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Abstract

Central to the goals of public health are obtaining and interpreting timely and relevant

information for the benefit of humanity. In this dissertation, we propose methods to monitor

and assess the spread HIV in a more rapid manner, as well as to improve decisions regarding

patient treatment options.

In Chapter 1, we propose a method, extending the previously proposed dual-testing

algorithm and augmented cross-sectional design, for estimating the HIV incidence rate in

a particular community. Compared to existing methods, our proposed estimator allows for

shorter follow-up time and does not require estimation of the mean window period, a crucial,

but often unknown, parameter. The estimator performs well in a wide range of simulation

settings. We discuss when this estimator would be expected to perform well and offer design

considerations for the implementation of such a study.

Chapters 2 and 3 are concerned with obtaining a more complete understanding of the

impact of treatment in randomized clinical trials in which multiple patient outcomes are

recorded. Chapter 2 provides an illustration of methods that may be used to address con-

cerns of both risk-benefit analysis and personalized medicine simultaneously, with a goal of

successfully identifying patients who will be ideal candidates for future treatment. Risk-

benefit analysis is intended to address the multivariate nature of patient outcomes, while

“personalized medicine” is concerned with patient heterogeneity, both of which complicate

the determination of a treatment’s usefulness. A third complicating factor is the duration of

treatment use. Chapter 3 features proposed methods for assessing the impact of treatment

as a function of time, as well as methods for summarizing the impact of treatment across a
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range of follow-up times.

Chapter 4 addresses the issue of meta-analysis, a commonly used tool for combining

information for multiple independent studies, primarily for the purpose of answering a clinical

question not suitably addressed by any one single study. This approach has proven highly

useful and attractive in recent years, but often relies on parametric assumptions that cannot

be verified. We propose a non-parametric approach to meta-analysis, valid in a wider range

of scenarios, minimizing concerns over compromised validity.
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1.1 Introduction

Cross-sectional HIV incidence estimation based on a sensitive and less-sensitive test offers

great advantages over the traditional cohort study for incidence estimation (Brookmeyer

and Quinn, 1995; Janssen et al., 1998). Based on features of the evolving HIV-1 antibody

response during the months after primary HIV-1 infection, several enzyme-immunoassays

(EIAs) have been developed to differentiate early and long-standing HIV infections. Sub-

jects who test positive on an EIA sensitive assay but negative on a less-sensitive assay are

identified as early infections while subjects who are reactive on both are considered to be

long-term HIV infections. An incidence estimate can be obtained by equating incidence

with prevalence of persons with early infection divided by the time between seroconversion

on the 2 tests (commonly termed “window period”). This approach has attracted much at-

tention. One popular assay is the IgG capture BED EIA (BED) assay (Parekh et al., 2002).

Balasubramanian and Lagakos (2010) postulate a longitudinal history statistical model of

HIV seconversion and subsequent reactivity to a less sensitive assay, and show that the

cross-sectional estimator arises as a maximum likelihood estimator under this model. They

further extend this method to allow the assessment of covariate effects. However, concerns

have been raised in recent years regarding the reliability of this method (Sakarovitch et al.,

2007). Some less-sensitive tests, for example, the BED assay, may yield false negative re-

sults; that is, subjects may remain negative to the less-sensitive assay long after they have

been infected (Hargrove et al., 2008). It has been noted that if such a subpopulation exists,

then the original cross-sectional incidence estimator must be adjusted to account for this

fact (Brookmeyer, 2009; Welte et al., 2009; Wang and Lagakos, 2009).

Recently, Wang and Lagakos (2010) proposed an augmented cross-sectional study design

which adds a longitudinal component to the traditional cross-sectional study by following

forward those subjects who test positive on the sensitive assay and test negative on the

less-sensitive assay until either they become reactive to the less-sensitive assay or for a

predetermined length of follow-up time τ , whichever occurs first. The augmented cross-
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sectional study provides one way to estimate the size of the subpopulation who will remain

negative permanently on the less-sensitive test. An estimate of the false negative rate can

be obtained by calculating the proportion of subjects who remain negative at the end of the

follow-up period. An underlying assumption for an unbiased estimate of the false negative

rate is that τ is chosen to be long enough so that those who have not become reactive to

the less-sensitive assay by the end of the follow-up period will remain negative indefinitely.

Thus, the choice of τ requires knowledge of an upper limit for the window period (W∗) among

those who will become reactive. Two issues arise. First, does there exist a subpopulation

where infected subjects would remain nonreactive to the less-sensitive assay permanently?

If so, what is the upper limit of the window period among those who will become reactive?

Although there is some belief that those who will become reactive to the BED assay will do

so within a year, considerable uncertainty regarding this upper limit exists.

In this paper, we assess the impact of varying follow-up time on estimating HIV inci-

dence within the context of an augmented cross-sectional design, evaluate the robustness of

incidence estimators to the assumptions about the existence and size of the subpopulation

where infected subjects will remain negative permanently on the less-sensitive test, and pro-

pose a new estimator based on abbreviated follow-up time (AF). In Section 2.1, we generalize

the likelihood function in Wang and Lagakos (2010) by incorporating length of follow-up and

analyze the behavior of the estimators when different underlying models are assumed. In

Section 2.2, we introduce the AF estimator, which allows shorter follow-up time than the

original estimator based on the augmented design and does not require estimation of the

window period. In Section 3, we use simulations to compare the performance of various

estimators. In Section 4, we discuss areas of future research. All proofs are relegated to

Appendices.
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1.2 Methods

1.2.1 Notation and Model

We consider the four-state progressive-disease model as in Section 3 of Wang and Lagakos

(2010). Here, State 1 represents the pre-seroconversion state (uninfected or infected but not

detectable by the sensitive test). State 2 represents the “recent infection” state, in which

an infected subject is detectable by the sensitive diagnostic test, but not yet by the less-

sensitive test (though he/she will eventually test positive). State 3 represents the “nonrecent

infection” state in which an infected individual is detectable by both the sensitive and less-

sensitive diagnostic tests. State 4 represents subjects who will remain nonreactive to the

less-sensitive assay permanently.

Using the same notation as in Wang and Lagakos (2010), let time 0 denote birth of an

individual and T denote the calendar time of HIV seroconversion. Let f(u), λ(u), and F (u)

denote the density, incidence rate, and cumulative distribution functions of T at time u ≥ 0.

Let W denote the individual’s time spent in State 2, with cumulative distribution function

G(·). Denote the upper limit of support for W by W ∗. Let µ = E(W ) denote the mean time

from infection to testing positive on less-sensitive test, amongst the population who will test

positive eventually. Let p denote the proportion of such patients among all infected subjects.

Let t denote the calendar time of the cross-sectional sample. As in Wang and Lagakos (2010),

we assume that T is independent of W and f(u) = f , for u ∈ (t − W ∗, t). Our goal is to

make inferences about λ(t) = f/{1 − F (t)}, the HIV incidence rate at the time, t, of the

cross-sectional sample. Hereafter we denote λ(t) as λ for simplicity because the remainder

of the paper focuses on a fixed calendar time t, the time at which the cross-sectional sample

is obtained.

Suppose that a random sample of size N is drawn from a population of asymptomatic

individuals at calendar time t, and tested using both a sensitive and less-sensitive diagnostic
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test. Let N1, N2, and N3 denote the numbers of subjects who test negative on both tests

(State 1), positive only on the sensitive test (State 2 or 4), and positive on both tests (State

3), respectively. In an augmented cross-sectional study, we will follow and periodically retest

the N2 subjects who test negative on the less-sensitive test for some time period τ , at

which time we will have observed n1τ transitions to the “non-recent infection” state. Let

n0τ = N2−n1τ denote the number of remaining subjects, including subjects who may become

positive on the less-sensitive test at a later time as well as those who will remain negative

permanently. Let X denote the forward recurrence time, which represents the time elapsed

from t until entrance into State 3. Let h(x | t) and H(x | t) denote the conditional density

and cumulative function of X. Each of the n1τ subjects gives rise to an interval censored

observation [ai, bi] of the forward recurrence time Xi, where ai denotes the elapsed time

between t and the last negative test result and bi denotes the elapsed time between t and

the first positive test result. Let n1 and n0 denote the true number of subjects who are in

State 2 and 4, respectively, at time t.

Let π1(t), π2(t), π3(t), and π4(t) denote the prevalence probabilities in State 1, 2, 3, and

4 at time t, respectively. The likelihood function corresponding to an arbitrary τ is given by

(see Appendix 1):

L ={π1(t)}
N1{π2(t)H(τ | t)}n1τ{π3(t)}

N3 [π4(t) + π2(t){1−H(τ | t)}]n0τ

×

n1τ�

i=1

H(bi | t)−H(ai | t)

H(τ | t)

=φN1{p(1− φ− φλµ)}N3(φλpµ)n1τ [(1− p)(1− φ) + φλµp{1−H(τ | t)}]n0τ (1.1)

×

n1τ�

i=1

{H(bi | t)−H(ai | t)}

where φ = 1− F (t) and

H(x | t) =

�
x

0

1−G(v)

µ
dv (1.2)

as shown in Wang and Lagakos (2010). This relationship implies that H(·) is uniquely

determined once G(·) is specified. Because the right hand side of (1.2) is free of t, and the
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remainder of the paper focuses on a fixed time t, we hereafter use H(x) to represent H(x | t)

for simplicity. We note that without parametric assumptions about the distribution G(·), the

parameters (µ, p) are non-identifiable, as the true state of subjects who have yet to transition

to State 3 by the end of follow-up cannot be known. Even with a parametric assumption, the

parameters (µ, p) are weakly identifiable, in the sense that the likelihood function is relatively

flat near the true parameter values, resulting in a near-singular information matrix. Below

we attempt to address this issue by making additional assumptions on either p or G(τ).

Assume p = 1

If all infected subjects will eventually test positive on the less-sensitive test, then p = 1 and

the above likelihood reduces to

L =φN1(1− φ− φλµ)N3(φλµ)n1τ

n1τ�

i=1

{H(bi)−H(ai)}[φλµ{1−H(τ)}]n0τ

=φN1(1− φ− φλµ)N3(φλµ)N2

N2�

i=1

{H(bi)−H(ai)}. (1.3)

For those subjects who have not become reactive to the less-sensitive assay at time τ , we

let ai = τ and bi = ∞. The above likelihood is given in equation (5) of Wang and Lagakos

(2010). The assumption of p = 1 implies that all recently infected individuals will eventually

test positive on the less-sensitive test. If this assumption is true, then the resulting estimator

λ̂A =
N2

N1µ̂
(1.4)

(hereafter referred to as Estimator A) is consistent regardless of follow-up time τ , provided

that the parametric assumption about the underlying distribution for sojourn time is correct.

Here we use µ̂ to denote the maximum likelihood estimate of µ.

However, if this assumption of p = 1 is violated, then it was shown in Wang and Lagakos

(2009) that this estimator λ̂A converges in probability to

pφλµ+ (1− p)(1− φ)

φµτA

(1.5)
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where µτA is the probability limit of the (biased) estimate of µ resulting from τ units of

follow-up and the (improper) assumption that p = 1.

Under mild violations of this assumption (p = .99), we find that the asymptotic bias

is modest for τ ≤ µ, but then increases quickly, with E(λ̂A)/λ > 1.25 when τ ≥ 2µ under

many plausible scenarios, with the degree of bias increasing with the population prevalence,

leading to a significant overestimation of the true incidence rate.

Assume that follow-up time is longer than W ∗

When the follow-up time τ is longer than W ∗, we have H(τ) = 1, and the likelihood function

(1.1) reduces to

L = φN1{p(1− φ− φλµ)}N3(φλpµ)n1τ{(1− p)(1− φ)}n0τ

n1τ�

i=1

{H(bi)−H(ai)}. (1.6)

This corresponds to the scenario described in Section 3 of Wang and Lagakos (2010) when

all individuals in State 2 are followed until they have entered State 3. If we know W ∗ up to

an upper limit, then we can choose τ > W ∗, so that H(τ) = 1. The resulting estimator,

λ̂B =
n1τ

N1p̂τ µ̂τ

(1.7)

(hereafter referred to as Estimator B) is consistent, where p̂τ = (N3 + n1τ )/(N3 +N2).

If this assumption τ > W ∗ is violated, then some of the n1 − n1τ truly recently infected

individuals who have not transitioned during the follow-up period may be incorrectly classi-

fied as “long-term non-progressors”. It is shown in Appendix 2 that this estimator converges

in probability to

λ
µ

µτB

(1− φ)H(τ)

1− φ− φλµ{1−H(τ)}
(1.8)

where µτB is the probability limit of the (biased) estimate of µ resulting from τ units of

follow-up and the (improper) assumption that H(τ) = 1.
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In Figure 1.1, we show an example of the probability limits of Estimators A and B as

a function of follow-up time τ , for p = 1 (Fig. 1.1(a)) and p = .95 (Fig. 1.1(b)). For this

example, we assumed prevalence and incidence values of 15% and 2%, respectively, with

mean window period of 6 months and the sojourn times following a Weibull distribution

with shape parameter k = 2. We used (1.5) and (1.8) to calculate the probability limits

at each time τ . Asymptotic values of µ̂τA and µ̂τB were estimated by simulating data

representing approximately one million subjects with biweekly follow-up. The asymptotic

bias of Estimator A is seen to be quite sensitive to departures from the assumption of p = 1,

and increases as τ increases. The limit of Estimator A rises to 2.9% for τ = 52 and 3.4%

when τ = 78 weeks. The asymptotic bias of Estimator B is comparatively small even when

τ is much smaller than W ∗.

0 20 40 60 80 100

0.
00

0.
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0.
02

0.
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0.
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0.
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0.
06

 in weeks
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Est. A

(a) p=1
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(b) p=0.95

Figure 1.1: Probability Limits of Estimator A (open circles) and Estimator B (solid circles)
for Various τ and p, with φ = .85, λ = .02, and Assuming that G(·) is Weibull with Mean
.5 and Shape Parameter k = 2.

8



Assume p = p0 < 1

If the assumption of p = 1 is likely to be violated, and we are unable to posit a value for W ∗,

we can assume a pre-specified value of p (denoted p0), possibly on the basis of prior studies

in a similar population, in which case the likelihood becomes

L =φN1{p0(1− φ− φλµ)}N3 [(1− p0)(1− φ) + φλµp0{1−H(τ)}]n0τ (φλp0µ)
n1τ

×

n1τ�

i=1

{H(bi)−H(ai)} (1.9)

To obtain the MLEs for (λ,φ, µ), we can again assume some parametric distribution for

G(·) and numerically maximize L. We refer to this maximum likelihood estimate of λ, λ̂C ,

as Estimator C. An estimate of the covariance matrix of (λ,φ, µ) is provided by the sample

Fisher information corresponding to L in (1.9). In Web Appendix A, we derive the estimated

covariance matrix assuming that G(·) follows a Weilbull distribution, a flexible distribution

with support on positive numbers which is commonly-used in parametric survival modeling.

This estimator is consistent when p0 and the parametric assumption about G(·) are correctly

specified, regardless of length of follow-up τ . In Section 3, we examine the robustness of

this estimator to violation of assumptions about p0 and parametric distributions through

simulations. For estimators A, B, and C, a (1− α)100% confidence interval is given by

(λ̂e−Z1−α/2ŝ/λ̂, λ̂eZ1−α/2ŝ/λ̂) (1.10)

where ŝ is the square root of the diagonal element of the sample Fisher information corre-

sponding to λ̂. The confidence intervals in (1.10) are additive on the log scale. As suggested

by the associate editor, we also consider the use of profile likelihood confidence intervals in

Section 3.
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1.2.2 AF Estimator

Motivation

If we were to conduct a cohort study to estimate HIV incidence, i.e., the rate of transition

from State 1 to State 2 in our disease model, we could estimate the incidence rate by

# of events/person-years, where “number of events” refers to the number of transitions

from State 1 to State 2, and “person-years” refers to the cumulative time contributed by the

uninfected individuals in the cohort. Let T2 denote the time of entering State 3 and f2(·)

denotes its corresponding density function. Under the assumption of a constant infection

density, f(u) = f for u ∈ (t −W ∗, t), the probability of transition from State 1 to State 2

at time t, f(t), is related to the probability of transition from State 2 to State 3, f2(t). In

Appendix 3 we show that f(t) = f2(t)/p, which implies that

λ =
f

1− F (t)
=

f2(t)

p{1− F (t)}
. (1.11)

Assume f2(u) = f2, for u ∈ (t, t + τ). This is reasonable for a relatively small τ (e.g.,

12 weeks). From (1.11), we have λ = f2/[p{1 − F (t)}]. Suppose there is some minimum

time, say, τ ∗, spent in the recent infection state. That is, an infected individual will test

negative on the less-sensitive assay for at least τ ∗ from seroconversion. If the follow-up time

τ is chosen such that τ is less than this minimum time τ ∗, then G(τ) = 0. This implies that

P(Subject in State 1 at t | Subject in State 3 at t + τ) = 0. Hence, if we are interested in

observing the number of transitions into State 3 that occur in our sample between the time

of the cross-sectional testing, t, and the end of follow-up, t + τ , we only need to follow the

N2 patients who test positive on the sensitive test and negative on the less-sensitive test at

time t. The total number of transitions into State 3 during interval (t, t + τ) is given by

n1τ and f2 can be estimated by n1τ/(Nτ). This, combined with the fact that F (t) can be

estimated by (N −N1)/N Wang and Lagakos (2009), motivates us to consider the following

10



estimator:

λ̂ =
n1τ

N1p̂τ
, (1.12)

where

p̂ =
N3 + n1τ

N3 +N2

, (1.13)

as used in Estimator B. We note that p̂ will usually underestimate the true value of

p because the use of a shorter follow-up time means that n1τ will underestimate the true

number of transitions, n1, to State 3, had we been able to follow all N2 subjects found to be in

the recent state for W ∗. However, this will help to compensate for the fact that G(τ) may not

be strictly equal to 0 and hence n1τ could also underestimate the true number of transitions

to State 3 had we been able to follow all N1+N2 subjects “at risk” for transition into State 3

during the interval (t, t+ τ). We refer to this design as an augmented cross-sectional design

with abbreviated follow-up and the corresponding estimator as the AF estimator.

We note that this estimator has the same form as Estimator B, with the value µ̂ = τ .

In fact, if τ is small, but we continue to use observed forward recurrence times for the n1τ

subjects to estimate the mean and the shape parameter (k) of a Weibull distribution G(·)

as described in Estimator B, we find through simulations that k̂ tends to be quite large and

µ̂ ≈ τ .

Properties

In Appendix 4 we show that

E(λ̂AF ) ≈
λµH(τ)

τ

1

1− pr(1−H(τ))
, (1.14)

where

pr =
λφµ

1− φ
= P (recent infection | currently infected). (1.15)

11



In a region with high prevalence and incidence, for example, (λ,φ, µ) = (.04, .7, .5),

we have pr < .05. As another example, a region with low prevalence and incidence with

(λ,φ, µ) = (.01, .92, .5) would yield pr < .06. Because pr is small and for small τ , H(τ) ≈

τh(0) = τ/µ, we have

E(λ̂AF ) ≈
λµH(τ)

τ

1

1− pr{1−H(τ)}
≈

λµτh(0)

τ
=

λµτ

τµ
= λ. (1.16)

It is shown in Appendix 5 that

�V ar{log(λ̂AF )} ≈
1

n1τ

. (1.17)

Thus, for early stopping times τ , a simple estimator and 95% CI could be calculated

by counting the number of transitions occurring during the τ follow-up time, with the point

estimate λ̂AF given in (1.12) and confidence interval (λ̂AF e
−1.96

�
1

n1τ , λ̂AF e
1.96

�
1

n1τ ).

For the AF estimator to be expected to be close to the true incidence λ by a factor of

B, where B < (1− pr), i.e. Bλ ≤ E(λ̂AF ) ≤ λ/B, we can choose τ such that (see Appendix

6)

τ ≤

�
τ

0
1−G(x) dx

B[1− pr{1−H(τ)}]
. (1.18)

Because [1 − pr{1 − H(τ)}] ≤ 1 and close to 1, a slightly more strict condition that will

guarantee the boundedness of the bias of the AF Estimator is

τ ≤

�
τ

0
1−G(x) dx

B
. (1.19)

The above inequality highlights the dependence of the AF estimator on the assumption

of a relatively “flat” survival function 1 − G(x) : x ∈ (0, τ), i.e. some minimum amount

of time spent in State 2. A “perfect” test (W = µ, with probability 1) would result in

g(x) = 0 on the range (0,τ), and thus

�
τ

0

1 − G(x) dx ≡ τ for any τ < µ. In practice, the

less-sensitive test does not have this “perfect” property. We find that the bias of the AF

estimator generally increases as the choice of stopping time τ increases. Because the width

12



of the confidence interval based on the AF estimator is purely “event-driven”, it becomes

smaller with each additional observed transition. Therefore, a larger value of τ is associated

with increasing bias and decreasing variance. We have found through extensive simulations

that τ ≈ µ/2 is generally a good choice. Unless prior information is known about the value

of µ in the population of interest, we recommend the choice of τ = 12 weeks for use with

the AF estimator. We show in Section 3 that this leads to good performance in a variety of

settings.

In practice we do not know the exact distribution of sojourn times in a given popu-

lation. Rather, we may have some idea of mean window period µ and possibly coefficient

of variation c = σ/µ. With a parametric assumption for the window period distribution

and (µ, c), we can calculate H(τ) and verify whether a 12-week AF estimator satisfies

Bλ ≤ E(λ̂AF ) ≤ λ/B for a fixed B and a hypothetical value for pr, which is determined by

(λ,φ, µ) as in (1.15). In Figure 1.2(a), we provide the acceptable region, in terms of µ and

c, of the 12-week AF estimator for B = 0.9 and pr = .02, .04, .06, and .1. The boundaries

presented in this plot are generated by finding µmin;c that satisfies (1.18) for each fixed c.

