of the minimum radius that

a planetesimal must have in order to meet both the magnetic field strength and dynamo

duration requirements.

5.5 Discussion

These results indicate that a dynamo driven by thermal convection may not be present

in planetesimals smaller than ∼ 500 − 1000 km, providing an important constraint on the

required size of a meteorite parent body as the source of uniformly magnetized meteorites.

We have varied numerous parameters in our thermal evolution models such as core radius,

accretion time, mantle reference viscosity, critical melt fraction, temperature-dependence of

the mantle viscosity and planetesimal rotation period to investigate their effect on dynamo

duration. Furthermore, we have derived an analytical approximation to dynamo duration

that made both the dependencies and independencies of these parameters explicit, and

which matches our numerical results very well.

5.5.1 Conductive versus convective modeling

Previous attempts to model the thermal evolution of planetesimals have typically relied

on some implementation of the heat equation representing conductive heat transport from

the interior of the planetesimal to the surface (e.g. Elkins-Tanton et al., 2011; Ghosh and
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McSween, 1998; Gupta and Sahijpal, 2010; Hevey and Sanders, 2006; Sahijpal et al., 2007;

Weiss et al., 2008; Weiss et al., 2010). In some cases convection in the mantle was not

considered at all (Ghosh and McSween, 1998), was simulated by increasing the thermal

conductivity by several orders of magnitude at a threshold temperature (Hevey and Sanders,

2006), or was invoked by assuming a homogeneous adiabatic mantle under a conductive

unmelted crust (Elkins-Tanton et al., 2011). To investigate planetary accretion and the

possibility of differentiation and core formation a conductive approach may well be justified.

To study the possibility of magnetic field dynamos and their durations, however, accounting

for convection in the mantle becomes very important as it increases heat transport and

reduces the planetesimal’s cooling time along with the duration of a dynamo.

Explicitly including convection in the mantle is critical as it controls the thickness of

the outer thermal boundary layer. Models that estimate the boundary layer thickness us-

ing steady state assumptions (such as surface heat flow balancing internal heating) are in

significant error and are unable to address the transient (warming/cooling) nature of the

problem. Elkins-Tanton et al. (2011) assume a fixed thermal boundary layer thickness that

is specifically chosen to allow for a large enough heat flow to produce a dynamo and a

small enough heat flow to allow for a long duration. However, no physical explanation for

the mechanism that maintains the thickness of the layer, preventing it from convectively

eroding, melting, or thinning, is proposed. In that work, a fixed layer thickness is dynami-

cally inconsistent with the assumption of a convecting mantle and the convective heat flow

that is determined (see section 5.2.1). Even in the absence of convection the time scale

to diffusively melt and thin the upper thermal boundary layer would be of the order of a

million years or less (see the discussion regarding the Stefan problem for the propagation

of a moving melt interface in Carslaw and Jaeger, 1986). Without a mechanism that would

naturally allow for maintenance of a fixed thermal boundary layer an appeal must be made

to an ‘insulating’ outer layer that has a low thermal conductivity. In theory, such a layer

must always exist for stagnant-lid convection where at least part of the thermal boundary

never experiences melting or even sintering and so a porous outer layer would maintain its
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low thermal conductivity. However, such a layer has been shown to be very thin, on the or-

der of meters in numerical simulations (Hevey and Sanders, 2006), in which case Appendix

D.2 has shown this to be of little consequence. This leaves the external mechanism of con-

tinuous accretion as the remaining possibility where new cold porous material is delivered

to the platenetesimal during the course of the thermal evolution at a rate or combination of

rates (Sahijpal and Gupta, 2011) that would maintain such an insulating outer layer. We

have derived an analytical solution for stagnant-lid convection with continuous accretion in

Appendix D.3 and placed bounds on the accretion rates for which stagnant-lid convection

can ‘correct’ for the addition of new material. For reasonable accretion rates, this is also

unable to provide any form of ‘insulation’ and stagnant lid convection is able to quickly

adjust the boundary layer thickness to compensate for any added material.

5.5.2 The role of temperature-dependent viscosity

The results in the present work can, for a large part, be reduced to a discussion about

the temperature dependence of viscosity and the feedback that exists between the mantle’s

viscosity and temperature. The specific features of the viscosity law we rely in the present

work do not control the resulting behavior we observed in the results. The absolute values

over which the viscosity varies throughout the temperature range the planetesimal experi-

ences are only important insofar as they allow the mantle to become sufficiently mobile to

consider convection and its associated increased heat transport. The rheological transition

the viscosity undergoes at T = Tcrit for a critical melt fraction is less important than the

fact that viscosity has an exponential dependence on temperature. Any viscosity law that

incorporates such a dependency will yield results similar to those found in this work. The

degree to which the viscosity is dependent on temperature, as illustrated by β, does exert

some control on the duration of a planetesimal dynamo. For a smaller dependence the

viscosity will be larger and planetesimals must be larger to achieve a supercritical Rayleigh

number for thermal convection along with the the sufficiently fast rate of cooling required
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to drive a dynamo.

5.5.3 Future work

Our consideration of convection in the thermal evolution of planetesimals is a necessary

step beyond purely conductive modeling efforts towards a more complete understanding of

the viability and duration of planetesimal dynamos. However, more work and questions

remain to be addressed.

1. How will the constraints on planetesimal radius change if we allow for the develop-

ment of a dynamo powered by compositional convection? This question was already

addressed by Nimmo (2009) and it would be useful to revisit that work within the

framework outlined in the present work.

2. Modeling the thermal evolutions of larger planetesimals should take pressure-dependent

effects into account. For example, the slopes of the mantle solidus and liquidus with

depth control how melting and solidification of the interior proceeds. As a result,

rather than considering melting to occur simultaneously throughout the mantle, we

must treat the outwardly propagating melt front as a Stefan problem with a convective

boundary condition.

3. Evaluating specific planetesimal scenarios as they have been inferred from paleomag-

netic and cosmochemical studies of meteorites (Weiss et al., 2008; Weiss et al., 2010).

5.6 Conclusions

In the present work we have attempted to place bounds on the space of possible parameters

relevant to planetesimal dynamo occurrence and duration. As such, this work can be

thought of as a broad strokes effort as there may be countless fortuitous combinations of

parameters that would yield a early solar system planetesimal with a thermal convection

dynamo. It is of course entirely possible that the realization of such a body resides in the

tails of the probability distribution of any of the relevant parameters. However, although we
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must keep the above in mind, any arguments made in this research endeavor are necessarily

based on parameter values that are most likely.

Using a thermal boundary layer theory for stagnant lid mantle convection we have in-

vestigated to what extent an early solar system planetesimal could have generated and

sustained a dynamo. Starting from an initially cool, undifferentiated body with a concen-

tration of short-lived nuclides based on accretion age, we assess how the body heats up,

differentiates and forms a core, and at what temperature the mantle begins to convect. This

temperature Tonset is the starting temperature of our numerical thermal evolution model

which we have evaluated for many parameter values. During each thermal evolution we

determine if and for how long a dynamo is present, as well as the peak and mean magnetic

field strengths. Our calculations allow us to place constraints on the minimum radius of a

planetesimal for which it obtains a dynamo. The duration of a dynamo depends foremost

on the planetesimal’s radius. This strong dependence (tdyn ∝ r4) makes our estimates of

minimum radii robust against uncertainties in the various parameters involved. Our results

suggest that planetesimals smaller than ∼ 500 km will be unable to maintain a sufficiently

strong dynamo for a duration of the order of ten million years. We found that dynamo

duration, to a lesser extent, also depends on the effective temperature dependence of the

mantle viscosity, β, and on the rotation rate of the planetesimal, Ω. These dependencies

were made explicit by our derivation of an analytical approximation to the dynamo du-

ration. Moreover, this approximation performed very well in capturing the behavior of

dynamo duration in all of the thermal evolutions. The definition of the critical magnetic

Reynolds number also plays a role, in a constitutive sense, as well as what scaling law we

rely on to arrive at a magnetic Reynolds number.

Consideration of the changing thickness of the thermal boundary layer as the planetes-

imal thermally evolves is pivotal. Because this thickness varies dynamically, allowing for a

strong feedback between heat flow and interior temperature, the model planetesimals can

shed a relatively large amount of heat in the initial stages of the thermal evolution. This

strongly affects the cooling time and dynamo duration with it. Models where the ther-
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mal boundary layer thickness is held constant are able to retain heat for longer artificially

extending the duration of any dynamo.



Chapter 6

Conclusions and future work

In addition to the conclusions given at the end of Chapters 3, 4, and 5, we will end with

a few final remarks regarding future work and applications of the models developed in this

study.

