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Models of Visual Appearance for Analyzing and Editing Images and Videos

A

e visual appearance of an image is a complex function of factors such as scene geometry, ma-

terial re ectances and textures, illumination, and the properties of the camera used to capture the

image. Understanding how these factors interact to produce an image is a fundamental problem

in computer vision and graphics. is dissertation examines two aspects of this problem: mod-

els of visual appearance that allow us to recover scene properties from images and videos, and

tools that allow users to manipulate visual appearance in images and videos in intuitive ways. In

particular, we look at these problems in three different applications.

First, we propose techniques for compositing images that differ signi cantly in their appear-

ance. Our framework transfers appearance between images by manipulating the different levels

of a multi-scale decomposition of the image. is allows users to create realistic composites with

minimal interaction in a number of different scenarios. We also discuss techniques for composit-

ing and replacing facial performances in videos.

Second, we look at the problem of creating high-quality still images from low-quality video

clips. Traditional multi-image enhancement techniques accomplish this by inverting the cam-

era’s imaging process. Our system incorporates feature weights into these imagemodels to create

results that have better resolution, noise, and blur characteristics, and summarize the activity in

the video.

Finally, we analyze variations in scene appearance caused by changes in lighting. We develop a

model for outdoor scene appearance that allows us to recover radiometric and geometric infor-

mation about the scene from images. We apply this model to a variety of visual tasks, including

color-constancy, background subtraction, shadow detection, scene reconstruction, and camera

geo-location.We also show that the appearance of a Lambertian scene can bemodeled as a combi-

nation of distinct three-dimensional illumination subspaces—a result that leads to novel bounds

on scene appearance, and a robust uncalibrated photometric stereo method.
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1
Introduction

E      M H at Harvard University and take pho-

tographs like the ones in Fig. ... By themselves, each of these images represents a single

example of what Memorial Hall looks like from one point in space and at one instant in time.

However, an internet search for photos ofMemorial Hall will yield hundreds of such images, shot

from every conceivable position and angle, under varying weather and lighting conditions, and

at different times during the day and night. Today, with the rapid proliferation of cameras (espe-

cially cell-phone cameras), and the emergence of photo-sharing websites (Facebook, Instagram,

Flickr), it is easier than ever to capture, store, and share images. For example, around  million
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photos are being uploaded to Facebook everyday.

While capturing images is easy, analyzing their appearance is still a very difficult problem and,

editing and enhancing them often requires time and expertise. Fig. .. illustrates the challenges

inherent to understanding images. Even though they depict the samebuilding, these photographs

are signi cantly different from each other. While the range of appearance in these photos is re-

markable, it is not entirely surprising. Each of these images is a complex function of the illumina-

tion at the instant the photograph was taken, the geometry and material properties of Memorial

Hall, and the location and settings of the camera thatwas used to capture the photograph; varying

any one of these factors could result in dramatic changes in appearance.

While it is known that illumination, geometry,materials, and cameras interact in intricateways

to create images (see Fig. ..), it is clear from Fig. .. that there a number of visual cues em-

bedded in these photographs. For example, it is easy to see that one of these photographs was

taken during daytime (because the illumination looks “white”), two were captured close to dawn

or dusk (because of the orange-red hues corresponding to sunrise and sunset), and the other two

were taken under overcast skies.Without knowing anything speci c aboutMemorial Hall a priori,

we can get a sense for the shape of the building and estimate the positions of the cameras that

captured these images. From the textures in these images, we might be able to recognize that

Memorial Hall is made up of brick, sandstone, and slate, and has windows made of stained glass.

Wemight even be able to deduce that some of these cameras have white-balance settings that are

biased towards blue, while others are skewed towards red.

ese observations raise the question: how are we are able to untangle all this information

when the image formation process is so complicated? e answer to this question is two-fold.

First, even though the factors involved in the image formation process are complex, they vary

in very structured ways. For example, low-dimensional models have been proposed for natural

illumination [], real-world surface re ectances [], and camera pipelines [].us, one way

http://www.sec.gov/Archives/edgar/data/1326801/000119312512034517/d287954ds1.htm
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Figure 1.0.1: Photographs of Memorial Hall at Harvard University, captured from different views,
at different points in times, show dramatic changes in visual appearance. Photo credits: Flickr users
wallyg, Emily Taliaferro Prince, arcticpenguin, and somewheregladlybeyond.)

to make the problem of image understanding more tractable is to use models of appearance that

explicitly leverage this coherence. Second, while inferring scene properties from a single image

is ill-posed, capturing video sequences where only a few of these factors vary makes the problem

better constrained.is property has been leveraged inwork on scene reconstruction [, ], in-

trinsic image decompositions [], andmulti-image super-resolution and deblurring []. Given

the ease with which images and video clips can be captured today, this is another effective way of

making appearance modeling feasible.

Driven by these two insights, this dissertation explores models of visual appearance (for both

single images and videos) that make image understanding tractable. In particular, our work an-

swers two questions:

. Can we develop models for visual appearance that allow us to analyze images and re-

cover different scene properties? e representations we propose explicitly model the

structure in image data and leverage it to recover scene characteristics. Furthermore, we

show that our models enable a number of applications such as texture analysis, illumina-

tion recovery, and scene reconstruction.
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. Canwe build tools that allow users to edit and enhance their photographs and videos in

easy, intuitive ways? Traditional image and video editing tools require users tomanipulate

pixel values— a process that is tedious, and often not intuitive. Instead, bymodeling visual

appearance appropriately, our work enables high-level editing operations, such as texture

manipulation, face replacement, and video summarization.

Modeling visual appearance is a fundamental problem in computer vision and computer graph-

ics with applications ranging from object recognition and scene understanding, to rendering and

image editing. In this dissertation, we focus on three applications:

Image and video compositing: Compositing images and videos is a tedious process that often

requires both time and expertise with editing tools. is is especially true when the images and

videos to be merged are captured in different conditions and have differing appearances. In this

dissertation, we propose tools that automatically match the appearance of images and videos,

making the creation of photo-realistic composites an easy and intuitive process.

Image enhancement: Images and videos captured by low-quality cameras often suffer from ar-

tifacts such as noise, blur, and compression. Improving the quality of these images is a difficult

problem with a long history in computer vision and computer graphics. In this work, we present

a novel image enhancement framework that leverages the data captured in the multiple frames

of a video clip to create high-quality still images.

Scene understanding: In the third set of applications, we propose tools that can analyze images

and videos to extract scene properties such as material re ectances and surface geometry from

them. In particular, we look at the problem of analyzing variations in the appearance of both

outdoor and indoor scenes caused due to changes in illumination. By modeling the illumination

and the scene appropriately, we show that we can enable a number of applications such as scene

reconstruction, color constancy, background estimation, and camera geolocation.

Visual appearance has been studied extensively in the literature because of its central role in
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computer vision and graphics. Since our work builds on some of these ideas, the remainder of this

chapter discusses representations for appearance that have been proposed in the past, and places

our work in the context of this previous research. We end this chapter with an outline for the rest

of this dissertation.

. Representations for Visual Appearance

In this section, we review work related to this dissertation and, in particular, focus on represen-

tations that enable image understanding tasks. While we discuss these representations in very

general terms here, each chapter includes a thorough discussion of relevant work.

We categorize models for appearance, based on how strongly they constrain visual appearance,

into: weak cues based on the statistical properties of images, intermediate image-based represen-

tations (like intrinsic images), and scene-based representations that completely model geometry,

re ectance, and illumination. Each of the models we propose and use in this dissertation falls in

one of these categories.

.. Statistical representations

Natural image statistics: It is well-known that natural images lie in a very restricted subspace

of the set of all possible images [], indicating that natural images have strong correlations

between pixels. In particular, previous work has shown that the gradients of natural images form

heavy-tailed distributions [], a property that has been applied to a variety of vision problems

including denoising [], super-resolution [], and deblurring [, ].

Illumination: Similar statistical models have been proposed for natural illumination [] and

have been applied to problems in re ectometry [].

Textures: Textures are often convolved with lters of varying scales and orientations and charac-
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terized using the statistical distributions of the resulting lter responses. While such techniques

are particularly suited for stochastic textures [], they have also been adapted to analyze and

synthesize structured textures [].

In Chapter , we use similar statistical models to represent single images. In particular, we

propose techniques to transfer the appearance between images bymanipulating their multi-scale

lter decompositions. is allows us to easily create photo-realistic composites from disparate

images.

.. Image-based representations

While statistical models have been shown to be useful for a number of vision tasks, they place

only weak constraints on visual appearance. At the other extreme, we could completely model

all the components of the image formation process, but that is often very difficult to achieve.

Instead, images are often analyzed in terms of scene properties that are de ned in the -d image

space. Such decompositions are general enough to represent a number of visual phenomena, but

speci c enough that they can be tractably estimated from images.

Intrinsic images:e notion of intrinsic images was introduced by Barrow and Tenenbaum [],

who proposed decomposing an image into the intrinsic characteristics of a scene, including illumi-

nation, re ectance, and surface geometry. Since then, a number of related representations have

been proposed. One such decomposition involves separating a single grayscale image into the

product of per-pixel components for illumination (shading) and surface re ectance (albedo) [].

Finlayson et al. [, ] propose an alternative, color-based decomposition that recovers a re-

ectance component that is independent of both shading and source color.

e problem of deriving intrinsic images from a single image is highly under-constrained; it

can however be simpli ed by using multiple images of a single scene under varying illumination.

Weiss [] uses a maximum-likelihood framework to estimate a single re ectance image and
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multiple illumination images from grayscale time-lapse video. Matsushita et al. [] generalize

this framework by deriving time-varying re ectance and illumination images from similar data

sets.

Intrinsic image decompositions allow a variety of image understanding and editing tasks, in-

cluding, illumination-invariant material segmentation [], and image recoloring []. In Chap-

ter , we present a model for the appearance of outdoor scenes that decomposes images into per-

pixel estimates of re ectance and geometry, and global estimates of outdoor illumination.We use

this model for a number of visual tasks including color constancy, background subtraction, and

geolocation.

Imagingmodels:Camera imagingmodels are often described in the -d image space. Suchmodels

are particularly useful for vision applications because they do not require an understanding of

the -d geometry of the scene, and often lead to tractable algorithms for visual inference. For

example, image enhancement techniques like super-resolution (and deblurring and denoising)

describe low-resolution images as a -d warping and blurring of the unknown high-resolution

latent image []. In Chapter , we compute image-based features such as sharpness and saliency

and incorporate them into similar imaging models to recover a high-quality image from a low-

quality video.

.. Scene modeling

In principle, the most complete way to model scene appearance is to explicitly measure all its

characteristics, including geometry, material properties, and illumination (see Fig. ..).is ap-

proach is often used in computer graphics to model scenes and re-render them under varying

viewing and lighting conditions. Here we review common representations for each of these char-

acteristics.

Reflectances: Surface re ectances are often represented using the -d Bidirectional Re ectance
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Distribution Function (BRDF), which describes how light is re ected off a surface as a function

of the incoming and outgoing lighting directions []. BRDFs can be represented by paramet-

ric models (such as Lambertian, Cook-Torrance, or Oren-Nayar models) or by using data-driven

models []. More recently, analytical models that are derived from real BRDF data are being

increasingly used for vision and graphics problems [, ]. In Chapters  and  we use the

Lambertian model to represent surface re ectance.

Illumination: While physics-based models exist for some forms of illumination (for example,

natural illumination []), illumination conditions are generally represented using environment

maps, i.e., explicit measurements of incoming light from all directions in the scene []. Both

representations have been used successfully to render scenes in computer graphics [, ], and

for inverse rendering in vision and graphics [, , ]. In Chapter , we present a novel repre-

sentation that accounts for both the angular and spectral variation of outdoor illumination. We

show that using this model to analyze outdoor time-lapse image sequences allows us to recover

scene re ectance and geometry.

Geometry: Surface geometry has a profound effect on image appearance in the form of both

local shading effects, and well as non-local shadowing effects. Surface geometry is usually repre-

sented using depth (in the form of -d meshes or height elds) or surface normals. In some cases,

such as with human faces, geometry is highly constrained and can be approximated using low-

dimensional models []. In Chapter , we use models of face geometry to track, and edit facial

performances in videos. In Chapters  and , we analyze variations in scene appearance resulting

from changes in illumination to recover geometry in the form of surface normals.
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Figure 1.1.1: Modeling visual appearance. Each image (a) shown in Fig. 1.0.1 is the result of illumination
from the sun and the sky (b) interacting with the geometry and material properties of the scene (c),
and being captured by the camera. In this dissertation, we propose image analysis and editing tools that
model one or more of these factors. Memorial hall model credit: Paul B. Cote.

. Outline of Dissertation

is dissertation explores a number of models for visual appearance and demonstrates their use-

fulness for image analysis, image editing, and scene understanding.emodels we explore range

from statistical representations to full- edged scene models. In each case, we model a different

aspect of the image formation process as illustrated in Fig. ...

In Chapter , our goal is to create highly photo-realistic composites from images that differ

signi cantly in their appearance. We model the appearance of a single image using the statistical

properties of its pixel correlations. We use this to transfer appearance between images and create

photo-realistic composites in easy and intuitive ways.

In Chapter , we extend ideas from Chapter  to videos. We use a multi-linear model for face

geometry to track and replace facial performances in videos.

In Chapter , we use camera imaging models to describe the frames of a video clip. We combine

multiple low-quality video frames to create a single high-quality video snapshot that has better
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resolution, noise, and blur characteristics, and even captures the motion in the video.

In Chapter , we analyze the appearance of outdoor scenes captured under time-varying natural

illumination. By modeling the lighting, we show that we can recover scene albedo and geometry,

and use this for tasks such as color constancy, background subtraction, and camera geolocation.

In Chapter , we analyze the appearance of non-convex Lambertian scenes under changing

directional illumination. We analyze the effect of shadows on scene appearance, and propose a

robust uncalibrated photometric algorithm that can recover high-quality surface geometry.

We discuss future steps for each these applications in the individual chapters. In Chapter , we

summarize the contributions of this dissertation and propose new avenues for research.

Parts of the research presented in this dissertation have appeared in the following publications:

. Sunkavalli, K., Johnson, M.K., Matusik, W., P ster, H.: Multi-scale Image Harmonization.

ACMTransactions onGraphics (Proceedings of ACMSIGGRAPH) (), :– (Jul ).

. Dale, K, Sunkavalli, K., Johnson, M.K., Vlasic, D., Matusik, W., P ster, H.: Video Face Re-

placement. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia) (),

:– (Dec ).

. Sunkavalli, K., Joshi, N., Kang, S.B., Cohen, M.F., P ster, H.: Video Snapshots: Creating

High-Quality Images from Video Clips. IEEE Transactions on Visualization and Computer

Graphics, (to appear).

. Sunkavalli, K., Romeiro, F., Matusik, W., Zickler, T., P ster, H.: What do color changes re-

veal about an outdoor scene? Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) pp. – ().

. Sunkavalli, K., Zickler, T., P ster, H.: Visibility Subspaces: Uncalibrated Photometric Stereo

in the Presence of Shadows. Proceedings of the European Conference on Computer (ECCV)

pp. – ().





2
Multi-scale Representations for Image Appearance

I  ,    for the appearance of a single image. In par-

ticular, we focus on models that capture low-level image characteristics such as global and

local contrast, texture, noise, and blur.We show that the statistics of amulti-scale decomposition

of an image are particularly suited to this task. Based on this insight, we develop a technique for

transferring visual appearance across images and use it to create photo-realistic composites from

disparate images.
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. Introduction

Combining regions ofmultiple photographs or videos into a seamless composite is a fundamental

problem in many vision and graphics applications, such as image compositing, mosaicing, scene

completion, and texture synthesis. In order to produce realistic composites, it is important to

ensure that the boundaries between the images being combined appear as seamless and natural

as possible. is can be achieved through alpha matting, where pixel values are combined using

a user-speci ed alpha matte, or through gradient-domain compositing techniques, which recon-

struct pixel intensities from merged gradient vector elds.

While necessary, seamless boundaries are not always sufficient for creating realistic compos-

ites. Often the images being combined come from diverse sources and are shot by different cam-

eras under different conditions.is is illustrated in Fig. ..(a), where the user segments a novel

face (top), and inserts it into another image (bottom). Gradient domain compositing (Fig. ..(b))

creates seamless boundaries in the composite. But because the two images are from different

sources with different appearance, the two regions of the composite look inconsistent, detract-

ing from the realism of the composite.

Currently, users x these inconsistencies manually, and it takes even professional artists hours

of work to produce highly realistic composites. In this work, we address this problem by building

tools to automatically harmonize images before compositing them (Fig. ..(c)). By buildingmeth-

ods to automatically correct inconsistencies in images with minimal user interaction, this work

takes the burden of compensating for inconsistencies away from the user andmakes compositing

effortless and user-friendly.

e main contribution of this work is a uni ed framework that harmonizes aspects of appear-

ance, such as contrast, texture, noise, andblur.is is guided by the insight that amulti-resolution

pyramid representation for images is useful for both transferring different aspects of visual ap-

pearance between images and compositing them. We show that we can transfer appearance by
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(a) Source / (b) Seamless Cloning (c) Harmonization (d) Close-ups
Target

Figure 2.1.1: Image compositing. In traditional image compositing, a user applies geometric transfor-
mations to a source image (a, top) and inserts it into a target image (a, bottom). Tools such as the
Photoshop Healing Brush use gradient domain compositing to ensure that the composite is seamless
(b) but the inconsistencies between the two images, make the result look unrealistic: the inserted face is
much smoother than the rest of the image. Our method “harmonizes” the images before blending them,
producing a composite that is seamless and realistic (c). The close-up images (d) compare traditional
gradient-domain blending (top) to the harmonized result (bottom).

manipulating the different levels of the pyramid of the source and target images so that their his-

tograms match. We also present a novel method to reconstruct the composite from the modi ed

pyramids in conjunction with boundary constraints based onmatting as well as gradient-domain

compositing. To our knowledge, this is the rst work that explicitly addresses the problem of har-

monizing images during compositing.

is work does not deal with inconsistencies in viewpoint, lighting, or shadows. We assume

that the images are geometrically aligned and have compatible viewpoint and vanishing points.

. Related Work

.. Alpha matting

e simplest way to fuse images is to combine their absolute pixel values. is is often accom-

plished through alphamatting [], where the colors of the images are linearly interpolated using
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weights speci ed by the alpha matte. Recent work in this area has focused on making the matte

creation as easy as possible [, ], but has not corrected for appearance differences.

.. Gradient-domain compositing

Often two images need to be merged seamlessly, i.e., the boundary between them should be im-

perceptible. Gradient-domain techniques accomplish this by combining image gradients (instead

of absolute pixel values) and solving for the composite that would best produce the fused gradi-

ent eld. ese techniques were introduced to the imaging community by Pérez et al. [] and

have since become the standard for seamless compositing [, ] and a part of editing tools such

as Photoshop []. Perez et al. also propose variations of seamless cloning (such as mixing the

source and target gradients) to handle differences in texture, but these solutions work only on

very speci c images. More recently, Farbman et al. [] showed that the solution to the Poisson

linear system could be approximated using a novel interpolation scheme. is work did not con-

sider issues related to harmonization of the source images, but did show that large image regions

could be cloned at interactive rates. In general, our method extends gradient-domain techniques

by reconstructing images from a much larger set of lter outputs and integrates harmonization

into the compositing framework.

.. Transfer of Visual Appearance

Most of the work on transferring visual appearance focuses on matching color distributions be-

tween images [, , ]. Cohen-Or et al. [] presented ways to transform images such that

their color palettes are perceptually harmonic. Closely related to our work, is the work of Bae et

al. [] on transferring tonal balance and level of detail from one image to another.ey use a non-

linear bilateral lter to decompose the images into two scales and match the histograms of these

scales to match the style of the images. We show that we can achieve similar effects with linear
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lters and do this in the context of image compositing. Chen et al. [] present an interactive tool

for separating the noise from an image; this noise can then be transferred to other images. In

contrast, our approach automatically matches noise, contrast and blur using a single framework.

.. Multi-scale methods

Our work is inspired by Burt and Adelson’s seminal work [] on using multi-scale representa-

tions such as Laplacian pyramids [] to composite images. e statistics of each level of an im-

age pyramid are known to be correlated with different aspects of visual appearance and pyramid

based representations have been widely used for many problems in vision and graphics including

texture analysis and synthesis, object recognition and image retrieval, and transferring visual ap-

pearance. In all these works, images are decomposed into multi-scale pyramids and the different

levels of the pyramids are then analyzed ormanipulated to achieve the desired objective. A classic

example of this approach is the work of Heeger and Bergen [] who use pyramids for texture syn-

thesis, and show that histogram matching the subband coefficients of a noise pyramid to those

of a given texture can be used to generate synthetic stochastic textures.

A known problemwith pyramids constructed using linear lters, is that applying nonlinear op-

erations (such as tone-mapping and histogram matching) on the subband coefficients of images

with structure often results in artifacts such as haloing along strong edges. As a result, recent

work on multi-scale methods uses nonlinear edge-preserving lters like the bilateral lter []

to construct the pyramids [, , ] and avoid haloing. In contrast to this, Li et al. [] show that

linear multi-scale decompositions used in conjunction with carefully controlled, smooth nonlin-

ear operations (in their case, compressive transforms for high dynamic range tone mapping) do

not lead to haloing artifacts.

Our work builds on previous uses of linear image pyramids in three ways. Firstly, we harmonize

the appearance of the source and target images by histogram-matching the pyramid coefficients

of the target to those of the source. Doing this naively could lead to artifacts but we show how
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Figure 2.2.1: An overview of the Multi-scale Image Harmonization framework. The input source and
target images, and a uniform random noise image are decomposed into pyramids. Using a smooth
histogram matching technique, the source and noise pyramids are iteratively shaped so that they match
the target pyramid. This produces a harmonized pyramid from which the final composite is reconstructed
by incorporating seamless and/or matte-based boundary conditions.

regularizing the histogram transfer can minimize these artifacts. Secondly, we inject noise into

the harmonization step and show how it can be shaped to handle differences in the noise and

texture patterns between images. Finally, we introduce a novel way of computing the nal com-

posite from the histogram-matched pyramid coefficients by solving a linear system of equations

while satisfying both seamless and matte based boundary conditions.

. Overview

We assume that the user has a source image Is with an object, or region, that they would like to

insert into a target image It. e object in the source image may have different visual characteris-

tics from objects in the target image, and our goal is to harmonize these characteristics to create
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a more compelling composite.

At a high level, we begin by building pyramids from the source and target images. We also syn-

thesize a uniform random noise image and build a pyramid from the noise image. Next, we mod-

ify the source and noise pyramids to match the target pyramid – a process that harmonizes the

images. Finally, we reconstruct the composite from the harmonized source and noise pyramids

taking into account the appropriate boundary conditions (both alpha and seamless boundaries).