We note that for µ1 < µ2, if (µ1,c) is in the acceptable region, then (µ2, c) must also be

in the acceptable region. Therefore, µmin;c provides a lower bound for all µ that satisfies

(1.18) for each c. We also find that the region which guarantees Bλ ≤ E(λ̂AF ) ≤ λ/B when

the true distribution is Weibull is somewhat smaller than the corresponding region when

the true distribution is Lognormal. Because of this, we recommend using the reference

region based on the Weibull assumption when deciding whether to use the AF estimator,

in order to be conservative. An even more conservative boundary can be generated using

(1.19), which does not dependent on pr and hence does not require assumptions about

(φ,λ). Figure 1.2(b) shows the actual coverage levels of the nominal 95% confidence

intervals of the 12-week AF estimator for different values of (c, µ), in a setting where

(N,λ,φ, p) = (6000, .03, .85, .99). We find that the actual coverage levels are close to the

nominal level for all parameter pairs that fall within the acceptable region corresponding to

B=.9, as shown in 1.2(a).
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Figure 1.2: Bias and Coverage of 12-week AF Estimator
Left: The 12-week AF Estimator will have acceptably small bias when (c,µ) lie above the line
associated with desired bound B=0.90
Right: Actual Coverage of Nominal 95% CI,
Coverage values obtained via simulation using (φ,λ, p) = (0.85, 0.03, 0.99) and G(·) ∼ Weibull

Design Considerations

Suppose that one wanted to conduct a study to estimate the incidence of HIV in a region

with some hypothesized parameter values (φ,λ, p), and had decided that the usage of the

AF estimator is both desirable and appropriate. Under this proposed design plan, biweekly

follow-up is not necessary, as only the total number of transitions occurring during the 12

weeks of follow-up is needed to produce this estimate of incidence, and could be obtained

via a single follow-up visit 12 weeks (τ=12/52 years) after the initial testing. This designed

study would require the administration of N (typically thousands) sensitive tests and N−N1

less-sensitive tests at time t, and a further N2 (typically < 100) less sensitive tests at time

t + τ . The precision of the AF estimator is closely tied with the number of transitions into

State 3 within 12 weeks (n1τ ). Below we show how to calculate the total sample needed

so that the ratio of the true incidence rate and the estimated rate, eZα/2

√
1/n1τ , is smaller

14



than δ with (1− α)100% confidence. To achieve this, we require that n1τ ≥ {Zα/2/log(δ)}2.

For example, for δ = 2 and α = .05, we would need the number of transitions n1τ to be at

least 8. If we would like to achieve better precision, and let δ = 1.5, then we would require

n1τ ≥ 24.

Earlier we showed that the probability that a recently infected subject will transition

to State 3 within τ units of follow-up is φλpµH(τ) ≈ φλpτ for small τ . The sample size

N has the negative binomial distribution with number of failures r = n1τ and success rate

Ps = 1− φλpτ . Therefore, the sample size N required to obtain the observation of at least

n1τ failures with probability β is QNB(β, r = n1τ , Ps = 1 − φλpτ), where Q refers to the

quantile function of negative binomial distribution. A close approximation to this value can

be obtained by the following formula

Ñ =
(n1τ + Zβ ·

√
n1τ )(1− φλpτ)

φλpτ
. (1.20)

For example, in a high prevalence (φ = .75) and high incidence (λ = .04) population, if

we assume that p = .94, and would like to obtain at least 8 transitions into State 3 within

12 weeks with probability .9, then we would need to include at least N = 1799 subjects in

the cross-sectional sample. Suppose, instead, that we are in a setting with lower prevalence

(φ = .9) and incidence (λ = .02) and wish to observe at least 24 transitions with probability

.7. In this case, we would need N = 6713. Using the formula in (1.20) yields Ñ=1775 and

6778, respectively, for the two settings discussed.

For a fixed sample size N and given parametric distribution G(·) and parameter

values (φ, λ, p), we can find the optimal follow-up time τ that minimizes the mean

squared error (MSE) of the AF Estimator numerically. For example, for the scenario

where φ = .75, λ = .04, and N = 1799, assuming that the true sojourn time dis-

tribution G(·) is Weibull with µ = .3 and c = .6, we find that the MSE is minimized

near τ = 13 weeks, with relatively little change in the MSE over the range τ ∈ (10, 15) weeks.
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1.2.3 Relationship Among Estimators

All of the estimators discussed in Sections 2.1 and 2.2 can be viewed as special cases of the

most general maximum likelihood estimator of incidence given τ units of follow-up time,

λ̂ =
n1τ

N1p̂µ̂Ĥ(τ)
(1.21)

In general, it is not possible to estimate all of these quantities {p, µ,H(τ)} well without

external information or assumptions.

If we are in a setting where all apparent recent infections will eventually test positive on

the less-sensitive test, and that the concept of “long-term non-progressor” does not apply,

then p = 1, n1 = N2 and Ĥ(τ) = n1τ/N2. Therefore,

λ̂ =
n1τ

N1p̂µ̂Ĥ(τ)
=

N2

N1µ̂
, (1.22)

which represents Estimator A. Alternatively, we could assume that the value of p is known

to be p0, and not equal to 1. In this case we need to estimate {µ,H(τ)}, and results in

Estimator C,

λ̂ =
n1τ

N1p0µ̂Ĥ(τ)
. (1.23)

Rather than making assumptions about the value of p, one could instead make assump-

tions about G(·), and thus h(·), H(·), and µ. As discussed earlier in Wang and Lagakos

(2010), if we have some knowledge of W ∗, and choose τ ≥ W ∗, then Ĥ(τ) = 1 and n1 = n1τ ,

and

λ̂ =
n1τ

N1p̂µ̂Ĥ(τ)
=

n1

N1p̂µ̂
, (1.24)

which represents Estimator B. If we do not have any knowledge of W ∗, or we are unable to

follow subjects for τ > W ∗ for logistical reasons, the AF estimator may offer an attractive

alternative if (µ, c) falls within the acceptable region. The AF estimator works well when
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G(τ) ≈ 0. This results in Ĥ(τ) = τ/µ̂ for small τ , and hence

λ̂ =
n1τ

N1p̂µ̂Ĥ(τ)
=

n1τ

N1p̂τ
. (1.25)

1.3 Simulation Studies

We have discussed 4 different estimators for estimating HIV incidence in an augmented cross-

sectional study with follow-up time τ . We performed an extensive simulation study to com-

pare their performance under a variety of situations. We assumed (N,λ,φ) = (6000, .02, .85)

throughout. We let p = 0.95 or 1. We considered Weibull and Lognormal for the underlying

distribution G(·) , with mean µ = .3, .4, or .5, and the coefficient of variation c = .4, or .6.

The length of follow-up τ was taken to be 12, 24, or 52 weeks respectively. The frequency

of follow-up visits is assumed to be biweekly, except for the AF estimator, which only re-

quires a single follow-up visit at 12 weeks. In the case of Estimators A and C, we recorded

right-censored observations using b = 999 weeks as the upper bound for the transition time

of any patient whose transition is not observed during follow-up. For Estimator C, which

calls for a pre-specified value for p, p0 was taken to be .91, .95, or .99. For Estimators A,

B, and C, we assumed a Weibull distribution in our maximization procedure throughout the

paper because we found that using a Weibull distribution yields more robust results than

using a Lognormal distribution, as in Wang and Lagakos (2010). Results corresponding to

the usage of a Lognormal distribution in the maximization procedure are included in the

Web Tables 2 and 3. We also considered confidence intervals based on profile likelihood

methods. The width and coverage associated with profile likelihood confidence intervals are

comparable to those obtained based on (1.10) (see Web Table 4), although we noticed that

some computational difficulties arose when attempting to profile out the shape parameter of

the Weibull distribution, forcing us to impose a lower bound on this value.

When p = 1, although the actual coverage of the confidence intervals based on Estimator

A is close to the nominal level, we noticed that it tends to overestimate the true incidence rate
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Table 1.1: Simulation results for Estimators A and B, with N=6000, φ = .85 and λ=.02, and
assuming Weibull G(·). E(λ̂) and sd(λ̂) denote average and standard deviation of estimates
from 1000 simulated studies. E(ŝ) denotes average of likelihood-based estimates of the stan-
dard deviation from the 1000 experiments. Coverage denotes the proportion of experiments
in which the true λ is contained in the nominal 95% confidence interval, and Width refers
to the median width of the nominal 95% CI. Values in boldface represent scenarios where
conditions for this estimator are met.

Estimator A p=1 p=0.95

Weibull(µ=0.5,c=0.4) E(λ̂) sd(λ̂) E(ŝ) Cov. Width E(λ̂) sd(λ̂) E(ŝ) Cov. Width

τ=12 w, H(τ)=0.45 0.026 0.0137 0.0137 0.981 0.028 0.022 0.0078 0.0110 0.977 0.034

τ=24 w, H(τ)=0.80 0.022 0.0060 0.0059 0.962 0.021 0.023 0.0082 0.0099 0.959 0.035

τ=52 w, H(τ)=0.999 0.020 0.0047 0.0044 0.934 0.017 0.034 0.0128 0.0232 0.996 0.108

Weibull(µ=0.3,c=0.6)

τ=12 w, H(τ)=0.64 0.026 0.0191 0.0175 0.971 0.038 0.023 0.0108 0.0169 0.962 0.074

τ=24 w, H(τ)=0.92 0.022 0.0101 0.0090 0.946 0.030 0.026 0.0127 0.0208 0.991 0.097

τ=52 w, H(τ) > 0.999 0.021 0.0077 0.0073 0.931 0.026 0.029 0.0190 0.0295 0.991 0.150

Lognorm(µ=0.5,c=0.4)

τ=12 w, H(τ)=0.46 0.026 0.0140 0.0126 0.977 0.026 0.022 0.0075 0.0107 0.978 0.031

τ=24 w, H(τ)=0.81 0.022 0.0058 0.0057 0.949 0.021 0.023 0.0082 0.0099 0.968 0.034

τ=52 w, H(τ)=0.992 0.022 0.0052 0.0053 0.940 0.020 0.035 0.0133 0.0247 0.997 0.117

Lognorm(µ=0.3,c=0.6)

τ=12 w, H(τ)=0.67 0.026 0.0199 0.0158 0.982 0.037 0.023 0.0105 0.0165 0.968 0.072

τ=24 w, H(τ)=0.92 0.025 0.0108 0.0107 0.971 0.036 0.027 0.0129 0.0229 0.996 0.115

τ=52 w, H(τ)=0.995 0.024 0.0097 0.0099 0.957 0.036 0.030 0.0187 0.0308 0.992 0.173

Estimator B

Weibull(µ=0.5,c=0.4) E(λ̂) sd(λ̂) E(ŝ) Cov. Width E(λ̂) sd(λ̂) E(ŝ) Cov. Width

τ=12 w, H(τ)=0.45 0.022 0.0051 0.0059 0.960 0.023 0.022 0.0053 0.0061 0.963 0.024

τ=24 w, H(τ)=0.80 0.020 0.0037 0.0036 0.963 0.014 0.020 0.0038 0.0037 0.965 0.014

τ=52 w, H(τ)=0.999 0.020 0.0045 0.0043 0.933 0.016 0.020 0.0045 0.0044 0.933 0.017

Weibull(µ=0.3,c=0.6)

τ=12 w, H(τ)=0.64 0.020 0.0060 0.0060 0.980 0.022 0.020 0.0064 0.0065 0.980 0.022

τ=24 w, H(τ)=0.92 0.019 0.0065 0.0054 0.861 0.018 0.019 0.0066 0.0057 0.842 0.018

τ=52 w, H(τ) > 0.999 0.021 0.0076 0.0072 0.932 0.026 0.021 0.0079 0.0075 0.910 0.026

Lognorm(µ=0.5,c=0.4)

τ=12 w, H(τ)=0.46 0.022 0.0051 0.0059 0.941 0.023 0.022 0.0054 0.0060 0.954 0.024

τ=24 w, H(τ)=0.81 0.020 0.0037 0.0037 0.952 0.014 0.020 0.0039 0.0038 0.962 0.014

τ=52 w, H(τ)=0.992 0.021 0.0048 0.0048 0.943 0.019 0.021 0.0048 0.0049 0.951 0.019

Lognorm(µ=0.3,c=0.6)

τ=12 w, H(τ)=0.67 0.021 0.0060 0.0061 0.975 0.022 0.021 0.0061 0.0064 0.985 0.023

τ=24 w, H(τ)=0.92 0.020 0.0068 0.0061 0.897 0.021 0.020 0.0064 0.0060 0.911 0.021

τ=52 w, H(τ)=0.995 0.023 0.0085 0.0089 0.958 0.033 0.023 0.0081 0.0088 0.968 0.032
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in the settings we examined. For smaller value of τ , the variance associated with Estimator

A is quite large in relative to the true incidence rate. Because λ is bounded below at 0, large

variation in λ̂ makes it more likely for us to obtain larger values of λ̂ than smaller values of

λ̂, resulting in the average of λ̂ to be biased high. We believe that this is a finite sample

problem. We also performed additional simulations with larger sample size, and noticed that

this overestimating phenomenon goes away. The precision of Estimator A improves for larger

values of τ . When p=.95, the bias associated with Estimator A increases with larger τ and

becomes substantial when τ = 52 weeks. Moreover, its precision also worsens substantially

as τ gets larger. These results suggest that Estimator A is very sensitive to assumptions

about p. Unless we are certain about p = 1, the use of Estimator A would best be avoided.

When H(τ) ≈ 1, Estimator B performs well as expected, for Weibull or Lognormal

G(·), as in Wang and Lagakos (2010). Its actual coverage level is generally near the nominal

level. When H(τ) < 1, we observe modest bias for Estimator B and the actual coverage

level can be substantially lower than the nominal level when τ = 24 weeks. Interestingly, we

find that Estimator B provides adequate coverage when τ = 12 weeks, and showed greater

precision than Estimator A in such scenarios. This phenomenon is closely related to the

good performance of the AF estimator and was also part of our motivation for considering

the AF estimator.

When p0 is correctly specified, Estimator C performs well in general, showing coverage

near the nominal level and precision improving with increasing values of τ . When the

hypothesized p0 is smaller than the true p, Estimator C behaves like Estimator B, maintaining

actual coverage greater than 92% for τ = 12 or τ = 52 weeks and can have the under-coverage

problem for τ = 24 weeks in some settings. When the hypothesized p0 is larger than the

true p, Estimator C behaves like Estimator A, and can lead to substantial bias and greater

variances.

As the follow-up time increases, the AF estimator becomes less variable yet more biased.

The 12-week AF Estimator performs well in all scenarios (see Table , with further simulation



Table 1.2: Simulation results for Estimator C, with N=6,000, φ = .85 and λ=0.02, and
assuming Weibull G(·). E(λ̂) and sd(λ̂) denote average and standard deviation of estimates
from 1000 simulated studies. E(ŝ) denotes average of likelihood-based estimates of the stan-
dard deviation from the 1000 simulations. Coverage denotes the proportion of simulations
in which the true λ is contained in the nominal 95% confidence interval, and Width refers
to the median width of the nominal 95% CI. Values in boldface represent scenarios where
conditions for this estimator are met.

Estimator C p=1 p=0.95

Weibull(µ=0.5,c=0.4) E(λ̂) sd(λ̂) E(ŝ) Cov. Width E(λ̂) sd(λ̂) E(ŝ) Cov. Width

po=0.95

τ=12 w, H(τ)=0.45 0.022 0.0056 0.0060 0.971 0.022 0.025 0.0157 0.0138 0.992 0.028
τ=24 w, H(τ)=0.80 0.019 0.0037 0.0036 0.960 0.013 0.022 0.0075 0.0062 0.963 0.020
τ=52 w, H(τ)=0.999 0.020 0.0043 0.0042 0.936 0.016 0.021 0.0060 0.0051 0.927 0.018

po=0.99

τ=12 w, H(τ)=0.45 0.025 0.0149 0.0124 0.994 0.027 0.023 0.0090 0.0121 0.998 0.031

τ=24 w, H(τ)=0.80 0.020 0.0043 0.0042 0.964 0.014 0.023 0.0085 0.0100 0.975 0.034

τ=52 w, H(τ)=0.999 0.020 0.0043 0.0042 0.936 0.016 0.038 0.0152 0.0263 0.989 0.121

Weibull(µ=0.3,c=0.6)

po=0.95

τ=12 w, H(τ)=0.64 0.020 0.0071 0.0064 0.984 0.021 0.027 0.0228 0.0210 0.989 0.036
τ=24 w, H(τ)=0.92 0.019 0.0066 0.0054 0.843 0.018 0.024 0.0161 0.0132 0.932 0.030

τ=52 w, H(τ) > 0.999 0.021 0.0077 0.0073 0.924 0.027 0.022 0.0150 0.0099 0.926 0.027
po=0.99

τ=12 w, H(τ)=0.64 0.023 0.0165 0.0107 0.981 0.023 0.025 0.0131 0.0198 0.999 0.078

τ=24 w, H(τ)=0.92 0.019 0.0067 0.0056 0.850 0.019 0.029 0.0166 0.0251 0.990 0.116

τ=52 w, H(τ) > 0.999 0.021 0.0077 0.0073 0.924 0.027 0.042 0.0302 0.0505 0.999 0.296

Lognorm(µ=0.5,c=0.4)

po=0.95

τ=12 w, H(τ)=0.46 0.023 0.0053 0.0059 0.950 0.022 0.026 0.0133 0.0136 0.985 0.027

τ=24 w, H(τ)=0.81 0.020 0.0038 0.0037 0.955 0.014 0.022 0.0059 0.0058 0.969 0.019

τ=52 w, H(τ)=0.992 0.021 0.0046 0.0048 0.954 0.019 0.022 0.0055 0.0055 0.948 0.020

po=0.99

τ=12 w, H(τ)=0.46 0.025 0.0120 0.0110 0.978 0.025 0.023 0.0088 0.0120 0.996 0.031

τ=24 w, H(τ)=0.81 0.021 0.0044 0.0042 0.950 0.015 0.024 0.0087 0.0099 0.994 0.033

τ=52 w, H(τ)=0.992 0.021 0.0046 0.0048 0.954 0.019 0.038 0.0157 0.0279 0.988 0.132

Lognorm(µ=0.3,c=0.6)

po=0.95

τ=12 w, H(τ)=0.67 0.021 0.0059 0.0059 0.972 0.022 0.026 0.0192 0.0170 0.992 0.034

τ=24 w, H(τ)=0.92 0.020 0.0064 0.0061 0.901 0.022 0.025 0.0139 0.0123 0.962 0.033

τ=52 w, H(τ)=0.995 0.023 0.0080 0.0088 0.965 0.033 0.025 0.0143 0.0117 0.960 0.035

po=0.99

τ=12 w, H(τ)=0.67 0.022 0.0094 0.0081 0.971 0.023 0.025 0.0137 0.0194 1.000 0.071

τ=24 w, H(τ)=0.92 0.020 0.0066 0.0063 0.910 0.023 0.031 0.0167 0.0284 1.000 0.144

τ=52 w, H(τ)=0.995 0.023 0.0080 0.0088 0.965 0.033 0.046 0.0357 0.0573 0.999 0.351
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results in Web Table 5) within the acceptable region outlined in 1.2(a). For these situations,

it shows greater precision than all other estimators with τ = 12 weeks. For settings in the

non-acceptable region, the use of the AF estimator should be avoided. For example, when

(µ, c) = (.3, .8), the actual coverage level of the AF estimator drops to 85%.

Table 1.3: Simulation results for the AF Estimator, with N=6000, φ = .85 and λ=0.02.
E(λ̂) and sd(λ̂) denote average and standard deviation of estimates from 1,000 simulated
studies. E(ŝ) denotes average of likelihood-based estimates of the standard deviation from
the 1,000 simulations. Coverage denotes the proportion of simulations in which the true λ
is contained in the nominal 95% confidence interval, and Width refers to the median width
of the nominal 95% CI.

AF Estimator p=1 p=0.95

Weibull(µ=0.5,c=0.4) E(λ̂) sd(λ̂) E(ŝ) Cov. Width E(λ̂) sd(λ̂) E(ŝ) Cov. Width

τ=12 w, H(τ)=0.45 0.020 0.0043 0.0042 0.945 0.017 0.021 0.0042 0.0043 0.951 0.018

τ=24 w, H(τ)=0.80 0.018 0.0028 0.0027 0.886 0.011 0.018 0.0028 0.0028 0.887 0.011

τ=52 w, H(τ)=0.999 0.010 0.0015 0.0014 0.000 0.006 0.010 0.0015 0.0014 0.000 0.006

Weibull(µ=0.3,c=0.6)

τ=12 w, H(τ)=0.64 0.017 0.0039 0.0038 0.915 0.015 0.017 0.0039 0.0039 0.923 0.016

τ=24 w, H(τ)=0.92 0.012 0.0022 0.0023 0.158 0.009 0.012 0.0024 0.0023 0.161 0.009

τ=52 w, H(τ) > 0.999 0.006 0.0011 0.0011 0.000 0.004 0.006 0.0012 0.0011 0.000 0.004

Lognorm(µ=0.5,c=0.4)

τ=12 w, H(τ)=0.46 0.021 0.0041 0.0042 0.952 0.017 0.021 0.0045 0.0043 0.935 0.017

τ=24 w, H(τ)=0.81 0.018 0.0028 0.0027 0.887 0.011 0.018 0.0028 0.0028 0.899 0.011

τ=52 w, H(τ)=0.992 0.010 0.0014 0.0014 0.000 0.006 0.010 0.0014 0.0014 0.000 0.006

Lognorm(µ=0.3,c=0.6)

τ=12 w, H(τ)=0.67 0.018 0.0039 0.0039 0.930 0.016 0.018 0.0040 0.0040 0.944 0.016

τ=24 w, H(τ)=0.92 0.012 0.0023 0.0022 0.170 0.009 0.012 0.0023 0.0023 0.180 0.009

τ=52 w, H(τ)=0.995 0.006 0.0011 0.0011 0.000 0.004 0.006 0.0011 0.0011 0.000 0.004

Illustrative Examples Because data following such an augmented cross-sectional design

do not yet exist, we chose 2 of our simulated data sets from the scenario with Weibull

G(·) and (µ, c) = (.5, .4) for illustration. The first data set was generated with p=1,

indicating that the conditions for Estimator A were met for any choice of τ , while the

assumptions underlying Estimator B were approximately satisfied (H(τ) > .99) for τ ≥

44 weeks. In Figure 1.3(a), we see that both incidence estimators have point estimates

near the true incidence value and confidence intervals containing the true value, for any

choice of τ . Furthermore, we see that the width of the confidence interval of Estimator B

is comparable to that of Estimator A for most values of τ . The AF Estimator is shown in

gray and yields results similar to those of the other estimators for smaller values of τ . The

second data set was generated with p=.95, indicating that the conditions for Estimator



A were never met in this setting. In this example (Fig. 1.3(b)), we see that Estimator A

suffers greatly in its precision as τ increases. The 12-week AF Estimator yields results simi-

lar to those of Estimator B for τ = 12 weeks, though with a somewhat smaller interval width.
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(b) p=0.95

Figure 1.3: Point estimates and 95% confidence intervals for the incidence rate at different
stopping times τ . The data sets were chosen from the simulation study described in Section
3.
Black Dashed: Estimator A, Black Solid: Estimator B, Gray Dotted: AF Estimator
G(·) ∼ Weibull, (µ,c) = (.5,.4)

1.4 Discussion

In this paper, we assess how the performance of various estimators are affected by length of

follow-up τ and/or assumptions about the size of the “long-term non-progressor” population.

