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Professor Donald B. Rubin Bronwyn Wing Ling Loong

Topics and Applications in Synthetic Data

Abstract

Releasing synthetic data in place of observed values is a method of statistical

disclosure control for the public dissemination of survey data collected by national

statistical agencies. The overall goal is to limit the risk of disclosure of survey re-

spondents’ identities or sensitive attributes, but simultaneously retain enough detail

in the synthetic data to preserve the inferential conclusions drawn on the target pop-

ulation, in potential future legitimate statistical analyses. This thesis presents three

new research contributions in the analysis and application of synthetic data. Firstly,

to understand differences in types of input between the imputer, typically an agency,

and the analyst, we present a definition of congeniality in the context of multiple

imputation for synthetic data. Our definition is motivated by common examples of

uncongeniality, specifically ignorance of the original survey design in analysis of fully

synthetic data, and situations when the imputation model and analysis procedure

condition upon different sets of records. We conclude that our definition provides

a framework to assist the imputer to identify the source of a discrepancy between

observed and synthetic data analytic results. Motivated by our definition, we derive

an alternative approach to synthetic data inference, to recover the observed data set

sampling distribution of sufficient statistics given the synthetic data. Secondly, we

address the problem of negative method-of-moments variance estimates given fully

synthetic data, which may be produced with the current inferential methods. We ap-
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Abstract iv

ply the adjustment for density maximization (ADM) method to variance estimation,

and demonstrate using ADM as an alternative approach to produce positive variance

estimates. Thirdly, we present a new application of synthetic data techniques to con-

fidentialize survey data from a large-scale healthcare study. To date, application of

synthetic data techniques to healthcare survey data is rare. We discuss identification

of variables for synthesis, specification of imputation models, and working measures

of disclosure risk assessment. Following comparison of observed and synthetic data

analytic results based on published studies, we conclude that use of synthetic data

for our healthcare survey is best suited for exploratory data analytic purposes.
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Chapter 1

Introduction

There is increasing demand from external researchers for access to individual

record data (microdata) collected by national statistical agencies. In turn, the sta-

tistical agencies face a dilemma in the dissemination of microdata. On one hand, the

privacy of survey respondents, and confidentiality of data collected1 must be protected

on legal and ethical grounds. On the other hand, there is a need to release enough

detail in the microdata to preserve and maintain the validity of inference on the target

population (as if given access to the original data set), from any potential statistical

analysis, from any potential external analyst. To satisfy these dual objectives, one

category of methods is to restrict access to the data to authorized individuals for

approved analyses. A second category of methods is to alter the data before release,

typically carried out by a statistical disclosure control (SDC) technique. Releasing

1In this thesis we adopt the definitions of privacy and confidentiality as used in Gates (2011),
p. 3. ‘Information privacy’ is defined as the individual’s desire (claim) to control the terms under
which information about him/her is acquired, used or disclosed. ‘Confidentiality’ is closely related
to privacy and refers to the agreement reached with the individual/business, when the information
was collected, about who can see the identifiable information. Changes to this agreement can be
made only with the explicit consent of the individual.
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synthetic data is one such SDC method whereby observed data set values are replaced

by synthetic data values generated to be representative of the same target population

as the observed data set.

Traditional disclosure techniques (also referred to as masking techniques) include,

but are not limited to, rounding, swapping or deleting values, and adding random

noise (Little 1993). These methods are easy to implement and are widely used.

However, a major drawback of traditional SDC methods is the potential distortion of

the relationships among variables, such that results from standard likelihood methods

are compromised. For example, treating rounded data as exact values will lead to an

understatement of the posterior variance of the parameters (Sheppard 1898, Dempster

and Rubin 1983). To analyze the masked data properly, users should apply the

likelihood-based methods detailed in Little (1993), or the measurement error models

described by Fuller (1993). These methods may be difficult to apply, especially for

non-standard estimands, and may require analysts to learn new statistical methods

and use specialized software packages.

Using synthetic data to replace observed values before public release was first

proposed by Rubin (1993) based on the theory of multiple imputation (Rubin 1987).

Synthetic data sets are created using samples drawn from the posterior predictive dis-

tribution of target population responses given the observed data set. Using an accept-

able imputation model that captures correctly relationships among survey variables,

and estimation methods based on the concepts of multiple imputation, analysts can

make valid inferences on the target population of interest using standard likelihood

methods, without accessing the original microdata. If all observed values are replaced
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and no true values are released, this is known in the literature as fully synthetic data.

A partially synthetic data set consists of a mix of multiply imputed and true values.

Some basic inferential methods for fully synthetic data were derived in Raghu-

nathan, Reiter and Rubin (2003). Simulated and empirical data examples of fully

synthetic data can be found in Reiter (2002), Raghunathan, Reiter and Rubin (2003)

and Reiter (2005a). Since then, the basic fully synthetic data framework has been

adapted to meet other disclosure control criteria. Some key developments requiring

new inferential methods include inference for partially synthetic data (Reiter 2003),

releasing multiply imputed synthetic data in two stages, which enables agencies to

release different numbers of imputations for different variables (Reiter and Drechsler

2010), and sampling with synthesis, which combines the disclosure control benefits

of partially synthetic data and random sampling, so that intruders are no longer

guaranteed that their targets are in the released data (Drechsler and Reiter 2010).