An overview of this process is shown in Fig. ... In this section, we provide an overview of our

framework and in the sections that follow, we discuss each component in detail.

Our compositing framework uses amulti-resolution pyramid representation for all images.e

pyramid is constructed by ltering each image with a set of n linear lters, f1 to fn; we use Haar

lters. For a source image Is and target image It, the subbands are:

Bs
i = fi ⋆ I

s

Bt
i = fi ⋆ I

t . (.)

A standard separable n-level pyramid has three subbands at every level in addition to a lowpass

residue subband for a total of 3n+1 subbands. Each level of the pyramid representation is created

by ltering an image with three lters of the same scale. e statistics of pyramid subbands are

known to be closely related to image appearance – a property that has been exploited in work

on texture synthesis [, ]. is makes the pyramid an ideal representation for us, and we

harmonize the images by transforming the source subbands in a way that matches their statistics

to those of the target subbands.

e main tool for modifying the source subbands in order that their statistics are similar to

the target subbands is histogrammatching []. e harmonized subbands coefficients Bh
i can be

computed as

Bh
i = histmatch(Bs

i ,B
t
i), (.)
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(a) Inputs (b) Naive (c) Smooth (d) Smooth (e) Pyramid
(Source / histogram histogram histogram and compositing with
Target) matching matching noise matching seamless boundaries

Figure 2.3.1: An image compositing example. The user clones a flat photograph (a,top), onto a high-
contrast and textured image (a,bottom). Using naive histogram matching to modify the target subbands
produces a result with blotches and haloing near strong edges (b). Using smooth histogram matching
improves the result but the noise does not match the target image (c). Injecting noise into the har-
monization resolves this (d). Finally, reconstructing the composite from the harmonized pyramid by
enforcing seamless boundary conditions produces a highly realistic result (e). Photo credit: Flickr user
Steve Wampler/Steve Wampler (a,top) and Starstock / Photoshot (a,bottom).

where histmatch() denotes the transfer function that matches the histogram of Bs
i to that of Bt

i .

While the simple operation in Eqn. . is a powerful tool for matching the appearance of im-

ages, there are two fundamental problems with it. First, naive histogrammatching is a nonlinear

operation that distorts the shape of the subbands, and images reconstructed from thesemodi ed

subbands often suffer from artifacts such as haloing along strong edges and the ampli cation of

noise and blocking artifacts. For example, Fig. .. shows different approaches to transferring

the appearance of an older high-contrast and textured photograph to a newer at and smooth

photograph. Fig. ..(b) is the result of direct histogram matching – the gradients in the orig-

inal source image have been over-sharpened and there are haloing artifacts near strong edges.

Our smooth histogrammatching technique – described in Sec. . – minimizes these artifacts by

ensuring that the histogram matching process does not distort the shape of the subbands sub-
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stantially (Fig. ..(c)).

e second problem with a direct application of Eqn. . relates to image noise. Natural images

often have noise due to the camera, such as sensor and ISO noise, or due to compression, such

as JPEG quantization noise. In addition, the target images might have textures that are missing

in the source images. If the noise and texture patterns in the source and target images differ

signi cantly, histogram matching the subbands alone will not harmonize them. To better model

these differences, we introduce a noise term to our harmonization framework. In other words,

we assume that the harmonized subbands we want to estimate are given by a sum of the structure

subbands Bh
i and noise subbands Nh

i , i.e.,

Th
i = Bh

i + Nh
i . (.)

Our intuition is that the structure components Bh
i can be estimated by shaping the source sub-

bands to match the target subbands, while the noise componentsNh can be estimated by shaping

a noise image tomatch only the noise in the target subbands. Our harmonization step— covered

in detail in Sec. . — does this iteratively to produce a set of harmonized subband coefficients

that exhibit the properties we desire in the source image, including the appropriate contrast, tex-

ture, noise and blur (Fig. ..(d)).

e nal harmonized image can be reconstructed from themodi ed pyramid coefficients Th
i by

collapsing the pyramid, i.e., applying synthesis lters (the inverse of the lters applied in Eqn. .)

and summing the results.ere are fast and efficient algorithms to do this without explicitly solv-

ing the linear systemof equations corresponding to Eqn. ..However, to composite regions of the

source image into the target image, we need to ensure that boundaries are appropriately handled

and simply collapsing the pyramid will not satisfy the desired boundary constraints. Instead, for

image compositing, we reconstruct the nal composite Ih by solving a linear system of equations:
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(a) Source image (b) Naive (c) Regularized (d) Regularized (e) Bae et al. []
histogram matching gain gain and blending

Figure 2.4.1: Smooth histogram matching. We would like to give the source image, the tulip photograph
from Bae et al. (a), the appearance of Ansel Adams’ Clearing Winter Storm (see Bae et al. [2006]
Fig. 2(a)). Using naive histogram matching produces a result with haloing (b). Regularizing the gain
removes these artifacts (c), but some of strong edges have been over-amplified. Blending in the source
at these edges removes these problems producing a result (d) with the tones from the model image.
The technique of Bae et al. [2006] (e) exaggerates these effects for a more stylized result.

FIh = Th − c , (.)

where the matrix F contains the lters used to construct the pyramid, the vector Th contains the

harmonized subband coefficients, and the vector c speci es boundary constraints. In Sec. . we

discuss howwe set up this linear system and how c can be used to specify both seamless and alpha

matting boundary constraints. While this linear system can be very large even for small images,

we show how it can solved quickly and accurately using a quadtree subdivision.

. Smooth HistogramMatching

As shown in Figs. .. and .., applying histogram matching naively on subband coefficients

leads to haloing and the ampli cation of artifacts. Instead, we model histogram matching as a

gain control that boosts or reduces subband coefficients depending on their magnitudes, and reg-

ularize it to avoid artifacts.
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We rst match the histograms of the source subbands Bs
i to the histograms of the target sub-

bands Bt
i using Eqn. .. To ensure that we modify the subband coefficient magnitudes without

changing their sign, we apply the histogram matching on the absolute values of the coefficients

and retain the sign. Matching the histograms produces the modi ed subbands Bhist
i .

e effect of the histogram matching can be modeled as a multiplicative gain that, in logarith-

mic units, is given as:

gi(|B
s
i |) = log(|Bhist

i |)− log(|Bs
i |) . (.)

A positive gain indicates an increase in the coefficientmagnitude, i.e., the histogrammatching en-

hanced detail in the source image, whereas a negative gain represents a decrease in the coefficient

magnitude, i.e., the histogram matching dampened the detail. Up to this point, multiplying the

source subband coefficients Bs
i by the gain function exp(gi(|Bs

i |)) recovers the histogrammatched

subbands Bhist
i perfectly.

In practice, three techniques help mitigate visible artifacts introduced by manipulating sub-

band coefficients.e rst is to use undecimated, or oversampled, pyramids; i.e., the subbands of

the pyramid are not downsampled after ltering and are the same size as the original image [].

While pyramids based on any set of linear lters could be used to construct the pyramids, we use

oversampled Haar pyramids [] because of their ease of implementation.

e second method to minimize artifacts is to avoid large values in the gain function and we

do this by controlling the maximum gain applied:

Ĝi = exp
(

δk
∥gi∥∞

gi

)
. (.)

Here δk indicates the maximum allowed gain for the subbands at level k and ∥gi∥∞ denotes the

maximum value of gi. δk controls the distortion that will be allowed in the subbands and is set to

1.5.

Finally, the third method to minimize artifacts is to ensure that the gain is spatially smooth
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and does not distort the shape of the subbands excessively. As in Li et al. [], we do not apply

the computed gainmap directly to the subband coefficients. Instead, at every level of the pyramid

k, we compute an activity map that represents local coefficient magnitude by pooling all the rec-

ti ed subbands (i.e., absolute values of the subband coefficients) at that level and blurring with a

Gaussian:

As
k = N(σ) ⋆

∑
i∈lev(k)

|Bs
i | , (.)

At
k = N(σ) ⋆

∑
i∈lev(k)

|Bt
i | .

e parameter σ controls the width of the GaussianN and it increases by a factor of two between

levels with the value at the nest scale set to 4.

Since the activity maps are blurred, they are spatially smooth. Applying the gain function of

Eqn. . to the activity maps thus produces a gain map Ĝ(As
k) that varies smoothly and does not

distort the shape of the subbands excessively. e smooth histogram transfer for subband Bs
i is

then given by:

Bh
i = miĜ(As

k)× Bs
i , (.)

where mi is a scaling factor related to the level of the pyramid and linearly reduces from 1.0 at

the nest scale to . at the coarsest scale. Eqn. . describes the function that drives all the

histogram matching operations we perform on subbands.

Regularizing the gain eliminates most of the artifacts from naive histogram matching. How-

ever, repeatedly manipulating pyramid coefficients in each iteration, might over-amplify strong

edges in some cases. To avoid this, we compute an aggregate activity map:

As
ag =

m∑
k=1

As
k, (.)
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and convert it into an alpha map that is clamped to 0 at the th percentile and 1 at the th

percentile, and varies linearly in between.Weuse this alphamap toblend theharmonizedpyramid

Bhwith the original pyramidBs. Since the activitymaps arehighest near strong edges, the blending

removes over-ampli ed edges from the harmonized pyramid (Fig. ..d).

. Structure and Noise Matching

As mentioned in Sec. ., a composite will fail to look realistic if the noise pattern of the source

image does not match the background in the target. We also found that histogrammatching can-

not successfully create noise to match a target image if the source image is too clean. To better

match noise in the composited region, we inject noise into the harmonization process.

Let Ts
i represent the sum of the source subband and the corresponding noise subband, Ts

i =

Bs
i + Ns

i . Similarly the harmonized subbands we wish to estimate Th
i are also a sum of structure

components and noise components. Following Eqn. ., we construct a gain map Ĝb by matching

the histogram of the summed source subbands to the target image.

For the noise subband, we construct a gainmap, Ĝn, designed speci cally to shape the noise.We

high-pass lter the target image to isolate the noise image In and construct a target noise pyramid

Nt. is noise will also contain components of the image structure and cannot be used directly.

Instead we assume that the noise components are more prominent in low-activity regions of the

target image and we identify these by thresholding the target aggregate activity map as:

Ω = At
ag < percentile(At

ag, β). (.)

At
ag is computed by applying Eqn. . to the target image, and β is a user-speci ed parameter that

enables us to differentiate between structure and the noise in the target image. We construct the

gain map Ĝn using the process described in Sec. . by histogram matching the subbands Ns
i to

the target noise pyramid subbands Nt
i , but restricted to the low-activity regions.
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To summarize, the subband gainmap Ĝb is computed by histogrammatching the summed sub-

band Ts
i to the target subband Bt

i using the entire compositing region. e noise gain map Ĝn is

computed by histogram-matching the subbandsNs
i to the target noise pyramid subbandsNt

i while

restricting the pixels to the low-activity region Ω. e structure and noise subbands are then up-

dated as in Eqn. .:

Bh
i = Ĝb(As

i )B
s
i (.)

Nh
i = Ĝn(|Ns

i |)Ns
i . (.)

After applying the gains, we collapse the source and noise pyramids to produce the corresponding

images and repeat the entire harmonization loop for a xed number of iterations (set to 5). We

refer to this combination of smooth histogram and noise matching as harmonization.

After the nal iteration, the harmonized pyramid Th is given by:

Th
i = Bh

i + Nh
i . (.)

By collapsing this pyramid, we can reconstruct the nal output image. If the goal is to compos-

ite the harmonized source and target images, we also need to impose the appropriate boundary

conditions on the reconstruction. In the next section we describe how we achieve this.

. Pyramid compositing

In the absence of any boundary conditions, the image corresponding to the harmonized subbands

Th is the solution to a linear system that comprises n separate linear systems, each corresponding
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to one subband in the harmonized pyramid:



f1

f2
...

fn


Ih =



Th
1

Th
2

...

Th
n


, (.)

where fi are the lters used to construct the pyramid, Th
i are the harmonized subbands, and the

vector Ih is the nal composite.

Alpha matting and gradient-based compositing (also known as seamless cloning) are the two

common ways of producing plausible boundaries in composites. While most compositing meth-

ods can handle one or the other – Drag and Drop Pasting [] is a notable exception – in many

cases, we would like to have both kinds of boundaries (see Fig. ..).

In alpha matting the composite is created by blending the foreground image with the back-

ground image (in our case the target image It) using the alpha matte αm:

Ih = αmIf + (1− αm)It. (.)

Since harmonized pyramid Th represents the ideal subband coefficients that we would like our

nal composite to have, applying the pyramid lters to the composite should reproduce these

coefficients, thus Th
i = fi ⋆ Ih.

Combining this with Eqn. . gives us the relation

αmfi ⋆ I
f = Th

i − (1− αm)fi ⋆ I
t. (.)
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Combining the matting equation with Eqn. . gives us the relation:



αmf1

αmf2
...

αmfn


If =



Th
1 − (1− αm)f1 ⋆ It

Th
2 − (1− αm)f2 ⋆ It

...

Th
n − (1− αm)fn ⋆ It


. (.)

Since both the matte values and the target image are known, we can solve for If and compute the

nal composite Ih by substituting If in Eqn. ..

We can incorporate seamless boundaries in Eqn. . by using the binary compositing mask

as the alpha matte. Also, while imposing seamless boundary conditions, we drop the equations

corresponding to the coarsest lowpass subband, from Eqn. ..is is similar to gradient domain

techniques, where the composite is reconstructed solely from the (highpass) gradients.

To solve Eqn. . accurately, the subband coefficients Th need to be consistent with the bound-

ary conditions that we wish to impose. To ensure this, we combine the given alpha matte and

seamless region into a single mask that is used to matte the source and target images to create a

new image that is now used as the source image.e source subband coefficients Ts
i are computed

by decomposing this image, and the harmonization as described in Sec. . is applied on them.

Since the source pyramid is constructed on an image with the correct boundary conditions, the

harmonized subband coefficients at the edges will encode these boundary conditions.

.. Quadtree solver

e size of the linear system we wish to solve in Eqn. . is quadratic in the number of pixels in

the composited region. As a result, as the size of the region increases, solving Eqn. (.) directly

becomes prohibitively expensive. While this is true even of most gradient based techniques, this

effect is ampli ed in our case because of the larger number of lters we employ.
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(a) Least (b) Pyramid (c) Difference (d) Activity (e) Quadtree (f) Quadtree
squares map variables solution

Figure 2.6.1: Quadtree solver. Solving the full system (a) for this example takes 245 secs, while
collapsing the pyramid (b) takes only 0.01 secs. The difference between the two (scaled for visualization)
(c) is smooth but contains some image structure. Subdividing the activity map (d) produces a reduced
system (e) (the red points correspond to the nodes of the quadtree). Solving this reduced system takes
only 4.875 secs. and produces a result (f) that is visually indistinguishable from (a).

Since we have chosen pyramid lters, we can reconstruct an image from the subband coeffi-

cients by collapsing the pyramid, i.e., applying synthesis lters to the subbands and summing the

result.is pyramid solution Ihpyr, while fast to compute, doesnot satisfy the boundary constraints.

e full least-squares solution Ihlsq, on the other hand, satis es the boundary constraints, but is

slow to compute. e difference between these images, Ihd, results from satisfying the boundary

constraints. As can be seen in Fig. ..(c), it is smoother than both Ihpyr and Ihlsq and can there-

fore be well approximated by an upsampled lower resolution image. us, instead of solving the

full system in Eqn. (.), we solve a much smaller system for this difference, upsample it, and

add it to the pyramid solution to produce an approximation that is visually identical but much

faster to compute. is is similar to Agarwala et al. [], where, in the context of gradient domain

compositing, the difference between a simple color composite and its associated gradient domain

composite is efficiently solved for on an adaptively subdivided domain.

e accuracy of this approximation depends on how well the subdivision scheme samples

the true difference image. In our case Ihd still has some of the structure of the original image

(Fig. ..(c)). erefore, we modify the quadtree subdivision scheme of Agarwala [] to allocate

pixels to regions of high subband coefficient activity as described by the sumof the source activity

maps computed in Eqn. .,
∑m

k=1 A
s
k. Starting with the entire compositing region, we recursively
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subdivide every block of pixels into four quadrants as long as the sum of the activity in that

block is greater than a threshold (set to 4). An example quadtree decomposition is shown in

Fig. ..(e). Note how by basing the quadtree decomposition on the activity map, we are able to

sample the difference image fairly well. We solve for Ihd only at the pixels at the corners of the nal

quadtree decomposition and the pixels along seam boundaries. At all other pixels we bilinearly

interpolate these values.

Let Iqt denote the reduced representation for the difference image and let S denote the inter-

polation matrix that upsamples Iqt to the full size difference image Ihd:

Ihd = SIqt . (.)

We rewrite the linear system in Eqn. . as:

F(Ihpyr + Id) = Th − c

(STFTFS)Id = STFT(Th − c− FIhpyr) . (.)

is reduced linear systemhas reducedmemory and time requirements and as shown in Fig. ..,

can be solved efficiently without any differences in visual quality.

. Results and Discussion

Except for Fig. .., all the results shown in this chapter were created using a 3-level pyramid.e

one parameter in our system that is useful to control the nal composite is the noise percentile β

in Eqn. ..e noise percentile enables us to distinguish between structure and noise and needs

to be set according to how noisy the target image is. We used a value of 25% for all the results

except for Figs. .. and .. where we used 50%.

e run-times for our unoptimized Matlab implementation depend on the size of regions be-
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(a) Source Image (b) Our result (c) Bae et al. []

Figure 2.7.1: Style transfer. Using our harmonization framework to transfer the photographic look of
Ansel Adams’ Clearing Winter Storm to the source images (a) produces results (b) with similar effects
to the system described by Bae et al. [9] (c).

ing composited and varied from 15 seconds for the result in Fig. ..a (≈ 5500 pixels in the

composited region) to 12 minutes for the example in Fig. .. (≈ 185500 pixels in the compos-

ited region). In most cases, almost 85% of the time is spent on solving the reduced version of

the linear system in Eqn. .. We used the CSparse library [] to solve the linear system. Recent

work on fast sparse solvers [, ] and approximate solutions [] leads us to believe that an

optimized implementation of our system can drastically reduce computation times.

Style transfer: With smooth histogram matching on subbands, our harmonization framework

is able to achieve effects similar to the style transfer technique described by Bae et al. []. eir

approach uses a two-level decomposition with nonlinear lters and has separate routines that

allow it to exaggerate details. While our goal for harmonization is to improve realism rather than

create a stylized result, our results in Figs. .. and .. suggest that some of these effects are

possible within a linear pyramid framework.
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(a) Source (b) Target (c) Seamless cloning

(d) Harmonization without noise matching (d) Harmonization with noise matching

Figure 2.7.2: Matching texture. The sand in the source image (a) has a different texture from that in
the target image (b) leading to easily perceivable seams in the seamless cloning result (c). Harmonizing
the two image matches the two textures so that the resulting composite (e) is more consistent. This
example also illustrates how matching the structure without matching the noise produces unsatisfactory
results when the two image have strong texture differences (d). Photo credits: Flickr users Scarto (a),
and net_efekt (b).

Contrastmatching:esource image in Fig. .. has very different contrast from the target faces

it has been composited into and the seamlessly cloned composite look unrealistic. By harmonizing

the images, our method creates more natural composites.

Texture matching: In both Figs. .. and .., the target image has a textured appearance that

the source does not have.is is especially pronounced in Fig. .., where the images are of com-

pletely different kinds of sand. While gradient domain compositing produces seamless bound-

aries, the seam is still easily perceived. By shaping the noise we inject into our system to match
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(a) Source / (b) Inserting source (c) Close-up (d) Inserting target (e) Close-up
Target into target into source

Figure 2.7.3: In these examples, the source images (a,top) are smooth while the targets (a,bottom)
are noisy. When inserting the source into the target, harmonization adds noise to produce a realistic
composite (b). Conversely, when the target image is inserted into the source, harmonization removes
most of the noise to match the images (d).

the textures on the images, we are able to produce more compatible results.

Noise matching: In many cases, the noise characteristics of the source and target images are

different. Injecting noise into our framework allows us to reproduce the noise characteristics of

the target image and produces a more compelling result. is is illustrated in the examples in

Figs. .., .., and ...

While the harmonization framework can add noise to a image to match appearance, an inter-

esting case is the problem of inserting a noisy source image into a smooth target region. is is

similar to denoising, which is a long-standing problem in image processing. As seen in Fig. ..,

matching the pyramid subbands decreases the noise and produces a better composite. Intuitively,

harmonization suppresses the high frequencies of the noisy source image and automatically se-
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(a) Source / Target (b) Harmonized result

Figure 2.7.4: Matching blur. The region marked in red in the original image (a) is copied and pasted
onto the regions marked in green. Cloning the pasted region seamlessly will not match the blur of the
original image. Matching the blur produces a result (b) that preserves the shallow depth of field of the
original photograph. Photo credit: Flickr user patterbt.

lects the bands to remove frequencies frombased on the frequencies in the target image.However,

harmonization will not be able to remove all the noise, and often, the nal result will be slightly

blurred compared to the original.

Color:While our frameworkwas described for grayscale images, it can be easily extended to color.

It is important to manipulate color channels in a decorrelated color space so as not to create

color shifts and we have found that CIELAB works well. We convert the images to CIELAB space

and then harmonize and composite each channel separately. In some cases, the user might like

to match the color palette of the source and target images and we use the N-dimensional PDF

transfer method of Pitié et al. [] to match the a and b channels of the source image to those of

the target before harmonizing them (Figs. .., .., and ..).
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Blur: Another scenario in compositing is when the user combines two regions with different blur.

is is illustrated in Fig. .. where the user segments a sharp object and clones it onto a blurred

region expecting the inserted object to have the same defocus properties as the source. By har-

monizing the inserted object with the defocused objects it is replacing, we are able to produce an

image with realistic blur. We used a 4-level pyramid to generate this example because of the large

amount of blur.

Mixed boundary constraints: One of the advantages of pyramid compositing is the ability to

incorporate boundary conditions for both alpha matting and seamless cloning. is is illustrated

by Figs. .. and .., where the nal composite has seamless boundaries in some parts (the road

and the sand) and alpha matte based boundaries elsewhere (the car and the hydrant).

Limitations: Like Heeger-Bergen texture synthesis, our noise and texture matching technique

makes the assumption that the target noise and texture can bematched by shaping the subbands

of the noise image. Such techniques are known to work well on stochastic textures but do not

reproduce every texture pattern accurately. In particular, it is known that histogrammatching of

pyramid subbands cannot be used to create textures that are correlated across scales [].ere-

fore, in some cases there might be differences in the noise between the target and harmonized

images. For example, the harmonized image in Fig. .. does not capture the small cracks in the

painting and the result in Fig. .. does not replicate the structure of the sand. In spite of this,

harmonization leads to a substantial improvement in the realism of the composite, and in most

cases, it is difficult to see the differences without looking at the original target image.