Much of the work done in Chapters 2 through 4 was motivated by the desire to be able to

calculate a thermal history for the Earth. This requires a model for calculating the surface

heat flow as a function of the material properties (plate and mantle) as well as the thermal

state (temperature and internal heating rate) of the system. Such a model, that included

strong surface plates, was developed in Chapter 3 and revealed a rich and complex solution

space with multiple solutions and various modes of convection. Any calculation of a thermal

history also requires the ability to properly assess how the state and properties of the system

evolve as a function of time. In Chapter 4 we demonstrated that the transport of water to

and from the mantle, via regassing at subduction zones and degassing at ridges, leads to

a significant change in mantle viscosity. We demonstrated that this effect created a strong

feedback that fundamentally changed the nature of the thermal evolution. The application

of the theory developed in Chapters 3 and 4 will affect thermal history calculations for the

Earth (and other planets) in a first order way. However, there are many new questions that

need to be addressed before such thermal histories may be calculated.

The model derived in Chapter 3 demonstrated that multiple solutions are often possible

when strong plates are present. Each solution found corresponded to a unique mode of

152
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τR Convective Dominant Dominant Plate
Mode Driving Resisting Velocity

Force Force Depends On

< 0 plate driven net slab tractions mantle properties
(≈ mobile lid ) pull τR

< 0 asthenospheric net slab mantle pressure mantle properties
counter flow pull τR gradient

> 0 mobile lid tractions or pressure gradient mantle properties
pressure gradient or tractions

> 0 sluggish lid tractions or net resisting mantle and lithosphere
(intermediate) pressure gradient stress τR properties

> 0 sluggish lid gravitational net resisting lithosphere
(slow) (local potential) stress τR properties

Table 6.1: Summary of distinct convective modes. Names for each convective mode are
only suggestions at this point. The type of convective mode depends on the sign of the net
resisting stress τR . The dynamics of the plate can depend on the properties of the mantle,
lithosphere, or both, depending on the branch of solutions. Each convective mode has a
distinct pair of dominant plate driving and resisting forces.

convection with a distinct pair of dominant plate driving and resisting terms. While only

three branches of solutions were found to occur at the same time, five distinct modes were

noted. One of the key parameters in determining the type of solution was the net resisting

stress, defined as τR = τF + τY − τSP , where τF represents the magnitude of the stress on

the subduction zone interface, τY is the magnitude of the effective stress associated with

the deformation of the plate (depends on the model used), and τSP is the normal deviatoric

stress on the base of the plate due to slab pull. These three stresses were grouped together

as they all scaled in the same way in the lithospheric energy balance. This grouping reduced

the number of free model parameters and therefore also the difficulty of exploring the very

large solution space that exists.

Table 6.1 summarizes the different convective modes that were found to occur. The

second mode, asthenospheric counter flow, can only occur if a low viscosity asthenosphere

(or upper mantle) is present. In addition, the two sluggish lid modes can have a channelized

flow beneath the plate if a low viscosity layer is present there. The type of convective mode

depends critically on the sign of the net resisting stress τR . τR may be thought of as a ‘net’
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slab pull stress when τR < 0 or as a ‘net’ resisting stress when τR > 0. Each convective

mode has its own distinct pair of dominant plate driving and resisting forces.

Clearly, priority should be given to trying to determine the sign of τR for the Earth’s

plates. This is made difficult, however, as many of the models that predict the amount of

slab pull and the effective strength of the plate are based on incomplete energy (or force)

balances. As an example, Wu et al. (2008) have most recently attempted to estimate the

strength of plates using a 3D model with realistic plate geometries for the present day

surface of the Earth. Plates are implemented as boundary conditions and therefore have an

effective thickness of zero (no plate material enters or leaves the mantle). Thus, any term

in the energy balance that scales with the plate thickness, such as the plate bending term,

gravitational sliding, and the work done by the mantle pressure gradient, will all be zero

unless explicitly parameterized and added in. The plate bending and gravitational sliding

terms have been parameterized and added. The pressure term, however, is absent from the

model. As such, the model will underestimate the strength of the plate. The addition of

the pressure term to a model such as this, that is otherwise an excellent model, is trivial.

The problem of evaluating the present day force balance for the Earth’s plates needs to

be revisited and all terms properly accounted for. This will allow us to better estimate

the material properties of the plate-mantle system, which will be necessary for properly

determining the energy balance and dynamics in Earth’s early evolution when the state of

the system was likely very different.

Table 6.1 also indicates whether the plate velocity depends on the properties of only

the mantle, only the lithosphere, or both the mantle and the lithosphere. Different solution

branches are sensitive to different properties of the plate-mantle system and as such different

solution branches are likely to have their own distinct dynamic feedbacks in an evolution

calculation. For example, water is likely to generate very different feedbacks during a

dynamic evolution for the mobile lid and sluggish lid solution branches. The mobile lid

solutions are mainly sensitive to the mantle properties. As such, we expect water to lead to

the dynamic feedback that arises from the affect of water on mantle viscosity, as discussed
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in Chapter 4. The sluggish lid solutions are partially (intermediate branch of solutions) or

almost entirely (lower branch of solutions) dependent on the properties of the plate. In this

case the dominant role of water may be related to the dehydration and strengthening of the

plate, as suggested by Hirth and Kohlstedt (1996) and the effect of water on the Earth’s

mantle viscosity may be negligible.

Chapter 3 noted that the number of solutions obtained from the model depends on the

functional form of the mechanical plate thickness and surface heat flow. The calculations

presented there, unless otherwise noted (section 3.3.6), assumed that the plate thickness

and heat flow could be represented using thermal boundary layer theory and assuming the

simple half space cooling model. Other parameterizations could be used, such as the model

of Korenaga (2003) that assumes that the mechanical thickness of the plate is determined

by the dehydration depth. This could lead to a different number of solutions with different

solution branch behavior. The same global and lithospheric energy balances derived in

section 3.2.6 will still govern and the solutions must still involve one of the previously

mentioned dominant balances. The plate velocity determined for each solution branch may,

however, be very different. The behavior of the system will be all the more complicated

should the functional form of the plate thickness, and thus the behavior of the different

solution branches, change throughout the thermal history of the Earth. This is in fact

exactly what is suggested by Korenaga (2003). The model derived in Chapter 3 provides a

theoretical and conceptual framework for addressing such issues.

The analytic model was compared to complex numerical convection simulations that

exhibited transitions in convective mode, multiple solutions, path dependence, and episodic

convection. The analytic model was able to reproduce the transition in convective mode that

was discussed in section 3.3.6 and demonstrated that the transition occurred as the result

of a change in dominant plate driving force. The regions of multiple solutions predicted

by the analytic model are in agreement with those found in the numerical simulations. As

the analytic model is a steady state model and has no time dependence we cannot say that

we are able to ‘reproduce’ the results of the numerical simulations that demonstrate path
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dependence or episodic convection. Nonetheless, the shape of the solution curve that the

analytic model predicts is consistent with the path dependence observed and the analytic

model predicts multiple solutions where episodic convection is present in the numerical

simulations. Thus, all predictions of the analytic model regarding possible time dependence

of the system are at least consistent with observations from the numerical simulations.

The existence of multiple solutions and path dependence is another complication that

needs to be further studied and addressed prior to any thermal evolution calculation. Should

multiple solutions be present, a theory for determining which convective mode will occur

needs to be developed. This will likely involve a stability analysis of the different solution

branches. Furthermore, the path dependence suggested by the analytic model and demon-

strated in the numerical simulations implies that the initial condition or early evolution of

the Earth may play a more important role in controlling the tectonic state and subsequent

thermal evolution. Thus, the convenience provided by the self-regulating ‘mantle thermo-

stat’ (Tozer, 1970) present in the Early thermal history calculations may be lost. This issue

is important for any planet and suggests that, if multiple solutions are possible, the presence

of plate tectonics on a planet such as a super-Earth (O’Neill and Lenardic, 2007; Valencia

et al., 2007), may depend more on the evolution of the planet than it does on its thermal

state and material properties.

Chapter 4 demonstrated that a strong feedback between heat and water transport exists

when the volatile dependence of mantle viscosity is considered. Both theory and a simple

evolution calculation were used to argue that the feedback with water would result in a fun-

damentally different evolution for a planet such as the Earth. Thermal history calculations

that have not accounted for this effect (all but a couple simple ones) may be in significant

error. One of the strengths of the theory developed in Chapter 4 is that it is a kinematic

theory (see section 4.2). As such, it may be easily applied to any of the modes of convection

found in Chapter 3.

Both strong plates and volatiles have been demonstrated to have a first order effect on

the tectonic state and thermal evolution of a planet. Considered separately, each is likely to
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provide a rich and diverse range of possible evolutions. Their effects, when combined, may

very well lead to complex evolutions that are beyond the scope of simple analytic models.

Numerical models may be needed to address such calculations. Nonetheless, the theory

developed in this work will provide guidance for numerical models and a framework for

interpreting their results.



Appendix A

The delta function solution

We consider here a new analytic solution for simple 2D thermal convection rolls in an

isoviscous fluid layer. Figure 2.1 shows the assumed thermal structure and simple flow for

thermal convection in an isoviscous layer with mixed heating. All material properties are

assumed to be homogenous throughout the cell and the system is in steady state.