We found that Estimator A, which assumes p = 1, can result in substantial bias and great

loss of precision if the true p is less than 1. This pattern also holds for Estimator C when

we overestimate the true p. When p is correctly specified, both Estimator A and Estimator

C work well regardless of length of follow-up. However, p is often not known in practice and
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is expected to vary according to the type of less-sensitive test and population of interest.

Estimator B does not require prior knowledge of p, but instead requires length of follow-up

to be long enough so that subjects who have not become reactive to the less-sensitive test at

the end of the follow-up will remain non-reactive permanently. We found that Estimator B

is robust to modest violation of this assumption. Interestingly, when we apply Estimator B

with very short follow-up, say, 12 weeks, it works reasonably well and has led us to consider

a new HIV incidence estimator based on an abbreviated follow-up time, the AF estimator.

The AF estimator has the benefit of not requiring any specific external estimate of

p or µ, as well as substantially shortening the amount of follow-up compared to earlier

augmented cross-sectional designs without substantial loss of precision. The AF estimator

requires rather general assumptions about the distribution of the time spent in the “recent

infection” state, and its use will become more feasible as more information becomes available

characterizing these distributions associated with particular less-sensitive tests in different

populations. We note that the length of follow-up τ may be chosen to be somewhat smaller

than 12 weeks, which will further relax the distributional assumptions necessary for the AF

estimator. However, the sample size will need to be increased accordingly, as shown in (1.20),

to maintain desired precision. Since the precision of the AF estimator is dependent solely

on the observed number of transitions into State 3, it is recommended that all N2 patients

be retested at the 12-week follow-up visit. However, if it is only feasible to follow a random

subsample of size n2 < N2 of these patients, the AF estimator can be easily adapted by

replacing the value n1τ with n1τ ·N2/n2 in (1.12) and (1.13). The procedure for calculating

the confidence intervals remains unchanged.

The AF estimator, despite its attractive properties, is biased and therefore currently can

only serve as a crude estimator when resources are limited. When possible, we recommend

the use of Estimator B proposed in Wang and Lagakos (2010) and to follow subjects for a

reasonably long period of time. To facilitate the implementation of the augmented cross-

sectional design and the use of Estimator B, it would be helpful to provide guidance on

several design issues such as sample size of the cross-sectional sample, number of subjects
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needed to be followed and visit frequency. Because an explicit variance formula for µ̂ is not

readily attainable, we do not have a formula for sample size yet. Using simulations and a grid

search, we can calculate sample sizes needed to estimate incidence in a population of interest.

For example, for one of the settings we examined in 2.2.3, when (φ,λ, p) = (.75, .04, .94), if

we assume the underlying distribution for the window period is Weibull with µ = .5 and

c = .3, we would need about 2200 subjects in the cross-sectional sample and to follow all

subjects found to be in ‘recent state’ for about 1 year, in order for δ = 2 with probability

80%. Interestingly, we found that the changes in the required sample size were negligible

when we relaxed a 2-week visit schedule to a 6-week visit schedule. Whether this holds true

in general warrants further research.

We emphasize the importance of quantifying p. With correct knowledge of p, Estimator

A or Estimator C would work well with shorter follow-up than that required by Estimator

B. Furthermore, if p is known, and it is possible to devise a less-sensitive test which has the

property that subjects will not become reactive for a minimum period of time τ ∗, then the

AF estimator would be unbiased with τ < τ ∗.

We investigated the implementation of a fully Bayesian model to address the problem

at hand with what we consider to be fairly vague priors (Web Appendix B). The results

are included in Web Table 5. When the true parameters lie well within the interior of the

prior distributions, the Bayesian method produces credible intervals with width narrower

than those obtained from Estimators A, B, and C, and comparable to those from the AF

estimator. However, the Bayesian method is seen to have under-coverage problems when the

true parameters are close to the boundary of their prior distributions. For example, when

true µ=.3 years and the prior distribution was chosen as Uniform on the interval from .25

years to 1.5 years, even though the prior distribution has non-negligible mass near the true

value, the posterior distribution is not symmetric around the true value, due to the truncation

at .25 years. The strong negative correlation between λ̂ and µ̂ can result in λ̂ being biased

low. Thus the corresponding 95% credible interval may not have the nominal coverage. It

would also be useful to investigate whether the EM algorithm can be used effectively in the
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calculation of Estimator C, by iteratively assigning the n0τ patients to either State 2 or State

4, based on the estimated parameter values at each step, then re-estimating the parameter

values by maximizing the updated likelihood function, based on the state assignments.

Recent evidence suggests that use of antiretroviral treatments (ART) can affect the

results of less-sensitive diagnostic tests (Marinda et al., 2010). For this reason, it is critical

that patients’ ART use be documented. One suggestion is to exclude patients with known

ART use from the initial cross-sectional sample (Mcdougal et al., 2006), though this could

potentially impact the validity of the resulting prevalence estimate if ART use is common

in the study region. Suppose that some number of the N2 infected patients in the cross-

sectional survey who test negative on the less-sensitive test are known to be receiving ART.

Assuming that these patients’ test results do not change during the follow-up period, all

n∗ patients could be reassigned to State 3 or “non-recent infection”. An alternative would

be to reassign p̂n∗ of these patients to State 3, while keeping the remaining (1 − p̂)n∗ in

State 4. Both methods could be employed and the resulting estimates compared as a sort

of sensitivity analysis. The assumption being made here is that the population of patients

currently receiving ART at a given time is likely to be comprised of a disproportionately

smaller percentage of “long-term non-progressors” than the overall infected population.

Supplementary Materials

Web Appendices and Tables referenced in Sections 1.2.1, 1.2.2, 1.3, and 1.4 are available

under the Paper Information link at the Biometrics website http://www.biometrics.tibs.

org.
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1.5 Appendix

1.5.1 Appendix 1: Likelihood Function for Model in Section 1.2.1

The state prevalence probabilities at time t are given by (Balasubramanian and Lagakos,

2010; Wang and Lagakos, 2009)

π1(t)
def

= P (in State 1 at time t) = 1− F (t) = φ, (1.26)

π2(t)
def

= P (in State 2 at time t) = pφλµ, (1.27)

π3(t)
def

= P (in State 3 at time t) = p(1− φ− φλµ), (1.28)

π4(t)
def

= P (in State 4 at time t) = (1− p)(1− φ). (1.29)

The cumulative distribution function of X, for x > 0, conditional on t, is (Wang and

Lagakos, 2010):

H(x | t) =

�
x

0

1−G(v)

µ
dv. (1.30)

In our setting, only those who are observed to test positive on the less-sensitive test

within the τ units of follow-up (i.e. those with forward recurrence time X < τ), will be

determined to definitely be in State 2 at time t. Thus the probability of actually being in

State 2 and being observed to transition to State 3 during the follow-up time is π2H(τ | t) =

φλpµH(τ | t). The probability of actually being in State 2 at the time of the cross-sectional
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sample, but not being observed to transition into State 3 during the follow-up period is then

π2{1−H(τ | t)} = φλpµ{1−H(τ | t)}. (1.31)

The additional information from the interval-censored forward recurrence times of those

patients determined to be in State 2 is

P (a < x < b|x < τ) =
H(b | t)−H(a | t)

H(τ | t)
. (1.32)

1.5.2 Appendix 2: Probability Limit of λ̂B

λ̂B = n1τ
N1p̂τ µ̂τ

, where p̂τ = N3+n1τ
N3+n1τ+n0τ

= N3+n1τ
N3+N2

. Let µτ be the probability limit of µ̂τ . From

n1τ

N
p

→ pφλµH(τ),
N1

N
p

→ φ,
N2 +N3

N
p

→ (1− φ), and
N3

N
p

→ p(1− φ− φλµ), (1.33)

we have

p̂τ =
(N3 + n1τ )/N

(N3 +N2)/N
p

→
p(1− φ− φλµ) + pφλµH(τ)

1− φ
=

p[1− φ− φλµ{1−H(τ)}]

1− φ
, (1.34)

and

λ̂B =
n1τ/N

N1/Np̂τ µ̂τ

p

→
pφλµH(τ)

φp[1−φ−φλµ{1−H(τ)}]

1−φ
µτ

= λ
µ

µτ

(1− φ)H(τ)

[1− φ− φλµ{1−H(τ)}]
. (1.35)

1.5.3 Appendix 3: Relationship of f(t) and f2(t)

f2(t) = P (transition from State 2 to State 3 at time t)

=

�
P (infected at time t− u)× P (in subgroup that will transition to State 3)

× P (sojourn time in State 2 = u|in subgroup that will transition to State 3) du.
(1.36)

Under the assumption that f(u) is constant over u ∈ (t−W ∗, t),

f2(t) =

�
W

∗

u=0

f(t− u) · p · g(u)du = f · p

�
W

∗

u=0

g(u)du = f · p ·G(W ∗) = pf (1.37)
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1.5.4 Appendix 4: Expectation of AF Estimator

Recall λ̂AF = n1τ
N1p̂τ τ

= n1τ (N3+N2)

N1τ(N3+n1τ )
= N3+N2

N1

n1τ
N3+n1τ

1

τ
, therefore,

E(λ̂AF ) = E(
N3 +N2

N1

n1τ

N3 + n1τ

1

τ
) =

1

τ
E(

N3 +N2

N1

n1τ

N3 + n1τ

). (1.38)

Because (N1, n1τ , n0τ , N3) ∼ Multinomial(N ; p1, p2, p3, p4), we have

n1τ |(N1, n0τ ) ∼ Binomial(N −N1 − n0τ ,
p2

1− p1 − p3
). (1.39)

Now, we want to show E(XY) = E(X) E(Y), where X = N3+N2
N1

, Y = n1τ
N3+n1τ

.

E(Y ) = E{E(Y |N1, n0τ ))} = E{E(
n1τ

n1τ +N3

|N1, n0τ )} = E{
1

n1τ +N3

E(n1τ |N1, n0τ )}

= E(
1

n1τ +N3

(n1τ +N3)p2
p2 + p4

) = E(
p2

p2 + p4
) =

p2
p2 + p4

(1.40)

and

E(Y |X) = E{E(Y |N1, n0τ )|X} = E(
p2

p2 + p4
|X) =

p2
p2 + p4

(1.41)

Because E(Y |X) = E(Y ) ⇒ E(XY ) = E(X)E(Y ),

so E(λ̂AF ) =
1

τ
E(

N3 +N2

N1

)E(
n1τ

N3 + n1τ

)

≈
1

τ

1− φ

φ

pλφµH(τ)

1− φ− pφλµ{1−H(τ)}

=
λµH(τ)

τ

1

1− pr{1−H(τ)}
(1.42)

where pr =
λφµ

1− φ
= P (recent infection|currently infected). (1.43)

28



1.5.5 Appendix 5: Approximate Variance of AF Estimator

Using (1.12) and (1.13), we have

log(λ̂AF ) = log(
N2 +N3

N1

) + log(
n1τ

N3 + n1τ

)− log(τ) (1.44)

Because the two terms are shown to be independent in Appendix 4, this leads to

V ar{log(λ̂AF )} = V ar{log(
N2 +N3

N1

)}+ V ar{log(
n1τ

N3 + n1τ

)} (1.45)

Note that log{(N2 + N3)/N1} is the log odds of HIV prevalence, its variance can be con-

sistently estimated by 1/N1 + 1/(N2 + N3) (Woolf et al., 1955). Similarly, by applica-

tion of the δ-method and common variance formula for sample proportion, the variance of

log{n1τ/(N3 + n1τ )} can be approximated by N3/{n1τ (N3 + n1τ )}. Therefore,

�V ar{log(λ̂AF )} ≈
1

N1

+
1

N2 +N3

+
N3

n1τ (N3 + n1τ )
≈

1

n1τ

, (1.46)

where the last approximation follows from that N1 and N3 are usually much larger than n1τ ,

and therefore 1/N1 and 1/(N2+N3) are negligible compared to 1/n1τ , and N3/(N3+n1τ ) ≈ 1.

1.5.6 Appendix 6: Bounding the Bias of AF Estimator

Suppose we wish to bound the bias of the AF Estimator, such that the expected value

of the AF Estimator is close to the true incidence rate, to within a factor of B. That is,

Bλ ≤ E(λ̂AF ) ≤ λ/B. Using (1.42), after some simplification we have

Bτ [1− pr{1−H(τ)}] ≤

�
τ

0

1−G(x) dx ≤
τ

B
[1− pr{1−H(τ)}] (1.47)

where pr is defined in (1.43).

If the desired bound B is chosen such that B ≤ (1 − pr), then the second inequality is

always satisfied, because τ ≤ τ [1− pr{1−H(τ)}]/B and

�
τ

0

1−G(x) dx ≤ τ since G(·) ≥ 0
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always. In this case, we only need to consider the first inequality, which can be expressed as

τ ≤

�
τ

0
1−G(x) dx

B[1− pr{1−H(τ)}]
. (1.48)

If a tighter bound B is desired, such that B > (1 − pr), we must also satisfy the second

inequality, which can be expressed as

τ ≥ B

�
τ

0
1−G(x)dx

[1− pr{1−H(τ)}]
. (1.49)
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2.1 Introduction

Consider a randomized, comparative clinical trial in which a treatment is assessed against a

control with respect to their risk-benefit profiles. Conventionally, a single treatment contrast

is utilized to assess an overall treatment difference with respect to efficacy, in addition to a

global measure of toxicity, over a rather heterogeneous population. Unfortunately, the result-

ing inference about these two measures are rather difficult to interpret in clinical practice.

Making patient-specific decisions based on estimated population-averaged effects can lead

to sub-optimal patient care (Kent and Hayward, 2007). A positive (negative) trial based on

these two overall measures does not mean that every future patient should (should not) be

treated by the new treatment. To bring the clinical trial results to the patient’s bedside,

we may utilize the patient’s characteristics which relate to the response variable to perform

so-called personalized or stratified medicine. Unfortunately, the typical ad hoc subgroup

analysis of clinical studies is not credible (Wang et al., 2007). Moreover, such subgroup

analysis is often conducted by investigating the effect of only a single predictor at a time

and therefore may not be effective in identifying patients who would benefit from the new

treatment.

In this paper, we present a systematic approach to nonparametrically estimate subject-

specific treatment differences from a risk-benefit perspective. To address the issue of risk-

benefit assessment, we propose categorizing each patient into one of several ordered categories

at a given follow-up time, more thoroughly reflecting the patient’s treatment experience.

That is, for each study subject, the observations are times to events that could be used define

the efficacy and toxicity of the treatment, which are then used to categorize a patient’s overall

clinical outcome. In the event of censoring of one or more of these event outcomes, we use

inverse-probability weighting to obtain consistent estimates of the associated probabilities.

In order to assess these treatment effects nonparametrically from a personalized medicine

perspective, we use a training data set to first build a parametric univariate scoring system

using baseline variables and then stratify subjects in the target data set accordingly. We then
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estimate the treatment effects nonparametrically with respect to the risk-benefit categories.

When there is a single baseline covariate involved, Bonetti et al. (2000); Song and Pepe

(2004) and Bonetti and Gelber (2004) have proposed novel statistical procedures for iden-

tifying a subgroup of patients who would benefit from the new treatment with respect to

efficacy. A recent paper by Janes et al. (2011), which is based on previous work by Pepe

(2004), Huang et al. (2007), and Pepe et al. (2008), provides practical guidelines for measur-

ing the performance of individual markers for treatment selection. By incorporating more

than one baseline covariate at a time, our approach is similar in spirit to Cai et al. (2011)

and Li et al. (2011). However, they both used a single study to create a scoring system by

fitting a prespecified model without model evaluation or variable selection. They then use

the same data set to make inferences for either the treatment difference without considering

multiple within-patient outcomes or for risk predictions for a single treatment group only.

2.2 Data

2.2.1 Target Data

Our data set of interest comes from a recent clinical trial, “Beta-Blocker Evaluation of Sur-

vival Trial” (BEST), which compared a beta-blocker to placebo in patients with heart failure

(HF), with a primary endpoint of all-cause mortality. In this trial, other monitored patient

outcomes included timing of hospitalizations, with cause of each hospitalization recorded as

being due to the patient’s chronic heart failure or for other reasons, and all deaths were

adjudicated as being due to cardiovascular causes (CV death), or otherwise (non-CV death)

(Beta-Blocker Evaluation of Survival Trial Investigators, 2001). Note that in the BEST

trial, the non-fatal event times were not censored by other non-fatal event times. This trial

enrolled 2708 patients and is of particular interest because of the observed marginally signif-

icant treatment effect (p=0.10), with an estimated hazard ratio of 0.90 (0.78, 1.02) for the

33



effect of treatment on mortality, the primary endpoint of the study. This result stands in

contrast to other studies of beta-blockers in patients with heart failure which were conducted

around the same time, each of which showed highly significant beneficial treatment effects

with hazard ratios ≤ 0.67 and p-values ≤ 0.001 (Domanski et al., 2003).

2.2.2 Training Data

The usage of an independent training data set is crucial for multiple reasons. Primarily, the

proposed training/validation approach allows one to avoid the nontrivial “self-serving” bias

that can result from performing the model-building and variable selection process, creating

the score, stratifying subjects, and estimating subject-specific treatment differences all within

the same data set. Practically, the medical literature contains multiple examples of beta-

blocker trials which have suggested differential treatment effects according to various baseline

covariates, none of which were able to be confirmed in subsequent trials. Furthermore, it has

been noted that the validity of subgroup findings is strengthened when able to be validated

prospectively (Friedman et al., 2010). Finally, since formal evaluations of new drugs or

devices usually require two well-conducted studies, it is often feasible that a trial sponsor

has access to existing trial data that is directly relevant to the study of interest. Because we

have access to only this particular trial, we instead mimic a hypothetical interim analysis

which could have been conducted by analyzing only the first 900 patients (∼ 33% of total

enrollment).

We used the outcome data (mortality and hospitalizations) from these early patients,

along with 16 available patient-level covariates to derive the parametric scoring systems

which would be used to stratify the remaining patients in the BEST study.
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2.2.3 Patient Outcome Categories

In order to both develop the scoring systems in the training data set and evaluate the patient

outcomes in the validation set, a classification system is needed describe each patient’s status

at a fixed followup time t0. A simple and intuitive classification scheme, as described below,

would involve five mutually exclusive and exhaustive categories, depending on which, if any,

events have been experienced by a patient prior to t0. This classification scheme is designed

to account for events whose reduction represents an anticipated “benefit” of treatment (i.e.

CV hospitalization, CV death), as well as events which may plausibly occur more frequently

as a result of treatment, and are therefore considered potential treatment “risks” (i.e. non-

CV hospitalization, non-CV death).

For patient i receiving treatment j, let T(1)ij denote a patient’s time to first non-CV

hospitalization, T(2)ij denote the time to the first CV-related hospitalization, and T(3)ij denote

the time to death, where i = 1, ..., nj; j = 1, 2. Furthermore, let δij = 1 if a patient’s death is

classified as being CV-related, and δij = 0 otherwise. In the following analysis, we will target

the joint distribution of {(T(1)j, T(2)j, T(3)j, δj), j = 1, 2} for patients with given parametric

score, which is needed for risk-benefit analysis on a personalized level. This novel approach

is different from the conventional risk-benefit analysis, whose main objective is to separately

characterize distribution of (T(3)j, δj), as well as the marginal distributions of T(1)j and T(2)j

over the entire population. To this end, let us define a patient’s classification at t0 by �(t0)ij,

where

• �(t0) = 0 if t0 < (T(1) ∧ T(2) ∧ T(3)) (i.e., patient is “alive and healthy”)

• �(t0) = 1 if T(1) ≤ t0 < (T(2) ∧ T(3)) (i.e., patient is “alive and hospitalized without

worsening HF”)

• �(t0) = 2 if T(2) ≤ t0 < T(3) (i.e., patient is “alive with worsening HF”)

• �(t0) = 3 if T(3) ≤ t0, δ = 0 (i.e., patient experienced “non-CV death”)

• �(t0) = 4 if T(3) ≤ t0, δ = 1 (i.e., patient experienced “CV death”)
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This classification is obviously defined by T(1)ij, T(2)ij, T(3)ij, and δij jointly and its conditional

distributions for patients with given parametric score in the treatment as well as control

groups may guide us to make optimal treatment recommendations for this group of patients.

For clarity of notation, we will assume t0 is fixed and will henceforth denote classification

status using � instead.

2.3 Building a Scoring System via the Training Data
Set

To begin, we use the BEST training data set to build a scoring system using the patients’

baseline characteristics with respect to the above ordinal outcome categories. In order to

use nonparametric methods in the evaluation stage which estimate the expected treatment

effects over a univariate scoring system, the goal of the first stage of our procedure is to reduce

the multivariate covariate vector U to a single covariate S = f(U) which will be effective in

grouping patients who would experience similar treatment effects. Thus, even though we are

interested in assessing the effect of treatment on more than one outcome, we must construct

a single score so that each patient i is associated with a single covariate value Si. Specifically,

for this training set, each subject was assigned to a particular treatment j, where j = 1, 2.

Let Uj be the vector of baseline covariates, including the treatment indicator τj with τj = 1 in

the treated group, and 0 otherwise. Let Cj be the censoring variable, which is assumed to be

independent of Uj and all Tj. Furthermore, let X(1)j = min(T(1)j, Cj), X(2)j = min(T(2)j, Cj),

and X(3)j = min(T(3)j, Cj) and {∆(r)j, r = 1, 2, 3} be the indicator function, which is one

if T(r)j ≤ Cj. The data consist of {(X(1)ij, X(2)ij, X(3)ij,∆(1)ij,∆(2)ij,∆(3)ij, δij, Uij)�, i =

1, · · · , nj}, nj independent copies of {(X(1)j, X(2)j, X(3)j,∆(1)j,∆(2)j,∆(3)j, δj, Uj)�, j = 1, 2}.