Also, a fundamental assumption of our approach is that matching the statistics of the source

and target images will harmonize them. is may not always be the case, especially in situations

where the objects being matched are completely different. is is illustrated in Fig. .., where

matching the images does not produce the right colors and leads to excessive noise on the fore-





Chapter . Multi-scale Representations for Image Appearance

(a) Source (b) Target

(c) Harmonized result

Figure 2.7.5: Compositing with mixed boundary conditions. In this example, the user clones a Porsche
(a) into an old photograph of a Ferrari (b). Our result (c) matches the noise on the images, and alpha
mattes the car while enforcing seamless boundaries on the road at the bottom. Photo credits: Flickr
users teliko82 (a), and prorallypix (b).
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(a) Source / Target (b) Harmonized result

Figure 2.7.6: Limitations. A hydrant in snow ((a) top) has been composited into sand ((a) bottom).
Harmonization matches the snow to the sand, and compositing with mixed boundary conditions produces
seamless boundaries along the sand and matting along the hydrant. However, the texture generated is
not able to match the structure of the original sand. Also, because the target image does not have
shadows or a hydrant, harmonization is not able to produce realistic shadows and has added excessive
noise on the hydrant. Photo credits: Flickr users Bob.Fornal (a,top) and lrargerich (a,bottom).

ground object.

is can be solved by matching the appearance of different parts of the target image in slightly

different ways. We are looking at ways of determining this automatically and applying the har-

monization while ensuring we do not introduce artifacts.

. Summary

In this chapter, we used a statistical model for image appearance that used the histograms of a

multi-scale decomposition to represent different aspects of appearance such as global and local
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contrast, texture, noise, and blur. Based on this representation, we have presented a framework

that harmonizes the appearance of images before compositing them. By automatically matching

different aspects of visual appearance, our technique takes the burden of correcting for themaway

from the user. We have also presented a novel compositing scheme that allows us to enforce both

matte-based and seamless boundaries in the same framework.

ere are other aspects of visual appearance that are important to the realism of a composite

that our work does not address.emost important of these are shadows and shading. Automat-

ically estimating and correcting the lighting in single images is a difficult vision problem and is

an interesting avenue for future work.

e ability to realistically combine multiple images is important in many vision and graphics

applications such as image mosaicing and digital photomontage, and we would like to apply our

methods in their context too. One particularly interesting scenario is the problem of video object

insertion. In the next chapter, we will explore one instance of this problem— replacing facial per-

formances in videos. In particular, we demonstrate a system that uses models for face geometry

to track, align, and subsequently, composite faces in videos.
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(a) Target (b) Seamless (c) Naive (d) Smooth (e) Smooth
images cloning histogram histogram histogram and

matching matching noise matching

Figure 2.7.7: Matching contrast and noise. Our method adapts the same source image to match tar-
get images (a) with different contrast and noise. Gradient domain compositing (b) produces unrealistic
results because of the discrepancies between the images being combined. Naive histogram matching (c)
results in over-sharpening and haloing artifacts. Smooth histogram matching method (d) removes these
artifacts, but the noise is inconsistent. Matching both the structure and the noise removes these incon-
sistencies and produces photo-realistic results (e). Photo credits: Flickr users Okinawa Soba (second
row), zsoltika (third row), and freeparking (fourth and fifth rows).





3
Editing Faces in Videos

I C ,        across images and,

used it to blend disparate images and create photo-realistic composites. In this chapter we

discuss an extension of the ideas in that work, to the problem of video compositing. Video com-

positing is signi cantly harder because of the spatial and temporal dynamics inherent to video

sequences. For example, in chapter , we assumed that the input images were geometrically

aligned by the user, but doing this for every frame of a video is very tedious. Instead, in this

chapter, we propose techniques to automatically transfer both the geometry and appearance of

a video to a different sequence. In particular, we focus on the problem of automatic video face
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(a) Source (b) Target (c) Aligned (d) ree frames of the blended result

Figure 3.1.1: Video face replacement. Our method for face replacement requires only single-camera
video of the source (a) and target (b) subject, which allows for simple acquisition and reuse of existing
footage. We track both performances with a multilinear morphable model then spatially and temporally
align the source face to the target footage (c). We then compute an optimal seam for gradient domain
compositing that minimizes bleeding and flickering in the final result (d).

replacement.

e work in this chapter was done in collaboration with other researchers. While the entire

work has been reproduced below for the sake of completeness, this dissertation’s author’s primary

technical contributions are described in Sec. ..

. Introduction

Techniques for manipulating and replacing faces in photographs have matured to the point that

realistic results can be obtained with minimal user input (e.g., [, , ]). Face replacement in

video, however, poses signi cant challenges due to the complex facial geometry as well as our per-

ceptual sensitivity to both the static and dynamic elements of faces. As a result, current systems

require complex hardware and signi cant user intervention to achieve a sufficient level of realism

(e.g., Alexander et al. []).

is chapter presents a method for face replacement in video that achieves high-quality re-

sults using a simple acquisition process. Unlike previous work, our approach assumes inexpensive

hardware and requiresminimal user intervention. Using a single camera and simple illumination,

we capture source video that will be inserted into a target video (Fig. ..). We track the face in

both the source and target videos using a -dmultilinearmodel.enwewarp the source video in
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both space and time to align it to the target. Finally, we blend the videos by computing an optimal

spatio-temporal seam and a novel mesh-centric gradient domain blending technique.

Our system replaces all or part of the face in the target video with that from the source video.

Source and target can have the same person or two different subjects. ey can contain simi-

lar performances or two very different performances. And either the source or the target can be

existing (i.e., uncontrolled) footage, as long as the face poses (i.e., rotation and translation) are

approximately the same. is leads to a handful of unique and useful scenarios in lm and video

editing where video face replacement can be applied.

For example, it is common for multiple takes of the same scene to be shot in close succession

during a television or movie shoot. While the timing of performances across takes is very similar,

subtle variations in the actor’s in ection or expression distinguish one take from the other. In-

stead of choosing the single best take for the nal cut, our system can combine, e.g., the mouth

performance from one take and the eyes, brow, and expressions from another to produce a video

montage.

A related scenario is dubbing, where the source and target subject are the same, and the source

video depicts an actor in a studio recording a foreign language track for the target footage shot

on location. e resulting video face replacement can be far superior to the common approach of

replacing the audio track only. In contrast to multi-take video montage, the timing of the dub-

bing source is completely different and the target face is typically fully replaced, although partial

replacement of just the mouth performance is possible, too.

Another useful scenario involves retargeting existing footage to produce a sequence that com-

bines an existing backdrop with a new face or places an existing actor’s facial performance into

new footage. Here the new footage is shot using the old footage as an audiovisual guide such that

the timing of the performances roughlymatches. Our video-basedmethod is particularly suitable

in this case because we have no control over the capture of the existing footage.

A nal scenario is replacement, where the target facial performance is replacedwith an arbitrary
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source performance by a different subject. is is useful, for example, when replacing a stunt

actor’s face, captured in a dangerous environment, with the star actor’s face, recorded in a safe

studio setting. In contrast to retargeting, where the source footage is shot using the target as an

audiovisual guide to roughly match the timings, the performance of the source and target can be

very different, similar to dubbing but with different subjects.

Furthermore, it is entertaining for amateurs to put faces of friends and family into popular

movies or music videos. Indeed, an active community of users on YouTube has formed to share

such videos despite the current manual process of creating them (e.g., search for “Obama Dance

Off”). Our video face replacement systemwould certainly bene t these users by dramatically sim-

plifying the currently labor-intensive process of making these videos.

Video face replacement has advantages over replacing the entire body or the head in video. Full

body replacement typically requires chroma key compositing (i.e., green screening) or rotoscop-

ing to separate the body from the video. Head replacement is difficult due to the complexities

of determining an appropriate matte in regions containing hair. Existing methods for both body

and head replacement require expensive equipment, signi cant manual work, or both []. Such

methods are not practical in an amateur setting and are also time consuming and challenging for

professionals.

Our system does rely on a few assumptions about the input videos. It works best when the

illumination in the source and target videos is similar. However, we mitigate this limitation by

nding a coherent spatio-temporal seam for blending that minimizes the differences between

the source and target videos (Sec. .). Second, we assume that the pose of faces in the source and

target videos is±45o from frontal, otherwise automatic tracking and alignment of the faces will

fail (Sec. .). is assumption could be waived by employing user assistance during tracking.

e main contribution of this work is a new system for video face replacement that does

not require expensive equipment or signi cant user intervention. We developed a novel spatio-

temporal seam nding technique that works on meshes for optimal coherent blending results.
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We demonstrate the applicability of our approach on a number of examples in four scenarios:

video montage (Fig. ..), dubbing (Fig. ..), retargeting (Figs. .. and ..), and replacement

(Fig. ..). We present results of a user study on Mechanical Turk that demonstrates that our

system is sufficient for plausible face replacement and difficult to distinguish from real footage

(Sec. .).

. Related Work

Face replacement in images and video has been considered in a variety of scenarios, including an-

imation, expression transfer, and online privacy. However, the direct video-to-video face transfer

presented in this chapter has been relatively unexplored. We brie y describe previous work on

face replacement and compare these approaches to our system.

.. Editing faces in images

Face editing and replacement in images has been a subject of an extensive research. For exam-

ple, the method by Blanz et al. [] ts a morphable model to faces in both the source and target

images and renders the source face with the parameters estimated from the target image. e

well-known photomontage [] and instant cloning systems [] allow for replacing faces in pho-

tographs using seamless blending []. Bitouk et al. [] describe a system for automatic face

swapping using a large database of faces. ey use this system to conceal the identity of the face

in the target image. Face images have been also used as priors to enhance face attractiveness us-

ing global face warping [] or to adjust tone, sharpness, and lighting of faces []. e system

of Sunkavalli et al. [] models the texture, noise, contrast and blur of the target face to improve

the appearance of the composite. More recently, Yang et al. [] use optical ow to replace face

expressions between two photographs. e ow is derived from -d morphable models that are

t to the source and target photos. It is not clear whether any of these methods could achieve
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temporally coherent results when applied to a video sequence.

.. Face replacement in video using -d models

e traditional way to replace faces in video is to acquire a -d face model of the actor, to ani-

mate the face, and to relight, render, and composite the animated model into the source footage.

e -d face model of the actor can be captured using marker-based [, , ], structured

light [, , , ], or passive multi-view stereo approaches [, , ]. Model-based face

replacement can achieve remarkable realism. Notable examples include the recreation of actors

for e Matrix Reloaded [], e Curious Case of Benjamin Button [], and the Digital Emily

project []. However, these methods are expensive, and typically require complex hardware and

signi cant user intervention to achieve a sufficient level of realism.

.. Video-to-video face replacement

Purely image-based methods do not construct a -d model of the actor. Bregler et al. [] and Ez-

zat et al. [] replace the mouth region in video to match phonemes of novel audio input using

a database of training images of the same actor. Flagg et al. [] use video-textures to synthe-

size plausible articulated body motion. Kemelmacher-Shlizerman et al. [] make use of image

collections and videos of celebrities available online and replace face photos in real-time based

on expression and pose similarity. However, none of these methods are able to synthesize the

subtleties of the facial performance of an actor.

.. Morphable models for face synthesis

Closely related to our work are image-based face capture methods [, , , , ]. ese

approaches build a morphable -d face model from source images without markers or special face

scanning equipment. We use the multilinear model by Vlasic at al. [] that captures identity,
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Figure 3.2.1: An overview of our method. (a) Existing footage or single camera video serves as input
source and target videos. (b) Both sequences are tracked and (c) optionally retimed to temporally align
the performances. (d) The source face is spatially aligned in the target video. (e) An optimal seam is
computed through the target video to minimize blending artifacts, and (f) the final composite is created
with gradient-domain blending.

expression, and visemes in the source and target videos. Existing approaches use the estimated

model parameters to generate and drive a detailed -d textured face mesh for a target identity,

which can be seamlessly rendered back into target footage. In general, these systems assume the

source actor’s performance, but not their face, is desired in the newly synthesized output video.

In contrast, our approach blends the source actor’s complete face and performance, with all of its

nuances intact, into the target.

. Overview

Figure .. shows an overview of our method. In order to replace a source face with a target

face, we rst model and track facial performances of both source and target with the multilin-

ear method and data of Vlasic et al. []. eir method estimates a multilinear model from -d

face scans of different identities, expressions, and speech articulations (i.e., visemes). It tracks

parameters for these attributes and the -d pose of the face (given as a rotation, translation, and

scale) over a video sequence. At each frame, the pose, the multilinear model, and its parameters
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can be used to generate a -d mesh that matches the geometry of the subject’s face. A sufficient

approximate t is obtainable even for new faces that are not present in the original dataset. We

reprocessed the original training data from Vlasic et al. covering  identities ×  expressions

×  visemes–a total of  face scans–placing them into correspondence with a face mesh that

extends beyond the jaw and chin regions (Sec. .).

In some scenarios it is important that the timing of the facial performance matches precisely

in the source and the target footage. However, it might be very tedious to match these timings

exactly as demonstrated by the numerous takes that are typically necessary to obtain compelling

voiceovers (e.g., when re-recording a dialog for a lm.) Instead, we only require a coarse synchro-

nization between source and target videos and automatically retime the footage to generate a

precise match for the replacement.

After tracking and retiming, we blend the source performance into the target video to produce

the nal result. is blending makes use of gradient-domain compositing to merge the source ac-

tor’s face into the target video.While gradient domain compositing can produce realistic seamless

results, the quality of the composite is often tied to the seam along which the blend is computed.

Using an arbitrary seam is known to lead to bleeding artifacts. To minimize these artifacts we

automatically compute an optimal spatio-temporal seam through the source and target thatmin-

imizes the difference across the seam on the face mesh and ensure that the regions being com-

bined are compatible. In the second stage we use this seam tomerge the gradients and recover the

nal composite video. For the results shown in this chapter, each of which is about  seconds,

processing requires about  minutes.
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. Face Tracking

.. Input

Footage for all examples, except those that reuse existing footage, was captured with a Canon Ti

camera with  mm and  mm lenses at  frames per second. In-lab sequences were lit with

 W studio lights placed on the left and right and in front of the subject, softened by umbrella

re ectors. When appropriate, we used the target video as an audio-visual guide during capture of

the source (or vice versa) to approximately match timing. All such examples in this chapter were

captured in - takes. For pose, actors were simply instructed to face the camera; natural head

motion is accounted for with tracking.

.. Tracking

To track a face across a sequence of frames, the method of Vlasic et al. [] computes the pose

and attribute parameters of the multilinear face model that best explain the optical ow between

adjacent frames in the sequence. e multilinear face model M , an N-mode tensor with a total

of 3K × D2 × . . . × DN elements (where K is the number of vertices in a single face mesh), is

obtained via N-mode singular value decomposition (N-mode SVD) from the N-mode data tensor

containing the vertex positions of the original scan data (the Cartesian product over expression,

viseme, and identity).

With the multilinear model in hand, the original face data can be interpolated or extrapolated

to generate a new face as

f = M ×2 w⊤
2 ×3 w⊤

3 ×4 w⊤
4 , (.)

where mode  corresponds to vertex positions in the -mode model, wi is a Di × 1 column vector

of parameters for the attribute corresponding to the ith mode (i.e., one of expression, viseme, or

identity), f is a 3K-element column vector of new vertex positions, and the ×n operator is the
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Figure 3.4.1: User interface for tracking. To refine the initialization or correct tracking at a specific key
frame, the user can adjust a few markers on the face to adjust pose, expression, or viseme.

mode-n product, de ned between a tensor and a matrix. We refer the reader to Vlasic et al. []

for more details.

.. Initialization

Since tracking is based on optical ow, initialization is critical, as errors in the initializationwill be

propagated throughout the sequence. Moreover, tracking can go astray on troublesome frames,

e.g., due to motion blur, extreme pose change, high frequency lighting, or occlusions. erefore,

we also provide a simple user interface that can ensure good initialization and can correct tracking

for troublesome frames.

e interface allows the user to adjust positions ofmarkers on the eyes, eyebrows, nose,mouth,

and jawline, from which the best- t pose and model parameters are computed. e user can al-

ternate between adjusting pose and each attribute individually; typically,  iteration of each is

sufficient for good initialization (Fig. ..).

We start by automatically detecting the face []. Next, we localize facial features [] (e.g.,
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the corners of the mouth, eyes, and nose) in the rst frame of a sequence. en, we compute the

initial pose that best aligns the detected features with the corresponding source features in the

face mesh. is initial face mesh is generated from the multilinear model using a user-speci ed

set of initial attributes corresponding to the most appropriate expression, viseme, and identity.

Holding all but one attribute’s parameters xed, we can project the multilinear model M onto

the subspace corresponding to the remaining attribute, e.g., for the third attribute:

A3 = M ×2 w⊤
2 ×4 w⊤

4 , (.)

for the 3K × D3 matrix A3. Given Ai and a column vector g of target vertex positions, we can

compute parameters for the ith attribute that best t the target geometry as

argmin
wi

∥g− Aiwi∥2. (.)

e least squares solution to Eqn. . is given as

wi = (A⊤
i Ai)

−1A⊤
i g. (.)

To t parameters for the ith attribute to image spacemarkers, we take the subset of themultilinear

model corresponding to the (x, y) coordinates of mesh vertices that should align to the markers

and apply Eqn. ., populating g with marker positions, transformed to the coordinate frame of

the model via an inverse pose transformation.

While multilinear tracking does well at tracking expression and viseme, which vary from frame

to frame, we found that identity, which is computed over the full sequence and held constant, was

not. Even after multiple iterations of tracking, each of which updates identity parameters, those

parameters changed very little from their initial values. is caused signi cant problems when

tracking with a full face model, where it is critical that the mesh covers the subject’s entire face,
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and only their face (no background) over the entire sequence. erefore it is important to have

an accurate initialization of identity.

We employ the FaceGen Modeller [] in order to obtain a better initialization of the identity

parameters. FaceGen generates a -d mesh based on a frontal face image and, optionally, a pro-

le image. e input images can be extracted from the original video sequences or downloaded

from the Internet when reusing existing footage. e input images need to depict the subject

with a closed-mouth neutral expression. FaceGen requires minimal user input to specify about 

markers per image. All meshes created by FaceGen are themselves in correspondence. erefore,

we can register the FaceGen mesh with the multilinear model using the same template- tting

procedure [] we used to register the original scan data. We then t the multilinear model to

the registered FaceGen mesh using Procrustes alignments to our current best- t mesh and us-

ing Eqs. . and . to solve for the best- t identity parameters. In this optimization we only use

about  percent of the original mesh vertices. e process typically converges in  iterations.

.. Key framing

We can use the same interface (Fig. ..) for adjusting pose and attribute parameters at speci c

key frames where automatic tracking fails. First, we track the subsequences between each pair of

user-adjusted key frames in both the forward and reverse directions and linearly interpolate the

two results. We then perform additional tracking iterations on the full sequence to re ne pose

and parameter estimates across key frame boundaries. Note that none of the results shown in

the chapter required key framing.
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. Spatial and Temporal Alignment

.. Spatial alignment

From an image sequence I, where I(x, t) denotes the value at pixel position x in frame t, track-

ing produces a sequence of attribute parameters and pose transformations. For each frame t,

f(t) is the column vector of vertex positions computed from attribute parameters at time t us-

ing Eqn. ., and fi(t), the ith vertex at time t. Per-frame pose consists of a scale s, 3 × 3 rotation

matrix R, and a translation vector t that together transform the face meshes into their tracked

positions in image space coordinates. Subscripts S and T denote source and target, respectively.

To align the source face in the target frame, we use the face geometry from the source sequence

and pose from the target sequence.at is, for frame t, the aligned position of the ith source vertex

position is given as

f′i,S(t) = sT(t)RT(t)fi,S(t) + tT(t) (.)

We also take texture from the source image IS; texture coordinates are computed similarly to

Eqn. . using instead both source geometry and source pose.

While we track the full face mesh in both source and target sequences, the user may choose

to replace only part of the target face, for example, in the multi-take video montage result in

Fig. ... In this case, the user either selects from a prede ned set of masks – eyes, eyes and nose,

ormouth – or paints an arbitrarymask on the face. In these cases, f′S represents only those vertices

within the user-speci ed mask.

.. Retiming

We retime the footage using Dynamic Time Warping (DTW) []. DTW is a dynamic program-

ming algorithm that seeks a monotonic mapping between two sequences that minimizes the to-
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(a) Lip motion before retiming (b) Lip motion after retiming

(c) Target frames before retiming

(d) Source frames

(e) Target frames after retiming

Figure 3.5.1: Video retiming. Motion of the center vertex of the lower lip for source and target before
retiming (a) and after (b). Corresponding cropped frames from the target before retiming (c), the source
(d), and the target after retiming (e).
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tal cost of pairwise mappings. e output of DTW provides a reordering of one sequence to best

match the other. Here we de ne pairwise cost between source and target frames according to the

motion of the mouth in each frame. We found that computing cost based on motion instead of

absolute position wasmore robust across differences inmouth shape and articulation in different

subjects.

Speci cally, for the loop of vertices along the interior of the upper and lower lip, we compare the

average minimum Euclidean distance between the rst partial derivatives with respect to time.

Comparing velocity of mouth vertices for this step, as opposed to position, ensures robustness to

differences inmouth shape between source and target.We compute these partial derivatives using

rst order differencing on the original vertex positions without transforming to image space. Let

mi,S(t1) andmj,T(t2) be the partial derivatives for the ith vertex in the source mouth at time t1 and

the jth vertex in the target mouth at time t2 , respectively. en the cost of mapping source frame

t1 to target frame t2 for DTW is

∑
i

min
j

||mi,S(t1)−mj,T(t2)||+min
j

||mj,S(t1)−mi,T(t2)||. (.)

DTW does not consider temporal continuity. e resulting mapping may include ‘stairstep-

ping’, where a given frame is repeatedmultiple times, followed by a non-consecutive frame, which

appears unnatural in the retimed video. We smooth themapping with a low-pass lter and round

the result to the nearest integer frame.is maintains sufficient synchronization while removing

discontinuities. While there are more sophisticated methods that can directly enforce continuity

e.g., Hidden Markov Models (HMMs), as well as those for temporal resampling, we found this

approach to be fast and well-suited to our input data, where timing is already fairly close.

Since the timing of the original source and target videos is already close, the mapping can be

applied from source to target and vice versa (for example, to maintain important motion in the

background of the target or to capture the subtle timing of the source actor’s performance.) For
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simplicity, in the following sections fS(t) and fT(t), as well as their corresponding texture coor-

dinates and texture data, refer to the retimed sequences when retiming is employed and to the

original sequences when it is not. Fig. .. highlights the result of retiming inputs with dialog

with DTW.