Flow in the convective cell is driven by lateral variations in density resulting from the

warm upwelling and the cool downwelling. At high Rayleigh numbers the thermal boundary

layers, upwellings, and downwellings all become extremely thin relative to the depth of the

layer (d is the characteristic length scale of the problem). We will approximate the density

field for the upwelling and downwelling using delta functions. This will allow us to work out

a simple spectral solution to the velocity field which can then be combined with thermal

boundary layer theory to calculate the amplitude of the convective flow.

We begin by parameterizing the heat flow as a function of the temperature drop across

the thermal boundary layers, the material properties of the fluid, and the average boundary

velocities. The heat flow is related to an approximate density field. An analytic solution

for the full 2D velocity field is then calculated using the approximate density field. The

average boundary velocities are then found and the amplitude of the flow is determined.
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A.1 The density function

We first consider the simple case where the basal heat flux is zero (the boundary is insulated)

and no thermal boundary layer exists at the base of the fluid layer. Cool material from the

upper thermal boundary layer sinks at position x = 0 and creates the cool downwelling that

drives the convective cell. We assume an infinitely long fluid layer with convection cells of

wavelength of λ = 2L. We approximate the density anomaly field in the convective cell as

∆ρ(x) = ∆ρeffδ
( x

2L

)

(A.1)

where ∆ρeff is a normalization factor that will be determined through conservation of

mechanical energy. Note that ∆ρ in equation (A.1) is independent of the vertical position

in the fluid cell z (where z = 0 at the base of the convective cell and z = d at the surface).

This is also an approximation to allow a simple solution to be worked out. The total rate

of change of potential energy in the cell, per unit distance along the axis of the convective

roll (third dimension), is given by equation (2.7) and is again

ΦP =
αgd

Cp
k∆T

(

ŪL

πκ

)
1
2

(A.2)

where α is the thermal expansion coefficient, g is the gravitational acceleration, d is the

depth of the fluid layer, k is the thermal conductivity, ∆T is the temperature drop across

the fluid layer (in this case also equal to the temperature drop across the cold thermal

boundary layer), Ū is the average horizontal surface velocity, L is the length of a single

convection cell, and κ is the thermal diffusivity. The rate of change of potential energy in

the cell can also be calculated using equation (3.15) which gives, per unit distance along

the axis of the convective roll,

ΦP =
1

2

∫ d

0

∫ L

−L
∆ρ(x, z)gv(x, z)dxdz (A.3)
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where we are integrating across two convective cells (−L < x < L) and taking half to obtain

the energy for a single cell. Substituting equation (A.1) into equation (A.3) gives

ΦP =
g

2

∫ d

0

∫ L

−L
∆ρeffδ

( x

2L

)

v(x, z)dxdz

≈
g∆ρeff

2

∫ d

0

∫

∞

−∞

δ
( x

2L

)

v(x, z)dxdz

= g∆ρeffL

∫ d

0
v(x = 0, z)dz

= g∆ρeffLdV̄ (A.4)

where

V̄ =
1

d

∫ d

0
v(x = 0, z)dz (A.5)

is the depth averaged vertical velocity at x = 0. Equating the right hand sides of equations

(A.2) and (A.4) and solving for ∆ρeff then gives

∆ρeff =
αρ∆T

V̄

(

Ūκ

πL

)
1
2

(A.6)

where we have also used κ = k/ρCp. Equation (A.6) relates the magnitude of the effective

density anomaly represented by the delta function approximation to the average horizontal

velocity at the surface Ū and the average vertical velocity in the downwelling (x = 0) V̄ .

Equation (A.6) ensures that energy is conserved in the system.

We will now briefly review the propagator solution in order to determine the average

surface velocity Ū and average downwelling velocity V̄ as a function of ∆ρeff . Ū and V̄

will then be substituted into equation (A.6) and ∆ρeff solved for. The size of ∆ρeff will

determine the finite amplitude of the convective flow.

A.2 The propagator method

The propagator approach of Hager and O’Connell (1981) is used to derive an analytic

solution using the density anomaly defined in equation (A.1). As in Hager and O’Connell



The propagator method 161

(1981), the relevant equations for a high Prandtl number and low Reynolds number flow

are the momentum equation

0 = ∇ · τ + ∆ρg (A.7)

and the constitutive equation for a Newtonian fluid

τ = −pI + η
[

∇u + (∇u)T
]

(A.8)

where τ is the deviatoric stress, p is the pressure, η is the viscosity, and u is the velocity.

An incompressible flow is assumed. Thus

∇ · u = 0 (A.9)

The velocities, stresses, pressure, and density are represented using Fourier expansions

in the x dimension as

u(x, z) =
∞

∑

n=1

un(z) sin(knx) (A.10)

v(x, z) =
∞
∑

n=1

vn(z) cos(knx) (A.11)

τzz(x, z) =
∞
∑

n=1

τzzn(z) cos(knx) (A.12)

τxx(x, z) =
∞
∑

n=1

τxxn(z) cos(knx) (A.13)

τxz(x, z) =
∞
∑

n=1

τxzn(z) sin(knx) (A.14)

p(x, z) =
∞

∑

n=1

pn(z) cos(knx) (A.15)

and

∆ρ(x, z) =
∞

∑

n=1

∆ρn(z) cos(knx) (A.16)
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with the nth Fourier coefficient being denoted by the subscript n. A solution using the prop-

agator technique can be derived that relates the Fourier coefficients through the equation

Un(z) = Pn(z, zo) · Un(zo) +

∫ z

zo

Pn(ζ, zo) · bn(ζ)dζ (A.17)

where the vector Un is defined as

Un(z) =



















vn(z)

un(z)

τzzn(z)
2knη

τxzn (z)
2knη



















(A.18)

with vn, un, nτzz, and nτxz being the nth Fourier coefficient of the vertical velocity, horizon-

tal velocity, vertical normal stress, and shear stress, respectively. The propagator matrix

Pn(z, zo) is defined as

Pn(z, zo) = eAn(z−zo) (A.19)

with the matrix An given by

An =



















0 −kn 0 0

kn 0 0 2kn

0 0 0 −kn

0 2kn kn 0



















(A.20)

and the wavenumber kn = 2πn/λ. The vector bn in equation (A.17) is given by

bn(z) =



















0

0

∆ρn(z)g
2knη

0



















(A.21)
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The Fourier coefficients for the density anomaly defined in equation (A.1) are indepen-

dent of n and z and are simply

∆ρn = ∆ρeff (A.22)

The delta function is useful for approximating the density field as its Fourier representation

is extremely simple. As there is no depth dependence in ∆ρn, bn will also have no depth

dependence and the integral in equation (A.17) may be evaluated to give

Un(z) = Pn(z, z0) · Un(z0) + A−1
n · (Pn(z, z0) − I) · bn (A.23)

This equation may be used to relate solutions within the layer (vertical position z) to

solutions at the base of the layer (z0 = 0) through

Un(z) = Pn(z, 0) · Un(0) + A−1
n · (Pn(z, 0) − I) · bn (A.24)

Equation (A.24) gives the solution for the velocity and stress fields as a function of depth

and requires the solution at the base of the layer Un(0) as well as the amplitude of the

density anomaly ∆ρeff .

A.3 Solution for a layer with free-slip boundaries

For free-slip closed boundaries the vertical velocities and shear stresses will both be zero on

the horizontal boundaries (z = 0 and z = d). We can solve for the horizontal velocity and

normal stress on these boundaries by setting z = d in equation (A.24)
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+ A−1
n · (Pn(d, 0) − I) · bn (A.25)



Solution for a layer with free-slip boundaries 164

Equation (A.25) represents a system of four equations for each of the n Fourier coefficients

with un(0), un(d), τzzn(0), and τzzn(d) being the four unknown boundary conditions. Equa-

tion (A.25) can be rearranged to solve for the unknown boundary conditions. This then

provides a solution for the lower boundary condition

Un(0) =
∆ρng

2k2
nη



















0

sinh(knd)−knd
1+cosh(knd)

−2 sinh(knd)+knd
1+cosh(knd)

0



















(A.26)

Un(0) from equation (A.26) can now be substituted back into equation (A.24) and yields

the Fourier coefficients for the velocities as a function of depth

un(z) =
∆ρeffg

2k2
nη

[

sinh((d − z)kn) − sinh(zkn)

1 + cosh(dkn)
(A.27)

+
kn(z cosh((d − z)kn) + (z − d) cosh(zkn))

1 + cosh(dkn)

]

vn(z) =
∆ρeffg

2k2
nη

[

kn(z sinh((d − z)kn) + (d − z) sinh(zkn))

1 + cosh(dkn)
(A.28)

+
2(cosh((d − z)kn) − cosh(dkn) + cosh(zkn) − 1)

1 + cosh(dkn)

]

We can now calculate the average horizontal surface velocity and vertical velocity in the

downwelling as

Ū =
1

L

∫ L

0
u(x, z = d)dx (A.29)

and

V̄ =
1

d

∫ d

0
v(x = 0, z)dz (A.30)
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Using equations (A.10) and (A.11) along with equations (A.28) through (A.30) gives

Ū = 2
∆ρeffg

ηλ

∞
∑

n=1,2,...