Now, suppose that we are interested in estimating the t0-year outcome probabilities

πjk(U), j = 1, 2, where

πjk(U) = pr(�j = k|U) (2.1)
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for a pre-specified time point t0. To obtain estimates for πjk(U), one may use an ordinal

regression working model of the following form

g(γjk(Uij)) = αk − β�Zij − τij(β
∗�Zij) (2.2)

where γjk =
�

k

l=0
πjl is the cumulative probability of a patient in treatment group j being

classified into outcome category � ≤ k, Zij is a given function of Uij, g(·) is a given monotone

function, and α, βj and β∗
j
are unknown vectors of parameters, with βj and β∗

j
corresponding

to the main effects and treatment interaction effects, respectively, of the covariates Z on

patient outcome status. Noting that a patient’s outcome status is observable only when

min(T(3), t0) ≤ C, the parameter vectors above may be estimated by applying inverse proba-

bility of censoring weights and maximizing the standard weighted multinomial log-likelihood

function

�

ij

wij

Ĝj(X(3)ij ∧ t0)
{

4�

k=0

I(�ij = k)log(πjk(Uij))}, (2.3)

with respect to (α, β, β∗) where πjk = f(α, β, β∗, Zij, τij) via (2.2), wij = I(X(3)ij ≤

t0)∆ij+I(X(3)ij > t0), I(·) is the indicator function, and Ĝj(·) is the Kaplan-Meier estimator

for Gj(·), the survival function of the censoring variable for the jth group. (Zheng et al.,

2006; Uno et al., 2007a; Li et al., 2011).

Under some mild conditions, the resulting estimators (α̂, β̂, β̂∗) converge to a finite con-

stant vector as n → ∞ even when the model (2.2) is not correctly specified (Uno et al.,

2007a).

Note that one may repeatedly utilize (2.2) and (3.5) with various Z and g(·) via, for

instance, a standard stepwise regression procedure with U , to obtain final estimates π̂jk(U).
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2.3.1 Evaluation of Working Models

Since many variable selection procedures and link functions can be considered as candidates

for estimating πjk(·), j = 1, 2, it is important to formally evaluate their relative merits.

To this end, we first note that the adequacy of such ordinal regression models for t0-year

outcomes can be quantified by the cross-validated log-likelihood, where a larger log-likelihood

suggests a better model fit. We use a repeated random cross-validation procedure, in each

iteration randomly dividing the entire training data set into two mutually exclusive subsets,

B and H, with the “model building set” B comprising approximately 80% of the full training

set. For each model building set and for a given link function and variable selection procedure,

we can construct a model, using only patients in B to estimate πjk(U), yielding predicted

probabilities for the patients in the holdout set H, with predictions given by π̂jk(Uij). The

cross-validated log-likelihood, adjusted for censoring, is

�

(i,j)∈H

wij

Ĝj(X(3)ij ∧ t0)
{

4�

k=0

I(�ij = k)log(π̂jk(Uij)}, (2.4)

We may further examine the adequacy of a given model in predicting outcomes for a

specific treatment group by summing only over patients in a particular treatment group j.

We repeatedly split the training data set M times. For each m, and for each modeling

procedure, we obtain an estimate of the group-specific log-likelihood value denoted by �L(m)

j
,

and the overall log-likelihood �L(m) = �L(m)

1
+ �L(m)

2
. Lastly, we average these estimates over

m = 1, ...,M to obtain a final estimates �L, �L1, and �L2. The model(s) which yield the largest

cross-validated likelihood values may be considered for the construction of our final working

models. For each selected modeling procedure, we then refit the entire training data set with

the specific modeling procedure in order to construct the final score.

In the BEST trial, 2708 patients were assigned to receive either placebo or bucindolol

(a beta-blocker), with an average followup time of 2 years. In order to select a time point
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representing reasonably long-term outcomes without substantial censoring, we use t0 = 18

months (1.5 years) for the remainder of our analysis, with Ĝj(t0) ≈ 0.80 for each treatment

group. Within the BEST training set, 123, 60, 86, 9, and 84 patients in the control group

were classified as healthy, alive without worsening HF, alive with worsening HF, non-CV

death, and CV death, respectively after 18 months of followup. The corresponding counts

for the treatment group were 148, 74, 52, 13, and 68 patients, respectively. The number of

censored patients were 94 and 89 in control and treatment groups, respectively. We used 16

clinically relevant covariates to fit the patient outcome data with various working models to

estimate the probability of each outcome status at t0 = 18 months. These baseline variables

are: age, sex, left ventricular ejection fraction (LVEF), estimated glomerular filtration rate

adjusted for body surface area (eGFR), systolic blood pressure (SBP), class of heart failure

(Class III vs. Class IV), obesity (Body mass index (BMI) > 30 vs. BMI ≤ 30), resting

heart rate, smoking status (ever vs. never), history of hypertension, history of diabetes,

ischemic heart failure etiology, presence of atrial fibrillation at baseline, and race (white

vs. non-white). As in Castagno et al. (2010), we used 3 indicator variables to discretize

eGFR values into 4 categories, with cut-points of 45, 60, and 75. We used the ordinal

regression models described above to fit the outcome data, and considered both the logit and

complementary log-log links, g(p) = log( p

1−p
), g(p) = log(−log(1−p)), respectively. For each

of these two models, we used two different methods of variable selection. The first one used

all 16 variables additively as well as their interaction terms. The second one used a stepwise

regression procedure. It started from the full model including all 32 covariates (16 × 2) as

well as the treatment indicator τ and successively added/eliminated terms until no more

covariates could be added/removed without subsequently increasing the Akaike information

criterion (AIC). Main effect terms were not eligible to be removed from the model unless

the corresponding interaction term had already been removed. Therefore, a total of four

modeling procedures were considered. To evaluate these models, we used a repeated random

cross validation procedure as described above. In Table 2.3.1, we present these potential

modeling procedures with their corresponding average log-likelihood values. It is interesting

to note that most of these modeling procedures produce similar log-likelihood scores, but

that the models using the complementary log-log link were generally found to produce more
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accurate predictions in each treatment group. The full model using the complementary log-

log link was found to provide the best overall fit in the cross-validation samples and will be

used derive our scores in the following section. As a form of sensitivity analysis, we will also

consider scores derived from the AIC-based model, also using the complementary log-log

link, as this model was found to provide the best fit for the control group patients. We will

refer to these models as the full model and AIC model, respectively.

Table 2.1: Candidate modeling procedures with average cross-validated log-likehoods
Link Function Variable Sel. �L1

�L
logit Full -108.29 -202.30
logit AIC -107.95 -201.25

cloglog Full -107.56 -201.18∗∗

cloglog AIC -107.52∗∗ -201.29

Table 2.2: Ordinal regression coefficients for the final working models using BEST training
data

Full Model AIC Model
Covariate β β∗ β β∗

Age -0.001 -0.004 - -
Sex: male 0.098 -0.148 - -
LVEF -0.014 -0.019 -0.014 -0.020

I(eGFR>75) -0.175 -0.266 -0.191 -0.278
I(eGFR>60) -0.041 -0.106 - -
I(eGFR>45) -0.656 -0.078 -0.733 -

SBP -0.012 0.008 -0.011 0.007
Class IV Heart Failure 0.191 0.634 0.228 0.601

I(BMI>30) 0.207 0.010 0.197 -
Never-smoker 0.126 -0.128 - -
Heart Rate 0.005 -0.015 0.006 -0.015

History of hypertension 0.213 -0.173 0.147 -
History of diabetes 0.308 -0.233 0.171 -
Ischemic etiology 0.083 0.103 - -
Atrial Fibrillation 0.244 -0.286 - -

Race: white 0.044 -0.198 - -
Treatment - 1.268 - 0.715

β represents main effects in fitted model. β∗ represents
treatment interaction effects.
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2.4 Potential Scoring Systems

Having completed this variable selection and model building step to select the “best” working

models for predicting patient outcomes in both treatment groups, there are two reasonable

ways in which to incorporate covariate information for the purposes of stratifying patients

in the BEST trial. Let treatment group j = 1 denote the untreated (placebo) group, and

j = 2 denote the treated (beta-blocker) group.

2.4.1 Baseline Risk Score

Perhaps the most commonly used method for stratifying patients is by estimated baseline

risk, indexed here by β�Zij. Denote this score as R̂(U). If all modeling assumptions made in

the training data are valid, this linear combination of baseline covariates can be transformed

to give consistent estimates for {π1k(U), k = 0, . . . , 4}, a patient’s true outcome probabilities

if not assigned to treatment. Even if the modeling assumptions are not correct, it is still

plausible to assume that patients with larger risk scores may be generally at higher risk for

more severe clinical outcomes than those with lower risk scores. A recent paper addressing

the appropriate treatment of heart failure patients is indicative of the common clinical focus

on high-risk vs. low-risk patient status, as well as the assumption that absolute treatment

benefits are greatest for high-risk patients (Peterson et al., 2010).

2.4.2 Treatment Selection Score

Another interesting, though perhaps less commonly used, method for stratifying patients is

according to treatment selection score (TSS), which is indexed by β∗�Zij, the model-based

estimate of the differential effect of treatment for a patient with given covariates. For a given

U, let this score for the treatment contrast be denoted by D̂(U), which intends to estimate

41



D(U) = g(γ1k(U))− g(γ2k(U)) for any outcome category k if the modeling assumptions are

true. Since γjk refers to the probability of being in a category equal to, or healthier than,

category k, negative values of D(U) correspond to reduction in overall risk associated with

treatment. If patient i has true values γi1k < γi2k, ∀k, then that patient would unquestionably

benefit from treatment. Conversely, if that patient’s γi1k > γi2k, ∀k, then that patient would

be universally harmed by treatment. While perhaps less intuitive for clinical use, it is clear

that if the modeling assumptions are valid, then this score directly addresses the question

of whether or not a particular patient is a good candidate for treatment. This type of

stratification system has recently been implemented successfully by Cai et al. (2011), who

investigated CD4 changes in HIV patients.

2.5 Making Inferences About the Treatment Differ-
ences over a Range of Scores with Respect to Or-
dered Patient Outcomes in the Target Data Set

Let the final parametric score for a patient with the covariate vector U in the target study

be denoted by S(U), which may be the risk score R̂(U), based on the control group only, or

the treatment selection score D̂(U) discussed in the previous section.

In order to make inference about the risks and benefits of treatment at the patient level,

we propose to use the same ordered multinomial classification scheme described previously,

in which each patient is classified according to their status at time t0, depending on the par-

ticular set of clinical events which they have experienced. We then construct the confidence

interval and band estimates for the treatment differences with respect to the probability of

a patient being classified into each possible clinical category.

The target data consist of nj independent and identically distributed observations as

described in the training data. Furthermore, we let {Yijk = I(�ij = k), k = 0, . . . , 4}, which
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is observable only if min(T(3), t0) ≤ C. For the kth outcome, we are interested in estimating

the treatment difference conditional on S(U) = s, that is,

Ek(s) = pr(�i2 = k|S(U) = s)− pr(�i1 = k|S(U) = s). (2.5)

To estimate Ek(s) nonparametrically, we use a kernel estimator for each term on the right

hand side of Equation (2.5). Specifically, we estimate pjk(s) = pr(�ij = k|S(U) = s) with

p̂jk(s)

=

�
nj�

i

wij

Ĝj(X(3)ij ∧ t0)
Khj(Vij − s)Yijk

�
/

�
nj�

i

wij

Ĝj(X(3)ij ∧ t0)
Khj(Vij − s)

�
, (2.6)

where Vij = S(Uij), wij = I(X(3)ij ≤ t0)∆(3)ij + I(X(3)ij > t0), Ĝj(·) is the Kaplan-Meier

estimator of Gj(·), the survival distribution of the censoring variable Cj, estimated us-

ing observations {(X(3)ij,∆(3)ij), i = 1, · · · , nj}, Khj(s) = K(s/hj)/hj, K(·) is a smooth

symmetric kernel with finite support and hj is a smoothing parameter. Even though Yijk

may not be observable due to censoring, note that wijYijk is always observable. When

hj = O(n−v), 1/5 < v < 1/2, it follows from a similar argument by Li et al. (2011) that

p̂jk(s) converges to pjk(s) uniformly over the interval s ∈ S, where S is an interval contained

properly in the support of S(U). Let E(s) = {E0(s), ..., E4(s)}� = p
2
(s)− p

1
(s) and its em-

pirical counterpart Ê(s) = {Ê0(s), ..., Ê4(s)}� = p̂2(s)− p̂1(s), where Êk(s) = p̂2k(s)− p̂1k(s),

p
j
(s) = {pj0(s), · · · , pj4(s)}� and p̂j(s) = {p̂j0(s), · · · , p̂j4(s)}�

It follows from a similar argument by Li et al. (2011) that when hj is of the same order

as above, for a fixed s, the joint distribution

(n1h1 + n2h2)
1/2

{Ê(s)− E(s)} (2.7)

converges in distribution to a multivariate normal with mean 0 and covariance matrix Σ(s)

as n → ∞.

To approximate the distribution in (2.7), we use a perturbation-resampling method,

which is similar to ‘wild bootstrapping’ (Wu, 1986; Mammen, 1993) and has been successfully

implemented in many estimation problems (Lin et al., 1993; Park and Wei, 2003a; Cai et al.,
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2010). Details are provided in the Appendix. To construct a (1−α) simultaneous confidence

band for Ek(s) over the pre-specified interval S, we also use resampling methods, further

described in the Appendix.

As with any nonparametric estimation problem, it is important that we choose ap-

propriate smoothing parameters in order to make inference about E(s). Here, we use an

M-fold cross-validation procedure to choose the smoothing parameter ĥj which maximizes

a weighted cross-validated multinomial log-likelihood, as in Li et al. (2011). Specifically, we

may randomly divide the entire data set into M mutually exclusive, approximately equally

sized subsets. For any fixed values of hj and (j, k), we can estimate pjk(s) using all obser-

vations except for those contained in the same subset as the ith subject, which yields the

estimator p̂(−i)jk(s). The cross-validated log-likelihood, adjusted for censoring, is

�

Vij∈S

wij

Ĝj(X(3)ij ∧ t0)
{

4�

k=0

Yijklog(p̂(−i)jk(Vij))}. (2.8)

Let ĥj be a maximizer of (2.8). As in Li et al. (2011), ĥj is of the order n−1/5. To

ensure the the bias of the estimator is asymptotically negligible and that the above large-

sample approximation is valid, however, we slightly undersmooth the data and let the final

smoothing parameter be h̃j = ĥj × n−ξ where ξ is a small positive number less than 0.3.

In order to aid in the interpretation of patient outcome probabilities, we may additionally

estimate patient-specific cumulative probabilities by repeating the same procedure as above,

but instead using Ỹijk = I(�ij ≤ k), γjk(s) = E(Ỹijk|s), and Γk(s) = γ2k(s) − γ1k(s). It

should be noted that each value Γk(s) allows for the estimation of the treatment contrast

with respect to a different composite outcome. For example, Γ0(s) refers to the effect of

treatment on the composite outcome “any hospitalization or death”; Γ1(s) refers to the

effect of treatment on the composite of “CV hospitalization or death”; Γ2(s) corresponds to

the effect of treatment on “any death”, thus representing the initial primary outcome in the

BEST study; Γ3(s) corresponds to the effect of treatment on CV-related death; Γ4(·) ≡ 0 by

definition, as γ2,4(·) = γ1,4(·) ≡ 1. While a positive (negative) value of particular component

44



Ek(s) may not always directly indicate whether a treatment is beneficial (harmful) for a

specific patient, particularly when 0 < k < 4, the corresponding Γk(s) will always have this

desired interpretation, with positive values always indicating beneficial treatment effects, as

our classification scheme orders patient outcomes according to increasing severity.

2.5.1 Patient Outcomes in BEST Trial

First, we present for each treatment group, the total number of patients in the target data

set known to be in each outcome category, as well as the estimated cell probabilities after ad-

justing for censoring. These results are shown in Table 2.5.1. We note that, overall, treated

patients are somewhat more likely to be classified into outcome categories 0 and 1 (alive

with no hospitalizations or non-CV hospitalizations only), and less likely to be classified into

categories 2 and 4 (alive with CV-related hospitalization and CV death, respectively). The

cumulative probabilities of a treated patient being classified at or below a certain thresh-

old suggest an estimated population-level beneficial effect of treatment, regardless of the

threshold used.

Table 2.3: BEST target data, 18-month patient outcomes: Observed patient outcomes and
associated multinomial probability estimates, adjusted for censoring.

Control Group Treated Group
Outcome Category N P(� = k) P(� ≤ k) N P(� = k) P(� ≤ k)

(censored) 156 - - 159 - -
0 274 0.384 0.384 294 0.405 0.405
1 114 0.160 0.544 150 0.207 0.612
2 165 0.231 0.775 138 0.190 0.802
3 26 0.031 0.806 26 0.031 0.833
4 162 0.194 1.000 143 0.167 1.000

Now, we apply the final scoring systems to the patients in the BEST trial. In Figure

2.5.1 below, we show the two scores R̂ and D̂ for each patient in the BEST target data set,

as derived from the full model described previously, with parameters estimated using the

training set data. It is interesting to note that the two sets of scores show no significant

correlation. The horizontal line indicates D̂ = 0, and we note that 1284 (71%) of the target
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BEST patients fall below this line, indicating an anticipated treatment benefit for a majority

of patients.
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Figure 2.1: Risk Scores (R) and Treatment Selection Scores (D) for target BEST patients
using models derived from BEST training data.

To estimate p
1
(s), p

2
(s) and E(s) in our analysis below, we let K(·) be the standard

Epanechnikov kernel. The smoothing parameters were chosen as the maximizers of (2.8),

then multiplied by n−0.05

j
.

Risk Score:

We may first validate our model-based risk score by observing the relative frequency of pa-

tient outcomes in the BEST placebo group only, as a function of the baseline risk score

R̂. In the left panel of Figure 2.5.1 below, the estimated control and treatment group out-

come probabilities (solid and dashed lines, respectively) p̂(s) are displayed over the range
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s ∈ (−0.70, 1.40). We note that the parametric risk score R̂ is closely related to the non-

parametrically estimated probabilities p̂0(s) and p̂4(s). That is, increasing risk scores are

associated with increased risk of experiencing CV death (� = 4), and decreasing risk of re-

maining completely event-free (� = 0) in both treatment groups. The other three outcomes

(� = 1, 2, 3) show relatively little overall association with the risk score. In the right panel,

we see the estimated cumulative probabilities, representing the probability of a patient being

classified at, or lower than, a given threshold. As expected, we see that, regardless of the

threshold used, a patient’s risk declines with increasing risk scores. In the bottom right

panel, we present the distribution of the risk scores used in this analysis.

In order to determine whether the baseline risk score can be effectively used for patient-

level treatment decisions, we evaluate the estimated treatment effects Ê(s) and Γ̂(s) over

the range of scores. In the right panel of Figure 2.5.1, we show the treatment effects,

reflecting the difference in outcome probabilities (treated minus untreated) for each patient

outcome category. Estimated 95% confidence intervals are denoted by dashed lines, and

95% confidence bands are represented by the shaded areas. In general, we find that lower-

risk patients (e.g. R̂ < 0), are generally more likely to be classified into outcome category

1 (non-CV hospitalization only), and less likely to be classified into outcome categories 2

(CV hospitalization) and 4 (CV death) as a result of treatment, while high-risk patients

(e.g. R̂ > 1) are more likely to be classified into outcome category 0 (no clinical events) as

a result of treatment, though the variability of the estimates increases in this range. The

only treatment effects found to be significant with respect to the 95% confidence bands are

associated with lower risk scores, as scores in the range (-0.33, 0.00) are associated with

significant increases in the probability of experiencing the outcome � ≤ 1 (alive without CV

hospitalization) as a result of treatment. The more restrictive range (-0.24, -0.12) is further

associated with significant increases in experiencing the outcome � ≤ 2 (alive) and � ≤ 3

(no CV death) due to treatment. These ranges represent approximately 23% and 8% of the

patients in the BEST population, respectively.
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Figure 2.2: BEST target patient outcomes using baseline risk (R̂) as a scoring system.
Solid lines: Placebo Group; Dashed lines: Treatment Group
Left panels: specific outcome probabilities; Right panels: cumulative outcome probabilities
Bottom right: Distribution of scores

Treatment Selection Score:

Using the TSS, we find that D̂, a patient’s model-based estimated effect of treatment on

outcome status is related to the nonparametrically estimated treatment effect on a patient’s

probability of experiencing outcome category � = 0 (alive without any hospitalizations) and

� = 2 (alive with CV hospitalization), Ê0(s) and Ê2(s). Specifically, using TSS as our scoring

system over the range s ∈ (−1.08, 0.76), we find Ê0(s) > 0 for s < −0.08 and Ê0(s) < 0

for s > −0.08, indicating that our treatment interactions estimated from the BEST training
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Figure 2.3: BEST target treatment differences (treated minus untreated) using baseline risk
(R̂) as a scoring system.
Left panels: specific outcome probabilities; Right panels: cumulative outcome probabilities
Bottom right: Distribution of scores

data appear to be helpful in predicting which patients would benefit from being treated with

beta-blockers, though not necessarily with respect to mortality outcomes. In particular,

patients with TSS ∈ (−0.94,−0.30) are found to be significantly more likely (via the 95%

confidence band) to experience outcomes � ≤ 1 (alive with no CV hospitalization), a range

of scores representing approximately 36% of the patients in the target data set. Treatment

effects Ê(·) and Γ̂(·) are shown below in Figure 2.5.1. It is interesting to note that the

estimated effect of treatment in terms of reducing the risk of death is relatively constant,

and nonsignificant, with a risk reduction of approximately 2% across the range of scores.
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Thus, it may be fair to declare a particular future patient to be a good or bad candidate for

treatment on the basis on the treatment selection score, which is able to identify patients

who would likely benefit from treatment in terms of avoiding CV-related hospitalization.
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Figure 2.4: BEST target treatment differences (treated minus untreated) using treatment
selection score (D̂) as a scoring system.
Left panels: specific outcome probabilities; Right panels: cumulative outcome probabilities
Bottom right: Distribution of scores

2.5.2 Sensitivity Analysis using AIC model

Because our cross-validation procedure did not suggest that any particular model would fit

the training data substantially better than the other candidate models, we repeat the above
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procedure using the risk score and treatment selection score, as derived from the AIC model.

From this model, there is a slight but significant positive correlation (ρ = 0.17) between the

risk score and the treatment selection scores, suggesting that low-risk patients are generally

expected to benefit more greatly from treatment than high-risk patients. In Figures 2.5.2

and 2.5.2 below, the treatment differences as a function of each of these scores are shown

along with 95% confidence bands and intervals. The results are generally the same as when

using the scores deriving from the full model. The most notable difference is that, using

the treatment selection score deriving from the AIC model, in addition to detecting a range

of patients who would be benefit significantly, via the 95% confidence intervals, in terms of

avoiding CV-related hospitalization and/or death (� ≤ 1), representing approximately 50%

of the BEST population, a smaller subset of these patients, with TSS ∈ (−0.64,−0.32) are

found to benefit from treatment with respect to overall mortality and/or CV-related death

(� ≤ 2, � ≤ 3). This smaller subset of scores is associated with approximately 25% of the

BEST patient population.