. Blending

.. Optimal seam finding

Having aligned the source face texture to the target face, we would like to create a truly photo-

realistic composite by blending the two together. While this can be accomplishing using gradient-

domain fusion [], we need to specify the region from the aligned video that needs to be blended

into the target video, or alternatively, the seam that demarcates the region in the composite that

comes from the target video from the region that comes from the aligned video. While the edge

of face mesh could be used as the seam, in many cases it cuts across features in the video leading

to artifacts such as bleeding (see Fig. ..). In addition, this seam needs to be speci ed in every

frame of the composite video, making it very tedious for the user to do.

We solve this problem by automatically estimating a seam in space-time that minimizes the

differences between the aligned and target videos, thereby avoiding bleeding artifacts. While a

similar issue has been addressed in previous work [, , ], our problem has two important

differences. First, the faces we are blending often undergo large (rigid and non-rigid) transforma-

tions, and the seam computation needs to be handle this. Second, it is important that the seam

be temporally coherent to ensure that the composited region does not change substantially from

frame to frame leading to ickering artifacts (see Fig. ..).

Our algorithm incorporates these requirements in a novel graph-cut framework that estimates

the optimal seam on the face mesh. For every frame in the video, we compute a closed polygon on
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(a) No seam (b) Image-space (c) Mesh-space (d) Mesh-space seam
computation seam computation seam computation computation with

temporal coherence

Figure 3.6.1: Seam computation for blending. The face mask boundary (blue), user-specified region
to be preserved (red), and the optimal seam (green) are marked in each source frame. (a) Directly
blending the source and target produces results with strong bleeding artifacts. (b) Computing a seam in
image space improves results substantially but does not vary as pose and expression change. (c) A seam
computed on the mesh can track these variations but may lead to flickering artifacts (see accompanying
video) without additional constraints. (d) Enforcing temporal coherence minimizes these artifacts.
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the facemesh that separates the source region fromthe target region; projecting this polygononto

the frame gives us the corresponding image-space seam. Estimating the seam inmesh-space helps

us handle our two requirements. First, when the face deforms in the source and target videos,

the face mesh deforms to track it without any changes in its topology.emesh already accounts

for these deformations, making the seam computation invariant to these changes. For example,

when a subject talks, the vertices corresponding to his lips remain the same, while their positions

change. us, a polygon corresponding to these vertices de nes a time-varying seam that stays

true to the motion of the mouth. Second, estimating the seam on the mesh allows us to enforce

temporal constraints that encourage the seam to pass through the same vertices over time. Since

the face vertices track the same face features over time this means that same parts of the face are

preserved from the source video in every frame.

We formulate the optimal seam computation as a problem of labeling the vertices of the face

mesh as belonging to the source or target video. We do this by constructing a graph on the basis

of the face mesh and computing the min-cut of this graph.e nodes of this graph correspond to

the vertices in the face aligned mesh over time (i.e., fi(t)∀i, t). e edges in the graph consist of

spatial edges corresponding to the edges in the mesh (i.e., all the edges between a vertex fi(t) and

its neighbor fj(t)) as well as temporal edges between corresponding vertices from frame to frame

(i.e., between fi(t) and fi(t+ 1)).

Similar to previouswork ongraphcut textures [] andphotomontage [],wewant the seamto

cut through edges where the differences between the source and target video frames areminimal.

is is done by setting the weights on the spatial edges in the graph between neighboring vertices

fi(t) and fj(t) as:

Ws(fi(t), fj(t)) = ||IS(fi(t), t)− IT(fi(t), t)|| (.)

+||IS(fj(t), t)− IT(fj(t), t)||
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When both the source and the target videos have very similar pixel values at vertices fi(t) and

fj(t), the corresponding weight term takes on a very small value. is makes it favorable for a

min-cut to cut across this this edge.

Wewould also like the seam to stay temporally coherent to ensure that the nal composite does

not icker. We ensure this by setting the weights for the temporal edges of the graph as follows:

Wt(fi(t), fi(t+ 1)) = W(fi(t+ 1), fi(t)) (.)

= λ(||IS(fi(t), t)− IS(fi(t), t+ 1)||−1

+||IT(fi, t)− ITfi, t+ 1)||−1),

where λ is used to control the in uence of the temporal coherence. Unlike the spatial weights,

these weights are constructed to have high values when the appearance of the vertices does not

change much over time. If the appearance of vertex fi(t) does not change over time in either the

source or target video, this weight term takes on a large value, thus making it unlikely that the

min-cut would pass through this edge, thus ensuring that this vertex has the same label over

time. However, if the appearance of the vertex does change (due to the appearance of features

such as hair, eyebrows, etc.), the temporal weight drops. is makes the seam temporally coher-

ent while retaining the ability to shift to avoid features that cause large differences in intensity

values. In practice, we set λ as the ratio of the sum of the spatial and temporal weights, i.e.,

λ =
∑

i,j,t Ws(fi(t), fj(t), t)/
∑

i,j,tWt(fi(t), fi(t + 1)). is ensures that the spatial and temporal

terms are weighted approximately equally.

e vertices on the boundary of the face mesh in every frame are labeled as target vertices as

they de nitely come from the target videos. Similarly, a small set of vertices in the interior of

the mesh are labeled as source vertices. is set can be directly speci ed by the user in one single

frame.

Having constructed this graph, we use the alpha-expansion algorithm [] to label the mesh
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vertices as belonging to the either the source or target videos. e construction of the graph en-

sures that, in every frame, the graph-cut seam forms a closed polygon that separates the target

vertices from the source vertices. From these labels we can explicitly compute this closed polygon

∂P(t) = {p0(t), p1(t), · · · , pmt
(t)} for every frame. In addition, we also project these labels onto

the frames to compute the corresponding image-space mask for compositing.

Fig. .. shows the results of estimating the seam using our technique on an example video

sequence. As can be seen in this example, using the edge of the face mesh as the seam leads to

strong bleeding artifacts. Computing an optimal seam ensures that these artifacts don’t occur.

However, without temporal coherence, the optimal seam ”jumps” from frame to frame, leading

to ickering in the video. By computing the seam on the mesh using our combination of spatial

and temporal weights we are able to produce a realistic composite that stays coherent over time.

Please see the accompanying video to observe these effects.

.. Compositing

Having estimated the optimal seam for compositing, we blend the source and target videos using

gradient-domain fusion. We do this using a recently proposed technique that uses mean value

coordinates [] to interpolate the differences between the source and target frames along the

boundary. We re-use the face mesh to interpolate these differences. In particular, for every frame

of the video, we compute the differences between source and target frames along the seam ∂P(t),

and interpolate them at the remaining source vertices using mean value coordinates. ese dif-

ferences are then projected onto the image and added to the source video to compute the nal

blended composite video.
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(a) Source and target frame pairs

(b) Blending result

(c) Source and target frame pairs

(d) Blending result

Figure 3.7.1: Multi-take video montages. (top) Two handheld takes of the same dialog and (bottom) two
handheld takes of poetry recitation. (a,c) Retimed source and target frames (left and right, respectively)
with the region to be replaced marked in the first target frame. (b,d) Frames from the blended result
that combine the target pose, background, and mouth with the source eyes and expression.
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(a) Source and target frame pairs

(b) Blending result

Figure 3.7.2: Dubbing using face replacement. (a) Cropped source and target frames (left and right,
respectively) from an indoor recording of dialog in English and an outdoor recording in Hindi, respectively.
(b) Frames from the blended result. Note how the differences in lighting and mouth/chin position
between source and target are seamlessly combined in the result.

. Results and Discussion

.. Results

We show results for a number of different subjects, capture conditions, and replacement scenar-

ios. Fig. .. shows multi-take video montage examples, both shot outdoors with a handheld

camera. Fig. .. shows dubbing results of a translation scenario, where the source and target de-

pict the same subject speaking in different languages, with source captured in a studio setting and

target captured outdoors. Figs. .. shows a replacement result with different source and target

subjects and notably different performances. Fig. .. shows a retargeting result with different

subjects, where the target was used as an audiovisual guide and the source retimed to match the

target.
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.. User interaction

Although themajority of our system is automatic, some user interaction is required.is includes

placing markers in FaceGen, adjusting markers for tracking initialization, and specifying the ini-

tial blending mask. Interaction in FaceGen required - minutes per subject. Tracking initializa-

tion was performed in less than a minute for all videos used in our results; the amount of inter-

action here depends on the accuracy of the automatic face detection and the degree to which the

subject’s expression and viseme differ from closed-mouth neutral. Finally, specifying themask for

blending in the rst frame of every example took between  seconds and minute. For any given

result, total interaction time is therefore on the order of a fewminutes, which is signi cantly less

than what would be required using existing video compositing methods.

.. Comparisons

Vlasic et al. [] use a face tracking and replacement pipeline that is similar to ours. We repro-

cessed their original scan data [] to place it into correspondence with a face mesh that covers

the full face, including the jaw. is was done for two reasons. First, the original model only cov-

ered the interior of the face; this restricted us to scenarios where the timing of the source and

target’s mouth motion must match exactly. While this is the case for multi-take montage and

some dubbing scenarios when the speech is the same in both source and target videos, it presents

a problem for other situations when themotion of the target jaw and sourcemouth do notmatch.

For these situations – changing the language during dubbing or in arbitrary face replacements –

a full face model is necessary so that the source’s jaw can also be transferred (Fig. .. a).

Second, our experience using the original interior-only face model con rmed earlier psycho-

logical studies that had concluded that face shape is one of the stronger cues for identity. When

source and target subjects differ, replacing the interior of the face was not always sufficient to

convey the identity of the source subject, particularly when source and target face shapes differ
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(a) Source and target frame pairs

(b) Blended result

Figure 3.7.3: Face replacement. (top) Cropped source and target frames (left and right, respectively)
showing casual conversation and head motion, with the target shot handheld. (bottom) Frames from
the blended result, combining frames from two subjects with notably different expression, speech, pose,
and face shape.

signi cantly.

In Vlasic et al., face texture can come fromeither the source or the target, andmorphablemodel

parameters can be a mixture of source and target. When the target texture is used, as in their

puppetry application, blending the warped texture is relatively easy. However, the expressiveness

of the result stems exclusively from the morphable model, which is limited and lacks the detail

and nuances of real facial performances in video. On the other hand, taking face texture from the

sourcemakes the task of blending farmore difficult; as can be seen in Fig. .., the naïve blending

of source face texture into the target used in Vlasic et al. produces bleeding and ickering artifacts

that are mitigated with our seam nding and blending method.

.. User study

To quantitatively and objectively evaluate our system, we ran a user study using Amazon’s Me-

chanical Turk. Our test set consisted of  videos:  unmodi ed videos,  videos with replaced
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(a) Source and target frame pairs

(b) Blended result

Figure 3.7.4: Face retargeting. (top) Cropped source (retimed) and target frames (left and right, resp.)
from indoor recordings of poetry recitation. (bottom) Frames from the blended result combine the
identity of the source with the background and timing of the target.

faces, and four additional videos designed to verify that the subjects were watching the videos

and not simply clicking on random responses. All videos were presented at 640 × 360 pixels for

ve seconds and then disappeared from the page to prevent the subject from analyzing the nal

frame.

e subjects were informed that the video they viewed was either “captured directly by a video

camera” or “manipulated by a computer program.” ey were asked to respond to the statement

“is video was captured directly by a video camera” by choosing a response from a ve-point

Likert scale: strongly agree (), agree (), neither agree nor disagree (), disagree (), or strongly

disagree (). We collected  distinct opinions per video and paid the subjects $0.04 per opinion

per video.e additional four videos beganwith similar footage as the rest but then instructed the

subjects to click a speci c response, e.g., ‘agree’, to verify that theywere paying attention. Subjects

who did not respond as instructed to these videos were discarded from the study. Approximately

 opinions per video remained after removing these users.

e average response for the face-replaced videos was 4.1, indicating that the subjects believed

the videos were captured directly by a camera and were not manipulated by a computer program.

e average response for the authentic videos was 4.3, indicating a slightly stronger belief that





Chapter . Editing Faces in Videos

(a) (b) (c)

Figure 3.7.5: Failure cases. (a) Split frame of two nearby frames in a blended result where the model
does not cover the full face1. (b) When the tracking fails, the source content for replacement is distorted,
seen here after alignment. (c) Significant differences in lighting between source and target lead to an
unrealistic blended result, where the lighting on the right is darker on the source face but not in the
target environment.

the videos were captured by a camera. None of the face-replaced videos had a median score below

4 and three of the videos had a median score of 5. ese results indicate that our method can

produce convincing videos that look similar to those coming directly from a camera.

.. Limitations

Our approach is not without limitations (Fig. ..). Tracking is based on optical ow, which re-

quires that the lighting change slowly over the face. High frequency lighting, such as hard shad-

ows, must be avoided to ensure good tracking. Additionally, themethod assumes an orthographic

camera; while estimation of parameters of a more sophisticated camera model is possible, we use

the simple model and shot our input videos with longer focal lengths that better approximate an

orthographic projection. Finally, tracking often degrades beyond the range of poses outside±45o

from frontal. Evenwith successful tracking, the geometric t can cause artifacts in the nal result.

For example, the t is sometimes insufficient for the large pose differences between source and

target. is is particularly noticeable in the nose area when, for example, the head is signi cantly
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tilted downwards, causing the nose to distort slightly.

Pose is also constrained to be sufficiently similar between source and target to prevent occluded

regions in the source face from appearing in the pose-transformed target frame. For cases where

we have control over source acquisition, the source subject can be captured in a frontal pose as

we do here, or in a pose similar to the target, both ensuring no occluded regions. However when

existing footage is used as the source, it is necessary to ensure compatible pose between source

and target.is issue could be alleviated by automatic or user-assisted inpainting that derives the

missing texture from spatially and temporally adjacent pixels in the video sequence.

In all examples shown here, source / target pairs are of the same gender and approximate age

and thus of roughly similar proportions. Any difference in face shape can be accounted for by

a single global scale to ensure the source face covers the target. For vastly different face shape,

e.g., a child and adult, this may not be sufficient. However it is plausible to add a -d warping

step, similar to that used in [], that warps the target face and nearby background to match the

source before blending.

Lighting must also be similar between source and target. For multi-take montage scenarios,

where source and target are typically captured in close succession in the same setting, this con-

dition is trivially met. Likewise, when either the source or target is captured in a studio setting,

with full control over the lighting setup, this condition can also be met with the same efforts re-

quired for plausible green screening. However such matching can be difficult for novices or may

be impossible if the source and target are from existing footage.

Finally, seam nding and blending can fail for difficult inputs. For example, when hair falls

along the forehead, there may be no seam that generates a natural blend between source and

target. Strong differences in illuminations will lead to bleeding artifacts because it sometimes

is not possible for the seam to avoid such regions. Fig. .. shows some examples where these

limitations are manifested in the nal result.
Target frame from www.whitehouse.gov.



www.whitehouse.gov
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. Summary

e shape of a person’s face varies substantially with changes in speech, expression, and pose

leading to variations in appearance. In this chapter, we have shown that it is possible to capture

the subtleties of face appearance by using a multi-linear model to describe variations in face ge-

ometry. Based on this representation, we have presented a video face replacement system that

requires only single-camera video and minimal user input and is robust under signi cant differ-

ences between source and target. We have shown with a user study that results generated with

this method are perceived as realistic. Our method is useful in a variety of situations, including

multi-take montage, dubbing, retargeting, and face replacement.

ere are a number of extensions of this work that will allow it to be applied to more general

scenarios. Videos with large pose variations will require more accurate tracking algorithms as

well as inpainting to handle occlusions. Videos with vastly different face shapes would have to be

compensated using -d background warping. e ability to estimate and correct the illumination

in videos, would make this approach applicable to sequences captured under different lighting

conditions. Another interesting avenue for future work would be to extend the techniques we

discussed in Chapter  to video and combine it with the work presented in this chapter. is

would allow us to use footage that differs widely in terms of contrast, noise, texture, and blur.





4
Enhancing Image Quality using Video Clips

I   ,      to analyze and edit images.

However, we did not explicitly account for the camera photographing the scene. e prop-

erties of the camera have a profound effect on the appearance of the nal image. For example,

the camera sensor determines the resolution and noise characteristics of the image, the optics

and camera (and scene) motion lead to image blur, and exposure and white balance settings on

the camera affect the luminance and colors of the image. Analyzing images and inferring these

camera properties requires an understanding of the imaging process. is chapter utilizes one

such imaging model to enhance the images captured by a low-quality camera.
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. Introduction

Often the most important photographic moments are unexpected and difficult to predict—the

proud grandfather wanting to capture his grandson’s rst home run or a delighted mother trying

to catch that perfect smile from her daughter. In many such scenarios, the photographer has to

stay ready, nger on the trigger, trying to time the shutter release perfectly. Unfortunately, these

importantmoments are oftenmissed, leaving a photographer frustratedwith a photograph taken

just a bit too early or a touch too late. In other cases, there is no one right instant; the moment

can only be captured in a still image by combining multiple instances in time.

In these situations, a good alternative is to take a video to capture the whole action. is is

an increasingly available option as practically all cameras and phones today have a video mode.

e video provides a temporally dense sampling of the action that ensures not only that the right

moment is never missed, but that it can be revisited later on.

Unfortunately, using a video camera in lieu of a still camera comes at a cost. Even high-end

video cameras today have a much lower resolution and higher noise levels than still cameras. And

since the best camera is the one that you have with you, it is increasingly likely that these short

videos are shot on cellphones, smartphones, or iPods with low-quality cameras. Moreover, video

clips on these portable devices are compressed aggressively. As a result, a single video frame has

a much lower quality than a corresponding photograph shot with a still camera, making it less

satisfying to use directly.

In this work, we consider the problem of creating a single high-quality still image—a snap-

shot—from a video clip. e snapshots we produce have higher resolution, lower noise, and

less blur than the original video frames. By modeling the camera along with scene motion and

saliency, we can produce either a snapshot of a single moment in time where scenemotion is sup-

pressed (Fig. ..(c)), or a snapshot that summarizes the motion of salient objects and actions

(Fig. ..(d)).
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(a) Example video (b) Bicubic (c) Video snapshot (d) Video snapshot
frames upsampling with motion with motion

suppression summarization

Figure 4.1.1: Comparisons of image enhancement. (a) Four frames from a short clip showing a man
jumping from a cliff. Each of these frames has low resolution, high noise and compression, and captures
the man at only one time instant. (b) Bicubic upsampling one particular frame of interest. Note that
the high frequency texture on the rocks on the left and the trees on the right are lost, and there are
blocking artifacts in the water. Our framework leverages the multiple frames in the video to produce a
super-resolved, denoised snapshot. We can do this while suppressing the motion of the jumping man
(c) to freeze the motion in time, or while summarizing the motion (d) to capture the activity in a single
image. Note that in both these results the rocks and trees are sharper, and the blocking artifacts in the
water have been removed.

Weassume the input to our system is a short video clip and a user-speci ed reference frame.We

request a user-speci ed reference frame because picking themost importantmoment in a video is

a subjective activity that depends on the goals, intentions, and preferences of the user. Our algo-

rithm rst aligns neighboring frames in the video to the reference frame, and then combines these

frames using a Bayesian multi-image enhancement formulation to perform super-resolution, de-

noising, sharpening, and/or motion summarization.

Previous work either uses all of the aligned frames equally to generate a restored image, or

selects a single frame for each pixel to create a composition (such as digital photomontage []).

In contrast, our algorithm combines each image and pixel contribution differently using a set of
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importance-based weights. Our primary contribution is a novel importance-based framework that

bridges the gap between traditional multi-image super-resolution and multi-image compositing.

It can create images where stationary, non-salient parts of a scene are enhanced by combining

data from multiple frames, while the salient, moving objects are enhanced using support from a

single frame. Furthermore, by computing per-pixel, per-frame weights, we incorporate aspects of

lucky imaging, where poor-quality frames in the video are notweighted as heavily when computing

the resulting snapshot [].

. Related Work

Image enhancement techniques such as super-resolution and denoising have a long history in im-

age processing and computer vision. Also, recent work on image fusion has looked at the problem

of using user-de ned preferences to fuse a collection of images into a single photomontage. Our

work is related to both these problems, and in this section we brie y review these areas.

.. Image enhancement

Since the early work of Tsai andHuang [], image super-resolution has been studied extensively

and Park et al. [] present a comprehensive survey of a number of recent methods. Super-

resolution is an inherently ill-posed problem, and early work focused on using multiple low-

resolution frames with aliasing to create a high-resolution image. e image formation process

is modeled as a warping and subsampling of the high-resolution image, and these techniques

explicitly invert this process to solve for a higher-resolution image that is consistent with the

warped and blurred low-resolution observations []. Often, the parameters of the warping and

subsampling are assumed to be known; this requirement can be removed by marginalizing over

these parameters in a Bayesian framework [, ]. However, these techniques depend on the

aliasing in the low-resolution frames, and because cameras often band-limit the high frequen-
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cies to minimize aliasing, there is a theoretical limit on the amount of resolution enhancement

(approximately an upsampling factor of ) that these methods can provide [, ].

More recent work has generalized super-resolution to scenes with arbitrary motion by using

non-local means methods [] or by using high-quality optical ow methods to estimate per-

pixel motion []. Parallel to the work on multi-image super-resolution, researchers have also

looked at the problem of super-resolving a single image. is problem is less constrained than

multi-image super-resolution, and is often dealt with by using dictionaries of images patches [,

], or sparse priors []. Another way to constrain this problem is to use the fact that image

patches often recur (possibly at different scales and orientations), and recent work has used this

to spatially super-resolve images [], and spatio-temporally upsample videos [].

Our work leverages the information in all the frames of the video clip to create a super-resolved

video snapshot. Similar to classic multi-frame super-resolution [], we estimate the snapshot

by modeling the warping and subsampling, and explicitly inverting them. However, unlike most

work on super-resolution where all the pixels in the video clip are treated in the same way, we

introduce the notion of importance-based weights that encode the in uence each pixel has on

the nal snapshot. is allows us to perform a number of other operations in the multi-image

super-resolution framework.

Like super-resolution, image denoising is a well studied problem in image processing, and we

refer the reader to Chatterjee and Milanfar [] for a survey of recent work. Early work in im-

age denoising made use of the sparsity of coefficients when transformed into the wavelet do-

main [, ]; here large wavelet coefficients were assumed to correspond to image structure

and were retained, while small coefficients were removed. Edge-preserving lters [, ] have

also been used to smooth noise out while retaining image structure. Priors based on natural im-

age statistics have been incorporated in image denoising []. More recently, researchers have

looked at making use of image sparsity in the spatial domain for image denoising. is has led

to a class of algorithms where an image is modeled as consisting of a small set of patches. e K-
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SVD algorithm [] learns an over-complete dictionary for image patches that can then be used for

denoising []. In non-local means methods [], patches across the image are aggregated, using

weights based on their similarity, to smooth noise out. While all these techniques were proposed

for single images, they have been used subsequently for video clips. Many video denoising tech-

niques use motion estimation to align spatial neighborhoods. Once aligned, these frames can be

merged usingweights based on a spatio-temporal bilateral lter [] or denoised using a temporal

extension of non-local means techniques [].