1

k3
n

sinh(dkn) − dkn

1 + cosh(dkn)
(A.31)

and

V̄ =
∆ρeffg

ηd

∞
∑

n=1,2,...

1

k3
n

3 sinh(dkn) − dkn(2 + cosh(dkn))

1 + cosh(dkn)
(A.32)

To keep things reasonably compact we define the functions f1 and f2 as

f1(s) =
∞
∑

n=1,2,...

1

n3

sinh(πns) − πns

1 + cosh(πns)
(A.33)

and

f2(s) =
∞

∑

n=1,2,...

1

n3

3 sinh(πns) − πns(2 + cosh(πns))

1 + cosh(πns)
(A.34)

Note that as n → ∞ the terms in equations (A.33) and (A.34) scale as n−3 and n−2 and

thus both series are sure to converge. Using equations (A.33) and (A.34) we can now rewrite

equations (A.31) and (A.32) as

Ū =
∆ρeffgL2

ηπ3
f1

(

d

L

)

(A.35)

and

V̄ =
∆ρeffgL3

ηdπ3
f2

(

d

L

)

(A.36)

where λ = 2L has been used. We now substitute equations (A.35) and (A.36) into equation

(A.6) and solve for ∆ρeff

∆ρeff = αρ∆T

(

π2

Ra

)

1
3
(

d

L

)
5
3 f1

(

d
L

)
1
3

f2
(

d
L

)
2
3

(A.37)
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with the Rayleigh number again defined as

Ra =
αρg∆Td3

ηκ
(A.38)

We can also consider the case where the system is driven by both a downwelling (again

at x = 0) and an upwelling (at x = ±L = ±λ/2) of equal magnitude. The density field is

now given by

∆ρb(x) = ∆ρeffb

[

δ
( x

2L

)

− δ
(

1

2
−

x

2L

)]

(A.39)

The b subscript on these solutions indicate that a bottom boundary layer and upwelling are

present. The solution for the flow field is still given by equations (A.28) and (A.29) with

∆ρn given by

∆ρn = ∆ρeffb

(

1 + (−1)n+1
)

(A.40)

The second term accounts for the negative density anomaly (same magnitude) offset by

half a wavelength. Note that odd terms will have ∆ρn=odd = 0 and the solution will be

symmetric about the center of the convective cell. For this case the average velocities are

Ūb = 4
∆ρeffg

ηλ

∞
∑

n=1,3,5,...

1

k3
n

sinh(dkn) − dkn

1 + cosh(dkn)
(A.41)

and

V̄b = 2
∆ρeffg

ηd

∞
∑

n=1,3,5,...

1

k3
n

3 sinh(dkn) − dkn(2 + cosh(dkn))

1 + cosh(dkn)
(A.42)

Again we define functions f1b and f2b as

f1b(s) =
∞
∑

n=1,3,5,...

1

n3

sinh(πns) − πns

1 + cosh(πns)
(A.43)

and

f2b(s) =
∞

∑

n=1,3,5,...

1

n3

3 sinh(πns) − πns(2 + cosh(πns))

1 + cosh(πns)
(A.44)
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(a)

(b)

(c)

(d)

(e)

(f)

Figure A.1: Streamline plots for delta-function solution with closed cell.

Using equations (A.43) and (A.44) we can now rewrite equations (A.41) and (A.42) as

Ūb = 2
∆ρeffgL2

ηπ3
f1b

(

d

L

)

(A.45)

and

V̄b = 2
∆ρeffgL3

ηdπ3
f2b

(

d

L

)

(A.46)

For this case, ∆ρeffb
is given by

∆ρeffb
= αρ∆T

(

4π2

Ra

)

1
3
(

d

L

)
5
3 f1b

(

d
L

)
1
3

f2b

(

d
L

)
2
3

(A.47)

and only differs from that of the downwelling case by a factor of 22/3.

These new solutions do not provide us with any new insight as far as scalings are

concerned. The boundary velocities above scale as Ra2/3 and the heat flow scales as Ra1/3,

as expected from the simple derivation in section 2.1. What these new solutions do provide

us with is insight regarding the nature of the flow as a function of the wavelength. Plots (a)
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through (c) of Figure A.1 show streamlines, calculated using equations (A.28) and (A.29)

for cases with L/d = 1, 2, and 3, respectively, and when only a downwelling is present. We

see that there is a natural horizontal length scale for the circulation of fluid in the layer that

is of order d. Plots (d) through (f) of Figure A.1 show streamlines for cases with L/d = 3,

2, and 1, respectively, and when both downwelling and upwelling are present. Again, there

is a natural horizontal length scale for flow driven by the downwelling and upwelling. At

small aspect ratios the superposition of the flows driven by the downwelling and upwelling

produces a single simple cellular flow. As the aspect ratio increases, however, the flows

decouple and for very large aspect ratios two separate circulatory cells are present; one

driven by the downwelling and one driven by the upwelling. Fluid away from the ends of

cells with very large aspect ratios is then stationary and the use of thermal boundary layer

theory for calculating the surface heat flow is then questionable. Nonetheless, this analysis

is useful for demonstrating the natural horizontal length scale for a convecting isoviscous

fluid layer.

A.4 Extended applications of the delta function solution

This type of solution easily lends itself to several other interesting problems with different

boundary conditions.

In section A.3 we considered solutions where the upper and lower boundaries of the

convective cell were closed and free-slip. These boundary conditions led to equation (A.24)

which was then solved to obtain the solution for the fluid flow. We noted that Figure A.1

revealed a decoupling of the two flows driven by the upwelling and downwelling at large

aspect ratio. This decoupling was possible due to the free-slip (zero shear stress) boundary

condition at the base and surface of the fluid layer.

For the Earth, strong plates exist at the surface and the strong upper boundary layer

would couple flows across the length of the convective cell. Another reasonable problem to

consider is then one in which the horizontal velocity at the surface is constant for a single

convection cell. This can be accomplished by representing the horizontal velocity at the
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surface as a square wave with wavelength λ = 2L and amplitude U . The surface velocity is

then given by

u(x, d) = U
(

2
[

H
(x

L

)

− H
(x

L
− 1

)]

− 1
)

(A.48)

where H is the Heaviside function. Fortunately this also has a simple Fourier representation

as

u(x, d) = U
∞
∑

n=1,3,5,...

4

nπ
sin (knx) = U

∞
∑

n=1,2,3,...

ũn sin (knx) (A.49)

where ũn = 4/nπ for n = odd and ũn = 0 for n = even. The vertical velocity at the surface

is again zero (closed boundary) and the bottom boundary is again free-slip and closed. We

can then use equation (A.24) with z = d to relate the lower and upper boundaries through

the equation
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Uũn
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2knη
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2knη



















= Pn(d, 0) ·



















0

un(0)

τzzn(0)
2knη

0



















+ A−1
n · (Pn(d, 0) − I) · bn (A.50)

Equation (A.50) provides a system of four equations for each of the n Fourier coefficients.

The boundary conditions U , τzzn(d), τxzn(d), un(o), and τzzn(0) represent five unknown

variables that need to be determined. We need one more equation in order to fully solve

this problem. The final equation comes from requiring that the net force on the base of the

surface (plate) be equal to zero. The net force on the base of the plate is required if the

plate is not accelerating and thus we have as our fifth equation

∫ L

0
τxz(x)dx = 0 (A.51)

Solving equations (A.50) and (A.51) together provide the unknown Fourier coefficients and

the magnitude of plate velocity in terms of ∆ρeff . The rest of the problem can then be

worked out to determine ∆ρeff as in the previous section.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure A.2: Streamline plots for delta-function solution with open cell.

An additional interesting boundary condition is for the case when the upper boundary

is not closed but instead open so that fluid may freely flow into and out of the surface of

the convecting layer. We consider the case where the stresses on the upper boundary are

very small. The viscosity contrast between the Earth’s upper and lower mantle may provide

a physical example of when such a case might be expected to occur. The Earth’s upper

mantle viscosity is thought to be between one and two orders of magnitude lower than the

viscosity in the lower mantle. Stresses on the surface of lower mantle would then be very

small compared to stresses within the lower mantle itself. If we then consider our fluid layer

to represent the lower mantle then fluid is free to flow through the upper boundary (into

the upper mantle) and stresses at the upper boundary (from upper mantle flow) are very

small. We then look to solve for the velocities at the upper surface with the stresses on this

boundary set to zero. The lower boundary is again free-slip (zero shear stress) and closed

(zero vertical velcoity). Then, using equation (A.24) the lower and upper boundaries are

related through the equation
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+ A−1
n · (Pn(d, 0) − I) · bn (A.52)

Again, equation (A.52) provides a system of four equations for the four unknown Fourier

coefficients vn(d), un(d), un(0), and τzzn(0) for each n. This is easily solved by rearranging

equation (A.52) and provides the coefficients in terms of the effective density anomaly ∆ρeff

given by equation (A.1) for the downwelling or equation (A.39) with both the upwelling

and downwelling. We could calculate the magnitude of the flow by relating ∆ρeff to the

heat flow and boundary velocities as we did in section A.3. However, we will not do this

here as a scaling for the open layer convective case is worked out in section 2.3.