2.5.3 Conclusions

Ultimately, despite the non-significant overall result in the BEST trial, both of our scoring

systems are able to identify a sizeable subgroup of BEST patients who would experience

significant benefits from treatment with beta-blockers (i.e. bucindolol), in each case repre-

senting approximately one fourth to one half of the BEST patient population, depending

on whether 95% confidence intervals or bands are being used to determine statistical signif-

icance.

The results from our analysis using the baseline risk score are particularly interesting in

that the observation that low-risk patients may derive equal (or possibly greater) benefits

from treatment than high-risk patients seems to oppose clinicians’ conventional wisdom.

This finding may have implications for design of future studies.
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Figure 2.5: BEST target treatment differences (treated minus untreated) using baseline risk
(R̂) from the AIC model as a scoring system.
Left panels: specific outcome probabilities; Right panels: cumulative outcome probabilities
Bottom right: Distribution of scores

The results from our analysis using the treatment selection score are interesting for

the reason that our scoring system, though not perfectly predictive of all clinical outcomes,

seems to have done a reasonably good job of separating patients who would respond well

to treatment (TSS< 0) from those who would respond poorly (TSS> 0). In this sense, we

have found evidence of treatment interactions that are identifiable early in the course of the

clinical trial and which are prospectively validated using future patients.
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Figure 2.6: BEST target treatment differences (treated minus untreated) using treatment
selection score (D̂) from the AIC model as a scoring system.
Left panels: specific outcome probabilities; Right panels: cumulative outcome probabilities
Bottom right: Distribution of scores

2.6 Remarks

In this analysis, we use a two-stage process that can rather easily be applied in other scenarios

with randomized clinical trial data. Here, we use two independent data sets obtained by

separating the patients in a single clinical trial into two groups according to the order in

which they were enrolled, thus utilizing a training data set similar to that which may be

available at the time of an interim analysis. We utilize these independent data sets to

construct a systematic, subject-specific treatment evaluation procedure. The final scoring
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system may be chosen via a complex, exploratory model and variable selection process using

the training data set. We then apply this system to stratify the patients in the second group

and make inferences about the treatment effects with respect to various patient outcomes

for each stratum. If two similar studies are available, as in many industry settings where

two Phase III trials are required, one may instead treat the data from the first trial as the

training data set and stratify and evaluate patients in the second trial accordingly.

Because our goal is to develop a score to group patients with similar treatment responses,

the treatment selection score D̂(·) should be the most effective system with which to stratify

patients. However, there are practical concerns that could result in the preference of scoring

system R̂(·) based on the control group only. In particular, if there are multiple treatments

options to be compared, it will not be feasible to build a separate treatment selection scores

for each pairwise treatment comparison, and the baseline risk score would be an intuitive

choice to investigate the effects of each treatment. Additionally if there are two trials of

interest in the same disease setting but the patient populations and/or treatments are not

known to be comparable across trials, then the treatment selection score D̂ may not generalize

well from one trial to another. For example, trials involving HIV-infected patients continually

evaluate different combinations of approved therapies. Moreover, clinical practitioners seem

more comfortable at present with the idea of using a risk score from the control arm to

make treatment decisions; we show, however, in Figure 2.5.1 that the common belief that

the patients with the worst prognosis will benefit the most from treatment may not hold

true.

In this paper, we used the t0-year outcome probabilities as the parameters of interest,

where t0 may be chosen from a clinical perspective. In practice, one may repeat this proce-

dure with various time points. It would be interesting to choose a global measure to quantify

the treatment contrast. Further research is warranted along this line.

Our model and variable selection procedure is intended to select the “best” model for

fitting the data in terms of overall log-likelihood. When the endpoint is the treatment
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difference, it is not clear that our approach of attempting to find a working model which

best fits the data in this general sense would necessarily produce the “best” treatment

selection score, as interactions between treatment and covariates become more important,

while main effect terms may be thought of as nuisance parameters. In his unpublished thesis,

Signorovitch (2007) proposed a novel method for modeling the treatment contrast directly

with covariates for binomial outcomes. Intuitively, this approach would more effectively

select the treatment and covariate interactions for creating the score. Further research is

needed to evaluate scoring systems with respect to the subject-specific treatment differences.

Lastly, the choice of treatment based on a risk-benefit perspective is quite individual-

ized. A global summary of the treatment effectiveness, for example, the risk-benefit ratio,

may not provide enough information for personalized medicine. Instead, summaries for the

treatment’s combined toxicity and efficacy at the subject level, as we have proposed in this

article, can be quite useful for the patient’s bedside management.

2.7 Appendix

Construction of Confidence Intervals and Bands

Let {Bij : i = 1, ..., nj; j = 1, 2} be independent random samples from a strictly positive

distribution with mean and variance equal to one. Let p∗
jk
(s) be the perturbed version of

p̂jk(s) with p∗
jk
(s)

=

�
�

i

Bijwij

Ĝ∗
j(X(3)ij ∧ t0)

Khj(Vij − s)Yijk

�
/

�
�

i

Bijwij

Ĝ∗
j(X(3)ij ∧ t0)

Khj(Vij − s)

�
. (2.9)

Here, Ĝ∗
j
(·) is the perturbed estimator for the survival function Gj(·)

Ĝ∗

j
(t) = exp

�
−

nj�

i=1

�
t

0

Bijd{I(Cij ≤ u ∧X(3)ij)}�nj

l=1
BljI(X(3)lj ≥ u)

�
. (2.10)
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Denote E∗(s) = p∗
2
(s)− p∗

1
(s), where p∗

j
(s) = {p∗

j0
(s), · · · , p∗

j4
(s)}�. Using the arguments by

Cai et al. (2010), the limiting distribution, conditional on the target data set, of

(n1h1 + n2h2)
1/2

{E∗(s)− Ê(s)}, (2.11)

is multivariate normal with mean 0 and covariance matrix Σ(s).

In order to obtain an approximation toΣ(s), we generate a large number of realizations of

{Bi1, Bi2} from a standard exponential distribution, and compute E∗(s) for each perturbation

sample. The resulting sample covariance matrix based on those perturbed estimates E∗, say,

Σ̃(s), is a consistent estimator of Σ(s). A two-sided confidence interval for an individual

risk difference Ek(s) is then given by

Êk(s)± z(1−α/2)(n1h1 + n2h2)
−1/2σ̃k(s), (2.12)

where σ̃k(s) is the kth diagonal element of Σ̃(s).

To construct a (1 − α) simultaneous confidence band for Ek(s) over the pre-specified

interval S, we cannot use the conventional method based on the sup-statistic,

sup
s∈S

σ̃−1

k
(s)|(n1h1 + n2h2)

1/2
{Êk(s)− Ek(s)}| (2.13)

due to the fact that as a process in s, (n1h1 + n2h2)1/2{Êk(s)−Ek(s)} does not converge to

a process. On the other hand, one may utilize the strong approximation argument given in

Bickel and Rosenblatt (1973) to show that an appropriately transformed sup of Êk(s)−Ek(s)

converges to a proper random variable. In practice, to construct a confidence band, we can

first find a critical value bα such that

pr(sup
s∈S

|E∗

k
(s)− Êk(s)|/{(n1h1 + n2h2)

−1/2σ̃k(s)} > bα) ≈ α. (2.14)

Then the confidence band for Ek(s) : s ∈ S is given by

Êk(s)± bα(n1h1 + n2h2)
−1/2σ̃k(s). (2.15)

Identical arguments are used for making inference with respect to Γk(s).
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3.1 Introduction

In many randomized studies, multiple events and associated failure times may be recorded

for each patient. For example, in a recent cardiology study, event times corresponding

to hospital admissions, myocardial infarction (MI), heart transplant, and death were all

recorded. In such trials, it may be desirable for the investigators to assess the overall impact

of treatment on patient health, as defined by the absence or occurrence of many events,

while acknowledging a natural ordering to the severity of the events (e.g. hospital admission

in general is less severe than MI, which is less severe than death). In such a situation, each

patient may be evaluated at a fixed time and assigned an ordinal outcome status that acts as

a summary of all clinical events experienced by a patient from randomization until the time

of evaluation. In this paper, we propose methods to analyze such data over time, drawing

connections to existing survival and ordinal regression techniques, allowing one to obtain a

global summary of treatment impact.

Even though multiple patient outcomes are often observed in a study, investigators must

often choose a single primary outcome, with the corresponding between-group comparison

serving as the primary analysis of study, and upon which a decision as to the success of the

treatment may be based. In recent years, seeking to gain efficiency, many trials have used

combinations of clinical outcomes as a composite response score (Friedman et al., 2010).

Noted challenges with this approach include the concerns that component outcomes may or

may not have equal clinical importance, and that a single component may “dominate” the

composite outcome (Ferreira-González et al., 2007; Tomlinson and Detsky, 2010). Methods

such as Q-TWiST have been proposed in the context of cancer trials where patients are

observed to transition from one health state to another over time (i.e., toxicity, time without

symptoms and toxicity, relapse), but the procedure may be difficult to interpret when more

than three states are involved, and inference depends on the specification of subjective utility

weights associated with each health state (Gelber et al., 1995, 1996). Many methods have

been proposed, primarily for the purposes of risk-benefit assessment, which classify patients
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according to their overall response at the end of the trial (Chuang-Stein et al., 1991; Boers

et al., 2010). These methods also generally require subjective utility weights and/or may

ignore a patient’s clinical experience over time. Follmann (2002) proposed the usage of

multiple events for each patient in order to describe patients’ overall clinical response, but

did so for the purposes of ranking patients with respect to one another at the end of the

trial. In this paper, we propose methods that estimate an overall summary of the effects of

treatment and/or assess the effect of treatment as a function of time, taking into account

patient health status as it changes over time, without the need to specify utility weights

associated with each health state.

3.1.1 Notation: Progressive Disease State

Suppose we have an integer-valued variable denoting patient health status over time, E(t) ∈

{0, . . . , K}, where larger values generally denote worse health. We focus our attention on the

setting of a progressive disease model, defined by the following properties, and will discuss

later when such assumptions may be relaxed. Suppose E(t) has the following properties:

• a) E(0) = 0;

• b) E(t) ≤ E(s) ∀s > t.

Now, for each patient, define the ‘exit time’ Tk = min{t : E(t) ≥ k},for k ∈ {1, . . . , K}.

Conversely, Ei(t) =
�

K

k=1
I{Tik ≤ t}.

Alternatively, suppose there are K types of “events” which a patient may experience,

ordered by severity where event type K is the worst. For the ith patient {i = 1, . . . , n},

define T ∗

ik
be the time to first instance of an event associated with severity level k. Let Ci be

the patient’s censoring time, which is assumed to be independent of T ∗

ik
. The observable data

for each patient is {(Xik,∆ik), k = 1, . . . , K} where Xik = min(Tik, Ci), ∆ik = I(Tik ≤ Ci),

60



Tik = min{T ∗

ik
, . . . , T ∗

iK
}, and I(·) is the indicator function. We note that the vectors Xk

and Tk will be ordered monotonically (i.e., Xi1 ≤ Xi2 ≤ . . . ≤ XiK , Ti1 ≤ Ti2 ≤ . . . ≤

TiK , i = 1, . . . , n), even though the original event times T ∗

k
may not be ordered. The “event”

associated with level k may be a singular event, a particular recurrence of an event, or perhaps

a combination of events (e.g. death due to a particular cause). As such, some events may

compete with other events, and an observed finite value of one T ∗

k
may necessarily result

in a censored value for a competing T ∗
j
. Let Sk(t) = P (Tk > t) = P (E(t) < k). Let Z

denote treatment assignment (Z = 1, 0 for treated and untreated groups, respectively). The

goal is to estimate the joint effect of treatment on the functions {Sk(t), k = 1, . . . , K}. The

relationship between treatment assignment and time-dependent patient outcome status may

be analyzed via several different methods, some requiring stronger parametric assumptions

than others. In this paper, we present three general approaches to this problem, with each

subsequent approach requiring stronger assumptions than the last.

3.2 Integrated General Risk Difference

The general risk difference has been studied extensively as an extension of the simple risk

difference for ordinal data with more than two outcomes (Simonoff et al., 1986; Edwardes

and Baltzan, 2000; Lui, 2002). With two exposure categories, here Z = 0, 1, the general

risk difference is P (Ei > Ej|Zi = 0, Zj = 1) − P (Ei < Ej|Zi = 0, Zj = 1), with posi-

tive values suggesting that treated patients are generally more likely to be in a “healthier”

state than their untreated counterparts. Evaluated at a fixed time t, this type of mea-

sure is closely related to Somers’ d statistic as well as Wilcoxon’s rank-sum statistic, and

can further be shown to reduce to the simple risk difference P (E = 1|Z = 0) − P (E =

1|Z = 1) when E is a binary response (Agresti, 1990; Edwardes, 1995). Specifically, de-

fine the general risk difference with respect to patient outcomes at time t as GRD(t) =
�

K

k=1
π0,k(t){

�
k−1

j=0
π1,j(t)}−

�
K

k=1
π1,k(t){

�
k−1

j=0
π0,j(t)}, where π(t)j,k = P (E(t) = k|Z = j).

Let �GRD(t) =
�

K

k=1
π̂0,k(t){

�
k−1

j=0
π̂1,j(t)} −

�
K

k=1
π̂1,k(t){

�
k−1

j=0
π̂0,j(t)} where π̂j,k(t) is a
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consistent estimate of πj,k(t).

With complete data, the empirical estimates π̂(t)j,k =
�

i I(Ei(t)=k|Z=j)�
i I(Zi=j)

could be used.

Censoring will in general prevent the observation of {I(Ei(t) = k), t ≥ Ci} for any outcome

level k < K. However, the nature of the progressive disease model implies that I(Ei(t) ≥ k)

may be observable for some levels k. Specifically, I(Ei(t) ≥ k) = 1, {k ≥ Ei(Ci), t ≥ Ci}.

Noting that each group-specific survival curve Sj,k(t) = P (E(t) < k|Z = j), we may define

π̂j,k(t) = Ŝj,k+1(t)− Ŝj,k(t), with Ŝj,0(·) = 0, Ŝj,K+1(·) = 1 for mathematical convenience.

Noting that the integrated difference in Kaplan-Meier curves is a commonly used model-

free estimate of treatment effect, which is interpreted as “excess restricted mean survival

time due to treatment,” we introduce a generalization to this approach by integrating

the estimate �GRD(t) over time. Define IGRD(t) =
�

t

s=0
GRD(s)ds, and its estimator

�IGRD(t) =
�

t

s=0
�GRD(s)ds =

�
t

s=0
P̂ (Ei(s) > Ej(s)|Zi = 0, Zj = 1)ds −

�
t

s=0
P̂ (Ei(s) <

Ej(s)|Zi = 0, Zj = 1)ds. The first component
�

t

s=0
P̂ (Ei(s) > Ej(s)|Zi = 0, Zj = 1)ds has

the interpretation of average person-time spent with treated patients in better health than

untreated patients. Conversely,
�

t

s=0
P̂ (Ei(s) < Ej(s)|Zi = 0, Zj = 1)ds has the interpre-

tation of average person-time spent in which untreated patients are in better health than

treated patients. Thus the difference of these two measures can be interpreted as “excess

time spent in improved health due to treatment”.

Alternatively, for any two patients (i, j) at some follow-up time t∗, the duration of

followup may be partitioned into three components, such that t∗ =
�

t

0
I(Ei(s) < Ej(s))ds+

�
t

0
I(Ei(s) = Ej(s))ds +

�
t

0
I(Ei(s) > Ej(s))ds = t∗

i
+ t∗

e
+ t∗

j
, representing the cumulative

time in which patient i is in better, equal, and worse health than patient j, respectively. The

difference in times t∗
i
− t∗

j
represents the excess time spent in improved health for patient i

relative to patient j. The value IGRD(t) can be thought of as the expected value of this

difference, conditioning on Zi = 1, Zj = 0. This alternative formulation is derived in the

Appendix.
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In order to approximate the variance of �IGRD(t) − IGRD(t), we may employ

perturbation-resampling methods to estimate the variance of �IGRD
∗

(t)− �IGRD(t), where

�IGRD
∗

(t) =

�
t

s=0

�GRD
∗

(s)ds, (3.1)

�GRD
∗

(t) =
K�

k=1

π∗

0,k
(t){

k�

j=0

π∗

1,j
(t)}−

K�

k=1

π∗

1,k
(t){

k�

j=0

π∗

0,j
(t)},

π̂∗

j,k
(t) = Ŝ∗

j,k+1
(t)− Ŝ∗

j,k
(t),

and Ŝ∗

j,k
(t) is the perturbed Kaplan-Meier estimator

Ŝ∗

j,k
(t) = exp

�
−

�

i:Zi=j

�
t

0

Bid{I(Ci ≤ u ∧Xik)}�
l:Zl=j

BlI(Xik ≥ u)

�
, (3.2)

where each perturbed value �IGRD
∗

(t) employs a vector of standard exponential random

variables {Bi, i = 1, . . . , N}, generated independently of the data. This type of procedure

has been applied successfully in previous work such as Park and Wei (2003b), Cai et al.

(2005), and Uno et al. (2007b).

3.3 Repeated Ordinal Regression

Another option for quantifying the impact of treatment at a fixed follow-up time t0 is via

an ordinal regression model (McCullagh, 1980). In the generalization of ordinal logistic

regression models known as the cumulative link model, the typical setup involves a categorical

outcome variable Y with γk = P (Y ≤ k) = g−1(θk +X �β) for some general covariate vector

X and a monotonic link function g(·) (Agresti, 1990). In our setup, the outcome is related

to the treatment assignment via the model

g(γk) = θk + Z �β, (3.3)

If we let Yi = Ei(t0) for a fixed time t0, then each patient’s log-likelihood contribution
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is given by

Li =
K�

k=0

πI(Yi=k)

ik

=
K�

k=0

{γik − γi(k−1)}
I(Yi=k)

=
K�

k=0

{g−1(θk + Z �

i
β)− g−1(θk−1 + Z �

i
β)}I(Yi=k) (3.4)

With complete data, it is possible to maximize the above likelihood with respect with

respect to {(β, θk), k = 0, . . . , K − 1}, where γiK ≡ 1, γi(−1) ≡ 0 by definition. However, the

independent censoring process will prevent the observation of patient outcomes if the patient

was not in a “terminal state” at the time of censoring, as defined below.

3.3.1 Definition and Notation for Terminal States

It is possible that the definitions of the clinical events used to construct the patient outcome

ranking system may result in a set of “competing” outcomes. For example, if the event “death

due to heart failure (HF)” is associated with patient outcome level K, while “non-HF death”

is associated with outcome level K − 1, then it is clear that T ∗

K−1
will censor T ∗

K
for a given

patient, and vice versa. Thus the observation of T ∗

K−1
indicates that a patient is in a terminal

state, and, for such a patient, P [E(t) > (K − 1)] = 0 for any time t. Specifically, we define

a vector V indicating terminal states, where Vk = 1 if P (
�

j≥k
∆ij = 1|∆ik = 1) = 1 and

Vk = 0 otherwise. In the progressive disease model, patients cannot exceed state K, and so

VK = 1. Using this notation, let us further define for each patient TiT = mink{T ∗

ik
: Vk = 1},

as the time to entering a terminal state, XiT = min(TiT , Ci), and ∆iT = I(TiT ≤ Ci). By

the definition of a terminal state, Ei(s) is known for any s > TiT when ∆iT = 1, and so each

patient’s status at a fixed t0 is determined at (t0 ∧ TiT ).
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3.3.2 Weighted Cumulative Link Model

Using this information, we may modify the log-likelihood from the above cumulative link

model by applying inverse probability of censoring weights and maximizing the standard

weighted multinomial log-likelihood function

�

i

wi

Ĝ(XiT ∧ t0)
{

K�

k=0

I(Yi = k)log(πik)}, (3.5)

where πik = g−1(θk+Z �
i
β)−g−1(θk−1+Z �

i
β), Ĝ(·) is the Kaplan-Meier estimator of G(·),

the survival function for the censoring variable C, and wi = I(Ci > t0) + I(XiT < Ci)∆iT is

one if a patient’s outcome status is observable at time t0 and zero otherwise. For a specific

followup time t0, we may denote the resulting maximizing value β as β̂(t0).

In order to assess the treatment effect over time, one may repeat this procedure at

multiple followup times t1 < t2 < . . . < tJ . If we suspect that the true treatment ef-

fect may be constant over time (i.e., β(·) = β), then β may naturally be estimated via

a linear combination
�

j
cjβ̂(tj) with

�
j
cj = 1. As in Wei and Johnson (1985) and

Wei et al. (1989), the linear combination with smallest asymptotic variance is given by

c = (c1, . . . , cJ)� = (e�Ψ̂−1e)−1Ψ̂−1e where e = (1, . . . , 1), and Ψ̂ is the estimated covariance

matrix of (β̂(t1), . . . , β̂(tJ)). The estimated variance for this linear combination is given by

(e�Ψ̂−1e)−1. If the treatment effect β(·) is constant in time, then such a linear combination

will provide a consistent estimator for β, regardless of the followup times chosen. Even if the

true value β(·) is not constant over time, this linear combination may still provide a useful

summary measure for the “average effect” of treatment over time, however the expected

value of this estimate will naturally depend on the specific times {tj, j = 1, . . . , J} at which

the model is fit (Wei et al., 1989). The covariance matrix Ψ̂ may be estimated via a similar

perturbation-resampling procedure to that described in the previous section. Specifically,

for r = 1, . . . , R, we generate a vector of exponential random variables {Br

i
}, i = 1, . . . , N .
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Then, for each time tj, let β̂∗r(tj) be maximizer of

�

i

Br

i
wi

Ĝ∗(XiT ∧ tj)
{

K�

k=0

I(Yi(tj) = k)log(πik(tj))}, (3.6)

where Ĝ∗(·) is the perturbed version of the Kaplan-Meier estimator Ĝ(·), as in (3.2). Let

β̂∗(tj) = {β̂∗r(tj)}, r = 1, . . . , R. Then, each element Ψ̂j,j� is estimated by Cov(β̂∗(tj), β̂∗(tj�)).