Like other video denoising techniques, we combine multiple frames to denoise video clips and

create a video snapshot. However, we use a combination of weights based on sharpness, saliency,

motion accuracy, etc. that allows us to incorporate a number of other effects into the denoised

snapshot.

.. Image fusion

Agarwala et al. [] propose a system that combines multiple images to create a single photomon-

tage. In their system, users de ne objectives – locally by using strokes, or globally by specifying

attributes to be used – that are used to decide which image each pixel in the photomontage is

copied from. Similarly, “Salient Stills” [] create a single image by fusing multiple images using

different global criteria. While our goal is similar to this class of techniques, our work differs from

them in its ability to automatically combine image-enhancement as well as photomontage-style

image fusion in the same unifying framework.

. Importance-based Image Enhancement

Givenmultiple video frames and one user-selected reference frame, our goal is to generate a clean,

enhanced version of the reference frame. We adopt an image formation model that maps the re-

stored image to the original frames that are deemed “degraded”. is image formation model is
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popular in multi-image restoration techniques such as super-resolution (e.g., []). e restora-

tion process uses multiple degraded observations to invert this image formation model and esti-

mate the high-quality input. Our framework introduces importance-based weights into this in-

version process. While our framework can be easily applied to any linear image formation model,

we will discuss it here in the context of multi-image super-resolution.

Given a set of N video frames Lk, k = 1, 2, · · ·N of resolution h × w, multi-image super-

resolution seeks to combine the frames to obtain a single high-resolution sh × sw image H. e

standard super-resolution problem [] assumes a generative image formation model given by:

Lk = Ds(P(TkH)) + η, (.)

where T encodes the cameramotion, P denotes the camera’s anti-aliasing lter,Ds is a decimation

by factor s, and η is the observation noise.

Ds, P, and T are all linear operators and can be combined into a single operation Mk(·) =

Ds(P(Tk(·))). Under the assumption of zero-mean Gaussian noise, i.e., η ∼ N(0, σ2
η), this reduces

to solving for H by minimizing the following energy function:

Ed =
N∑

k=1

||(Lk −MkH)||2/σ2
η . (.)

While multi-image super-resolution is better conditioned than single-image super-resolution,

errors in alignment, saturation, noise, etc. can make solving Eqn. . ill-posed. is is often han-

dled by regularizing the solutions with a prior. By using a sparse prior on the distribution of

image gradients that is based on natural image statistics [], the total energy to minimize has

the form:

Et =
N∑

k=1

||Lk −MkH||2/σ2
η + λ(∇H)0.8. (.)

Eqn. . represents the standard multi-image super-resolution problem. e high-resolution
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k=1k=0 k=3 k=4

B

A

k=2
output image

A

B

input video frames

Figure 4.3.1: Weighted multi-image enhancement. Manipulating the weights in Eqn. 4.4 allows us
to handle multi-image enhancement operations while preserving salient objects. The weights for blue
patches A in all the frames are equal (i.e., W0 = W1 = W2 = W3 = W4), and the output patch A is a
linear combination of all the input patches Ak as in Eqn. 4.2. The weights for the green patches B are
non-zero only in frame 0 (i.e., W0 = 1,W1 = W2 = W3 = W4 = 0), and the output patch B is copied
as is from it.

image H can be solved for using iterative re-weighted least squares (IRLS) [].

In this formulation, every output pixel H(xh, yh) is a linear combination of all the aligned in-

put pixels Lk(xl, yl), k = {1, 2, · · ·N}. In many scenarios this is ideal; for example, the noise in

the low-resolution frames is most suppressed when all frames are combined. However, in some

cases, some frames (or some regions of frames) are inherently more important than others (e.g.,

a smiling face or a moving object), and it is usually desirable to preserve them in the nal result.

is idea is the basis of image fusion algorithms such as digital photomontage [], where every

output pixelH(xh, yh) is set to exactly one of the corresponding input pixels Lk(xl, yl).e choice of

which pixel is picked is decided by user-speci ed objectives. In contrast to multi-image enhance-

ment, this approach preserves important regions, but at the cost of retaining the resolution and

noise of the input frames.

Our goal is to combine aspects of these two approaches –multi-image super-resolution and im-

age fusion – into a single framework that combinesmultiple low-importance pixels while preserv-

ing important pixels as they are. To bridge this gap we introduce the notion of importance-based

weights into the restoration equation:

Et =
N∑

k=1

||Wk {Lk −MkH} ||2/σ2
η + λ(∇H)0.8. (.)
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Wk(x, y) encodes the importance of each (low-resolution) input pixel Lk(xl, yl), and decides how

they are combined to produce the (high-resolution) output pixels H(xh, yh) that they are aligned

with. e incorporation of these weights allows us to generalize Eqn. . in many different ways.

For instance, by using equal weights, i.e., Wk(xl, yl) = 1∀k, Eqn. . reduces to the original

multi-image super-resolution problem of Eqn. .. On the other hand, using sparse weights, i.e.,

Wk(xl, yl) ∈ {1, 0},
∑

k Wk(xl, yl) = 1, Eqn. . reduces to the digital photomontage framework.

More importantly, since the weights are de ned per-pixel, we can combine both of these sce-

narios in the same image, as illustrated in Fig. ... By setting the weights appropriately, some

parts of the output image can be enhanced by combining multiple frames, while the others can

be preserved from an individual frame.

While the importance-based enhancement of videos has been discussed in terms of super-

resolution in Eqn. ., it can be easily generalized beyond this operation. Many imaging oper-

ations, including ltering, denoising, deblurring, stitching, and compositing can be expressed as

a linear processing of the input video pixels, and for the appropriate choice of operatorMk, have

the same form as Eqn. ..

. Creating Video Snapshots

Based on these ideas we now discuss how to create snapshots from a video clip. We assume that

the cameramotion in the video is well-approximated by an affine transform. Given an input video

clip and the user-speci ed reference frame,wedetect interest points [] in the video frames, and

estimate an affinemotionmodel using RANSAC []. We assign the weights for each frame based

on three different spatial features – motion con dence, local sharpness, and temporal saliency –

and time. Finally, we combine the different importance weights, and use them to solve Eqn. .

for the output snapshot.
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.. Motion confidence

Motion estimation is a challenging problem, and even state-of-the-art algorithms make errors

while handling general scenes with arbitrary camera motion. To ensure that these errors do not

lead to artifacts in the snapshots, we useweights based on the re-projection error of the estimated

motion. To make this motion con dence measure robust to noise and compression artifacts, we

rst blur the frames using a low-pass Gaussian lter with σ = 1.0 to create the smoothed frames

L′ref and L′k. We then warp the ltered reference frame L′ref to the kth frame using the estimated

motion T−1
k and assign the motion con dence as:

Wm
k = N(T−1

k (L′ref)− L′k; 0, σ
2
m), (.)

where σm = 0.01. Filtering the images ensures that the differences between pixels of the blurred

images correspond to the spatially-weighted differences between neighborhoods of pixels in the

original images.

.. Local sharpness

Motion blur (due to camera or scene motion) and defocus blur (due to an out-of-focus camera)

often degrade the quality of a video.While creating a snapshot, we avoid pixels that are blurred by

using the local sharpness measured at every pixel as weights. Our local sharpness measure esti-

mates the high-frequency content in the neighborhood of a pixel, and is computed as a difference

of Gaussians of each input frame:

Wls
k = |Lk − Gσ ⊗ Lk|, (.)

where Gσ is Gaussian lter with standard deviation 3.
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.. Temporal saliency

To preserve object motion in the video, we use a temporal saliency measure that detects and pre-

serves salient regions in the scene. Many measures have been proposed for both spatial [] and

spatio-temporal saliency [].We use a simpler variation of the “ icker conspicuity”measure used

by Itti andBaldi [].Ourmethod estimates temporal saliency as the deviation of the video frames

froman estimated backgroundmodel.We rst align all the video frames andmedian lter them to

remove moving objects and create a background model for the video. We assign saliency weights

to the input pixels based on how much they deviate from this background model. To ensure that

this measure detects moving objects while staying robust to noise, compression artifacts, and

small framemisalignments, we rst blur themedian image and the video frames using a low-pass

Gaussian lter (with standard deviation set to 2.0) to create the smoothed frames L′k and L′median.

e saliency weights are then set as:

Wsal
k = 1− N(T−1

k (L′median)− L′k; 0, σ
2
sal), (.)

where σsal = 0.03. Note that because we use deviations from the median image to detect salient

objects, all stationary (and even very slow-moving objects) will not register as being salient, and

will be retained as part of the background in the nal snapshot.

While saliency can be used to capture moving people and objects, and summarize actions in

snapshots, sometimes a user might want to create snapshots where the moving parts have been

removed, i.e., a “clean-plate” image. For example, while lming a building, the pedestrians pho-

tographed walking back and forth in front of it are often undesirable elements that the pho-

tographer might want to remove. To be able to do this in our framework, we use the notion of

anti-saliency which is de ned as:

Wisal
k = 1−Wsal. (.)
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is formulation gives higher weights to stationary parts of the scene while removing transient

objects.

.. Time

Artists and scientists often use tools such as shear, blur, and action lines [] to create the percep-

tion of movement in static images. We manipulate the saliency weights estimated from Eqn. .

using time to create perceptual cues about the motion of the salient objects in the snapshot. In

particular, we use three different weighting schemes:

. Sampling. Saliency weights are retained at periodic frames and set to 0 at all other frames,

i.e.,Wsamp
k = Wsal

k δ(k− ik0). In video clips where the object motion is very small, this makes

sure that the snapshot is not cluttered.

. Linear Ramp. Saliency weights are scaled linearly from the rst frame to the last, i.e.,

Wramp
k = kWsal

k . Gradually accentuating the salient object over time creates cues for the

direction of motion.

. Overlaying.When regions identi ed as salient in different frames overlap spatially, only the

latter of the regions is retained and all the others are removed, i.e.,

Wover
k (x, y) = 0, if Wsal

l (x, y) > β (.)

∀l = {k+ 1, · · · ,N}

is creates the impression of motion in the direction of time. Alternatively, we can reverse

this to create the impression of motion against time by setting the weights as:

Wrev−over
k (x, y) = 0, if Wsal

l (x, y) > β (.)

∀ l = {1, · · · , k− 1}
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(a) Example video frames

(b) rsaliency = 0 (c) rsaliency = 1 (d) rsaliency = 6

Figure 4.4.1: Sparsifying the feature weights. Exponentiating the feature weights makes them sparse,
resulting in some pixels in the output snapshot being reconstructed from very few frames. This is
illustrated on this video (35 frames, 960×540 resolution) of a bicyclist (a). The saliency measure picks
out the moving bicyclist. (b) When the exponent for the saliency measure is 0, the weights are uniform,
all the frames are combined, and the bicyclist is blurred out. (d) As the exponent is increased to 6, the
saliency weights become sparse, and the bicyclist is reconstructed from single frames. The non-salient
regions of the image are not affected by this, and continue to be estimated from all the frames. Credit:
Vimeo user markusarulius.

.. Combining feature weights

To combine the weights computed on each feature, we normalize them to the [0, 1] range, scale

and exponentiate them, and nally sum them:

W′
k =

∑
f

αf(W
f
k)

rf + ϵ, (.)

where ϵ is a small number (set to 0.001) that ensures that every input pixel is given a non-zero

weight. By varying the exponent rf in Eqn. ., we can smoothly transition between uniform

(rf = 0) and sparse weights (rf → ∞). is allows us to unify multi-image enhancement and

photomontage in a single framework. e effect of manipulating this exponent is illustrated in

Fig. ... e salient regions of each frame all have high weights, while all other regions have

uniformly low weights. When the saliency weights are raised to exponent zero, all the frames are

combined to denoise the video; however, this blurs the salient regions out. As the exponent is
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increased, the difference in the weights of the salient and non-salient regions is accentuated until

they are copied directly from the input video into the output snapshot. Meanwhile, regions of

the video that are never salient and have uniformly low weights (ϵ in Eqn. .) continue to be

reconstructed by combining multiple frames. In practice, we found that rf = 6 worked well for

our examples.

.. Normalizing weights

To ensure that the error at each output snapshot pixel is weighted equally in the total energy, we

normalize the weights. is is done by rst warping the weights by the motion estimated on the

video frames, normalizing them, and then unwarping them:

Wk = (Tk)
−1

{
Tk(W′

k)/
N∑

k=1

Tk(W′
k)

}
. (.)

.. Image Prior

In traditional image enhancement, every pixel in the output image is a linear combination of ap-

proximately the same number of input image pixels. As a result, in most cases, the prior used

in Eqn. . is spatially constant. However, in our case, the application of the spatially-varying

weights changes the support of each output pixel. To take this into account, we use a spatially-

varying image prior. We identify the number of input pixels that are aligned with, and contribute

to the reconstruction of each output snapshot pixel; in practice, we test for this by thresholding

the weights Wk by 0.1/K, i.e., 10% of the value that a uniform weight would take. We scale the

prior term by the inverse of the number of input pixels that contribute to each snapshot pixel. In-

corporating this spatially varying prior into our framework leads to a graceful transition between

very little regularization at pixels with large data support, and more regularization at pixels with

small or no data support.
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Enhancements / Super- Noise Sharpening Motion Salient Temporal
Videos resolution reduction suppression object summary effects

jump (Fig. ..) X X X X X
ditchjump (Fig. ..) X X X

dunks (Fig. ..) X X X X X
mural (Fig. ..) X X X
focus (Fig. ..) X X X

basketball (Fig. ..) X X X X X
bounce (Fig. ..) X X X
dive (Fig. ..) X X X X X
walk (Fig. ..) X X X X X

calendar (Fig. ..) X X
foliage (Fig. ..) X X X

Table 4.4.1: A summary of the enhancements we apply to our input videos.

. Results

We now present the results of enhancing a number of short video clips using our framework. All

these videos clips were either captured with low-quality video cameras or downloaded from the

video sharing website Vimeo (http://www.vimeo.com). ey range in length from 11 frames to

31 frames and have a combination of low-resolution, high camera noise, and compression arti-

facts. e enhancements and effects we apply to each of them are summarized in Table ...

We assume that the motion in the video clip is well modeled by an affine camera model. For

each video clip, we estimate the inter-frame motion by tting an affine model to interest points.

e motion and the video frames are then used estimate the importance weights. With the ex-

ception of Figs. .., .., and .., all results are produced using a super-resolution factor of

2. e anti-aliasing point spread function (P in Eqn. .) is set to a Gaussian lter with σ = 1.2

and the noise level (ση in Eqn. .) is automatically estimated from the reference frame using

the method of Liu et al. []. Finally, we put the weights and the estimated motion together to

set up the energy function of Eqn. .. We solve for the output video snapshot by minimizing

this energy function using conjugate gradients. We perform 5 iterations of IRLS for every result

and each IRLS iteration uses 10 iterations of conjugate gradients. e time taken to compute a



http://www.vimeo.com
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(a) Example video frames

(b) Single-image (c) Multi-image (c) Video snapshot (d) Video snapshot
super-resolution (X ) super-resolution (X ) with motion with saliency (X )

[] [] con dence (X )

Figure 4.5.1: Video snapshots with saliency weights. (a) This clip of a basketball player dunking (25
frames, 640 x 480 resolution) suffers from low resolution and high noise. (b) Upsampling the reference
frame using the single-image super-resolution [188] produces a noisy result. (c) By combining multiple
frames, multi-frame super-resolution [86] produces a result with more detail and low noise, but blurs out
the player completely. (d) Using the motion confidence as weights preserves the high-resolution, low-noise
background and captures the player. (e) Using saliency weights and temporal-overlaying summarizes the
player’s movement while retaining the high-quality background. Credit: Vimeo user A.S. Saint Pantaléon
Basket.

snapshot is almost completely dominated by the time spent in minimizing Eqn. .; this depends

approximately linearly on the resolution of the output snapshot and the number of input frames

being used. Our unoptimized C++ solver takes anywhere from minutes on our smallest example

(Fig. ..) to  minutes on our largest example (Fig. ..) on an i . GHz PC.

e quality of results from super-resolution closely depends on the accuracy of the motion

estimation. is is especially true of videos with complex camera motion and moving objects in

the scene. By using weights based on motion con dence we ensure that only pixels where the

motion estimates are reliable are used. Because they are computed with respect to the reference

frame, motion con dence weights also help in suppressing moving objects in the video, while

moving objects in the reference frame are preserved in their position.e results of usingmotion
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(a) Example video frames (b) Multi-image (c) Video snapshot with
super-resolution (X ) [] sharpness weights (X )

Figure 4.5.2: Video snapshots for motion blur. Often when photographing a scene with a moving
camera, some of the frames, possibly even the desired frames captured, are motion blurred. (a) This is
illustrated on this video clip of a mural captured with a hand-held video camera (21 frames, 640 x 360
resolution), where the reference frame has the best composition of the scene, but is motion blurred. (b)
Most of the frames in this video clip are blurred and combining all of them to super-resolve the reference
frame [86] results in a blurry image. (c) Using the local sharpness weights in our framework ensures that
pixels from only the sharp frames are propagated to the reference frame, resulting in a sharp snapshot.

(a) Example video frames (b) Multi-image (c) Video snapshot with
super-resolution (X ) [] sharpness weights (X )

Figure 4.5.3: Video snapshots for defocus blur. (a) In this video clip (21 frames, 640 x 360 resolution),
shot with a handheld video camera, the focal plane is being moved from the back to the front to create
an unstabilized focal stack. (b) Naive multi-image super-resolution [86] combines both sharp and blurry
frames, and produces a result that is only marginally sharper because it does not model the defocus blur
in the video properly. (c) Our result uses local sharpness weights to identify and combine the sharpest
pixels in the input video clip to produce an all-in-focus super-resolved snapshot.

con dence in our framework are illustrated in Figs. .., .., .., .., .., and ...
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(a) Example video frames

(b) Single-image (c) Video snapshot (X ) with (d) Video snapshot (X ) with
super-resolution (X ) [] motion con dence saliency and sampling

Figure 4.5.4: Video snapshots with motion. (a) This input video clip (31 frames, 640 x 360 resolution)
has noise and compression artifacts. (b) Single-image super-resolution [188] super-resolves the reference
frame but is unable to remove the noise and blocking artifacts. (c) Using motion confidence weights
produces a low-noise 1280 x 720 snapshot with the moving players and the basketball preserved in place.
(d) By using saliency weights with time-sampling we can retain the high-quality background from (c)
while capturing the motion of the players and the basketball. Credit: Vimeo user Charles Skoda.

Blur caused by camera shake or the wrong focal settings is one of the most common problems

with photographs. While the short exposure time of video clips alleviates the effect of camera

motion to an extent, it is not unusual to capture a video sequence and to later nd out that inter-

mittent frames are blurred. Estimating the blur kernel (which is spatially-varying in most cases)

and deconvolving the image is a very difficult vision problem. Instead, we use local sharpness

weights to automatically identify and reconstruct the output snapshot from only the sharpest

pixels in the video clip. is approach also has the advantage that it handles variation in scene

texture gracefully; smooth, low-texture regions will have uniformly low sharpness values and can

be estimated frommany frames, while textured regions and strong edges are reconstructed from

only the sharpest pixels. Local sharpnessweights can be used to create the sharpest possible snap-

shot in the case ofmotion blur (Fig. ..), as well as an all-in-focus image from a clip with varying
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(a) Example video frames

(b) Single-image (c) Video snapshot (X ) with (d) Video snapshot (X ) with
super-resolution (X ) [] motion con dence saliency and time-sampling

Figure 4.5.5: Video snapshots with saliency weights. (a) This juggling video (24 frames, 640 x 480
resolution) has low resolution and high noise. (b) Single-image super-resolution [188] improves the
resolution marginally and cannot handle the noise. Our method improves the resolution significantly
(note the letters on the blackboard), while also denoising the image (note the duster in the bottom
right). We do this while either (c) capturing the moment in the reference frame, or (d) depicting the
motion of the ball and the hands. Credit: Vimeo user BCCP Video.

defocus blur (Fig. ..).

Motion is often a critical component of video sequences, and the depiction of motion in static

images has a long history in artistic and scienti c visualization. However, most work on im-

age enhancement avoids the issue of moving objects in a video. By using saliency weights in

our framework, we are able to combine multiple frames and create a high-resolution, low-noise,

sharp background while retaining the salient moving objects from individual frames. is re-

sults in high-quality still images that summarize the entire video clip in a single static snapshot

(Figs. .., .., .., .., .., .., .., .., and ..). We can also use saliency in con-

junction with time-based weighting to create different depictions of motion (Fig. ..). Finally,

we can also use anti-saliency weights to completely remove transient elements of the video clip
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(a) Example video frames

(b) Video snapshot (c) Video snapshot (d) Video snapshot (e) Video snapshot
with saliency and with saliency and with saliency and with saliency and
time-sampling linear time weights time overlaying reverse overlaying

Figure 4.5.6: Video snapshots with temporal effects. Our framework can create video snapshots with
time-based effects. (a) In this clip of a bouncing ball (11 frames, 960 × 540 resolution), the input
frames can be combined with (b) time-sampling weights to discretely sample some of the frames, with
(c) temporal weights that increase linearly to emphasize the direction of motion, or with (d,e) weights
that overlay each instant of the ball on top of the previous or next instances. Note that these weights
only affect the ball.

and produce high-quality snapshots of just the background (Fig. .., and ..).