We can plot the streamlines for the open layer case by normalizing the velocity by

the density anomaly. The velocities are then independent of the magnitude of the density

anomaly. Plots (a) through (c) of Figure A.2 show streamlines for the open layer case with

aspect ratios of L/d = 1, 2, and 3, respectively, and when only a downwelling is present.

Plots (d) through (f) of Figure A.2 show streamlines for aspect ratios of L/d = 3, 2, and

1, respectively, when both upwelling and downwelling are present. The results demonstrate

that the flow extends over a much larger horizontal length scale for the open cell cases then

the closed cell cases shown in Figure A.1.

Figure 2.4 shows a comparison between the streamlines calculated using the analytic

solution discussed here and the streamlines from a numerical simulation of thermal con-

vection with a viscosity increase of a factor of 103 in the lower half of the fluid layer. The

streamlines agree reasonably well and the numerical simulation further corroborates the

idea an ’open’ convecting fluid layer.



Appendix B

Additional calculations for Chapter 3

B.1 Calculation of the boundary term for the lithosphere

The purpose of this section is to evaluate the boundary term in equation (3.42) for work

done on the base of the lithosphere.

Material enters the lithosphere over a length scale of lu at the upwelling end of the cell.

Material leaves the lithosphere over a length scale of ld at the downwelling end of the cell.

Vertical velocities between the lithosphere and mantle are assumed to be zero in the interior

of the cell (i.e. uy = 0 for lu < x < ld). The total flow rate of material in the lithosphere is

dLUP . Then the average vertical velocity of material entering the lithosphere near x = 0, by

conservation of mass, is ūy0 = (dL/lu)UP . Similarly, the average vertical velocity of material

leaving the lithosphere, near x = L, is ūyL = −(dL/ld)UP . The boundary term for the base

of the lithosphere (dSj = dSy and y = dM + dA for all terms) may now be evaluated, per

unit length in the third direction, as

172
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∫

SLA

(uiP δij − uiτij) dSj (B.1)

=

∫ L

0
(uyP + uyτyy − uxτxy) dx

=

∫ lu

0
uy (P + τyy) dx +

∫ L

L−ld

uy (P + τyy) dx

−UP τP L

≈ ūy0 (P (0) + τyy(0)) lu + ūyL (P (L) + τyy(L)) ld

−UP τP L

=
dL

lu
UP (P (0) + τyy(0)) lu

+
−dL

ld
UP (P (L) + τyy(L)) ld − UP τP L

= −dLUP (P (L) − P (0)) − dLUP (τyy(L) − τyy(0))

−LUP τP

= −dLUP PxP L − dLUP (τyy(L) − τyy(0))

−LUP τP .

where PxP = ∂P
∂x (y = d−dL) and τP = τxy(y = d−dL) are the lateral pressure gradient and

shear stress evaluated on the base of the lithosphere. In evaluating equation (B.1) we have

assumed that lu and ld are small enough that the pressure and deviatoric stress do not vary

significantly over the area of integration and a single representative average can be used.

The second term on the right hand side of equation (B.1) includes the normal deviatoric

stresses on the base of the ends of the plate. For the Earth, this would correspond to

the deviatoric stress on the base of the plate at the ridge and at the subduction zone. A

significant normal deviatoric stress may be expected at the subducting end of the plate due

to slab pull. The normal stress due to slab pull should be much larger than any deviatoric

normal stress exerted on the ridge end of the plate. We will simplify the second term on

the right hand side of equation (B.1) by making two further assumptions. The first is that
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τyy(L) − τyy(0) ≈ τyy(L). This assumes that the contribution from the deviatoric normal

stress at the subduction zone is much larger than the contribution from the ridge end of the

plate. The energy term associated with τyy(L) represents part of what is commonly known

as slab-pull. For this reason and for purposes of clarity we will rename it as τSP = τyy(L).

We can estimate the maximum normal stress that could by exerted by the weight of a slab

by considering the average temperature difference in the slab and by assuming that all of

the weight of the slab is supported by the plate above. If the average temperature difference

in the slab is ∆T , then the stress exerted by a slab of length h would be σyy = αρ∆Tgh.

Conrad and Lithgow-Bertelloni [2002] estimated that the slab-pull component was about

half the weight of the slab in the upper mantle. Using h ≈ 330 km and ∆T ≈ 500K, this

corresponds to a normal stress of τSP ≈ αρ∆Tgh ≈ 150MPa and is of the order of the

estimated yield stress of plates. With the above assumptions and notation, equation (B.1)

then simplifies to

∫

SLA

(uiP δij − uiτij) dSj (B.2)

≈ − (dLUP PxP L + dLUP τSP + LUP τP ) .

B.2 Calculating lateral flow and dissipation in the mantle

This section will describe how the energy balance equations are solved in practice.

Flow and dissipation in the mantle may be calculated for an arbitrary number of layers.

To keep things simple we will solve the equations for a plate above a two layer system with

an upper mantle (or an asthenosphere) and a lower mantle.

The horizontal component of the velocity, as a function of depth, is solved using the

momentum equation with zero vertical velocity and is given by equation (3.28). A linear

approximation for the pressure gradient is used and is given by equation (3.33). The pa-

rameters A and b in equation (3.33) depend on the viscosity structure, layer thicknesses,

plate strength, heal flow, etc. Substituting equation (3.33) into equation (3.28) yields
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µ(y)
∂2

∂y2
U(y) = Ay + b. (B.3)

Any continuously vertically varying viscosity structure µ(y) may be approximated by

dividing it into n distinct layers with each layer having a constant viscosity. Our model has

three layers that are meant to represent the lithosphere, upper mantle (or asthenosphere),

and the lower mantle. Within a single layer (y0 < yn < y1) equation (B.3) may be solved

with a constant viscosity of µn to provide the velocity and stress in that layer. Continuity

of velocity and stress between adjacent layers can then be used to calculate the full depth

dependent horizontal velocity. Defining U1 and τ1 as the velocity and stress at the top of

any given layer, the solution to equation (B.3) for the horizontal flow in an arbitrary layer

is

U(y) = U1 +
y − y1

6µn
(6τ1 + (y − y1)(3b + Ay + 2Ay1)) . (B.4)

From equation (B.4) the base velocity U0 and stress τ0 (µn∂U/∂y) for the layer are

U0 = U1 +
y0 − y1

6µn
(6τ1 + (y0 − y1)(3b + Ay0 + 2Ay1)) (B.5)

and

τ0 = τ1 −
1

2
(y1 − y0) (2b + A(y0 + y1)) . (B.6)

Equations (B.5) and (B.6) relate the stress and velocity at the base of the layer to the stress

and velocity at the surface of the layer through the thickness of the layer, the viscosity of the

layer, and the parameters A and b in the pressure gradient. We now define UP , UA , and UM

as the velocity at the base of the plate, upper mantle (or asthenosphere), and lower mantle.

Similarly, we define τP , τA , and τM as the stress at the base of the plate, upper mantle (or

asthenosphere), and lower mantle. Then equations (B.5) and (B.6) can be used to couple

the velocity and stresses between the layers. Continuity of velocity between adjacent layers



Calculating lateral flow and dissipation in the mantle 176

requires

UA = UP −
dA

6µA
(6τP − dA [3b + 3AdM + 2AdA ]) , (B.7)

UM = UA −
dM

6µM
(6τA − dM [3b + 2AdM ]) . (B.8)

Continuity of stress between adjacent layers requires

τA = τP −
dA

2
[2b + A(2dM + dA)] , (B.9)

τM = τA −
1

2
dM [2b + AdM ] . (B.10)

Conservation of mass requires that the total vertically integrated horizontal velocity in

the layer vanish

∫ d

0
U(y)dy = 0. (B.11)

Using equation (B.4) to calculate the integral in equation (B.11) for all four layers yields

0 = (dA + dL)UP + dM UA −
d2

A

2µA

τP −
d2

M

2µM

τA

+

(

d4
A

8µA

+
d3

A
dM

6µA

+
d4

M

8µM

)

A

+

(

d3
A

µA

+
d3

M

µM

)

b

6
. (B.12)

The base of the mantle is free-slip and thus

τM = 0. (B.13)

The stress on the base of the plate can be solved for by using the lithospheric energy balance

(equation (3.43))
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τP =
DiL 〈Q〉

L

LUP

− dLPxp −
dL

L
τR . (B.14)

Equations (B.7), (B.8), (B.9), (B.10), (B.12), (B.13), and (B.14) provide 7 equations

to solve for the 7 unknown variables UA , UM , τP , τA , τM , A, and b in terms of the model

parameters and the plate velocity UP . With UA , UM , τP , τA , A, and b now known, equation

(B.4) may be used to calculate the velocity in any of the layers.