3.4 Global Model

Rather than repeatedly fitting models at multiple time points, we may instead wish to

build the assumption of a constant treatment effect β directly into our model. Recall the

cumulative link model described in the previous section. We have a categorical outcome

variable Y with γk = P (Y ≤ k), and the outcome is related to covariates via the model

g(γk) = θk + Z �β, (3.7)

Letting Y (t) = E(t), we can extend this model across time, writing

g(γk(t)) = θk(t) + Z �β(t). (3.8)

If we are willing to make the additional assumption that the association between treat-

ment and outcome status β(t) is constant for all t, then (3.8) reduces to

g(γk(t)) = θk(t) + Z �β, (3.9)

which we refer to as our proposed global model.
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3.4.1 Relationship to semi-parametric survival models

Recall that, in general, when there is only a single event time, we may express many semi-

parametric survival models as

g(S(t)) = θ∗(t) + Z �β (3.10)

for some decreasing function g(·) (Cheng et al., 1995). In our current framework, we have K

such survival models, corresponding to event times Tk, (k = 1, . . . , K). Assuming the same

link function g(·) for each model, we may write this collection of survival models as

g(Sk(t)) = θ∗
k
(t) + Z �βk, (3.11)

where θ∗
1
(t) ≥ θ∗

2
(t) ≥ . . . ≥ θ∗

K
(t) for each fixed t. Finally, we note that

γk(t) = P (E(t) ≤ k) = P (E(t) < k + 1) = Sk+1(t). (3.12)

Now, if we assume that βk = β ∀k, we see that (3.11) reduces to (3.9), with nuisance

parameters θ∗
k
(t) ≡ θk−1(t).

We note that, with a single binary covariate Z, a fully saturated model for the state

probabilities over time can be written as

g(Sk(t)) = θk(t) + Z �βk(t), (3.13)

where the treatment effect βk(t) is allowed to vary with time t and/or outcome status k.

The assumption that βk(t) = βk ∀t results in the set of semi-parametric survival models

(3.11). The assumption that βk(t) = β(t) ∀k results in the longitudinal cumulative link

model (3.8). Our proposed model (3.9) results from the simultaneous assumption of these

two relationships (i.e. βk(t) = β, ∀t, k).
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3.4.2 Estimating treatment effect with a single terminal state via
stratified Cox model

When the vector V = {0, . . . , 0, 1}, (i.e., there is only a single terminal state), the estimation

of the parameter of interest, β is relatively straightforward. Each set of exit times Tk can

be thought of as a separate set of failure times to be modeled via a semi-parametric survival

model, with associated score equation Uk(β). In this case, we simply “stack” the data sets

together, and sum the score equations to obtain the full score U(β) =
�

k
Uk(β).

In the special case that the link function g(·) = log(−log(·)), then we note that (3.10) is

equivalent to the Cox proportional hazards model, resulting in a partial likelihood L(β) =
�

K

k=1
Lk(β), where

Lk(β) =
n�

i=1

�
exp{Z �

i
β}�

l∈Rk(Xki)
exp{Z �

l
β}

�∆ik

, (3.14)

where Rk(t) = {l : Xik ≥ t}, which is similar to Wei et al. (1989) with the constraint

that all βk = β. We further note that the above likelihood takes the same form as a

stratified Cox model with K strata, where the data corresponding to stratum k is simply

{(Xik,∆ik, Zi), i = 1, . . . , n}. We denote the resulting maximizer of L(β) as β̂. Specifically,

β̂ is found as the solution to the score equation U(β) =
�

k
Uk(β) = 0, where Uk(β) =

�
n

i=1
∆ik

�
Zi −

�
i Yik(Xik)Ziexp{Z

�
iβ}�

i Yik(Xik)exp{Z
�
iβ}

�
, Yik(t) = I(Xik > t).

Because the vector of event times {Xik} are positively correlated within patients, the

standard variance estimate Ṽ (β̂) from the stratified Cox model will underestimate the true

variance V (β̂), and would result in an anti-conservative test of H0 : β = 0. In the standard

case, with only one terminal state, the robust variance estimator of Lin and Wei (1989)

may be used. Here, V̂ (β̂) = D̃�D̃, where D̃ = ŨI−1, Ũi =
�

k
ũik, and ũik is the score

residual corresponding to the kth event time from the ith patient, and I =
�

k
Ik, where Ik

is the information matrix corresponding to the kth data set, {(Xik,∆ik, Zi), i = 1, . . . , n}.

(Therneau and Grambsch, 2000). We may then assume (β̂ − β) ∼ N(0, V̂ (β̂)) and apply

standard techniques for hypothesis testing and the construction of confidence intervals.
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3.4.3 Extensions of the Global Model

Estimating Treatment Effect with Competing Risks

When there exist multiple terminal states (i.e.
�

k
Vk > 1), we must introduce further

notation to properly account for competing risks. For any k :
�

j<k
Vj = 0, the score

equation Uk(β) will remain unchanged. For any k :
�

j<k
Vj > 0 , we must modify Uk(β)

as follows. First, we introduce additional notation. Specifically, let ∆∗

k
= I(T ∗

k
≤ C) and

Rik =
�

j<k
Vj∆∗

ij
, which takes the value 1 if patient i is observed to enter into a terminal

state which prevents the entrance into state k.

Using the methods of Fine and Gray (1999) methods for the subdistribution of a com-

peting risk, the new score equation Uk(β) is

n�

i=1

∆ik

�
Zi −

�
i
wik(Xik)Y ∗

ik
(Xik)Ziexp{Z �

i
β}�

i
wik(Xik)Y ∗

ik
(Xik)exp{Z �

i
β}

�
(3.15)

where Y ∗

ik
(t) = 1− I(Xik < t,Rik = 0), wik(t) = I(t∧Xik ≤ Ci)Ĝ(t∧Tik)/Ĝ(t) and Ĝ(t)

is the Kaplan-Meier estimate of the survival function of the censoring random variable C.

When there are multiple terminal states, it is not clear that robust variance procedures

may be applied. For the purposes of hypothesis testing, a permutation test may be used,

wherein the values Zi may be permuted a large number of times R, resulting in vectors

{Zi}r, (r = 1, . . . , R). For each permuted vector {Zi}r, the model is refit, and the resulting

point estimate denoted β̂∗
r
. For a two-sided α-level test of the null hypothesis, we reject when

�R
r=1 |β̂|≥|β̂∗

r |

R
≤ α. Perturbation-resampling techniques and/or bootstrapping may be used to

estimate a confidence interval for the parameter β.
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Alternative Link Functions

For general link functions g(·), Cheng et al. (1995) show that (3.10) can be re-written as

h(T ) = −Z �β + �, (3.16)

where � ∼ F (·) = 1 − g(·)−1, and h(t) is an unspecified monotone function increasing in t.

They propose a score function based on the relationship between P (Ti > Tj) and (Zi−Zj)�β

for all pairs (i, j). The resulting point estimate β̂ is the solution to U(β) = 0, where U(β) is

given in eq. (2.3) in Cheng et al. (1995). This can be extended to current setup by solving

for U(β) =
�

K

k=1
Uk(β), where Uk(β) is the stratum-specific score equation, equivalent to

the score equation of Cheng et al. (1995) when using only {(Xik,∆ik, Zi), i = 1, . . . , n}. It is

still possible to perform hypothesis testing and obtain confidence intervals via permutation

tests and resampling techniques as mentioned above.

3.5 Example

Our data set of interest comes from a recent clinical trial, “Beta-Blocker Evaluation of Sur-

vival Trial” (BEST), which compared a beta-blocker (bucindolol) to placebo in patients with

heart failure, with a primary endpoint of all-cause mortality. In this trial, other monitored

patient outcomes included myocardial infarction (MI), all-cause hospitalization, and heart

transplant (Beta-Blocker Evaluation of Survival Trial Investigators, 2001). Note that in the

BEST trial, the non-fatal event times were not censored by other non-fatal event times. This

trial was conducted in the United States and is of interest because of the observed marginally

significant treatment effect (p=0.10), with an estimated hazard ratio of 0.90 (0.78, 1.02) for

the effect of treatment on mortality. Although the results for the primary endpoint were

not found to be significantly in favor treatment, secondary endpoints generally supported a

beneficial treatment effect. Estimated marginal hazard ratios for all-cause hospitalization,

MI, and heart transplant were 0.92, 0.52, and 0.69, respectively.
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These marginal results for each of these endpoints are summarized in Table 3.1.

Table 3.1: Estimated marginal treatment effects with respect to component outcomes
Outcome Events: Placebo Arm Events: Bucindolol Arm HR p-value

Hospitalization 875 829 0.92 (0.84, 1.01) 0.08
MI 85 46 0.52 (0.36, 0.75) <0.001

Heart Transplant 41 29 0.69 (0.43, 1.10) 0.12
Death 449 411 0.90 (0.78, 1.02) 0.10

It is reasonable to assume that these outcomes can be ordered by severity. Naturally,

death may be considered the worst patient outcome, and any patient no longer living at time

t should be assigned to the worst outcome category, in this case E(t) = 4. Among living

patients, a heart transplant represents major surgery and may be considered an indication

that a patient is nearing death. Thus, any patient alive at time t who has undergone a

heart transplant would be classified as E(t) = 3. Among the remaining the patients, MI

represents a relatively serious concern, and any patient who has experienced at least one

MI prior to time t would be classified as E(t) = 2. Among those patients free of major

cardiovascular complications (i.e., alive with no MI or transplant), we may further distinguish

between those who have been admitted to the hospital for any reason (E(t) = 1), and

those who remain completely event-free (E(t) = 0). The maximum follow-up time in the

study was approximately 50 months with mean follow-up time of 24 months (Beta-Blocker

Evaluation of Survival Trial Investigators, 2001). The censoring rate at t=1, 2, and 3 years

was approximately 10%, 30%, and 65%, respectively. The estimated state probabilities, via

the standard Kaplan-Meier curves, are plotted below in Figure 3.1, and the estimated state

probabilities at followup times of 1, 2, and 3 years are shown in Table 3.2 below. We note

that P (E ≤ k|Z = 1) > P (E ≤ k|Z = 0) for all values of k at all three time points in

the table, suggesting that patients receiving bucindolol are generally more likely to be in a

healthier state than their counterparts at a given time. Furthermore, note that the set of

comparisons between P (E ≤ k|Z = 1) and P (E ≤ k|Z = 0), k = 0, . . . K − 1 represents a

set of nested composite outcomes, evaluating the impact of treatment with respect to a) any

clinical event (k=0), b) any major CV complication or death (k=1), c) heart transplant or

death (k=2), and d) death (k=3).
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Table 3.2: Estimated Patient Outcome Probabilities at 1, 2, and 3 years after treatment
initiation

Placebo Bucindolol Placebo Bucindolol
t = 1 years
P (E ≤ 0) 0.487 0.519 P (E = 0) 0.487 0.519
P (E ≤ 1) 0.831 0.856 P (E = 1) 0.345 0.336
P (E ≤ 2) 0.849 0.862 P (E = 2) 0.018 0.006
P (E ≤ 3) 0.858 0.868 P (E = 3) 0.019 0.006
P (E ≤ 4) 1.000 1.000 P (E = 4) 0.142 0.132
t = 2 years
P (E ≤ 0) 0.312 0.351 P (E = 0) 0.312 0.351
P (E ≤ 1) 0.681 0.720 P (E = 1) 0.369 0.369
P (E ≤ 2) 0.701 0.730 P (E = 2) 0.021 0.010
P (E ≤ 3) 0.720 0.745 P (E = 3) 0.018 0.014
P (E ≤ 4) 1.000 1.000 P (E = 4) 0.280 0.255
t = 3 years
P (E ≤ 0) 0.195 0.237 P (E = 0) 0.195 0.237
P (E ≤ 1) 0.546 0.606 P (E = 1) 0.351 0.369
P (E ≤ 2) 0.575 0.619 P (E = 2) 0.029 0.014
P (E ≤ 3) 0.604 0.635 P (E = 3) 0.029 0.016
P (E ≤ 4) 1.000 1.000 P (E = 4) 0.396 0.365

Using the integrated general risk difference approach, we find that, after four years of

followup, treated patients experienced a significant improvement in overall health, spending

an expected 59.3 days spent in improved health relative to their untreated counterparts,

with a 95% confidence interval of (10.9, 107.8) days, and corresponding p-value of 0.016.

It should be noted that, by this measure, no significant benefit of treatment is detectable

until nearly 1000 days (approximately 2.75 years) after initiation, and that furthermore,

treatment was associated with significant harm through the first 4 months of follow-up with

no positive estimated effect emerging until approximately 1 year after randomization. The

estimated values and corresponding 95% confidence intervals for IGRD(·) are shown in

Figure 3.2. For comparison, the difference in 4-year restricted mean survival times (with

standard errors) corresponding to the individual Kaplan-Meier curves are 39.9 days (21.3),

55.7 days (21.1), 41.9 days (21.1), and 31.8 days (21.2), corresponding to S1(·), S2(·), S3(·),

and S4(·), respectively.
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Figure 3.1: Estimated distribution of patient outcome status over the duration of BEST
trial. Darker colors represent worsening health status (e.g. k=0 denoted by light gray; k=4
denoted by black.)

A similar trend is detected via the repeated ordinal regression approach. The model

was fit at followup times of 3, 6, 12, 18, 24, 30, 36, and 48 months. Using the logit link,

g(p) = log( p

1−p
), a positive value of β(t) indicates an increased probability of a patient being

in a lower (healthier) state as a result of treatment. We again find some evidence of early

harm in the treatment group, with β̂(t1) = −0.09, implying an estimated odds ratio of

0.91 for relationship between treatment and improved health status, though this estimated

odds ratio is not significantly different from the null value 1. Under the assumption of a

constant treatment effect over time, the resulting estimate is β̂(·) = 0.09 with 95% CI (-

0.033, 0.215), implying a non-significant treatment benefit with corresponding odds ratio

of 1.10 (0.97, 1.24), p=0.15. The estimates and 95% confidence intervals for each β(t) are

shown in Figure 3.3. The horizontal dashed line and gray region represent the estimate and

confidence interval for the (assumed) constant value β(·).

Using the global model with the link g(p) = log(−log(p)), corresponding to the
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Figure 3.2: Estimated improvement in cumulative time spent in improved health, with
pointwise 95% confidence intervals.

Wei-Lin-Weissfeld model, the estimated value β̂ in this trial was -0.115, corresponding

to a global hazard ratio of 0.89 associated with treatment. The robust variance pro-

cedure estimates a standard error of 0.050, with resulting 95% confidence intervals for

β = (−0.214,−0.017), HR = (0.81, 0.98), and associated p-value = 0.02, indicating a signif-

icant global benefit from treatment.

3.6 Discussion

In this paper, we discuss three potential approaches to the analysis of longitudinally assessed

ordinal patient outcomes in clinical trials. Such ordinal outcomes are of particular interest

for several reasons. The longitudinal nature of the data more easily allows for the assess-

ment of changing treatment effects over time. The ordinal nature of the data allows for a
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Figure 3.3: Estimated improvement in cumulative time spent in improved health, with
pointwise 95% confidence intervals.

direct and efficient approach to incorporate many composite clinical outcomes into a single

measure, and will provide more power to detect a significant clinical effect if the treatment

improves patient health with respect to several related outcomes. The simultaneous assess-

ment of multiple clinical outcomes often requires the imposition of utility weights to reflect

the relative importance of each outcome with respect to the others. In many cases, these

weights may be subjective and may differ between individual patients and/or clinicians. It

is presumed that a ranking of such outcomes may be more readily agreed upon than a set of

specific weights. In our example data set, we generally find that treatment with bucindolol is

associated with significant improvement in long-term overall patient health, despite possible

early negative effects during the first 6-12 months of treatment. These message seems to be

consistent, regardless of the methods used.

Each of the three approaches described above, the integrated general risk difference
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(IGRD), repeated ordinal regression, and the global survival model, has its own strengths

and weaknesses. The IGRD approach, for example, requires no assumptions about the dis-

tribution of outcomes at a given follow-up time, and as such, does not require any particular

link function or any other parametric assumptions. Furthermore, this approach easily al-

lows for the treatment effect to change with time, and also provides an interpretable global

summary measure in the form of expected time spent in improved health due to treatment.

However, this approach does not easily allow for the introduction of covariates, beyond the

binary treatment assignment, into the assessment of the treatment impact. Both the re-

peated ordinal regression and global survival models allow for such covariate effects to be

built directly into their respective models. Unless further restrictions are placed on the

repeated ordinal regression models, however, the estimated covariate effects may not be con-

stant across analysis times. If the introduction of covariates into the model is solely for

the purposes of improving the precision of the estimated treatment, then this will pose no

problem. If one is instead interested in the overall effect of a particular set of covariates on

patient outcomes across time, then the global survival model may be preferred. Additionally,

it should be noted that standard software packages may be used to implement the repeated

ordinal regression models with many commonly used link functions, while the global survival

model is difficult to fit in standard software packages except in the special case mentioned

above with g(·) = log(−log(·)) and a single terminal state. Additionally the global survival

model requires the assumption that the treatment effect is constant over time, and the re-

sulting parameter estimate may be interpreted as in a traditional Cox model, with exp{β̂}

representing the overall hazard ratio for the instantaneous risk of a patient experiencing any

decline in health.

Finally, it may not always be reasonable to impose a progressive disease model as we have

assumed thus far. For example, patient health may improve over time or the criteria used

to assign patients to outcome states may change over time. The correspondence between

longitudinal cumulative link models and the survival function employed in nonparametric

and semiparametric survival methods requires this progressive assumption, and so the global

survival model will likely be impractical in such an unstructured setting. However the IGRD
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and repeated ordinal regression approach can easily be adapted to such a setting. Further

research is needed to develop methods that do not rely on a such progressive disease model.

3.7 Appendix

Alternate Derivation of IGRD(t)

It can be shown that the additional expected amount of time that patients in the treated

group spend in a healthier state than patients in the untreated group is equivalent to the

value of IGRD(t). Let X(t) and Y (t) be the health statuses of a treated and an untreated

patient, respectively. In addition, for specific patient histories x(·) and y(·), let T (x, y)

denote the duration of time, up to some follow-up time τ , spent with x(t) < y(t). We are

interested in E{T (X, Y )− T (Y,X)}.

E{T (X, Y )− T (Y,X)}

=E
�

τ

0

�
I{X(s) < Y (s)}− I{Y (s) < X(s)}

�
ds

=

�
τ

0

E
�
E
�
I{X(s) < y(s)} | Y (s) = y(s)

��
ds−

�
τ

0

E
�
E
�
I{Y (s) < x(s)} | X(s) = x(s)

��
ds

=

�
τ

0

E
�
P

�
X(s) < y(s) | Y (s) = y(s)

��
ds−

�
τ

0

E
�
P

�
Y (s) < x(s) | X(s) = x(s)

��
ds

=

�
τ

0

E
��

k

I{Y (s) = k}P{X(s) < k}

�
ds−

�
τ

0

E
��

k

I{X(s) = k}P{Y (s) < k}

�
ds

=

�
τ

0

�

k

P{Y (s) = k}S1k(s)ds−

�
τ

0

�

k

P{X(s) = k}S0k(s)ds (3.17)

=

�
τ

0

�

k

{S0,k+1(s)− S0k(s)}S1k(s)ds−

�
τ

0

�

k

{S1,k+1(s)− S1k(s)}S0k(s)ds

=

�
τ

0

�
K�

k=1

π0,k(s){
k−1�

j=0

π1,j(s)}−
K�

k=1

π1,k(s){
k−1�

j=0

π0,j(s)}

�
ds

=IGRD(τ)
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4.1 Introduction

Meta-analysis is a valuable tool for combining information from independent studies, espe-

cially when no single study is able to address the question at hand. The use of meta-analysis

methods has grown substantially in recent years, with over 2000 papers per year published

in PubMed, as of 2006 (Sutton and Higgins, 2008). Among these approaches, fixed-effects

and random-effects models (particularly the DerSimonian-Laird approach) are two of the

most commonly used models in meta-analysis. In practice, however, it is difficult, if not

impossible, to verify the fundamental assumptions of these two models (i.e., one assumes

homogeneous treatment effects across studies in a fixed-effects model or that the underlying

study parameters are samples from a single (often normal) distribution in a random-effects

model). Our question is: Can we develop a meta-analysis framework without taking a leap

of faith to simply adopt these conventional assumptions? In this article, we develop such a

framework to address this question and also provide a theoretical support and valid inference

for related statistical problems.

Suppose that there are K independent studies whose underlying unknown parameters

are denoted by θ1, . . . , θK . We make the minimal assumption that we only know that they are

fixed unknown values, and any or all of them may or may not be equal to one another. In this

context, similar to some nonparametric development, we may prefer to use, say, the median

or other quantiles of the θi’s as an overall quantification for the K studies. Furthermore,

it may often be the case that either the minimum or maximum of a set of parameters is

of particular interest. Finally, we may wish to construct an empirical function and make

inference for the entire range of potential θi values. These considerations are all associated

with the quantiles or the ‘order statistics’ of {θ1, . . . , θK}. Thus, we define the parameter of

interest under this framework as the qth quantile (or the mth smallest) of the θi’s:

θ(m) = the mth smallest θi, i = 1, . . . , K. (4.1)

We would like to make inference for θ(m). Despite that we have defined the underlying
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study parameters, we refer to this setup as a nonparametric framework in the sense that the

assumptions made about models and/or distributions concerning the study parameters are

minimal.

Without loss of generality, as argued in Xie et al. (2009) and Hall and Miller (2010), we

assume that, from the ith study, we have a
√
n
i
-consistent estimator of θi, say θ̂i, where ni is

the sample size of the ith study. In addition, for simplicity and also following Xie et al. (2009)

and Hall and Miller (2010), we assume further that the sample sizes ni → ∞ at the same rate

and θ̂i ∼ N(θi, s2i ) with the variance s2
i
= O(1/ni), although the normality assumption can

be relaxed. Let Θ = {θ1, . . . , θK} and Θ̂ = {θ̂1, . . . , θ̂K}. Also, let N =
�

K

i=1
ni and, without

loss of generality, write ni = λiN for some positive constant λi’s bounded away from zero,

where
�

K

i=1
λi = 1. Our problem now, given the observed data {(θ̂i, si, ni), i = 1, 2, . . . , K},

is how to make inference and construct confidence intervals for θ(m) for any particular m.

This seemingly simple and innocent inference setup turns out to be associated with a

well-known difficult problem. Hall and Miller (2010), who studied “the problem of con-

structing confidence intervals or hypothesis tests for extrema of parameters, for example of

max{θ1, . . . , θK},” stated that this type of problem is one of the “important problems where

standard bootstrap estimators are not consistent, and where alternative approaches . . . also

face significant challenges.” The difficult part is the unknown ‘ties’ and ‘near ties’ cases.