We have compared the quality of our results against single-image super-resolution and multi-

image super-resolution. For single-image super-resolution, we compare against the work of Yang

et al. [], which uses a learned sparse dictionary of image patches to super-resolve images. As

is expected, leveraging multiple frames almost always produces higher quality results than using

a single image. Formulti-image enhancement, we compare against the standard super-resolution

technique of Irani and Peleg [] that models the image formation process in a way that is similar

to ours, and can be thought of as the standard approach to multi-image super-resolution with-

out the use of our importance-based weights. By weighting the important pixels in the video

appropriately, our framework produces snapshots with the same or better quality as standard

multi-image super-resolution. We also compare our technique to a recent state-of-the-art video

super-resolution method proposed by Liu and Sun []. is technique iteratively solves for the

underlying motion, blur kernel and noise level while using a sparse image prior as well as priors
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(a) Example video frames

(b) Single-image (c) Video snapshot (X ) with (d) Video snapshot (X ) with
super-resolution (X ) [] motion con dence saliency, time-sampling

and overlaying

Figure 4.5.7: Video snapshots with motion. (a) This video clip of a diving girl (28 frames, 640 x
480 resolution) has noise and compression artifacts. (b) Single-image super-resolution [188] marginally
improves the resolution but can not handle the noise and blocking artifacts. Our framework combines
multiple images to upsample and denoise the reference frame. We do this while either (c) suppressing
the motion, or while (d) summarizing the entire dive in the snapshot. Credit: Vimeo user DHS Swim &
Dive.

on the motion and kernel. Fig. .. shows the results of this comparison for two datasets from

their work. As can be seen from the results, when our assumption of approximately affine camera

motion is met, our technique produces results that are qualitatively similar to those of Liu and

Sun. In addition, our technique gives the user the freedom to go beyond basic enhancement, and

depict interesting events and actions in the nal snapshot.

. Summary

ecamera used to photograph a scene is one of the factors that determines the appearance of the

resulting image. In this chapter, we have presented an image formationmodel that explicitly rep-





Chapter . Enhancing Image Quality using Video Clips

(a) Example video frames

(b) Video snapshot (X ) (c) Video snapshot (X ) (d) Video snapshot (X )
with motion con dence with saliency and sampling with anti-saliency

Figure 4.5.8: Video snapshots with saliency weights. (a) In this video clip of a man walking (13 frames,
640 x 360 resolution), we can produce a high-quality image of the background while, (b) using motion-
confidence weights to preserve the man is as in the original frame, (c) using saliency-based weights to
summarize his motion, or (d) using anti-saliency weights to remove the man completely.

(a) Example video frames

(b) Video snapshot (X ) with (c) Video snapshot (X ) with (d) Video snapshot (X ) with
saliency saliency, sampling, anti-saliency

and overlaying

Figure 4.5.9: Video snapshots with saliency weights. (a) This is video clip of traffic at a busy roundabout
(20 frames, 640 x 360 resolution). (b) Using saliency weights produces a snapshot that captures all the
vehicles in the video. However, because of the number of moving objects in the scene, this result looks
crowded. (c) By using saliency with time-based effects, we can reduce this clutter. (d) We can also
create a “clean-plate” snapshot of just the background by using anti-saliency weights. Credit: Vimeo
user Vietnam720.
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(a) Input video (b) Bicubic (c) Liu and Sun [] (c) Video snapshot
frames upsampling (X ) (X ) (X )

Figure 4.5.10: Comparisons with multi-image super-resolution. When the camera motion is approxi-
mately affine, our technique produces results that are qualitatively similar to a state-of-the-art video
super-resolution technique [115]. The camera zooms out and translates in the calendar sequence
(top) and both techniques resolve the details. The foliage video (bottom) has a panning camera and
scene motion. Using motion confidence weights suppresses this scene motion to produce a high-quality
snapshot.

resents themotion, blur, and noise characteristics of the camera. By inverting thismodel, we have

shown that we can generate sharp, high-quality snapshots from lower resolution, lower quality

videos. Our framework computes per-pixel weights based on temporal saliency, alignment, and

local image statistics, and uses them to fuse aligned video frames. Our approach is exible and

can perform super-resolution, noise reduction, sharpening, and spatio-temporal summarization

by changing only a few parameters. We believe this is a big step forward in increasing the ease

with which users can create high-quality still photographs from short video clips.e importance

of this work increases as the cost and effort of capturing video continues to decrease due to the

availability of inexpensive, and portable consumer devices.

Our results suggest several areas for future work. While our approximation of camera motion

using an affine transformation worked well for our video clips, motion estimation in complex

videos is still a challenging task. As the alignment quality degrades, fewer samples can be aligned

and averaged, reducing ourmethod’s ability to enhance image quality.We are investigating hierar-
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chical motion estimation algorithms, e.g., Kang et al. [], to address this issue.We are also inves-

tigating extensions of our importance-based weighting schemes to image enhancement methods

that do not require explicit motion estimation [, ]. Extremely poor quality videos pose a

challenge to our system because very high noise levels and compression artifacts corrupt both

the alignment as well as the importance measures.

In addition to the weights discussed in this work, there are other weights that would be in-

teresting to use in our framework, such as resampling / distortion weights [, ]. Using fea-

ture detection methods, one could also automatically nd weights that indicate the presence of

faces, smiles, and open / closed eyes. Our framework is general and allows any type of importance

weights and user-de ned combinations thereof to be used to create compelling video snapshots.

Our importance-based enhancement can also be generalized to any application that involves a

linear processing of video pixels. In the future we would like to investigate applications such as

image stitching and compositing. It would also be interesting to perform some of our processing

in the gradient domain; certain enhancements, e.g., removing blocking artifacts in compressed

videos, could bene t from the seamless edits that are possible with gradient domain methods.

Lastly, our nal snapshots are based on a user-speci ed reference-frame.is could be replaced

by an algorithm that automatically selects “good” reference frames (e.g., Fiss et al. []) based on

factors such as image quality and scene semantics.





5
Appearance Changes in Outdoor Scenes

T         such as geometry and the

camera in the image formation process. In the next two chapters, we analyze the effect

of changing illumination on image appearance; in this chapter, we focus on outdoor scenes

captured under natural illumination. In an extended image sequence of an outdoor scene, one

observes changes in appearance induced by variations in the illumination. We propose a model

for these temporal color changes and explore its use for the analysis of outdoor scenes from

time-lapse video data. We show that the time-varying changes in direct sunlight and ambient

skylight can be recovered with this model, and that an image sequence can be decomposed into
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two corresponding components. e decomposition provides access to both radiometric and

geometric information about a scene, and we demonstrate how this can be exploited for a vari-

ety of visual tasks, including color-constancy, background subtraction, shadow detection, scene

reconstruction, and camera geo-location.

. Introduction

e importance of video-based scene analysis is growing rapidly in response to the proliferation

of webcams and surveillance cameras being shared world-wide. Most of these cameras remain

static with respect to the scene they observe, and when this is the case, their acquired videos

contain tremendous temporal structure that can be used for many visual tasks. Compression,

video summarization, background subtraction, camera geo-location, and video editing are but a

few applications that have recently prospered from this type of analysis.

While temporal patterns in webcam data have received signi cant attention, the same cannot

be said of color patterns. Many webcams observe outdoor scenes, and as a result, the sequences

they acquire are directly affected by changes in the spectral content of daylight. Variations in

daylight induce color changes in video data, and these changes are correlated with the time of

day, atmospheric conditions, weather, and camera geo-location and geo-orientation. us, one

would expect the colorimetric patterns of outdoor webcam data to be an important source of

scene information.

In this chapter, we present a model for outdoor image sequences that accounts for this time-

varying color information, and exploits the spectral structure of daylight. We explicitly represent

the distinct time-varying colors of ambient daylight and direct sunlight, and in doing so, we show

how an image sequence can be decomposed into two corresponding components. e decompo-

sition provides access to a wealth of scene information, which can be divided into two categories:

. Per-pixel illuminant color and material properties: Temporal variations in illuminant color are
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recovered separately at each scene point along with a color albedo. is provides a time-

varying background model that handles cast shadows in a natural way. It also provides a

trivial method for obtaining color-constant measurements of foreground objects, which is

a challenging problem otherwise.

. Scene and camera geometry: e model provides partial information regarding the orienta-

tion of scene surfaces relative to themoving sun. By combining this information with stan-

dard geometric constraints we can predict shadow directions, recover scene geometry, and

locate and orient the camera in a celestial coordinate system.

. Related Work

Recovering information about a scene, such as surface re ectances, geometry, and illumination

from photographs of the scene is a long-standing problem in vision and graphics. Since this is

under-constrained in many cases, one way of simplifying the problem is to vary a single parame-

ter in the image formation process and capture multiple images. As stated earlier, in our case, the

images are captured under (passively) varying illumination. is con guration of the acquisition

process is similar to many other vision problems such as intrinsic image decompositions, photo-

metric stereo, etc. In this section we will review a number of these problems and techniques that

are relevant to our work. Since there are a number of applications that our work allows, we will

also discuss previous work in these elds.

.. Outdoor scene modeling

Because of the practical difficulties inmeasuring the surface re ectances and geometry of outdoor

scenes, most such work has been restricted to small objects and indoor scenes. One of the early

attempts to explicitly model and render outdoor scenes is the work of Nimeroff et al. []. ey

render scenes under natural illumination by combining basis imageswhich are pre-rendered using
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measured geometry and re ectances and a set of basis illuminations. Yu and Malik [] and

Debevec et al. [] have used measurements of the incident illumination, surface materials, and

a -d model of the scene geometry to create photo-realistic images for arbitrary viewpoints and

lighting conditions.

.. Outdoor time-lapse data modeling

Time-lapse sequences of outdoor scenes have been studied extensively in recent work. Matusik

et al. [] use time-lapse data to compute the re ectance eld (or light transport) of a scene for

a xed viewpoint. is estimated light transport combines the effects of re ectance and shad-

ows and can then be used to re-render outdoor scenes with very realistic relighting results. Most

closely related to ourwork is that of Sunkavalli et al. [], whopropose amethod for decomposing

a color outdoor image sequence into components due to skylight illumination and sunlight illu-

mination. Each of these two components is further factored into components due to re ectance

and illumination that are optimized for compression and intuitive video editing. While this is re-

lated to our work, ourmotivation is quite different, and hence, so is ourmodel.We employ amore

physically accurate model that uses general linear color transforms—as opposed to the diagonal

transforms theirmodel reduces—andwemake explicit assumptions about scene re ectance.is

allows us to handle more general weather conditions and to recover explicit scene information

such as illuminant colors, sun direction, camera position, etc. Jacobs and colleagues [] collect

a large database of outdoor time-lapse webcams and analyze the temporal patterns in the data.

ey also use these temporal patterns to geolocate these webcams []. Time-lapse data has also

been used for radiometric [] and geometric camera calibration [] geometrically calibrate the

camera by using the appearance of the sky. Lalonde et al. [] demonstrate techniques to recover

environment maps for outdoor illumination from time-lapse sequences and use them to transfer

appearance and illumination. Time-lapse data has also been used to recover surface geometry by

using photometric stereo techniques [, , ], or by leveraging cloudy weather [, ].
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.. Color constancy

e goal of a computational color constancy algorithm is to extract an illuminant-invariant rep-

resentation of an observed surface. Given a trichromatic (RGB) observation IE acquired under

unknown illuminant E, the aim is to predict the observation IEo that would occur under a canoni-

cal illuminantEo. One can distinguishmost color constancy algorithms along three different lines:

the type of transform used for illuminant changes; the method used to estimate the transform

for a given image; and whether the illuminant is homogeneous or varies throughout the scene.

Almost all existing methods model illuminant changes using 3 × 3 linear transforms IEo =

ME→EoIE that are restricted to being diagonal or ‘generalized diagonal’ []. is restriction is

important because it reduces the estimation problem from nding nine parameters of a general

linear transform to nding only three diagonal entries. Restricting transforms to be diagonal or

generalized diagonal (or even linear in the rst place), implies joint restrictions on the sensors

being employed, and the sets of illuminants and materials being observed []. General linear

transforms are the least restrictive—and hence the most accurate—of the three. ey are rarely

used in practice, however, because robustmethods for estimating nine parameters from an image

donot yet exist.Oneof the contributions of ourwork is to show that by exploiting the colorimetric

structure of outdoor images we can overcome this limitation and achieve reliable color constancy

with general linear transforms.

Most color constancy algorithms also restrict their attention to scenes with a single illumi-

nant. e task of deriving illumination-independent images of a scene under mixed lighting is

addressed by Barnard et al. [] and later by Ebner []. ese two approaches can be considered

local approaches, since they derive illumination for each scene element (e.g., a pixel). In our con-

text, however, outdoor images are captured under a mixture of two different light sources: direct

sunlight and ambient skylight. Moreover, both the spectral content and the intensities of these

two light sources change over the course of the day. Nonetheless, we show that we can recover the
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normalizing (general linear) transform parameters for any mixture of these two illuminants, and

that we can do so independently for each pixel in each frame of an image sequence (see Fig. ..).

.. Daylight Illumination

Since it is the most important natural source of radiant energy, the spectral content of daylight

has receivedmuch attention. In the ’s and ’s,many researchers conductedmeasurements

of the spectral power distribution (SPD) of daylight in different countries, and came to the con-

clusion that all the different forms of daylight spectra have chromaticities that lie close to the

 CIE Planckian locus. e most cited of these studies is the work of Judd et al. [], who

show that most daylight SPDs are can be accurately estimated by a linear combination of three

basis SPDs. is work forms the basis for the CIE daylight recommendations []. It is common

to parametrize the daylight locus in terms of correlated color temperature (CCT), which corre-

sponds to the temperature at which a blackbody radiator would emit radiation with the same

spectra. e CCTs of ambient skylight and direct sunlight are generally distinct, and each varies

with weather, location, time of day, and time of year [].e CIE illuminant D (with a CCT of

K) is the commonly used standard for daylight illumination at noon. Hernández-Andrés []

measured the SPDs of daylight at one location for two years, and showed that using three bases as

recommended by the CIE produces reconstructed SPDs that are colorimetrically indistinguishable

from the measured SPDs.

In addition to its spectral content, the luminance distribution of daylight has been studied ex-

tensively. Daylight illumination consists of direct radiance from the sun and radiance that is scat-

tered from the sky. Since the sun is close to a point light source, it can be modeled easily. e sky,

on the other hand, has amore complex luminance distribution.e CIE luminance formula [] is

an analytical sky model for clear skies that has been used in computer graphics. Perez et al. []

developed a ve-parameter model for the luminance distribution of the sky that generalizes to all

weather conditions. Each parameter has a speci c physical effect on the sky distribution, making
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this model more accurate than the CIE model. More recently, Preetham et al. [] simpli ed the

Perez model for fast rendering of outdoor scenes.

.. Camera location and orientation

Estimating the geographic location and orientation of a camera from a time-stamped image se-

quence has rarely been considered. Cozman and Krotkov [] extract sun altitudes from images

and use them to estimate camera latitude and longitude (geo-location), and Trebi-Ollennu et

al. [] describe a system for planetary rovers that estimates camera orientation in a celestial

coordinate system (geo-orientation). Both systems assume that the sun is visible in the images.

Recently, Jacobs et al. [] presented a method for geo-location based on correlating images with

satellite data, but geo-orientation was not considered. In our work, we recover the position of the

sun indirectly by observing its photometric effect on the scene. is provides both geo-location

and geo-orientation without the need for satellite data and without requiring the sun to be in the

camera’s eld of view (see Fig. ..).

.. Background subtraction and foreground detection

e core of most methods for background subtraction is the maintenance of a time-varying

probability model for the intensity at each pixel. Foreground objects are then detected as low-

probability observations (e.g., []). ese methods can be difficult to apply to time-lapse data,

for which the time between captured frames is on the order of minutes or more. In these cases,

the ‘background’ can change dramatically between frames as clouds pass overhead and shadows

change, and these intensity variations are difficult to distinguish from those caused by fore-

ground objects. Our work suggests that the structure of daylight can be exploited to overcome

this problem and obtain a reliable background model from time-lapse data. By modeling the

colors and intensities of both direct sunlight and ambient skylight over time, we can effectively
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predict how each scene point would appear under any mixture of these two illuminants in any

given frame. Not only does this provide a means to detect foreground objects, but it also ensures

that we do not return false-positive detections on the shadows that they cast (see Fig. ..).

. A Color Model for Outdoor Image Sequences

Since it is the most important natural source of radiant energy, the spectral content of day-

light has received signi cant attention []. A variety of studies have shown that daylight spec-

tra—including those of direct sunlight, ambient skylight, and combinations of the two—form a

one-dimensional sub-manifold of spectral densities. When represented in chromaticity coordi-

nates they form a ‘daylight locus’ that lies slightly offset from the Planckian locus of blackbody

radiators. From a computational standpoint, it is often more convenient to represent daylight

spectra in terms of a linear subspace and studies suggest that subspaces of two (or perhaps three)

dimensions are sufficient.

As the spectral content of illumination changes, so does the color of an observed surface point.

Restricting our attention to Lambertian surfaces and linear sensors, the trichromatic observation

of any surface point under illuminant E(λ) can be written as:

Ik = σ

∫
Ck(λ)ρ(λ)E(λ)dλ, (.)

where Ck(λ) and ρ(λ) are the sensor and spectral re ectance terms, respectively, and σ is a geo-

metric scale factor that accounts for the angular distribution of incident radiant ux relative to

the orientation of the observed surface patch.

We will use the notation I(x, t) for a trichromatic (RGB) image sequence parametrized by (lin-

earized) pixel location x and time t. We choose linear transforms as our model for the effects of

illuminant changes and, informed by the discussion above, we assume that the subspace contain-





Chapter . Appearance Changes in Outdoor Scenes

ing daylight spectra is two-dimensional. According to this assumption, the observation of any

givenmaterial under any daylight spectral density (i.e., at any time of day and under any weather

conditions) can be written as [, ]:

I(x, t) =

(
2∑

i=1

ci(t)Mi

)
ρ(x), (.)

where ρ(x) is an illumination-independentmaterial descriptor,Mi are xed 3×3 invertiblematri-

ces that span the allowable transforms (andmore), and ci are the coordinates of a particular color

transform in this basis. In the next section, we combine this color model with geometry terms to

produce a complete model for outdoor image sequences.

.. Incorporating shading

We assume that the sequence is captured by a xed camera in an outdoor environment. For the

moment, we also assume that the scene is static, that re ectance at scene points is Lambertian,

and that the irradiance incident at any scene point is entirely due to light from the sky and the sun

(i.e., mutual illumination of scene points is negligible.) Under these assumptions, the sequence

can be written as:

I(x, t) = α(x, t)

(
2∑

i=1

eskyi (t)Mi

)
ρ(x) + β(x, t)

(
2∑

i=1

esuni (t)Mi

)
ρ(x), (.)

where ρ(x) is the material descriptor of each surface point (assumed to be of unit norm), the

terms in parentheses model the effects of time-varying spectra of ambient skylight and direct

sunlight, and α(x, t) and β(x, t) encode the effects of albedo and scene geometry. Since the sun is

While some studies suggest that three dimensions are required, we have found that two are sufficient for our
datasets.
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a directional light source, we can write:

β(x, t) = V(x, t)a(x) cos(ωsunt+ ϕ(x)), (.)

where a(x) is the albedo intensity, ωsun is the angular velocity of the sun, ϕ(x) is the projection of

the surface normal at a scene point onto the plane spanned by the sun directions (the solar plane),

and V(x, t) ∈ [0, 1] models cast shadows. is last function will be binary-valued on a cloudless

day, but it will be real-valued under partly cloudy conditions.

Similarly, the α term represents the surface re ectance integrated against the ambient sky il-

lumination. Analytical forms for this are very difficult to estimate but for our datasets we have

found that a low-frequency cosine works well. erefore, we write this term as:

α(x, t) = b(x) cos(ωskyt), (.)

where b(x) combines the intensity a(x) and the ambient occlusionwhich represents the fraction of

the hemispherical sky that is visible to each point.

.. Model fitting

While the model in Eq. . is non-linear and has a large number of parameters, these parameters

are overconstrained by the input data. For a time-lapse image sequencewithP pixels and F frames,

we have 3PF observations but only PF+ 5P+ 4F degrees of freedom. In order to t the model to

an input sequence, we begin by recovering the color parameters (M1,M2, and ρ(x)) independent

of intensity. is enables an initial decomposition into sun and sky components, which is then

re ned through a global optimization over the remaining parameters.
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.. Material colors and a transform basis

From Eq. . it follows that the trichromatic observations I(x, ·) of a single pixel over the course

of time will lie in a plane spanned by M1ρ(x) and M2ρ(x). A good estimate of this plane is

found through a principal component analysis (PCA) of I(x, ·). e PCA yields color basis vectors

(u1, u2, u3) corresponding to the three eigenvalues σ1 ≥ σ2 ≥ σ3. e plane we seek has u3

as its normal vector. Doing this separately at each pixel yields a set of F planes, which induce

constraints on the materials and transform basis matrices:

u3(x)⊤(M1ρ(x)) = 0, u3(x)⊤(M2ρ(x)) = 0. (.)

ese constraints do not uniquely determine the unknown parameters. Arbitrary invertible lin-

ear transformations can be inserted between Mi and ρ(x), for example, and these correspond

to changes of bases for the illuminant spectra and material spectral re ectance functions. ese

changes of bases are of no theoretical importance, but they do have practical implications. In

particular, parameter choices for which the angle between M1ρ(x) and M2ρ(x) is small (for any

scene point x) are poor because they will lead to numerical instabilities. A convenient method for

choosing ‘good’ parameters is to nd those that minimize the objective function:

O(Mi, ρ(x)) =
2∑

i=1

∑
x

||Miρ(x)− ui(x)||2 (.)

subject to the constraints in Eq. .. Since u1(x) and u2(x) are orthonormal for all x, this ensures

numerical stability in the subsequent analysis, and since u1(x) is the dominant color direction at

each scene point, it effectively chooses bases for the space of illuminants and spectral re ectances

such thatM1ρ(x) is close to the mean color of the sequence.

When the scene contains foreground objects, interre ections, and non-Lambertian surfaces,

estimates of the color plane for each pixel (i.e., the normals u3(x)) can be corrupted by outliers. In
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these cases, we have found that enforcing Eq. . as hard constraints yields poor results. A better

approach is to perform an unconstrainedminimization of the objective function in Eq. ., which

already has a soft version of the constraints ‘built in’.

.. e shadow function

Central to the decomposition into sun and sky components is the estimation of the shadow func-

tion V(x, t), which indicates whether the sun is visible to a scene point in a given frame. is

function can be recovered by simultaneously exploiting the differences between the color and

intensity of sunlight and ambient daylight. For the moment, we assume that V(x, t) is a binary

function.

ematerial vectors ρ(x) and the transform basis {M1,M2} de ne a color plane for each pixel,

and by projecting the observations I(x, t) onto these planes we obtain the coefficients c(x, t) =

(c1(x, t), c2(x, t)) of Eq. .. For a given pixel, the coefficients c(x, ·) provide a description of that

pixel’s color and intensity over time. Due to the differences between sunlight and skylight, the

coefficients c(x, ·) will generally form two separate clusters corresponding to the times when the

scene point is lit by the sun and, those when it is not (Fig. ..(d)). We observe that the clusters

differ in both intensity (distance from the origin) and color (polar angle). Using the cluster cen-

ters csky(x) and csun(x), we label a pixel as ’in shadow’ or ’lit by the sun’ on the basis of the distances

dskyx,t = ||c(x, t) − csky(x)|| and dsunx,t = ||c(x, t) − csun(x)||. By applying a two-cluster k-means algo-

rithm, we can de ne a decision boundary B(x) for whether the sun is visible to a scene point or

not.