From equation (3.14), the dissipation from lateral flow for an arbitrary layer in the

interior of the cell (where vertical velocity is negligible) is given by

Φn = 2

∫

V
µn ˙εij

2dV =
L

2

∫ y1

y0

µn

(

∂U

∂y

)2

dy. (B.15)

Using equation (B.4) for the velocity in an arbitrary layer yields

Φn =
y1 − y0

µ2
n

(

τ2
1

+
τ1
3

(y0 − y1) [3b + A(y0 + 2y1)]
)

+
1

60

y1 − y0

µ2
n

(

20b2 + 5Ab [3y0 + 5y1 ]
)

+
1

60

y1 − y0

µ2
n

A2
(

3y2
0

+ 9y0y1 + 8y2
1

)

. (B.16)

Equation (B.16) allows for the calculation of dissipation in any of the fluid layers in the

mantle as a function of the plate velocity UP . The total mantle dissipation for horizontal

flow ΦMH is the sum of the dissipation in each of the mantle layers. This dissipation, along

with equation (B.14) for the basal stress, can be substituted into the global energy balance

(equation (3.44)) to solve for the single remaining variable, UP .
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Additional calculations for Chapter 4

C.1 Model equations and parameters for numerical simulations

Equation 4.1 is solved using equation 4.14 and

H(t) = Hsf ·
∑

i

ρV CiHie
log(2)(tpd−t)

τi (C.1)

where Ci, Hi, and τi represent the radiogenic element concentration, the heat production

rate, and the half-life of radiogenic element i respectively. Values for internal heating are

taken from Schubert et al. (2001). The factor Hsf is a scale factor for the rate of internal

heating that is tuned to adjust the surface heat flow. The plate velocity is calculated using

the classic scaling that arises from boundary layer theory (e.g. Turcotte and Schubert, 1982)

U =
κ

d

(

L

πd

)
1
3

R
2
3
a (C.2)

with

Ra =
αρgTd3

κη
(C.3)

and where α is the thermal expansion coefficient, g is the gravitational acceleration, d is

the depth of the mantle, and the viscosity η is calculated using equation 4.5. The viscosity

of the W-I case is normalized in such a way that the viscosities in both cases are equal

178
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when the potential temperature of the mantle is equal to T = 1300oC (this is equivalent to

having a fixed water concentration of ≈ 300 ppm for the calculation of the viscosity in the

W-I case).

The water mass balance (equation 4.2) is solved using equations 4.16 and 4.17 for the

degassing and regassing, respectively. The depth of melting, zm, is based on a simple

linearized fit of Figure 11 from Hirschmann et al. (2009) for the depth of melting as a

function of the mantle temperature and water concentration

zm(T,χm) = z1T + z2 χm + z3 (C.4)

where z1 = 286m/K, z2 = 164m/ppm, and z3 = −3.2 × 105 m are constants. We assume

that the upper 20% of the plate is serpentinized and using χserp ≈ 1.3% then gives an average

water concentration for the plate of χp = 0.26% (2600 ppm). The initial concentration of

water in the mantle was adjusted for both cases to give the present-day ocean mass of the

Earth of 1.39 × 1021 kg. All other parameter values are the same for both simulations and

can be found in Table C.1.

C.2 A kinematic plate velocity for the thermal-water feedback

The rate of change of the viscosity is related to the plate velocity through the kinematic

relations of equations 4.14-4.17. These derivations do not rely on any specific dynamic

parameterizations for plate speed.

If the viscosity has no dependence on the water concentration then ηχ = 0 and equation

4.21 simplifies to ηT Ṫ ≈ 0. This is satisfied when Ṫ = 0 and Qs = H. Using equation 4.14

for Qs and solving for the plate velocity gives

UT =
πLκ√
π

(

H

SkcT

)2

(C.5)

If the viscosity has no dependence on temperature then ηT = 0 and equation 4.21

simplifies to ηχχ̇m ≈ 0 and is satisfied when D = R and χ̇m = 0. Setting D = R and using
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equations 4.16 and 4.17 gives Fdzmχm = Frdlχp. Using equation 4.15 and solving for the

plate velocity yields

UW = 4
κ

zm

(

L

zm

)(

Fr

Fd

χp

χm

)2

(C.6)

If the viscosity is dependent on both temperature and water concentration then equation

4.21 becomes

ηχ
R − D

ρV
= ηT

Qs − H

ρCpV
(C.7)

where we have used equations 4.1 and 4.2 for Ṫ and χ̇m. Substituting the relations for Qs,

dL, D, and R from equations 4.14, 4.15, 4.16, and 4.17 into equation C.7 and simplifying

yields

ηχ
ηT

[

2Frχp

√

κUTW

L
− Fd

zm

L
χmUTW

]

=

2ST

√

κUTW

πL
−

H

ρCp
(C.8)

Equation C.8 can be solved for the plate velocity UTW analytically using the quadratic

method or numerically.
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Parameter description Value Units
Density ρ 3500 kg/m3

Thermal conductivity kc 3.2 W/m·K
Specific heat Cp 1200 J/kg·K
Thermal diffusivity κ 7.6 × 10−7 m2/s
Thermal expansion α 2.5 × 10−5 1/K
Gravitational acceleration g 10 m/s2

Concentration CU238 30.8 × 10−9 kg/kg
Concentration CU235 0.22 × 10−9 kg/kg
Concentration CTh 124 × 10−9 kg/kg
Concentration CK 36.9 × 10−9 kg/kg
Heating rate HU238 9.46 × 10−5 W/kg
Heating rate HU235 5.69 × 10−4 W/kg
Heating rate HTh 2.64 × 10−5 W/kg
Heating rate HK 2.92 × 10−5 W/kg
Half-life τU238 4.47 Gy
Half-life τU235 0.70 Gy
Half-life τTh 14.0 Gy
Half-life τK 1.25 Gy
Scale factor (W-I) Hsf 1.44
Scale factor (W-D) Hsf 1.02
Activation energy E 300 kJ/mol
Water fugacity exponent r 1
Stress-strain exponent n 1
Ideal gas constant Rg 8.31 J/mol·K
Planet radius rs 6371 km
Core radius rcmb 3491 km
Planet surface area S 3.25 × 1021 m2

Mantle volume V 9 × 1020 m3

Average plate length L 6000 km
Initial mantle conc. (W-I) χm(0) 851 ppm
Initial mantle conc. (W-D) χm(0) 742 ppm
Water conc. in plate χp 2600 ppm
Degassing efficiency Fd 1
Degassing efficiency Fr 0.15

Table C.1: Parameters for sample evolution calculations.



Appendix D

Additional calculations for Chapter 5

D.1 Onset of stagnant lid convection

We consider the conditions necessary for the onset of convection in a cold thermal boundary

layer with temperature dependent viscosity. The cold boundary layer extends from the

surface to a depth of D in the fluid. The surface temperature is Ts and the temperature at

the base of the thermal boundary layer is Tm. For highly temperature dependent viscosity,

the onset of convection will first begin at the base of the cold thermal boundary layer. The

thickness of the sub layer that begins to convect (the lower part of the thermal boundary

layer) is d (with d < D). Let ∆T = Tm − Ts. The temperature at the top of the sub layer

that becomes unstable is

Tsub = Tm −
d

D
∆T (D.1)

The viscosity at the top of the sub layer is (this is the strongest part of the layer)

η(Tsub) = η0e
−βTsub = η0e

−βTmeβ
d
D∆T = ηmeβ

d
D∆T (D.2)

where ηm is the viscosity at the base of the cold thermal boundary layer (and thus also the

fluid beneath). The onset of convection will begin once the Rayleigh number of the sub

layer exceeds the critical Rayleigh number Rac∼103. This occurs when
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αρg
(

d
D∆T

)

d3

η(Tsub)κ
> Rac (D.3)

where d
D∆T is the temperature difference across the sub layer. Substituting in the viscosity

η(Tsub) from equation (D.2) and rearranging gives

αρg∆Td4

ηmκDRac
> eβ

d
D∆T (D.4)

The exponential may be expanded to give

αρg∆T

ηmκDRac
d4 > 1 +

β

D
∆Td +

1

2

(

β

D
∆T

)2

d2 (D.5)

+
1

6

(

β

D
∆T

)3

d3 +
1

24

(

β

D
∆T

)4

d4 + ...