Here, a near tie case is defined as

|θj − θ(m)
| = O(N−1/2), (4.2)

which is interpreted as that, based on current sample size nj = λjN , a “near tie” parameter

θj can not be distinguished from the parameter θ(m); See Xie et al. (2009) and Hall and

Miller (2010). In these cases, Hall and Miller (2010) stated that “the limiting distribution

of max1≤j≤K θ̂j might not be estimable by any method, be it the bootstrap or another

approach.” The approach recommended by Hall and Miller (2010) for this problem, as well as

a set of more general forms of extreme parameters, was to construct a conservative confidence

interval (test) by introducing a constant cα to enlarge the usual confidence interval and use
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bootstrap to estimate (tune) the constant cα. Although the approach may be practical, it

is conservative and fails to directly address the difficult problem of making inference on the

extrema and other quantiles of the parameters.

In this paper, based on recent developments on confidence distributions (cf., a review

article by Xie and Singh (2012)), we propose a new resampling method to deal with the

inference problem for the extrema of the parameters and also, more generally, for any order

statistics of the parameters. This new resampling method can be viewed as an extension of

the well-studied and widely-used bootstrap method, but it enjoys a more flexible interpreta-

tion and manipulation. In the proposed method, we avoid the difficult problem of estimating

the limiting distribution of θ̂(m). Rather, we directly construct an asymptotic confidence

distribution for θ(m), which can lead to asymptotically proper inference for any ordered pa-

rameters θ(m). The rest of the paper is arranged as follows. In section 2, we introduce and

review the idea of confidence distributions as frequentist distributional estimators, along with

connections to the related bootstrap estimators. In section 3, we propose a general method

for deriving an asymptotic confidence distribution for a particular θ(m), which depends on

a particular set of weights, and propose three reasonable weighting schemes, including the

standard bootstrap estimator. In section 4, we discuss the properties of a set of weights

which will guarantee appropriate asymptotic coverage, show how to construct weights that

possess these properties, and discuss tuning approaches for finite-sample inference. In sec-

tion 5, we present simulation results showing that our proposed weights provide appropriate

coverage in diverse settings. In section 6, we illustrate our method using data from a recently

published meta-analysis investigating the effect of an antioxidant on nephropathy.
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4.2 CD-based Inference

4.2.1 Introduction to Confidence Distribution

In frequentist inference, we often use a single point of sample statistic (point estimator) or an

sample-dependent interval (confidence interval) to estimate a parameter of interest. A confi-

dence distribution (CD) is quite similar, but uses a sample-dependent distribution function,

instead of a single point (point estimator) or an interval (confidence interval), to estimate

the parameter of interest; cf., Xie and Singh (2012) and references therein. A confidence dis-

tribution has also been loosely referred to as a sample-dependent distribution function that

can represent confidence intervals of all levels for the parameter of interest (see, e.g., Cox

(1958); Efron (1993)). The concept has a long history, especially with its early interpretation

associated with fiducial reasoning (see, e.g., Fisher (1973); Cox (2006)). In recent years, the

confidence distribution concept has attracted a surge of renewed attention, and the recent

developments have been based on a redefinition of the confidence distribution as a purely

frequentist concept, without any fiducial reasoning. One nice aspect of this redefinition is

that the confidence distribution is now a clean and coherent frequentist concept (similar to

a point estimator) and is freed from those restrictive, if not controversial, constraints set

forth by Fisher on fiducial distributions. In an invited review article, Xie and Singh (2012)

provided a comprehensive review of the confidence distribution, including its history and a

modern definition as well as its emerging new developments and its intertangled relation-

ship with fiducial and Bayesian inference. A key aspect of the new developments is that a

confidence distribution is “viewed as an estimator for the parameter of interest, instead of

an inherent distribution of the parameter,” which is different from the interpretation of a

fiducial distribution or a Bayesian posterior. These developments on confidence distribution

can be viewed as a part of recent developments of distributional inference in statistics, which

include the concepts of generalized fiducial inference, belief function and objective Bayes. Its

role in frequentist inference is similar to that of a posterior distribution in Bayesian inference.
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A confidence distribution is a function of both the parameter and the random sample. It

must satisfy certain requirements in order to provide appropriate inference for the parameter

of interest. The following definition is formulated in Schweder and Hjort (2002); Singh et al.

(2005). In the definition, Ξ is the parameter space of the unknown parameter of interest θ

and X is the sample space corresponding to data Xn = {X1, . . . , Xn}. Singh et al. (2005)

demonstrated that this version of the confidence distribution definition is consistent with the

classical definition which is compiled from confidence intervals of varying confidence levels

(cf., Efron (1993)), and it is easier to use in many situations.

Definition 2.1. A function H(·) = H(Xn, ·) on X × Ξ → [0, 1] is called a confidence

distribution (CD) for a parameter θ, if it follows two requirements: R1) For each given

Xn ∈ X , Hn(·) is a continuous cumulative distribution function on Θ; R2) At the true

parameter value θ = θ0, H(θ0) ≡ H(Xn, θ0), as a function of the sample Xn, follows the

uniform distribution Unif [0, 1]. Also, the function H(·) is an asymptotic CD (aCD), if the

Unif [0, 1] requirement is true only asymptotically and the continuity requirement on H(·) is

dropped.

Based on the definition, any sample-dependent distribution function on the parameter

space can potentially be used to estimate the parameter, but the Unif [0, 1] requirement in

R2 is imposed to ensure that the statistical inferences (e.g., point estimates, confidence in-

tervals, p-values, etc.) derived from the confidence distribution have the desired frequentist

properties. This practice of two requirements has an analog in point estimation: any single

point (a real value or a statistic) on the parameter space can potentially be used to estimate

a parameter, but we often impose restrictions so that the point estimator will have certain

desired properties, such as unbiasedness, consistency, etc. As defined, the concept of confi-

dence distribution is quite broad. It subsumes and unifies a wide range of examples, from

regular parametric (fiducial distribution) examples to bootstrap distributions, significance

(p-value) functions, normalized likelihood functions, and, in some cases, Bayesian priors and

posteriors.
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A simple example of a confidence distribution that has been broadly used in statistical

practice is a bootstrap distribution. Efron (1998) explicitly stated that a bootstrap distri-

bution is typically a “distribution estimator” and a “confidence distribution” function of

the parameter that it targets. Singh et al. (2005, 2007) showed that a bootstrap distribu-

tion typically satisfies the definition of a confidence distribution or an asymptotic confidence

distribution. In any situation where one can construct a bootstrap distribution, one can

construct a confidence distribution or an asymptotic confidence distribution as well.

Another simple example, which is also used by Fisher (1930, 1973) to illustrate his

fiducial function, is from the normal mean inference problem with sample Xi ∼ N(µ, σ2), i =

1, . . . , n. The basic confidence distributions for µ are Φ(
√
n(µ− X̄)/σ) when σ is known and

Tn−1(
√
n(µ− x̄)/s) when σ is not known, and furthermore Φ(

√
n(µ−X̄)/s) is an asymptotic

confidence distribution when n → ∞. Here, X̄ and s2 are the sample mean and variance,

respectively, and Tn−1 stands for the cumulative distribution function of the t-distribution

with n− 1 degrees of freedom. In other words, N(X̄,σ2) is a “distribution estimator” of µ,

when σ2 is known. The distribution functions Tn−1(
√
n(µ − x̄)/s) or N(X̄, s2) can be used

to estimate µ, when σ2 is not known. Similarly, in the context under consideration in this

article, we can verify from Definition 2.1 that

Hi(t) = Φ

�
t− θ̂i
si

�
(4.3)

satisfies the requirements of being an asymptotic confidence distribution, thus we can use a

distribution estimator N(θ̂i, s2i ) to estimate θi, for i = 1, 2, . . . , K.

Since, for each given sample Xn, a confidence distribution Hn(·) is a cumulative distri-

bution function on the parameter space, we can construct a random variable ξ defined on

X ×Ξ such that, conditional on the sample data, ξ has the distribution H. For example, let

U be a Unif [0, 1] random variable independent of Xn, then ξ = H−1

n
(U) ∼ H(·), given Xn.

We call this random variable ξ a CD random variable (see, e.g., Singh et al. (2007); Xie and

Singh (2012)).
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Definition 2.2. We call ξ = ξH a CD random variable associated with a confidence distri-

bution H, if the conditional distribution of ξ given the data Xn is H.

A CD random variable has a close association with a bootstrap estimator. In our example

(4.3), a CD random variable ξi follows ξi|x̄ ∼ N(θ̂i, s2i ) and we have, asymptotically,

ξi − θ̂i
si

���� θ̂i ∼
θ̂i − θi
si

���� θ (both ∼ N(0, 1)). (4.4)

This statement is exactly the same as the key justification for bootstrap, with ξi in place of

the bootstrap sample mean θ̂∗
i
. Thus, a CD random variable ξ can essentially be viewed as

a model-based bootstrap estimator of θi. Indeed, Xie and Singh (2012) demonstrated under

a very general setting that a CD random variable ξ is in essence the same as a bootstrap

estimator or a simple linear transformation of a bootstrap estimator. This close connection

between the CD random variable and a bootstrap estimator may inspire a possible view of

treating the concept of confidence distribution as an extension of a bootstrap distribution,

albeit the concept of confidence distribution is much broader. The connection and the well-

developed theory of bootstrap distributions can help us to understand inference procedures

involving confidence distributions and develop new methodologies. In this article, we utilize

the CD random variable and develop a new simulation mechanism to broaden the applications

of the standard bootstrap procedures. Since a CD random variable is not limited solely to

use as a bootstrap estimator, this freedom allows us to utilize ξ more liberally, which in turn

allows us to develop more flexible statistical approaches and inference procedures.

4.3 Proposed Methodology

As illustrated in (4.3), from the ith study we have a confidence distribution (CD) function

Hi(t) = Φ((t− θ̂i)/si) that can be used to estimate θi, for i = 1, . . . , K. Denote by ξi the CD

random variable corresponding to Hi(t) = Φ((t− θ̂i)/si), i.e.,

ξi|θ̂i, s
2

i
∼ N(θ̂i, s

2

i
), for i = 1, . . . , K. (4.5)
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Given a particular realized set of {ξi, i = 1, . . . , K} from each of the K studies, we consider

the construction of a weighted average of ξi’s:

ξ∗ =
K�

i=1

wi,(m)ξi

� K�

i=1

wi,(m). (4.6)

We propose to make inference on θ(m) based on ξ∗. In particular, we can easily simulate

{ξi, i = 1, . . . , K} according to (4.5) and compute ξ∗ according to (4.6). If we repeat this a

large number of times, we can obtain a set of ξ∗’s, which represents a CD for the parameter

θ(m). Then, we can report the mean/median/mode of the ξ∗’s as a point estimate of θ(m),

and the empirical (α/2)100% and (1−α/2)100% quantiles of the ξ∗’s as the level (1−α)100%

confidence interval for θ(m).

The proposed procedure is very simple. Naturally, different choices of the weights wi,(m)

lead to different procedures, and each procedure’s resulting validity depends on the choice

of its weights. In particular, we consider in this paper the following potential choices of

weights:

Choice 1:

w[1]

i,(m)
= 1{θ̂i = θ̂(m)

}, (4.7)

where 1{·} is an indicator function and θ̂(m) is the mth smallest θ̂i.

Choice 2:

w[2]

i,(m)
= 1{ξi = ξ(m)

}, (4.8)

where ξ(m) is the mth smallest ξi.

Choice 3:

w[3]

i,(m)
= K

�
ξi − ξ(m), bL, bR

�
(4.9)

where K is a kernel function, and bL, bR represent the left-side and right-side kernel band-

widths. Without loss of generality, we henceforth assume a rectangular kernel, such that

K
�
ξi − ξ(m), bL, bR

�
= 1{−bL ≤ (ξi − ξ(m)) ≤ bR}. (4.10)
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Written this way, it is easy to see that w[2]

i,(m)
represents a special case of w[3]

i,(m)
in which

bL = bR ≡ 0.

Weights w[1]

i,(m)
and w[2]

i,(m)
both represent intuitively appealing ways of estimating and

making inference on θ(m). The use of w[1]

i,(m)
is equivalent to using the CD (and resulting

confidence interval) associated with the mth ordered θ̂. The use of w[2]

i,(m)
corresponds to the

use of the distribution of the mth ordered ξi, and is therefore equivalent to the conventional

bootstrap estimator of θ(m), as discussed in Hall and Miller (2010). Despite these intuitively

attractive qualities, we will show that both sets of weights may lead to undesirable prop-

erties, depending on the true nature of the data, while our third option is flexible enough

to appropriately handle a variety of scenarios while maintaining appropriate coverage levels,

and in many cases, offering narrower confidence intervals than those obtained by the other

weighting schemes. In the following section, we show that there is a very simple requirement

for any given weighting scheme that allows for the use of ξ∗ for asymptotically valid inference

for θ(m). Namely, wi,(m) must converge to a positive constant if θi belongs to the tie or near

tie set of θ(m), as defined below, and zero otherwise. We will show that this requirement is

not satisfied by w[1]

i,(m)
or w[2]

i,(m)
, but is satisfied by w[3]

i,(m)
when (bL, bR) = O(N−δ), δ ∈ (0, 1

2
).

4.4 Theoretical results

First, let us formally define the tie and near tie sets. The same definition has also been

utilized in Xie et al. (2009); Hall and Miller (2010). In particular, we denote by

Θ(m)

T
= {j : θj = θ(m), j = 1, . . . , K} (4.11)

the “tie set” of θ(m), representing the set of all θ’s which are equal to the parameter of

interest. We also denote by

Θ(m)

N
= {j : |θj − θ(m)

| = O(N−1/2), j = 1, . . . , K} (4.12)
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the “near tie” of θ(m). The interpretation of the “near tie” definition is that, based on

current sample size ni, a “near tie” parameter θi cannot be distinguished from the target

parameter θ(m). An equivalent expression is that, for any j ∈ Θ(m)

N
, (θ̂j− θ̂(m))−(θj−θ(m)) �=

op(|θj−θ(m)|), which means that the difference between θj and θ(m) is not of greater order than

the standard error of its estimator. Throughout the paper, we assume that both Θ(m)

T
and

Θ(m)

N
are completely unknown other than that they contain at least one member θ(m). Thus,

without loss of generality, we can assume the number of studies in the tie set |Θ(m)

T
| ≥ 1.

The “near tie” case is much broader than the tie case: Θ(m)

T
⊆ Θ(m)

N
. So, we also have the

number of studies in the near tie set |Θ(m)

N
| ≥ |Θ(m)

T
| ≥ 1.

We present next a set of theoretical results using the more general near tie setup. All

results remain valid if Θ(m)

N
is replaced by Θ(m)

T
.

4.4.1 Asymptotic theorem and properties of proposed weighing
schemes

The following set of asymptotic results suggest that ξ∗ may be used to make inference for

θ(m), if weights are chosen carefully. In the theorem, Ξ is the parameter space of θ(m).

Theorem 4.1. Suppose that we can prove that a set of weights possesses the following

property.

lim
n→∞

wi,(m) =

�
ci if i ∈ Θ(m)

N
,

0 if i �∈ Θ(m)

N
,

for i = 1, 2, . . . , K (4.13)

for some constants ci > 0. Then, as N → ∞, we have the following:

(i)

K�

i=1

wi,(m)θ̂i

� K�

i=1

wi,(m) = θ(m) + op(1) and
K�

i=1

w2

i,(m)
s2
i

�� K�

i=1

wi,(m)

�2

= {s(m)
}
2 + op(1),

(4.14)

where {s(m)}2 =
�

i∈Θ
(m)
N

c2
i
s2
i

���
i∈Θ

(m)
N

ci
�2

. Furthermore,
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ξ∗ −
�

K

i=1
wi,(m)θ̂i/

�
K

i=1
wi,(m)��

K

i=1
w2

i,(m)
s2
i
/{
�

K

i=1
wi,(m)}

2

����Θ̂ ∼

�
K

i=1
wi,(m)θ̂i/

�
K

i=1
wi,(m) − θ(m)

��
K

i=1
w2

i,(m)
s2
i
/{
�

K

i=1
wi,(m)}

2

����Θ, (4.15)

both converging asymptotically to a N(0, 1) distribution.

(ii) Denote by

H∗(t) = P (ξ∗ ≤ t|Θ̂), for any t ∈ Ξ. (4.16)

When t = θ(m), we have H∗(θ(m)) → Unif [0, 1], in distribution, and therefore H∗(θ) is an

aCD for θ(m).

A proof of the theorem is provided in Appendix.

The function H∗(t) is a cumulative distribution function on the parameter space Ξ and

it also depends on the sample observations Θ̂. Definition 2.1 suggests that, when our weight

choice satisfies the requirement (4.13), H∗(θ) = Pr(ξ∗ ≤ θ|Θ̂) is an aCD for θ(m). Based on

the development on CDs (see, e.g., Singh et al. (2007); Xie and Singh (2012)), it subsequently

ensures asymptotically valid inference, including point estimation, confidence intervals, p-

values, etc., regarding θ(m). Thus, in this case, we can rely on ξ∗ to provide valid inference

for θ(m) asymptotically.

The remaining question is whether any of the three sets of weight choices in Section 3

satisfy the requirement (4.13) and, if they do, under which conditions. Since the asymptotic

properties of each of the proposed weighted estimators depend on the true unknown values

of Θ, we start with the simplest setting of no ties and move on to the more complicated

settings of ties and near ties, including the particularly difficult case in which the presence

of such ties or near ties to θ(m) cannot easily be determined.

The ‘no tie’ case is the case in which |Θ(m)

N
| = |Θ(m)

T
| = 1. In particular, this refers to

the case that Θ(m)

N
and Θ(m)

T
have only one element, and the rest of θj, j �∈ Θ(m)

N
, satisfy the
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condition that

dmN
1/2

→ ∞, where dm = min
j �∈Θ

(m)
N

����θj − θ(m)

���� (4.17)

is the minimal distance between the θj’s in and outside the near tie set Θ(m)

N
. The

condition (4.17) is in fact weaker than and covers the conventional assumption of no

ties, in which θ1, θ2, . . . , θK are unknown but distinct constant parameters. In this case,

dm = minθj �=θ(m) |θj − θ(m)| ≥ co = mini �=j |θi− θj| which is a positive constant bounded away

from zero. There may or may not be ties among the remaining θj’s, but this is irrelevant to

the problem at hand in making inference for θ(m).

Lemma 1 below states that, under the above no tie condition, all the three choices of

weights listed in Section 3 satisfy the condition in (4.13). A proof is given in the Appendix.

Lemma 4.1 (Any Weight; No tie case). Suppose that |Θ(m)

N
| = |Θ(m)

T
| = 1 and also

Condition (4.17) holds. For s = 1, 2, we have

lim
N→∞

w[s]

i,(m)
=

�
1 if θi = θ(m),

0 if θi �= θ(m),
for i = 1, 2, . . . , K. (4.18)

Furthermore, if we use w[3]

i,(m)
with bL, bR ∝ τN , where τN/dm → 0, and τN

√
N → ∞, then

(4.18) also holds for w[3]

i,(m)
.

Accompanying Theorem 4.1, we can infer from the lemma that in the no tie case, we

can implement the proposed approach using any of the three weight to make asymptotically

valid inference for θ(m). In fact, since (4.18) holds for all s = 1, 2, 3, it is easy to verify,

following the proof of Theorem 4.1, that the inference based on these three different choices

of weights are asymptotically equivalent.

The problem in the tie or the near tie case is more complicated. In this case, the

weights w[1]

i,(m)
or w[2]

i,(m)
for i ∈ Θ(m)

T
or Θ(m)

N
converge to random quantities, rather than some

constants ci. We provide below a very simple example in a special case to illustrate the

phenomenon.
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Example 4.1 (Counterexample for w[1]

i,(m)
or w[2]

i,(m)
in a simple tie case).

Without loss of generality, consider a very simple example of a special case with K = 2 and

θ1 ≡ θ2. For m = 1, Θ(m)

T
= Θ(m)

N
= {1, 2} but w[1]

1,(m)
= 1−w[1]

2,(m)
= 1{θ̂1 = min(θ̂1, θ̂2)} is a

binary random variable that equals 1 with probability P{θ̂1 ≤ θ̂2} = 1− P{θ̂2 ≤ θ̂1} = 0.5.

Thus, both w[1]

1,(m)
and w[1]

2,(m)
are (dependent) Bernoulli random variables, each with p = 0.5,

therefore violating (4.13).

Similarly, for m = 1, w[2]

1,(m)
= 1 − w[2]

2,(m)
= 1{ξ1 = min(ξ1, ξ2)} is a binary random

variable that equals 1 with probability P{ξ1 ≤ ξ2} = E
�
P{ξ1 ≤ ξ2|Θ̂}

�
= E

�
Φ({θ̂2 −

θ̂1}
�
{s2

1
+ s2

2
}1/2)] = 0.5. Again, both w[2]

1,(m)
and w[2]

2,(m)
are (dependent) Bernoulli random

variables, each with p = 0.5, also violating (4.13).

In the case of more than two ties with either |Θ(m)

T
| > 2 or |Θ(m)

N
| > 2, the weights w[1]

i,(m)

or w[2]

i,(m)
for i ∈ Θ(m)

T
or Θ(m)

N
still converge to random quantities, rather than constants. The

patterns are similar to, but more complicated than, that discussed in the case of |Θ(m)

T
| = 2

in Example 4.1. Clearly, neither w[1]

i,(m)
nor w[2]

i,(m)
satisfies the requirement (4.13) in this case,

thus we can no longer ensure that the results from Theorem 4.1 are valid. Our simulation

results confirm that these two sets of weights perform poorly in situations with ties or near

ties. Poor performance of the standard bootstrap procedure, which corresponds to the use

of the second sets of weights w[2]

i,(m)
, was also reported by Hall and Miller (2010).

In contrast, if we use w[3]

i,(m)
with bL, bR ∝ τN , where τN/dm → 0 and τN

√
N → ∞,

then we can show that (4.13) is satisfied, provided that Condition (4.17) holds. In fact, the

requirement (4.13) is satisfied by w[3]

i,(m)
in any case, regardless of whether or not any ties

or near ties exist, and regardless of whether or not their existence can be determined from

the data . We summarize the result in the following lemma, together with the result for a

slightly modified w[3]

i,(m)
choice:

�w[3]

i,(m)
= w[3]

i,(m)

�
si. (4.19)

A proof can be found in the Appendix.
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Lemma 4.2 (Weight w[3]

i,(m)
; Any case). Suppose that Condition (4.17) holds and we use

w[3]

i,(m)
with bL, bR ∝ τN , where τN/dm → 0, and τN

√
N → ∞. For any 1 ≤ |Θ(m)

T
| ≤ |Θ(m)

N
| ≤

K, we have

lim
N→∞

w[3]

i,(m)
=

�
1 if i ∈ Θ(m)

N
,

0 if i �∈ Θ(m)

N
,

and lim
N→∞

�w[3]

i,(m)
=

�
1/si if i ∈ Θ(m)

N
,

0 if i �∈ Θ(m)

N
,

(4.20)

for i = 1, 2, . . . , K.