While we could use these per-pixel decision boundaries to recover the binary shadow function

V(x, t), the results can be signi cantly improved by exploiting temporal and spatial coherence.

To do this, we construct a graph in which each space-time point (x, t) is a node and each node

is connected to its six nearest space-time neighbors. We determine V(x, t) as the binary labeling
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that minimizes (globally) an energy function:

E(L) =
∑
V

Dx,t(Lx,t) +
∑
Ex

Sxixj +
∑
Et

Stitj . (.)

eunary data terms in the energy function,Dx,t(·),measure thepositionof the coefficients c(x, t)

relative to the decision boundaries B(x), and for the labels of sky and sun, are given by:

Dsun
x,t =

1
1+ e−(dx,t)

,Dsky
x,t = 1− Dsun

x,t , (.)

where the distance dx,t = 3dskyx,t −dsunx,t .e spatial pairwise (smoothness) terms are based on Pott’s

model as follows:

Sxixj = N (ρ(xi)− ρ(xj), 0.02). (.)

In addition, to ensure that the shadows are coherent over time, we use temporal smoothness

terms:

Stitj = 0.2. (.)

We recover the binary shadow function V(x, t) by minimizing Eqn. . using a standard graph

cuts algorithm []. e recovered binary shadow function V(x, t) can be re ned, for example,

by updating the per-pixel cluster centers according to this labeling and repeating the graph-cuts

procedure. In practice we have found this not to be necessary. Fig. .. shows an example of our

shadow detection algorithm on a typical pixel.

.. Remaining parameters

Points that are known to be in shadowdetermine the angular sky parameterωsky in Eq. ..is pa-

rameter can be estimated robustly using a non-linear least-squares optimization. By subtracting

the ambient component from the input sequence, we obtain an approximate ‘direct sun’ sequence
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.3.1: Color and shadow initialization. (a) Frame 50 from the original time-lapse sequence. (b)
RGB pixel values over time for the pixel indicated in (a. Since daylight spectra is low-dimensional, the
time-varying color at each pixel lies in a plane in the color cube. A principal component analysis at each
pixel allows us to recover each plane as well as a per-pixel normalized albedo (c). Projecting each pixel
onto its dominant plane yields coefficients (d), shown with time coded using color from the colorbar in
(b). These coefficients form two clusters that correspond to illumination from only ambient skylight (e)
or by direct sunlight (f). Based on these clusters we can estimate a binary shadow function (g) (also
shown for a single pixel as the magenta curve in (b)). (h) The ratio of the 3rd to 2nd eigenvalues at each
pixel (scaled by 200). This is largest in regions of noise due to motion, foreground clutter etc., where
the assumption of two-dimensional color variation for each pixels is violated.

that can be used to estimate the angular sun velocity ωsun in a similar fashion. Note that we need

to consider only a small number of spatial points to recover these parameters.

Referring to Eq. ., the remaining parameters to be estimated are the transform coefficients

eskyi (t) and esuni (t), the surface albedos ρ(x), and normal angles ϕ(x). Similar to [] we randomly

initialize these parameters and then iteratively update each in order to minimize the RMS differ-

ence between the model and the input sequence. e coefficients eskyi (t) and esuni (t) are updated

using linear least squares, and the normal angles ϕ(x) are updated using a one-dimensional ex-

haustive search for each pixel.

As a nal step, the binary shadow function is relaxed by nding the real-valued function

V(x, t) ∈ [0, 1] that minimizes the RMS reconstruction error. is is an important step for any

scene captured under partly cloudy conditions.
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Figure 5.3.2: Reconstructions from our model. Frames 1, 30, 60 and 95 from the original video (top),
the reconstructions from our model (middle), and the absolute error scaled by 3 (bottom).

Data  Imgs ResolutionRMS Error
Sunny square  130× 260 .
Cloudy square  240× 360 .

Table 5.3.1: RMS reconstruction errors.

.. Experimental results

Table .. and Fig. .. show results for two sequences obtained from Sunkavalli et al. [].

ese sequences consist of roughly the same scene in two different weather conditions (sunny

and partly cloudy), and each sequencewas captured over the course of one daywith approximately

 seconds between frames.e accompanying video shows these sequences in their entirety. It

is important to note that the visible portions of the sky in our sequences were not considered

in the decomposition; for all the results shown in this chapter, they have been copied from the

original data to avoid distracting the reader.

In our results, errors are caused by foreground objects, smoke, interre ections from windows,

and saturation of the camera. Another signi cant source of error is deviation from the assumed

Lambertian re ectance model. From examining our data, it seems as though a rough-diffuse

model [] would be more appropriate.
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Figure 5.4.1: Color constancy using our model. Frames 1, 35, 94 and 120 from the original time-lapse
data (top), and the corresponding images reconstructed with the sun and sky illuminant colors fixed to
those of frame 35 (bottom).

. Implications for Machine Vision

e appearance of a scene depends on shape and re ectance, the scene illumination (both color

and angular distribution), as well as the observer’s viewpoint. Any visual task that requires some

of this information seeks to recover it in a manner that is insensitive to changes in the others.

By explicitly isolating many of these scene factors, our model enables novel approaches to some

visual tasks and improves the performance of a number of others. Here we provide examples that

relate to both color and geometry.

.. Color constancy

As mentioned in Sec. ., most (single image) color constancy algorithms restrict their attention

to diagonal or generalized diagonal transforms when representing changes in illumination. Even

with this restricted model, estimating the transform parameters in uncontrolled environments

is hard to do reliably. In contrast, once our model is t to an image sequence, the task of color

constancy becomes trivial. Since we obtain illuminant transform parameters separately for each

frame and sun/sky mixing coefficients independently for each pixel, we can obtain illuminant-
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Figure 5.4.2: Simple foreground detection using per-pixel thresholds in color space. Frames 3, 41, 72, 88
from the original sequence with detected foreground pixels marked in red. Shadows cast by foreground
objects are correctly ignored. Violations of our model (interreflections, saturated regions, etc.) trigger
false positive responses.

invariant descriptions everywhere simply by manipulating these parameters. Fig. .. shows an

example in which the color in each frame of the sequence is corrected so that the effective sky and

sunlight colors are constant over the course of the day (they are held xed to the colors observed

in frame  of the sequence). Clear differences are visible between this and the original sequence,

especially near dawn and dusk.

We emphasize that the color corrections are applied to the entire sequence, including the

foreground objects. As a result, if one applies a color-based recognition algorithm to the color-

corrected sequence instead of the original sequence, one can effectively obtain color-constant

recognition with very little computational overhead. In addition, our use of general linear trans-

forms can be expected to provide increased accuracy over what could be obtained using common

diagonal or generalized diagonal transforms [].

.. Background subtraction

Most background subtractionmethods performpoorlywhen the illumination changes rapidly, for

example, on a partly cloudy day. is problem is exacerbated in time-lapse data, where the time

between frames is on the order of minutes, and the temporal coherence of foreground objects

cannot be exploited. By modeling the entire scene over time, our model provides the means to

handle these effects quite naturally. In particular, it immediately suggests two strategies for fore-

ground detection. As noted earlier, the trichromatic observations I(x, ·) lie in the plane spanned
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by vectorsM1ρ(x) andM2ρ(x). us, one approach to foreground detection is simply to measure

the distance between an observation I(x, t) and its corresponding spanning plane. is approach

has the advantage of ignoring shadows that are cast by foreground objects, since cast shadow

induce variations within the spanning planes. A second approach is to use the complete time-

varying reconstruction as a backgroundmodel and to use simple background subtraction for each

frame. Fig. .. shows the result of a combination of these two approaches, and shows how one

can identify cars on the street without false positive responses to the shadows they cast or to the

shadows cast bymoving clouds.We do see detection errors in some areas, however, and these cor-

respond to saturated image points, dark foreground objects with low signal-to-noise ratios, and

inter-re ections from other buildings. Nonetheless, the detection results presented here suggest

that our model will provide a useful input to a more sophisticated detection algorithm.

.. Scene geometry and camera geo-location

Our model provides direct access to the angular velocity of the sun ωsun as well as the angles ϕ(x)

in Eq. ., which are one component of the surface normal at each scene point that corresponds

to its projection onto the solar plane. is partial scene information can be combined with time-

stamp information and common geometric constraints to recover scene geometry as well as the

geo-location and geo-orientation of the camera.

Given three scene points xi that are known to lie on three mutually orthogonal planes (two

sides of a building and the ground plane for example), we can represent the normals ni = (θi, ϕi)

in terms of spherical coordinates in a solar coordinate system (Z-axis is the normal to the solar

plane and East is the X-axis). e azimuthal angles ϕi are equal to the corresponding ϕ(xi) from

our model up to a unknown, global additive constant. If each normal has a unique azimuthal

component, our model gives two constraints on ni in the form of the azimuthal differences (ϕx1 −

ϕx2) and (ϕx2 − ϕx3). Combining these with mutual orthogonality constraints, the three normals

are determined relative to the solar plane. (e same can be achieved from two orthogonal planes
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True value Estimate
42o21′57′′N 42o12′58′′N
71o05′33′′W 70o05′47′′W

tpeak = : UTC tpeak = : UTC
date = // date = //

Table 5.4.1: Camera geo-location results.

with the same albedo.)

If one of the recovered normals is the ground plane, the angle of the solar plane and, therefore,

the peak (or meridian) altitude of the sun is uniquely determined. In addition, the projection of

the ground plane normal onto the solar plane provides the azimuthal angle ϕpeak of the sun’s peak

passage and East corresponds to the direction in the solar plane with azimuthal angle ϕpeak−π/2.

us, by observing orthogonal planes over the course of a day, we can achieve the functionality

of a combined compass and sextant.

Given the date and UTC time-stamps for each frame, we know the UTC time of the sun’s peak

passage (i.e., its meridian altitude) and can estimate both the latitude and longitude of the ob-

served scene. Likewise, if we know the latitude and longitude of the camera (and the season and

year) we can reverse this process and compute the date and a UTC time stamp for the peak frame

and propagate time stamps to all frames in the sequence using the time interval. Results of these

analyzes for one of our sequences is shown in Table ...

e meridian altitude of the sun was found to be 34.3◦. Using the UTC time-stamps from the

image sequence, this predicts a latitude and longitude that is only 83.7 km from the ground truth

position. Alternatively, had we known the true geo-location of the camera, as well as the year and

season of acquisition, we would have estimated a UTC time that differs from the true value by

only  minutes and a date that deviates from the actual one by a day.

Finally, if we know the vanishing lines corresponding to the three scene planes, the camera

e latitude and longitude of a location are uniquely determined by the time of the sun’s peak passage, and can
be looked up from a nautical almanac such as http://aa.usno.navy.mil/data/docs/AltAz.php



http://aa.usno.navy.mil/data/docs/AltAz.php
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(a) (b) (c)

Figure 5.4.3: Partial scene reconstruction and camera geo-location. By fitting our model to the input
image sequence, we recover the orientation of the solar plane relative to the local horizon (a). When
combined with time stamps, this determines the latitude and longitude of the camera as well as its
orientation in an astronomical coordinate system. We also compare a top view of our reconstruction
(with east-west axis in cyan and the walls’ normals in red and green) (b) to a satellite image of the real
building (with east-west corresponding to right-left) (c).

Figure 5.4.4: Shadow detection. The estimated shadow direction is marked in red for four frames from
the time-lapse images.

can be calibrated []. is yields the orientation of its optical axis relative to the solar plane,

and in a celestial coordinate system. is achieves the functionality of a combined compass and

inclinometer. A reconstruction of the scene is shown in Fig. ...is includes the recovered solar

plane, the orientation of the camera, and two reconstructed planes that are texture-mapped with

the input frame that corresponds to the indicated sun direction.

.. Shadow prediction

Once the solar plane is known, we can determine the sun direction within that plane for each

frame of a sequence. is can be used, for example, to predict a time-varying vanishing point on

the image plane that corresponds to the direction in which vertical objects will cast shadows onto
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the ground plane. If a vertical object (e.g., a person) is known to touch the ground plane at pixel

x in a given frame, its shadow will lie on the line segment connecting x to the vanishing point

of the shadow direction for that frame. is is demonstrated in Fig. .., which shows predicted

shadows vectors for some vertical objects that can be used for improved background subtraction.

. Summary

In this chapter, we have proposed a model for outdoor illumination that exploits the colorimetric

structure of extended outdoor image sequences.emodel explicitly represents the time-varying

spectral characteristics of direct sunlight and ambient skylight, and it allows an image sequence

to be decomposed into distinct components that can be interpreted physically. e model can be

reliably t to time-lapse sequences in which the sun is visible for at least a fraction of a day; and

once it is t, it can be used for a variety of visual tasks. e examples presented in this chapter

include color constancy, background subtraction, scene reconstruction and camera geo-location.

Our model could be improved by incorporating robust estimators into the tting process, by

using a more exible re ectance model, and by making use of temporal patterns to appropriately

handle ’time-varying textures’ such as moving water and swaying trees.

ere are a number of additional applications to be explored. By segmenting the scene accord-

ing to albedo ρ(x) and surface normal angleϕ(x), onemay be able to use orthogonality constraints

to produce a coarse reconstruction of the scene. is type of scene geometry has proven to be

a useful source of context information for object recognition. Also, since there is a one-to-one

correspondence between coordinates in our illuminant transform space (eskyi , esuni ) and complete

spectral densities in the daylight locus, it may be possible to use our model to infer information

about air quality and other atmospheric conditions.

Finally, the model presented here relies only on images of an outdoor scene captured over the

course of one single day. is limits the amount of scene information we can extract from the
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data; for e.g., because of the planar motion of the sun, we are only able to extract one component

of the surface normal. It would be interesting to extend our model to data captured over a longer

period of time (and the sun’s motion is non-planar), to recover high-quality surface normals.is

is, in fact, a variant of the general Photometric Stereo problem that attempts to recover surface

geometry by analyzing variations in appearance caused by changing illumination. In the next

chapter, we will study this problem in detail, and in particular, analyze the effect of shadows on

scene appearance.





6
Shadows and Scene Appearance

I C ,         like surface ge-

ometry, by analyzing the variations in the appearance of the scene caused by changes in

illumination. While the model we presented was speci c to scenes captured under outdoor illu-

mination, similar representations have been explored for more general lighting conditions. In

this chapter we consider the appearance of images of Lambertian scenes captured under mov-

ing directional lights. In particular, we examine the effect of shadows on scene appearance and

propose a novel and robust algorithm for recovering surface geometry from these images.
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. Introduction

Photometric stereo is a class of techniques that seek to recover surface geometry from images of

a scene captured under varying lighting. One speci c instance of these techniques—Lambertian

photometric stereo– is speci cally derived for the case of Lambertian scenes imaged under direc-

tional lighting. In spite of being based on a crude re ectance model, Lambertian photometric is

frequently used because it allows surface normal recovery even under uncalibrated lighting. In the

ideal case, given a set of images under varying, but unknown, directional lighting, it is possible to

recover both a surface normal eld and the light source directions up to a three-parameter family

of solutions [, ].

Like any photometric stereo technique, uncalibrated Lambertian photometric stereo relies on

inverting the image formation process. It seeks to explain observations using combinations of

light sources, surface normals, and surface albedos; and doing this accurately requires reason-

ing about the visibility of light sources with respect to each surface point. In Chapter , we used

heuristics based on pixel intensities and colors to detect shadows. While such simple heuristics

suffice in some cases, they are susceptible to error. In fact, this problem is deceptively hard be-

cause shadowing is a non-local function of surface geometry, and heuristics for shadow detection,

such as simple thresholding, are unreliable in the presence of albedo variations and sparse input

images.

In this work, we avoid explicit shadow detection by reasoning about illumination subspaces

instead. It is well-known that the set of images of a convex Lambertian surface under directional

lighting spans a three-dimensional linear subspace. It is also well-known that attached shadows

and cast shadows violate this subspace property, so that the image-span of a scene with shadows

can grow to a high dimension. What has not been fully exploited is that these high-dimensional

spans have useful structure. We show that the image-span of any Lambertian scene captured

under a discrete set of light sources with arbitrary shadowing can be decomposed into a set of
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three-dimensional subspaces. We refer to these as visibility subspaces because they correspond to

sets of surface points that can see a common set of lights.

Given a sequence of uncalibrated photometric stereo images of a Lambertian object, the

visibility subspaces can be automatically identi ed—without knowledge of the lighting direc-

tions—using well-known subspace clustering techniques. We show that once these subspaces are

identi ed, the surface is partitioned, the exact set of lights that is visible to each region can be

computed, and the surface and light directions can be reconstructed up to the usual global linear

ambiguity.

. Related Work

Photometric stereo can produce per-pixel estimates of surface normals and is a common tech-

nique for scene reconstruction.Originally developed for Lambertian surfaces and calibrated direc-

tional lighting [], photometric stereo has been generalized to handle uncalibrated directional

lights [], specular and glossy surfaces [, , ], symmetric re ectance functions [, , ],

re ectance mixtures [], and uncalibrated environment map lighting []. Despite these gener-

alizations, Lambertian photometric stereo remains useful because of its simplicity and allowance

for uncalibrated acquisition, as well as being an analytical “stepping stone” for developing more

comprehensive techniques.

In order to obtain accurate reconstructionswith anyphotometric stereo technique, Lambertian

or not, onemust identify shadowed regions in the images.Most approaches for isolating shadows

rely on using enough light sources such that every surface point is illuminated by at least two or

three of them, and then detecting and discarding intensity measurements having low values.e

number of imagesmay be as few as three or four [, , ] but can also bemanymore [, ].

Since these methods detect shadows by analyzing the intensities at individual pixels, they can

be unreliable when a surface has texture with low albedo, and when cast shadows prevent some
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surface points from being illuminated by a sufficient number of lights.

An alternative approach is proposed byChandraker et al. [].ey estimatewhich light sources

can be seen by each surface point using a Markov random eld in which the per-pixel “data term”

is based on Lambertian photometric stereo and the “smoothness term” acts to encourage spatial

coherence.is approach requires that the light directions are calibrated and known, and like the

methods above, relies on reasoning about the intensities at each pixel. Our approach also derives

from Lambertian photometric stereo, but unlike [], does not require the light sources to be cal-

ibrated. Moreover, instead of reasoning about per-pixel intensities, it reasons about illumination

subspaces.

Our work is also related to the problem of characterizing the structure of the set of a scene’s

images. ere exist bounds on the dimension of the image-span of convex Lambertian scenes

under directional lighting [] and environment map lighting [, ], as well as convex scenes

with a single arbitrary re ectance function [] and mixtures of re ectance functions []. All of

these bounds assume the scene to be convex so that cast shadows are absent. As a by-product of

our analysis, we derive a complimentary bound that accommodates cast shadows and is valid for

any Lambertian scene illuminated by a nite set of directional lights.

Finally, our work leverages insight from subspace clustering techniques, such as Generalized

Principal Component Analysis (GPCA) [] and Local Subspace Affinity (LSA) [], that have

beendeveloped formotion segmentation. In our case,we perform subspace clustering usingRAN-

dom SAmple Consensus (RANSAC) [, , ]. is is quite different from a previous use of

RANSAC in photometric stereo [], which was aimed at identifying contour generators within

an object’s visual hull.
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. Visibility Subspaces

We begin with background and notation. For a Lambertian surface, the radiance from a surface

pointwith normalN ∈ S2 and albedo ρ, illuminatedwith directional lighting L (i.e., with direction

L/||L|| ∈ S2, and magnitude ||L||), is given by I = max(0, ρLTN). In the absence of shadows,

we know that LTN > 0, and the image observations at m surface points illuminated by n light

sources can be arranged as an n×m data matrix I that is the product of the 3× n lighting matrix

L = [L1, L2, · · · , Ln] and the 3× m albedo-scaled normals matrix N = [ρ1N1, ρ2N2, · · · , ρmNm]:

I = LTN. (.)

L and N are at most rank-three, and therefore, so is matrix I [, ].

If the scene is imaged under at least three non-coplanar light sources and these sources are

calibrated and known, the surface normals can be estimated from noisy image intensities asN =

(LT)+I [], where (·)+ is the pseudo-inverse operator. If the light sources are not calibrated, we

can factor I using singular value decomposition (SVD) to recover the normals and lights using a

rank-three approximation []:

I = UDVT, L̂T , U3D
1
2
3 , N̂ , D

1
2
3V

T
3. (.)

is determines the normals up to a linear 3× 3 linear ambiguity such that:

LT = L̂TA,N = A−1N̂. (.)

for some non-singular matrix A. is ambiguity can be resolved if light source intensities or sur-

face albedos are known []. It can also be resolved up to the three-parameter generalized bas-

relief ambiguity by enforcing an integrability condition on the normal eld [, ].





Chapter . Shadows and Scene Appearance

Up to this point we have assumed the absence of cast and attached shadows, or equivalently,

that every light source is visible to every surface normal. Now suppose that shadows exist, and

consider the following toy example. A scene is partitioned into two uniform-visibility regions S1

and S2 that project to m1 and m2 pixels respectively. e scene is imaged under a set of n light

directions that can be grouped into two (potentially) overlapping subsets L1 and L2, such that all

of the lights L1 are visible to all points in S1, and all of the lights L2 are visible to all points in S2.

Let the number of lights in these overlapping subsets be denoted by n1 and n2, and since they

might overlap, we have n1 + n2 ≥ n.

Now, the data matrix I can be permuted so that the rstm1 columns correspond to S1 and last

m2 columns to S2, and the rst n1 rows correspond to L1 and last n2 rows to L2 with their shared

lights lined up in the middle. en, the observation matrix can be written as two sub-matrices,

and if we denote by Nk the collection of surface normals in region Sk, the matrix can be factored

as:

I = [ I1 | I2 ] =

 LT
1

0T
n−n1

0T
n−n2

LT
2


 N1 0m2

0m1 N2

 , (.)

with 0x representing a matrix of zeros with size 3 × x. e form of this factorization shows that

while the row-space of I spans six dimensions, it actually consists of two rank-three subspaces

corresponding to the two disjoint surface regions with different visibilities.

To generalize this to multiple regions with arbitrarily overlapping visibilities (i.e., sets of

visible light sources), we de ne the visibility vector of region Sk to be the binary vector Vk =

[vk1, vk2, · · · , vkn], such that vki = 1 if light source Li is visible to all the points in Sk and vki = 0

otherwise. e light sources visible to region Sk can then be expressed (with a slight change in

notation from Eq. .) as

Lk = L⊗ Vk, (.)

where⊗ represents the element-wise Hadamard product applied to every row of the lighting ma-
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trix. As above, we can then factor the observation matrix for a scene with s distinct visibility

regions as:

I = [ I1 | I2 | · · · | Is ] = [ LT
1 | LT

2 | · · · | LT
s ]



N1

N2

. . .