If the inequality in Eq. (D.6) is true for some d, the d4 coefficient on the left hand side

must be greater than the d4 coefficient on the right side and we require

αρg∆T

ηmκDRac
>

1

24

(

β

D
∆T

)4

(D.6)

Finally, this can be rearranged to obtain

Ram =
αρg∆TD3

ηmκ
>

(β∆T )4

24
Rac (D.7)

Eq. (D.7) provides the relationship between the local Rayleigh number of the cold thermal

boundary layer (using the viscosity from base of the layer), the critical Rayleigh number

and temperature dependence of the viscosity.

We have compared this to numerical results, where we estimate the local Rayleigh

number for positions throughout the layer, and Eq. (D.7) works well for predicting the

onset time of convection for small accretion times (ta < 1.5 Ma). The result is independent
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of the radius of the planet. For larger accretion times it underestimates the onset slightly.

This may be due to the fact that the derivation above assumes a linear temperature gradient

and the actual diffuse gradient is slightly different for long cooling times.

D.2 The effect of a low conductivity surface layer

A pervasive idea in the literature is that a surface layer of low thermal conductivity k may

insulate and depress the cooling rate of the body (Haack et al., 1990; Hevey and Sanders,

2006; Sahijpal et al., 2007). Let us assume that such a layer exists at the surface with

conductivity kl and thickness dl. The material below this layer has conductivity k. The

low conductivity surface layer would be part of the surface thermal boundary layer and as

such the diffusive term in the thermal energy balance would be considerably larger than

the internal heating term in this region. The layer can then be replaced with an equivalent

layer of conductivity k and thickness d′l = (k/kl)dl that gives the same conductive heat flow

and boundary temperature.

Now we consider a planetesimal of radius a = 100 km and thermal conductivity of k. The

planetesimal has a surface layer of thermal conductivity kl = k/10 and thickness dl = 0.5

km. With the above argument in mind, this case is thus equivalent to a planetesimal of

radius a = 100+5 = 105 km and thermal conductivity of k. The cooling of this planetesimal

is going to be very similar to that of a body with radius a = 100 km and thermal conductivity

of k. Thus, the presence of such a low conductivity layer will have little effect.

D.3 Effect of continuous accretion

In order to explain paleomagnetic observations of magnetized CV chondrites, continuous

accretion onto a planetesimal with an internal dynamo has been invoked to allow for (par-

tially) undifferentiated material to persist at the surface of such a planetesimal (Elkins-

Tanton et al., 2011; Gupta and Sahijpal, 2010). Here, we address the effect of continuous

surface accretion on the dynamics of stagnant lid convection. Consider a planetesimal that

has a convecting mantle with a highly temperature dependent viscosity. As a result, the
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mode of convection is stagnant lid convection and a viscous thermal boundary layer (or

lid) is formed at the surface of the mantle. In the absence of accretion, the lid adjusts its

thickness such that the convective heat flux at the base of the lid is balanced by conduction

through the lid. With accretion, an increased heat flux will be needed to not only balance

the conductive heat flux through the layer, but also to warm the cold material that is added

to the surface. We investigate what the effect of continuous accretion is on the lid thickness

and heat flow.

We begin by solving for a steady state solution for the temperature profile at the surface

of the planetesimal with continuous accretion. We assume an accretion rate of ua m yr−1.

We choose a frame of reference moving at a speed of ua, rendering the steady state profile

at the surface stationary. Material is added to the surface at a temperature of Ts. At steady

state, we assume that the temperature at a depth of δ, which is to be determined, is equal

to the mantle temperature Tm = ∆T + Ts. The heat equation to be solved is

−ua
dT

dz
= κ

d2T

dz2
(D.8)

with boundary conditions T (z = 0) = ∆T + Ts and T (z = δ) = Ts. z = 0 is the base of

the layer considered and z = δ is the surface of the growing planetesimal. This is a linear

homogeneous second order ordinary differential equation and has as its solution

T (z) =
e−uaz/κ − 1

1 − e−uaδ/κ
∆T + Tm (D.9)

Taking the derivative of Eq. (D.9) gives the temperature gradient throughout the layer

dT

dz
=

ua

κ
∆T

e−uaz/κ

e−uaδ/κ − 1
(D.10)

Note that for very small accretion rates (ua << κ/δ) Eqs. (D.9) and (D.10) reduce to

T (z) = −(z/δ)∆T + Tm and dT/dz = −∆T/δ which is the linear temperature gradient we

expect at steady state and in the absence of accretion.
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We will use the above equations to derive the steady state dynamics of stagnant lid

convection with accretion. Conceptually we follow the method of Solomatov (1995) with

the linear steady state temperature profile replaced with the above steady state temperature

profile that accounts for accretion. We assume a viscosity of the form

η(T ) = ηie
−β∆T (D.11)

Convection occurs beneath the thermal boundary layer and a part of the layer will partici-

pate with and be eroded by this flow. The strain rate near the base of the layer (small z)

will decrease as

ė ∝ τoη−1 ∝ τoη−1
i exp

(

−β
∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

z=0

z

)

(D.12)

where τo is the stress on the base of the layer exerted by the convective flow and |dT/dz|z=0

is the absolute value of the temperature gradient evaluated at the base of the layer. From

Eq. (D.10)
∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

z=0

=
ua∆T

κ

(

1 − e−uaδ/κ
)

−1
(D.13)

We are interested in the value of z, which we will refer to as δu, for which the strain rate

decreases by a factor of e. From equation (D.12) we see that this happens when

β

∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

z=0

δu = 1 (D.14)

Then

δu =

(

β

∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

z=0

)

−1

(D.15)

δu is the thickness of the actively convecting portion of the thermal boundary layer. The

temperature drop ∆Trh over ∆z = δu is given by

∆Trh =

∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

z=0

δu =
1

β
(D.16)

∆Trh is the effective temperature drop that drives thermal convection beneath the lid. We
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note that δu is different from the case considered by Solomatov (1995) when the temperature

gradient across the lid is linear, since Eq. (D.13) demonstrates that the temperature gradient

is not ∆T/δ for the case of ongoing accretion. However, the obtained effective rheological

temperature difference ∆Trh is identical to that found by Solomatov (1995) and depends

only on the temperature sensitivity of the viscosity, and thus the parameter β. Thus far

we have assumed that the thermal boundary layer thickness is equal to δ. This quantity

needs to be related to the dynamics and heat transport to ensure that the system is in fact

at steady state. The heat transported to the base of the lid by thermal convection may

be calculated using classic thermal boundary layer theory (see for example Schubert et al.

(2001)) with a mantle viscosity of ηm = η(Tm) and an effective temperature drop of ∆Trh

driving convection. This gives a heat flux at the base of the lid of

qs =
k∆Trh

d





αρg∆Trhd3

ηmκ

Rac





1
3

= p−
4
3
k∆T

d

(

Ra

Rac

)
1
3

(D.17)

where we have used Eq. (D.16) for ∆Trh, p = β∆T which can be shown to be equal to the

natural logarithm of the viscosity contrast across the thermal boundary layer (Solomatov,

1995), Rac ≈ 103 is the critical Rayleigh number, and the mantle Rayleigh number is defined

as

Ra =
αρg∆Td3

ηmκ
(D.18)

The conductive heat flux at the base of the layer can be calculated using equation (D.13)

and is given by

qs = k

∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

z=0

= k
ua∆T

κ

(

1 − e−uaδ/κ
)

−1
(D.19)

At steady state, the convective heat flux to the base of the lid must match the conductive

heat flux through the lid and we can therefore equate the heat flux in Eqs. (D.17) and

(D.19) to obtain the relationship

(κ/ua)
(

1 − e−uaδ/κ
)

= dp4/3 (Rac/Ra)1/3 (D.20)
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Eq. (D.20) relates the accretion rate ua, the lid thickness δ and the mantle Rayleigh number

Ra at steady state, and shows that accretion only becomes important for accretion rates of

the order of ua ≈ κ/δ or larger. Let us consider the limiting behaviors.

For ua << κ/δ, the argument uaδ/κ is very small and we may expand the exponential

and drop all high order terms. Then exp(−uaδ/κ) ≈ 1 − uaδ/κ and (1 − exp(−uaδ/κ)) ≈

uaδ/κ. Eq. (D.20) then becomes

δ = dp4/3 (Rac/Ra)1/3 (D.21)

Thus, for small accretion rates we recover the classic stagnant lid convection scaling that

relates the lid thickness to the mantle Rayleigh number and the temperature dependence

of the viscosity (Schubert et al., 2001).

For ua >> κ/δ, exp(−uaδ/κ) ≈ 0 and (1−exp(−uaδ/κ)) ≈ 1. Eq. (D.20) then becomes

κ/ua = dp4/3 (Rac/Ra)1/3 (D.22)

This gives the relationship between Ra and ua for large ua. The system will warm until Ra

is large enough that the balance in Eq. (D.22) is achieved.