This lemma, together with Theorem 4.1, provides a theoretical support to use the

weighted sum of CD random variables ξ∗ to make inference for θ(m) in all cases, if either w[3]

i,(m)

or �w[3]

i,(m)
is used. From (4.20), only studies inside the tie and near tie set will be included for

making inference and the studies outside the tie set are filtered out, asymptotically. Thus,

making inference using the proposed method with w[3]

i,(m)
is asymptotically equivalent to us-

ing the average of the θ̂i in the tie set (if we were to know the true tie set). When si’s or

λi = ni/N ’s are heteroscedastic, the modified version �w[3]

i,(m)
could be used to improve the

efficiency and power of the inference. In any case, as long as there is a separation between

the studies not tied with θ(m) and those tied with θ(m) as quantified in Condition (4.17), our

proposal provides a class of approaches that can lead us to asymptotically correct inference.

Further details will be discussed in Section 4.2 on the tuning of the kernel widths. Note

that, Condition (4.17) is much weaker than those assumptions imposed in the conventional

fixed-effects and random effects models.

4.4.2 Tuning the bandwidth parameters

Let us first define the bandwidth parameters bL = τN · cL, bR = τN · cR, where τN = O(N−δ)

and cL, cR = O(1). Throughout, we will use τN = (σ)(s(m)/σ)1/2, where s(m) is the standard

error associated with θ̂(m) and σ is reasonable maximum value for the tuning parameter,

such as σ =
��

i s
2
i ∗ni

K
. This particular formulation of σ ensures that s(m)/σ ≈ n−1/2

(m)
, and

that (s(m)/σ)1/2 > (s(m)/σ). Note that σ = O(1), s(m) = O(N−1/2), and so δ = 1/4.
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While we can guarantee that w[3]

i,(m)
will provide appropriate asymptotic inference re-

gardless of the selection of tuning parameters (cL, cR), it is important in practice to be able

to select an appropriate value for the tuning parameters (cL, cR) to ensure good finite sample

performance. We note that for sufficiently large values of (cL, cR), our inference will mimic

a fixed-effects analysis, which is only reasonable under the assumption that |Θ(m)

T
| = K. On

the other hand, when these bandwidth values are equal to 0, our weights are identical to

w[2]

i,(m)
, which we have shown to be asymptotically valid only when |Θ(m)

T
| = 1. Thus the

tuning bandwidth values should be relatively large when ties are present and relatively small

when no ties are present. Generally, we refer to θ̂j : {θ̂j < θ̂(m), θj = θ(m)} as “left side ties”

and θ̂j : {θ̂j > θ̂(m), θj = θ(m)} as “right side ties”. To this end, we attempt to detect the

presence or absence of left side ties and/or right side ties by observing the behavior of the

realized values of the CD random variables ξ.

In general, we will simulate some large number, R, of samples of our CD random variables

{ξ}, and we may denote the rth sampled value corresponding to θ̂(i) as ξi,r, the rth collection

of sampled values as {ξr} = {ξi,r, i = 1, . . . , K}, and ξ(m)

r as the mth smallest value of the

sampled vector {ξr}.

We then define the following terms for the purposes of determining the presence or

absence of tied θ values.

Let π̂i =
�R

r=1 1{ξ
(m)
r =ξi,r}

R
, and R̂i = 1{π̂i > 0.001}. Then T̂ =

�
i
R̂i, T̂L =

�
i<m

R̂i,

T̂R =
�

i>m
R̂i, π̂L =

�
i<m

π̂i, and π̂R =
�

i>m
π̂i. Noting that

�
i
π̂ = 1, and that

T̂ = (T̂L = T̂R + 1) gives an estimate of the maximum size of the tie set |Θ(m)

T
|, both π̂L and

T̂L/T̂ are values between 0 and 1 which provide information about the presence of ties on

the left side of θ̂(m). The geometric mean of these two values c∗
L
=

�
π̂L · T̂L/T̂ then provides

a reasonable summary of the evidence regarding the existence and influence of left side ties,

and similarly c∗
R
=

�
π̂R · T̂R/T̂ on the right.

Empirically, in small sample settings where it is quite difficult to determine whether or
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not there are ties, we find that (c∗
R
, c∗

L
) may under-smooth the data when |Θ(m)

T
| is quite large

relative to K, and conversely, may over-smooth the data when |Θ(m)

T
| = 1. In order to reflect

the true uncertainty as to the size of the tie set, we propose to induce additional randomness

into the smoothing procedure by utilizing cR = u · c∗
R
, cL = u · c∗

L
, where u ∼ Unif( 1

7T̂K
, 7T̂
K
).

Because 1 ≤ T̂ ≤ K, we see that 1

7K2 ≤ u ≤ 7, and therefore, 1

7K2 ≤ cL ≤ 7, 1

7K2 ≤ cR ≤ 7

and so u does not influence the convergence rate of the bandwidth parameters bR, bL, and

only serves to induce additional variability into the resulting weighted averages ξ∗.

Thus the algorithm for obtaining the CD used to estimate θ(m) is as follows:

1. Calculate τN using observed (θ̂, ŝ2, n) data.

2. Generate {ξi,r, r = 1, . . . , R} for each study from N(θ̂(i), ŝ2(i))

3. For each vector {ξr}, determine which study i is associated with ξ(m)

r .

4. Use these counts to calculate π̂i for each study, and functions thereof (R̂i,

T̂ , T̂L, T̂R, π̂L, π̂R, c∗L, c
∗

R
).

5. For each r in 1, . . . , R

(a) Generate ur from Unif( 1

7T̂K
, 7T̂
K
)

(b) ξ∗
r
=

�
i ξi,r1{−urτN c

∗
L≤(ξi,r−ξ

(m)
r )≤urτN c

∗
R}

�
i 1{−urτN c

∗
L≤(ξi,r−ξ

(m)
r )≤urτN c

∗
R}

6. The CD for θ(m) is approximated by the empirical distribution Ĥξ∗(θ), and a (1 −

α)100% confidence interval can be estimated by (ξ∗
R(α/2)

, ξ∗
R(1−α/2)

).

4.5 Simulations

In order to demonstrate both small and large sample properties of our proposed esti-

mator under different scenarios, we generate random data Xij ∼ N(θi, 1), with θi, i ∈

{1, 2, . . . , K}, 1 ≤ j ≤ ni, taking different values according to the particular scenario:
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1. Ties: θi = 0 ∀i

2. Uniform: θi =
i

K+1

3. Normal: θi = Φ−1( i

K+1
)

For each scenario, we consider K = 7 or K = 21, and we let the sample size from each

study ni = 40, 400, or 4000. Using 500 simulated data sets for each setting, we show the

coverage and median width of the nominal 95% confidence interval.

We consider each of the three methods proposed in Section 2. The results are shown

below. Because each set of {Θ} is symmetric, we need not show results for each ordered θi.

In particular, the coverage and median interval width for any θ(k) will be identical to that

for θ(K+1−k).

For our proposed method using kernel smoothing, the results shown use the tuning

procedure described in the previous section with R=1000 random samples drawn from each

study’s confidence distribution. Simulation results are shown below.

We first note that Method 1 will always return confidence intervals of equal or greater

width than those returned by Method 2. Correspondingly, we find many settings in which the

coverage of Method 2 is far below the nominal level (e.g. the Ties setting, the Uniform setting

with ni = 40). In almost all of these settings (except for m = 1, 2 in the Ties case), Method

1 will provide appropriate, but conservative, confidence intervals. Our proposed Method

3, on the other hand, is shown to have appropriate coverage levels in all settings, as well

as noticeably narrower confidence interval widths relative to Method 1 in nearly all cases.

Relative to the bootstrap estimator (Method 2), the intervals from our proposed method

are narrower, in the fixed-effects setting, for the few cases in which the bootstrap estimator

provides appropriate coverage, and the interval widths are similar (and asymptotically equal)

to those from Method 2 in the uniform and normal settings.
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4.6 Example

To illustrate our proposed methodology, we use the data from 14 studies which assessed

the effect of an anti-oxidant (acetylcysteine) in preventing contrast-induced nephropathy,

a leading cause of acquired acute reduction in kidney function (Bagshaw and Ghali, 2004).

The outcome of interest in each study was incidence of contrast-induced nephropathy, and so

the parameter of interest was the odds ratio for the association between anti-oxidant usage

and incidence of nephropathy. The summary data for each study is shown below.

Table 4.3: Summary results of 14 studies of acetylcysteine for prevention of contrast-induced
nephropathy

Study N OR CI
Allaqaband 85 1.23 (0.39, 3.89)
Baker 80 0.20 (0.04, 1.00)
Briguori 183 0.57 (0.20, 1.63)
Diaz-Sandova 54 0.11 (0.02, 0.54)
Durham 79 1.27 (0.45, 3.57)
Efrati 49 0.19 (0.01, 4.21)
Fung 91 1.37 (0.43, 4.32)
Goldenberg 80 1.30 (0.27, 6.21)
Kay 200 0.29 (0.09, 0.94)
Kefer 104 0.63 (0.10, 3.92)
MacNeill 43 0.11 (0.01, 0.97)
Oldemeyer 96 1.30 (0.28, 6.16)
Shyu 121 0.11 (0.02, 0.49)
Vallero 100 1.14 (0.27, 4.83)

A fixed effects analysis of this data results in a 95% confidence interval of (0.41, 0.87)

for the (assumed) common odds ratio. However, significant heterogeneity was found in the

study-level treatment effects (p=0.032). A random effects analysis, assuming that the logs of

the study-level odds ratios are normally distributed, results in a somewhat wider confidence

interval (0.32, 0.91). Below we show the resulting 95% confidence intervals for each of the 14

ordered study-level treatment effects. The three columns of confidence intervals correspond

to the weighting methods discussed in this article, with the third column representing our
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proposed procedure, which we have shown in simulations to have appropriate coverage,

regardless of whether any or all of the true treatment effects are equal across studies. Even

though we have some evidence to reject the fixed effects assumption, in this example it is

particularly difficult, due to small sample sizes, to assess with any certainty whether or not

any subsets of the study parameters are equal to one another, or whether the assumption

of normal distribution for the log-odds-ratios is appropriate. We note that, in general, the

intervals provided by Method 1 are essentially a re-ordering of the original study intervals,

and thus do not provide substantially new information in terms of summarizing the treatment

effects. The bootstrap intervals corresponding to Method 2, are noticeably narrower in some

cases; however, it is concerning that the interval for θ(14), (1.44, 9.56), excludes even the

maximum estimated treatment effect (estimated odds ratio = 1.37 from the Fung study).

Using our proposed weights (Method 3), we estimate that six of the fourteen studies exhibited

significant treatment effects, while the remaining eight studies were found to be neutral.

The confidence intervals for the 7th and 8th ordered treatment effects are (0.28, 1.01) and

(0.30, 1.07), respectively. Using the conventional method of averaging the (K/2)th and

(K/2+1)th ordered observations to estimate the median when K is an even number, we obtain

a confidence interval of (0.29, 1.04) for the “median” treatment effect across these studies.

This interval is wider than the previously reported random effects analysis, though our

inference is free of any distributional assumptions regarding the true values of the study-level

treatment effects. Furthermore, if the true distribution of the parameters is not symmetric on

the log scale, then our estimate of the median treatment effect will not necessarily be directly

comparable to the random effects analysis, which estimates the mean of the random-effects

distribution.

In Figure 1, we present the 95% confidence intervals for each ordered element of {Θ},

with point estimates given by the mean of the associated confidence distribution. For com-

parison, the confidence intervals for the fixed-effects and random-effects meta-analysis are

denoted by the vertical solid and dashed lines, respectively. Our estimates for θ(7) and θ(8)

are highlighted for comparison.
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Table 4.4: 95% Confidence Intervals for ordered study-level treatment effects using nephropa-
thy data

OS CI (Method 1) CI (Method 2) CI (Method 3)
1 (0.02, 0.48) (0.01, 0.13) (0.01, 0.65)
2 (0.02, 0.51) (0.03, 0.20) (0.04, 0.71)
3 (0.01, 0.94) (0.05, 0.28) (0.08, 0.71)
4 (0.01, 4.64) (0.07, 0.40) (0.14, 0.74)
5 (0.04, 1.04) (0.12, 0.54) (0.18, 0.80)
6 (0.09, 0.94) (0.17, 0.70) (0.23, 0.88)
7 (0.19, 1.67) (0.25, 0.91) (0.28, 1.01)
8 (0.10, 3.85) (0.33, 1.16) (0.30, 1.07)
9 (0.27, 4.93) (0.45, 1.46) (0.31, 1.25)
10 (0.39, 3.94) (0.56, 1.79) (0.32, 1.44)
11 (0.45, 3.49) (0.70, 2.27) (0.31, 1.61)
12 (0.26, 6.06) (0.87, 2.99) (0.30, 1.87)
13 (0.28, 6.14) (1.09, 4.38) (0.30, 2.31)
14 (0.44, 4.26) (1.44, 9.56) (0.32, 4.07)

4.6.1 ECDF

While our proposed procedure was motivated by a desire to avoid making any assump-

tions about the existence or nature of the distribution of our quantity of interest {Θ}, we

note that a plot such as that given in Figure 1 may resemble an empirical CDF for the

“true” distribution F (Θ). As sample size increases, the confidence distribution estimates for

each θ(m) converge to the true values (θ(1), θ(2), ..., θ(K)). If it can further be assumed that

(θ(1), θ(2), ..., θ(K)) are a random sample from some overall distribution F (Θ), then it can be

seen that θ̃(q) = θ(�qK�+1) will converge, as K grows large, to F−1

Θ
(q).

4.7 Discussion

In this paper, we introduce a unified framework which simultaneously addresses two impor-

tant problems. By introducing a procedure for making inference on any ordered value of
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Figure 4.1: Confidence distribution estimates of treatment effects from 14 studies of acetyl-
cysteine on nephropathy: Vertical and solid (dashed) lines represent 95% CI from fixed-effects
(random-effects) meta-analysis

a set of parameters, we may provide a summary of the treatment effects observed over a

collection of studies without having to rely on any assumptions about the nature of or rela-

tionship between those treatment effects, thus enabling a non-parametric, model-free form

of meta-analysis. While the resulting confidence interval from such a procedure will likely be

wider than those provided by methods with more restrictive assumptions, the general appli-

cability of our new method is appealing and may serve as a good point of comparison, just

as many analysts now present results corresponding to both fixed-effects and random-effects

meta-analysis models. Alternatively, our procedure also allows us to make inference on the

extreme values of a set of parameters, a well-established problem that has proven to be in-

tractable with respect to many statistical approaches. By taking advantage of the flexibility

afforded by confidence distributions as functional estimators, as well as a tuning technique

that accounts for the unknown presence or absence of ties and near-ties in small-sample
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settings, we are now able to provide valid inference in a wide variety of settings.

4.8 Appendix

Proof of Theorem 4.1. (i) The first two results follow immediately from (4.13) and the

fact that |θ̂i − θ(m)| ≤ |θ̂i − θi| + |θi − θ(m)| = Op(N−1/2) for any θi ∈ ΘN . We only need to

prove (4.15).

Note that, θ̂i ∼ (θi, s2i ), for any i, it follows that

�
i∈ΘN

ciθ̂i
��

i∈ΘN
ci −

�
i∈ΘN

ciθi
��

i∈ΘN
ci��

i∈ΘN
c2
i
s2
i

�
{
�

i∈ΘN
ci}2

∼ N(0, 1). (4.21)

Again, from (4.13) and the fact that |θi − θ(m)| = O(N−1/2) for any θi ∈ ΘN , we have
�

K

i=1
wi,(m)θ̂i =

�
i∈ΘN

ciθ̂i + op(1),
�

K

i=1
w2

i,(m)
s2
i
=

�
i∈ΘN

c2
i
s2
i
+ op(1),

�
K

i=1
wi,(m) =

�
i∈ΘN

ci + op(1) and
�

i∈ΘN
ciθi = {

�
i∈ΘN

ci} θ(m) +O(N−1/2). Thus, we have

�
K

i=1
wi,(m)θ̂i

��
K

i=1
wi,(m) − θ(m)

��
K

i=1
w2

i,(m)
s2
i

�
{
�

K

i=1
wi,(m)}

2

→ N(0, 1), as N → ∞ (4.22)

On the other hand, since ξ∗ =
�

K

i=1
wi,(m)ξi/

�
K

i=1
wi,(m) and ξi are CD random variables

from N(θ̂i, s2i ), we have

ξ∗ −
�

K

i=1
wi,(m)θ̂i

��
K

i=1
wi,(m)��

K

i=1
w2

i,(m)
s2
i

�
{
�

K

i=1
wi,(m)}

2

����Θ̂ ∼ N(0, 1). (4.23)

It follows immediately the third result of (i).

(ii) Based on (4.22) and (4.23) and the definition of H∗(t), we have, for any 0 < s < 1
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and as N → ∞,

P
�
H∗(θ

(m)) ≤ s
�

= P




P



 ξ∗ −
�

K
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��
K
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wi,(m)��
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i,(m)
s2
i

�
{
�
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2

≤
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�
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i

�
{
�
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i=1
wi,(m)}

2

����Θ̂



 ≤ s






= P





θ(m) −

�
K

i=1
wi,(m)θ̂i

��
K

i=1
wi,(m)��

K

i=1
w2

i,(m)
s2
i

�
{
�

K

i=1
wi,(m)}

2

≤ Φ−1(s)




 → Φ(Φ−1(s)) = s. (4.24)

Thus, H∗(θ(m)) → Unif [0, 1], as N → ∞. The conclusion of (ii) follows.

Proof of Lemma 4.1 Recall that the condition described in (4.13) is as follows:

lim
n→∞

wi,(m) =

�
ci if ı ∈ Θ(m)

T
,

0 if ı �∈ Θ(m)

T
,

for i = 1, 2, . . . , K .

Without loss of generality, let θ1 < θ2 < . . . < θK . Also let θ̂j ∼ N(θj, σ2

j
/nj) for each j

and define θ̂(j) : θ̂(1) ≤ θ̂(2) ≤ ... ≤ θ̂(K). Furthermore, suppose we are interested in θm.

Recall w[1]

m,(m)
= 1{θ̂m = θ̂(m)} is a binary random variable that equals 1 with probability

P{θ̂i = θ̂(m)}.

P{θ̂m = θ̂(m)
} <

�

i<m

[P{θ̂i < θ̂m}]
�

j>m

[P{θ̂j > θ̂m}]
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�
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ni
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nj

)] dc (4.25)

<

�
θm+1−�

θm−1+�

�

i<m

[Φ(
c− θi
σi/

√
ni

)]φ(
c− θm

σm/
√
nm

)
�

j>m

[Φ(
θj − c

σj/
√
nj

)] dc

→

�
θm+1−�

θm−1+�

φ(
c− θm

σm/
√
nm

) dc → 1

Thus w[1]

m,(m)
converges in probability to 1.
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Because we have that w[1]

m,(m)
→ 1 and

�
i
w[1]

i,(m)
= 1, then w[1]

i,(m)
→ 0∀i �= m, thus

satisfying (4.13).

Noting that θ̂j ∼ N(θj, σ2

j
/nj) and, unconditionally, ξj ∼ N(θj, 2σ2

j
/nj), we can replace

each σ2

j
with 2σ2

j
in the proof above, and the result remains unchanged.

Recall that w[3]

i,(m)
= 1{−bL ≤ (ξi − ξ(m)) ≤ bR}, where (bL, bR) ∝ τN , τN = O(N−δ), δ ∈

(0, 1
2
). For i = m, we use the argument above that P{ξm = ξ(m)} → 1, and so K

�
ξi−ξ

(m)

τN

�
→

K

�
0

τN

�
= 1. For i �= m, (ξi − ξ(m)) converges in probability to Di = θi − θm. For i < m,

Di/τN → −∞, and thus K

�
ξi−ξ

(m)

τN

�
→ 0. Similarly, for i > m, Di/τN → +∞, and thus

K

�
ξi−ξ

(m)

τN

�
→ 0. Thus, we have satisfied (4.13).

Proof of Lemma 4.2. Recall that w[3]

i,(m)
= 1{−bL ≤ (ξi − ξ(m)) ≤ bR}, where

(bL, bR) ∝ τN , and τN = O(N−δ), with 0 < δ < 1/2. Let us denote cL = bL/τN , cR = bR/τN ,

so that cL, cR = O(1).

Now w[3]

i,(m)
= 1{−bL ≤ (ξi − ξ(m)) ≤ bR} = 1{−cL ≤

(ξi−ξ
(m)

)

τN
≤ cR}. Note that in

general, ξi = θ̂i + �̃n, and θ̂i = θi + �n, where both �̃n and �n = O(N−1/2). Substituting, we

have that (ξi − ξ(m)) = θi − θ(m) + �̃in − �̃(m)

n + �in − �(m)

n = θi − θ(m) +O(N−1/2).

Thus, when i ∈ Θ(m)

T
, θi = θ(m), then (ξi − ξ(m)) = O(N−1/2), (ξi−ξ

(m)
)

τN
= O(N−1/2+δ) =

o(1) ⇒ (ξi−ξ
(m)

)

τN
→ 0 as N → ∞, and so w[3]

i,(m)
→ 1 as N → ∞.

First, we address the conventional case where θi are constant in N.

When i �∈ Θ(m)

T
, θi �= θ(m), then (ξi − ξ(m)) = θi − θ(m) + O(N−1/2) = O(1), (ξi−ξ

(m)
)

τN
=

O(N δ) ⇒ (ξi−ξ
(m)

)

τN
→ ∞ as N → ∞, and so w[3]

i,(m)
→ 0 as N → ∞.
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Now, if we instead have that dm = min
j �∈Θ

(m)
T

|θj−θ(m)| is O(N−δ
∗
), for any δ∗ ∈ (0, 1/2),

our only requirement is that the convergence rate for τN , δ must be restricted to (δ∗, 1/2).

In this case, when i �∈ Θ(m)

T
, θi �= θ(m), then (ξi − ξ(m)) = O(N−δ

∗
), (ξi−ξ

(m)
)

τN
=

O(N δ−δ
∗
) ⇒ (ξi−ξ

(m)
)

τN
→ ∞ as N → ∞, and so w[3]

i,(m)
→ 0 as N → ∞.
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