Ns


, (.)

where Nk is the surface normal matrix corresponding to region Sk.

us, the observation matrix is made up of multiple subspaces, and we call these visibility sub-

spaces because they correspond to regions in the scene that each have a consistent set of visible

lights. Clearly, each subspace is at most rank-three, and the row space of a scene with s visibility

subspaces has dimension at most 3s. is leads us to the following:

Proposition.eset of all images of a Lambertian scene illuminated by any combination of n directional

light sources lies in a linear space with dimension at most 3 · 2n.

Proof : A scene illuminated by n light sources will have at most 2n regions with distinct visibility

con gurations. e images of each region span at most a three-dimensional space, so the dimen-

sion of the image-span of the entire scene is at most 3 · 2n.

is result is complementary to previous work that has established bounds on the dimension-

ality of scene appearance. Belhumeur and Kriegman [] showed that the images of a scene with

an arbitrary uniform BRDF, and illuminated by distant (environmentmap) lighting, lie in a linear

space whose dimension is bounded by the number of distinct surface normals in the scene. Garg

et al. [] generalized this to spatially-varying re ectances that can be expressed as a linear com-

bination of basis BRDFs. However, these results apply only to convex scenes without attached or

cast shadows. In addition, these results assume that there are a nite number of normals in the

scene to derive a bound on the dimensionality of scene appearance under arbitrary directional
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(environment map) lighting. In contrast, our analysis provides bounds on the appearance of a

Lambertian scene with an arbitrary number of normals but illuminated by a nite number of

light sources, and allows any form of shadowing.

In general, we do not know the visibility subspaces of a scene a priori, and we cannot permute

the rows and columns of the observation matrix to directly obtain the factorization in Eq. ..

However, as we show next, we can identify the subspaces automatically using a subspace cluster-

ing technique.

. Estimating Visibility Subspaces

RANSAC [] is a statistical method for tting models of known dimensions to data with noise

andoutliers.While RANSAC is traditionally used to discard outliers fromadataset, we follow []

and use it to cluster subspaces. In this context, it can be seen as an alternative to other subspace-

estimation techniques, such as GPCA [] and LSA [].

Each visibility subspace of the scene is contained in a three-dimensional space. If we randomly

choose three surface points that happen to be in the same region Sk, the light estimates L̂k that

we obtain by factoring the image intensities at these three points (using Eq. .) will accurately

explain the intensities for all pixels in Sk. us, we expect a large number of “inliers”. (Of course,

there will be outliers as well because the points in the remainder of the scene will not have the

same set of visible lights, and projecting their intensities onto L̂k will produce large errors.) Con-

versely, if we happen to choose three scene points that are in different regions, the light directions

obtained by SVD will be unlikely to accurately explain the intensities at many other scene points,

and we expect the number of inliers to be small. ese observations suggest the following algo-

rithm:

. Choose three pixels at random and factor their intensities as I3 = L̂T
3N̂3.

. Use lights L̂3 to estimate the normal at all the surface points as N̂i = (L̂T
3)

+Ii.





Chapter . Shadows and Scene Appearance

. Compute the per-pixel error of the estimated lights and normals as Ei = ||Ii − L̂T
3N̂i||2.

. Mark points with error Ei < ϵ as inliers and recompute the associated optimal lighting L̂k

using intensities for all inliers.

. Repeat steps  through  for t iterations, or until a sufficiently large set of inliers has been

found. During these iterations, keep track of the largest set of inliers found.

. Mark the largest set of points that are inliers as a valid visibility subspace Sk with associated

lighting basis L̂k. Remove these inliers from the point set, and repeat steps  to  until all

visibility subspaces have been recovered.

is procedure samples the points in the scene to nd three points that belong to the same

visibility subspace. Each time the sampling is successful, as measured by the number of inliers in

Step , it extracts the subspace and removes it from the set of unlabeled points. e algorithm

does not depend on the scene geometry or the lighting directions; it depends only on the rank-

three condition of any visibility subspace.e result of the procedure is the set of per-pixel surface

normals N̂, the per-pixel subspace labels S, and a redundant (per-subspace) set of estimates for the

light directions {L̂k}. Note that in an uncalibrated setting, the set of normals for each subspace

and their corresponding lights L̂k are de ned up to their own linear ambiguity per Eqs. . and ..

In our experiments, we use t = 1000 iterations, set the error threshold ϵ according to the

noise in the input images, and run the procedure until 99% of the pixels are assigned to a valid

visibility subspace. e remaining 1% of pixels are assigned to the subspace that best explains

their intensity variation.

.. Degenerate Subspaces

eRANSAC-basedmethod described above assumes that all visibility subspaces have rank-three.

is is valid for any region having at least three non-coplanar surface normals, and illuminated by
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at least three non-coplanar light sources. However, in general, scenes may contain rank-de cient

subspaces that corrupt the clustering. Under the assumption that every point in the scene sees at

least three non-coplanar lights (without which surface normal recovery is ambiguous), a visibility

subspace can only be rank-de cient if it has degenerate normals: a region with coplanar normals

will have rank two and a planar regionwill have rank one. Our task, then, is to check our recovered

rank-three subspaces to see if they are composed of smaller degenerate subspaces.

Given the form of the observation matrix factorization in Eq. ., it follows that a rank-three

subspace can only be one of the following three types:

. A region with a single visibility vector and non-coplanar normals (i.e., a true rank-three

subspace).

. Two regions with distinct visibility vectors, where one region has coplanar normals, and

the other is planar (i.e., a combination of rank-two and rank-one subspaces).

. ree regions with distinct visibilities, each of which is planar (i.e., a combination of three

rank-one subspaces).

To ensure that our subspaces estimated by RANSAC are not of type  or type , we test every

estimated rank-three subspace by searching for embedded rank-two and rank-one subspaces. If

the number of pixels corresponding to the smaller embedded subspaces subsume more than a

fraction α of the original set (α = 0.5 in our experiments) we relabel them as being members of

a different rank-de cient subspace.

. Subspaces to Surface Normals

is subspace clustering identi es surface regions with uniform visibility, but does not provide a

clean visibility vector Vk (or accurate shadows) for each region. Put another way, the non-visible

entries of each L̂k are not necessarily zero-valued. To recover the visibility vectors and re ne the
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lightmatrices, we separately examine the light estimates in each subspace L̂k = [L̂k1, L̂k2, · · · , L̂kn],

and provided that the subspace is not degenerate, we set

vki = ||L̂Tki|| > τ, (.)

with τ = 0.25 in our experiments.is simple approach succeeds because the normals N̂k in each

non-degenerate subspace span three dimensions, so the product Iki ≈ L̂TkiN̂k can be zero only if

the light strength ||L̂ki|| is zero. Effectively, we are able to recover the visibility for each subspace

by reasoning about the magnitude of the subspace lighting—an approach that is independent of

scene albedo and is, therefore, not confounded by texture.

To estimate the visibility for degenerate subspaces, we rst project the subspace lighting onto

the column-space of the subspace normals before thresholding their magnitudes. is removes

the component of the lighting orthogonal to the subspace normals that could be arbitrarily large

while not contributing to the observed intensities.

Once the visibility vector for each subspace is known, we can recover the surface normals and

reconstruct the surface. In the calibrated case, this is quite straightforward. Since the light sources

L are known, they are combined with the visibility vectors using Eq. ., and then the normals in

every subspace are given by:

Nk = (L⊗ Vk)
+Ik , k = 1 . . . s. (.)

If the light sources are not calibrated, the situation is more complex because the subspace clus-

tering induces a distinct linear ambiguity in each subspace, (i.e., LT
k = L̂T

kAk,Nk = A−1
k N̂k, k =

1 . . . s). Recovering the entire surface up to a single global ambiguityA, which is the best we can do

without additional information, requires that we somehow determine the transformations—one

per subspace—that map each set of normals to a common coordinate system. Fortunately, this
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can be achieved by solving the set of linear equations:

L̂⊗ Vk = L̂kAT
k , k = 1 . . . s, (.)

where both the global lights L̂ (i.e., those de ned up to a single global ambiguity) and the per-

subspace ambiguity matrices Ak are unknown. is is an over-constrained homogeneous system

of linear equations since, for n lights and s subspaces, it contains 3ns constraints and 3n + 9s

unknown variables. To avoid the trivial solution L̂ = Ak = 0 we set the ambiguity matrix for one

reference subspace (chosen to be the non-degenerate subspace with the largest number of visible

lights) to be the identity matrix. Accordingly, we recover the global lights L̂ and normals N̂ up to

a single 3× 3 ambiguity, which is that of the reference subspace.

To handle degenerate subspaces in the uncalibrated case, we rst solve Eq. . using all non-

degenerate subspaces, and as long as all of the global lights are visible to at least one of these

regions, we can recover all of them. We then use these “auto-calibrated” lights to solve for the

normals in the degenerate rank-one and rank-two subspaces using Eq. ..

As a nal step in the uncalibrated scenario, we may reduce or eliminate the global ambiguity

using additional constraints, such as integrability of the normal eld [, ], specular or glossy

highlights [, , ], interre ections [], or a prior model of object albedo [, ]. en, in

either calibrated or uncalibrated conditions, the estimated normals can be integrated to recover

scene depth. In this integration process, one may optionally enforce the depth constraints that

are induced by the visibility vectors and lights, and an elegant procedure for doing so can be found

in [].

. Results

We evaluate the uncalibrated instantiation of our approach on two synthetic datasets and three

captured datasets. In each case, we automatically cluster subspaces, determine visibility vectors,
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(a) Input images

(b) True subspaces (c) Our subspaces (d) Our normals (e) Reconstruction

Figure 6.6.1: Surface reconstruction for the spheres synthetic dataset. Attached and cast shadows
divide this scene into intricate visibility subspaces (b). We are able to recover them almost perfectly (c),
and estimate the surface normals (d) and depth (e) accurately.

and compute lights and surface normals up to a global 3×3 linear ambiguity. Asmentioned above,

there are ways to resolve this ambiguity, and since this is not the focus of this work, we simply do

so by manual intervention.

For synthetic examples, we evaluate the recovered normals, lights, and visibility subspaces by

comparing them to the ground-truth values that are used to synthesize the input images. For the

captured examples, the “true” values for comparison are obtained as follows. First, we acquire a

dense set of calibrated photometric stereo images using approximately  different light direc-

tions. From such a dense set of calibrated images, we can robustly estimate surface albedos, and

the image intensities can be reliably thresholded to detect per-pixel shadows and “true” visibili-

ties. en, we discard the shadowed measurements and recover the “true” normals via calibrated

Lambertian photometric stereo. To make a direct comparison between this ground truth and our

results, we execute our algorithm using a small subset of the dense input images, with the cali-

bration information held out.

Figure .. is a synthetic example in which the attached and cast shadows induce intricate vis-

ibility subspaces. From the six input images, our approach recovers the visibilities and normals
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(a) Input images

(b) True subspaces (c) Our subspaces (d) Our normals (e) Reconstruction

Figure 6.6.2: Surface reconstruction for the spheres and plane synthetic dataset. The shadows cast
by the spheres on the plane create degenerate subspaces (b). We are able to disambiguate them and
recover the visibility subspaces (c) and surface normals (d), and reconstruct the scene (e).

almost perfectly. Figure .. is a similar example, but in this case, the shadows cast on the back

plane create degenerate visibility subspaces. ese degenerate rank-one and rank-two subspaces

are successfully detected by our approach, and the nal visibilities and normals computed from

the seven input images are again very close to ground truth.emedian angular errors in surface

normals for these two examples are 0.49◦ and 0.51◦, respectively. Note that both of these syn-

thetic scenes have high-frequency texture and large variations in albedos.ese conditions often

lead to poor results when using intensity-based shadow detection from such a small number of

images, but this is not the case for the proposed method.

In the two captured datasets we consider—the frog (Fig. ..) and scholar (Fig. ..) se-

quences—our algorithmwas given  and  input images, respectively. For each of these datasets,

we capture images under densely-sampled calibrated lighting. We robustly estimate albedos from

these dense image sets and threshold the images by a scaled albedo image to detect the ground

truth visibilities. Using these visibilities and the calibrated light sources, we recover the “true”

ground truth normals from these dense image sets, and use them as the reference for our results.

We also compare the normals to those obtained using calibrated Lambertian photometric stereo

applied to the same smaller set of ( and ) images that are available to our algorithm. We give
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this algorithm access to both the calibrated light directions as well as the ground truth visibilities.

We refer to these normals as the “best calibrated” normals because they can be interpreted as

calibrated Lambertian photometric stereo supplied with “perfect” shadow detection, or equiva-

lently, as the best-possible result from a calibrated shadow-detection method, such as [, ]

applied on this small set of input images.

e input images have signi cant cast and attached shadows, and they exhibit non-idealities

such asmutual illumination and slight specularity. Despite this, ourmethod does reasonably well

at locating the visibility subspaces (and shadows) from a small number of images. e median

angular errors in the estimated normals (relative to the ground truth) are 7.44◦ and 4.45◦ for

the frog and scholar datasets, respectively. e largest errors are made in regions with few non-

shadowedmeasurements andwheremutual illumination ismost signi cant.is is not unique to

our approach, however, and the errors from calibrated Lambertian photometric stereo with per-

fect shadow detection have a very similar structure.is suggests that our approach, which auto-

matically handles shadows and is uncalibrated, introduces limited additional errors compared to

an ideal calibrated algorithm.

Finally, we also compare our method to the calibrated photometric stereo technique of Chan-

draker et al. [] (Fig. ..).

. Summary

In this chapter, we have looked at the problem of recovering geometry by analyzing the variations

in the appearance of a scene caused due to changes in illumination.is problem is especially hard

in the presence of attached and cast shadows. Most previous techniques either require calibrated

light sources, or detect shadows by using simple heuristics about image intensities at every pixel.

In contrast to this, we show that regions of uniform visibility lead to subspaces that can estimated

directly from image data without any prior knowledge. is insight has two major implications.
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First, it leads to a novel bound on the dimension of the image-span of a Lambertian scene under a

discrete set of lights, and this bound has the rare property of incorporating arbitrary shadowing.

Second, it allows us to formulate shadow-detection in Lambertian photometric stereo as a sub-

space clustering task. is avoids heuristic reasoning about the intensities at individual pixels,

and it allows handling cast and attached shadows in uncalibrated conditions when only a small

number of input images are available. We have shown that we can obtain high-quality scene re-

constructions even in real-world scenes with complex shadowing.

Unlike many previous approaches to shadow detection [, ], ours does not impose a prefer-

ence for spatial coherence while detecting shadow regions. Indeed, we nd that subspace cluster-

ing naturally leads to relatively coherent regions without this imposition. It is quite likely, how-

ever, that incorporating a spatial coherence constraint during subspace clustering could improve

the results, especially in the presence of non-idealities like mutual illumination, and this may be

a fruitful direction for future research.

Also, we have restricted ourselves to Lambertian scenes illuminated by directional lights, and

it is worth considering how this analysis can be extended to handle more general conditions. One

such extensionwould be to the ability to handle a combination of ambient illumination and direc-

tional lighting. It is known that the images of a Lambertian scene imaged under such a combina-

tion of light sources lie in a rank-four subspace [, ].iswould indicate that itmight be possi-

ble to easily extend the techniques proposed in this chapter to ambient illumination by searching

for rank-four subspaces in the image matrix. e natural extension of this would be photometric

stereo algorithms under general environment map lighting [], where a proper consideration of

visibility would overcome the current (and severe) restriction to convex surfaces.

Finally, the RANSAC-based clustering algorithm presented in this chapter is robust to certain

amount of non-idealities (for e.g., specularities, inter-re ections, noise, etc.). However, as the

number of images increases and the scene gets more complex, the number of visibility subspaces

and their overlap increases rapidly. Estimating surface normals accurately in such cases would
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require robust subspace algorithms. One such possibility could be to estimate subspaces in a hi-

erarchical fashion—i.e., to rst estimate the subspaces from a small set of images, and then pro-

gressively re ne them on the basis of new observations. Alternatively, instead of clustering indi-

vidual surface points into clusters, we could over-segment the scene into representative regions

and cluster these regions.
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Figure 6.7.1: Surface reconstruction for the frog dataset. Reconstruction results from sparse input
images (a). Despite slight specularity and convexities with mutual illumination, our estimated subspaces
(f) match the ground truth (b) reasonably well. The angular differences between our normals (f) and
ground truth normals (c) are most significant in regions having few non-shadowed measurements (i). For
comparison, the normals estimated using calibrated photometric stereo equipped with perfect shadow
detection (d) exhibit similar deviations from the ground truth (e).
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(a) Input images ( of )

(b) True subspaces (c) Our subspaces

(d) True normals (e) Our normals

(f) “Best calibrated” normals (g) Reconstruction
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(h) “Best calibrated” angular error (i) Our angular error

Figure 6.7.2: Surface reconstruction for the scholar dataset. The left column shows ground truth (b,d)
and normals obtained by calibrated photometric stereo applied to sparse input images (f). Our results
with the same sparse set of images (a) are shown in the right column (c,e,g). The angular differences
between the true normals (d) and our estimates (e) show that most errors are small and that large errors
are restricted to small regions with strong inter-reflections (i). For comparison, the calibrated result (f)
also exhibits similar deviations (h).
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(a) Estimated subspaces (b) Recovered normals (c) Recovered depth

Figure 6.7.3: Visibility subspace estimation and normal recovery on data from Chandraker et al. [36].





7
Summary and Future Directions

M       in vision and graphics; while this

dissertation makes a contributions towards this goal, our work is only a small step to-

wards full- edged image understanding. In this chapter, we summarize the contributions of our

work and discuss directions for future research.

. Summary

Images are formed as the result of a complex set of interactions between scene geometry and

re ectance properties, illumination, and cameras; however, each of these factors varies in struc-
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tured ways leading to a tremendous amount of coherence in image and video data. In this disser-

tation, we have proposed models of visual appearance that explicitly leverage this coherence to

make analysis and editing tasks tractable. In particular, we have focused on two important goals:

. Recovering scene properties from image and video data, and

. Manipulating these properties to edit images and videos in intuitive ways.

With these goals inmind, we have looked at a number of vision and graphics tasks.ese include:

Image and video compositing: e rst application we discussed was blending and composit-

ing images and videos that differ signi cantly in their appearance. In Chapter , we presented

a multi-scale representation that leverages pixel correlations in natural images; we utilized it to

transfer appearance between images by manipulating the statistical distributions of their pyra-

mid decompositions. We also looked at the problem of face compositing in videos (Chapter ) and

used a multi-linear model for face geometry to track, align, and replace facial performances.

Enhancing low-quality images: In Chapter , we looked at the problem of creating a single high-

quality snapshot from a video clip. We took advantage of the coherence in the images captured

by a moving camera to invert the camera’s imaging process. We incorporated importance weights

corresponding to image features such as sharpness and saliency to produce snapshots that cap-

ture the activity in the video while improving the resolution, noise, and blur.

Analyzing illumination changes in image sequences:e third set of models we have presented

analyze variations in appearance caused due to changes in illumination. In Chapter , we analyzed

changes in outdoor scenes imaged over the course of a day.We proposed a novel model that lever-

ages coherence in the temporal and colorimetric structure of natural illumination, and applied it

to recover scene properties such as scene albedo and geometry. We demonstrated that this repre-

sentation is particularly useful for visual tasks such as color constancy, background estimation,

and camera geolocation. In Chapter , we analyzed the effect of shadows on Lambertian scene
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appearance, and based on this analysis, presented a novel, robust photometric stereo algorithm.

. Future Directions

ere are number of interesting avenues for future work that we discuss below.

.. Modeling and editing other cues

Editing lighting: In Chapters  and , we were able to align the appearance of disparate images

and videos to create photo-realistic composites. While our approach can handle differences in

geometry, texture, noise, blur, etc., it does not compensate for differences in lighting. In fact,

compositing images captured under widely different illumination conditions leads to results that

lookunnatural (see Fig. ..(a)).While progress has beenmade towards the problemof recovering

and editing lighting in images (including some of the work in this dissertation), performing these

tasks on images and videos captured in the “wild” still remains a challenging problem.

Editing motion: Motion plays a fundamental part in the way we perceive the world. Camera

motion has been extensively used for tasks such as image enhancement (Chapter ) and scene

reconstruction [], and motion estimation (or optical ow) techniques have a long history in

computer vision []. However, these models can not be used to model, and subsequently edit

motion in videos. While some recent work has started to look at this problem [, , ], we

believe that this is an exciting area to work on.

.. Richer models for appearance

Full- edged appearance modeling from a few images is a highly ill-posed problem, and one of the

insights of this work is to use lower-dimensional models that make this more tractable. While

the models we used are sufficient for a number of visual tasks, real-world scenes are often more
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(a) (b) (c)

Figure 7.2.1: Directions for future work. Editing lighting (a) and motion (b) realistically in images and
videos remains a challenging problem. (c) Real-world scenes exhibit complex behavior that can be better
explained by richer, more expressive models. Images credit: Liu et al. [117] (b) and Flickr user happy
via (c).

complex. For example, Fig. ..(c) shows a photograph depicting non-stochastic textures, build-

ings with intricate geometry and complex re ectances, and second-order illumination effects like

inter-re ections and caustics. Explaining all these phenomena requires richer, more expressive

models for appearance. is would in turn entail new inference algorithms that can robustly t

these richer models to image data. While researchers have already started exploring such algo-

rithms for tasks such as scene reconstruction [, ] and re ectometry [], many of these ef-

forts are still con ned to indoor laboratory conditions (the work of Lalonde [] being an im-

portant exception). Extending such techniques to images captured under general conditions is a

challenging problem with broad applications.

.. Leveraging more data

Estimating more general models of appearance as discussed above will certainly be very challeng-

ing. One way to make this problem better constrained is to make use of more image data. For

example, richer models for outdoor scene appearance can be estimated by leveraging the large

number of photographs already available online. Time-lapse videos of an outdoor scene captured

over a large period of time (e.g., a year) or multiple images and videos captured from different
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view-points could be used to recover high-quality appearance models. Alternatively, imaging de-

vices can be modi ed to record data [] that makes analysis and editing tasks easier. In addition,

many devices today record auxiliary data (such as GPS coordinates, time-stamps) that can be po-

tentially be exploited to inform image understanding algorithms.

.. Leveraging user interaction

Another way of making image modeling and editing more tractable is to involve the user in the

loop. is approach has been used for a number of tasks, including, intrinsic image decomposi-

tions [] and scenemodeling []. Such approaches rely on the user to provide input that informs

a computational image understanding algorithm. Of course, any approach that involves the user

needs to answer questions about the amount of user involvement it requires (preferably, very

little), and the interfaces for this interaction (ideally, highly intuitive).
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