For an accretion rate of ua ≈ κ/δ Eq. (D.20) may be used to solve for the boundary

layer thickness δ and gives

δ = −
κ

ua
log

(

1 −
dp4/3

κ/ua

(

Rac

Ra

)
1
3

)

(D.23)

The primary phase of heating occurs over a duration of the order of the half life of 26Al

which is ∼ 0.7 Myr.The onset of convection must occur during this time if it is to occur

at all. The cool thermal boundary layer grows from the surface at a rate determined by

diffusion and will penetrate to a depth of δ ∼
√
κ tonset, where tonset is the onset time

of convection, which we argued must be around the half life of 26Al. Using tonset = 0.7

Myr and κ ∼ 10−6 m2/s gives δ ≈ 4 km. Then we expect accretion rates on the order
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of ua ≈ κ/δ = 8 km/Myr to begin to have an affect on the stagnant lid thickness. This

estimate is independent of the radius of the planetesimal.

Let us investigate the initial thermal evolution of the planetesimal of radius a for a

duration of ∆t. We will consider accretion rates which increase the radius of the planetesimal

by no more than 10% over the time ∆t since a fundamental assumption in the present work

is that the planetesimal is mostly accreted to begin with. Then the maximum allowed

accretion rate is ua,max = 0.1a/∆t. From above, this will only begin to have an effect on

the stagnant lid thickness when ua ≈ 8 km/Myr. Merk et al. (2002) estimated as a first

order approximation an accretion rate of 200 km/Myr which indicates that we should take

continuous accretion into account. Combining the two relationships for ua allows us to

calculate the minimum radius of the planetesimal for which accretion will begin to have an

affect. This is given by

amin ≈
∆t

Myr
80 km (D.24)

We are interested in durations of ∆t = 10 Myr, as paleomagnetic considerations require

an early dynamo to persist for this long in the planetesimal (Weiss et al., 2008; Weiss

et al., 2010). Thus, if we allow for a 10 % increase in radius over 10 Myr, the minimum

planetesimal radius for which accretion will begin to affect the stagnant lid thickness is

amin = 800 km.

Furthermore, let us consider the case where accretion does begin to affect the stagnant

lid thickness. Eq. (D.22) shows that at steady state Ra ∝ u3
a. An accretion rate that is

twice as large requires an increase in Ra of a factor of 8 to negate it. Using β = E/RT 2
r

with E = 500 kJ/K mol, R = 8.31, a reference temperature of Tr = 1300oC, and Eq. (D.11)

shows that a temperature difference of ∆Tadj ≈ 50oC is required to decrease the viscosity

by a factor of 8 and therefore increase Ra accordingly. As a result, an increased accretion

rate will simply result in a small adjustment in mantle temperature and the system will run

slightly hotter. This will have little effect on the cooling rates involved, just as we observed

for a change of the reference viscosity in section 5.2.2.
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D.4 Effective specific heat as latent heat

Here we consider the effect of adding mantle latent heat to our thermal evolution model.

The total rate of heat release QL from decreasing the melt fraction (freezing) is equal to:

QL = −LmρmVm
dφm

dt
= −LmρmVm

dφm

dTm

dTm

dt
(D.25)

= −
LmρmVm

(Tm,l − Tm,s)

dTm

dt

where Lm is the latent heat of fusion of silicate and calculate dφm/dT with Eq. (5.23)

φm =
Tm − Tm,s

Tm,l − Tm,s
(D.26)

The thermal energy equation for the mantle Eq. 5.15, with the addition of QL, then becomes

ρmVmcp
dTm

dt
= −AmFsurf + AcFc (D.27)

+ ρVmQr −
LmρmVm

(Tm,l − Tm,s)

dTm

dt

which can be written as

ρmVmc′p
dTm

dt
= −AmFsurf + AcFc + ρVmQr (D.28)

with

c′p = cp

[

1 +
Lm

cp(Tm,l − Tm,s)

]

(D.29)

where c′p is an effective specific heat that includes the effect of the mantle latent heat of

fusion. Using Lm ≈ 4 × 105 J/kg, cp = 1200 J/kg/K, and Tm,l − Tm,s = (1850 − 1425) K,

the correction term is 1 + Lm/[cp(Tm,l − Tm,s)] ≈1.8 and thus including the latent heat is

equivalent to increasing the specific heat by a factor of ∼2. However, the dynamo time is

only weakly dependent on the specific heat, which explains why the results of our model
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are not sensitive to including the latent heat of fusion. The correction term is well within

the range of uncertainty for the mantle specific heat.

D.5 Scaling laws

We can equate the magnetic energy to a fraction of the thermodynamically available power

in the core determined by how much is lost to ohmic dissipation (Christensen, 2010)

B2

2µ0
∝ fohm

l2b
λ

αcgcFc

cp,c
(D.30)

where B is the magnetic field strength, µ0 is the magnetic permeability, fohm is the fraction

of the available power that is converted to magnetic energy, lb is the length scale of the

magnetic field, λ is the magnetic diffusivity, Fc is the core heat flux, αc is thermal expansivity

and gc is the gravity in the core.

l2b/λ may be considered equivalent to the ohmic dissipation time τλ = Em/D (Chris-

tensen, 2010), which should scale with the magnetic Reynolds number (Christensen and

Aubert, 2006)

τλ ∝
L2

λRem
=

L

U
(D.31)

where L is a length scale for which the core radius rc is often used and U is the the core

convective speed. Substituted in Eq. D.30 yields

B2

2µ0
∝ fohm

L

U

αcgcFc

cp,c
(D.32)

where fohm ≈ 1.

We now use different scalings for the core speed uc to evaluate the magnetic field strength

B.

Mixing length theory

uML =

(

4πGαcr2
cFc

cp,c

)1/3

(D.33)
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Substituting this in Eq. D.32, assuming L ∼ rc, and solving for B gives

BML = (2µ0ρc)
1/2

(

4παcGr2
cFc

cp,c

)1/3

(D.34)

For a particular planetesimal, we are interested, as a first step, in what, at minimum, is

energetically required and possible to achieve a dynamo of certain strength and duration.

We determine to what temperature the core must be heated in order to guarantee enough

heat flow during secular cooling of the core for it to have both a supercritical magnetic

Reynolds number and deliver a magnetic field of sufficient strength. Eqs. D.33 and D.34

provide these constraints.

The definition of the magnetic Reynolds number can be rewritten as

uc =
Remλ

rc
(D.35)

Equating this to Eq. D.33 and solving for the heat flux yields

Fc =
(Rem,critλ)

3 cp,c

4παcGr5
c

(D.36)

The temperature increase beyond the core melting temperature required to allow sufficient

heat flow during cooling can then be determined by

ρccp,cVc∆T = ∆tAcFc (D.37)

where Vc and Ac are the core volume and surface area respectively, ∆t is the time over

which a dynamo must be present, for example, ∼ 10 Myr (Weiss et al., 2008; Weiss et al.,

2010), and ∆T is the temperature increase required to accomplish this. Solving for ∆T

gives

∆TML =
3∆t

4παcGρc

(

Rem,critλ

r2
c

)3

(D.38)

A similar constraint can be found by solving D.34 for Fc for a particular Bmin and its
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associated required ∆TML∗.

∆TML∗ =
3∆t

4παcGρcr3
c

(

Bmin√
2ρcµ0

)3

(D.39)

Coriolis Inertial Archimedean (CIA) balance

The same approach can be taken with the CIA scaling for the core convective speed

uCIA =

(

2
√

2πGαc

cp,c

)2/5 (

r3
cF

2
c

Ω

)1/5

(D.40)

where Ω is the rotation rate of the body. This gives for the magnetic field strength

BCIA = (2µ0ρc)
1/2

[

(2rc)
7

(

FcαcπG

cp,c

)3

Ω

]1/10

(D.41)

We again use the magnetic Reynolds number to rewrite Eq. D.40 in terms of the heat flux,

and with Eq. D.37 we find for the required temperature increase

∆TCIA =
3∆t

√
Ω

2
√

2παcGρc

(

(Rem,critλ)
1/2

rc

)5

(D.42)

Using Eq. D.41 we apply the minimum magnetic field strength constraint to find its asso-

ciated required temperature increase

∆TCIA∗ =
3∆t

16παcG

(

B10
min

Ωµ5
0ρ

8
cr

10
c

)1/3

(D.43)

Magnetic Archimedean Coriolis (MAC) balance

Here, the same approach yields for the core convective speed

uMAC =

(

4πGαcrcFc

3cp,cΩ

)1/2

(D.44)
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where Ω is the rotation rate of the body. This gives for the magnetic field strength

BMAC = (2µ0ρc)
1/2

[

4παcGΩr3
cFc

3cp,c

]1/4

(D.45)

We find for the required temperature increase

∆TMAC =
9∆tΩ

4πGαcρc

(Rem,critλ)
2

r4
c

(D.46)

Applying the minimum magnetic field strength constraint to find its associated required

temperature increase

∆TMAC∗ =
9∆t

16µ2
0παcGΩρ3c

(

Bmin

rc

)4

(D.47)
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