Other methodological developments in the synthetic data literature have focused on

non-parametric approaches to synthetic data imputation, to reduce the reliance on

the imputation model, in particular, using classification and regression trees (CART)

(Reiter 2005b), and random forests (Caiola and Reiter 2010). There is also continuing

research on measures for the assessment of disclosure risk and data utility of synthetic

data. Statistical modeling approaches for assessment of identification risk have been

proposed by a number of authors (e.g., Paass 1988, Duncan and Lambert 1989, and

Fuller 1993) with extensions in subsequent papers (e.g., Fienberg et al. 1997, Reiter

2005c, Skinner and Shlomo 2008, and Reiter and Mitra 2009). Data utility measures

attempt to characterize the quality of what can be learned about the target popu-
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lation using the synthetic data, to what can be learned using the observed data set.

Such comparisons can be tailored to specific estimands (Karr et al. 2006), or can be

broadened to global differences in distributions (Woo et al. 2009).

Several US statistical agencies have been or are active in releasing or develop-

ing partially synthetic public data sets. Among these are the Survey of Consumer

Finances (Kennickell 1997), the Longitudinal Employer Household Dynamics pro-

gram (Abowd and Woodcock 2004), the Survey of Income and Program Participation

(Abowd, Stinson and Benedetto 2006), the Longitudinal Business Database (Kinney

and Reiter 2007), and the American Community Survey group quarters data (Hawala

2008). The German Institute for Employment Research (IAB) has also done exten-

sive research to release a synthetic version of the IAB Establishment Panel, a business

database on German firms’ personnel structure, development and policy (Drechsler

et al. 2008).

This thesis presents three new contributions to research in using synthetic data

for statistical disclosure control.
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1.1 Uncongeniality for synthetic data sets and re-

covery of the observed data set sampling dis-

tribution of sufficient statistics

In the context of multiple imputation for missing data, Meng (1994) coined the

term ‘uncongeniality’ of the analysis procedure to the imputation model.

“Uncongeniality essentially means that the analysis procedure does not correspond

to the imputation model. The uncongeniality arises when the analyst and the im-

puter have access to different amounts of information and have different assessments.”

(Meng 1994, p. 539).

Imputation input includes model assumptions, purpose of imputation, available

information and data from the collection phase, as well as any other potentially useful

resources (e.g., past similar surveys). Analysis input consists of the analyst’s purpose

of investigation, data made available for analysis, information on the imputation

models if available, computational skills and so on.

During the imputation, resampling, and analysis of synthetic data sets, the po-

tential for uncongeniality always exists because the imputer and analyst are separate

bodies. Some examples of discrepancies between the types of information and as-

sumptions used by imputers and analysts in a synthetic data setting include:

• Ignoring the original survey design when resampling and analyzing the synthetic

data sets. For example, the original survey design may be stratified by income

band, but resampling and analysis are carried out by simple random sample
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methods ignoring the stratification. This may be the case if survey design

variables are completely confidential and cannot be released to analysts.

• Deriving the imputation model from the entire observed data set when the

analysis procedure utilizes a subset of records. The general imputation model

may not capture some of the subset relationships of importance to analysts.

For example, suppose an original sample of n = 500, 000 units is drawn from

the population of US adult males. The imputation models are conditional on

the entire observed data set of n = 500, 000 units, but the analyst only wants

to study the 155,000 observed units sampled from the US southern states.

• Not using variables or structures of variables of interest to analysts in the im-

putation models. For example, the imputation model is conditional on income

bands of size $100,000. However, the analyst is interested to use income bands

of size $25,000.

Uncongeniality may lead to large discrepancies between inferential results from

the observed data set and synthetic data. We cannot directly apply the congeniality

definition in Meng (1994) to characterize any discrepancies, because the observed

data set is not available to analysts in a synthetic data setting. Chapter 3 presents

a definition of congeniality for multiple imputation of synthetic data. Uncongeniality

is a very challenging theoretical topic, and so limited analytic results are available

to justify the definition. Instead, we emphasize the practical use of the congeniality

definition to explain discrepancies between analytic results from the observed data

set and synthetic data, in two case studies used as motivating examples.
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The discussion of uncongeniality is motivation for the development of new infer-

ential methods to recover observed-data sufficient statistics given the synthetic data.

This is the focus of Chapter 4 where we present alternative analysis equations and

assess their performance. If the analyst cannot have access to the observed data set,

the next best thing is to try to infer the observed-data sufficient statistics.

1.2 Application of adjustment for density maxi-

mization to sampling variance estimation in

fully synthetic data inference

The second contribution provides an alternative approach to variance estimation

for fully synthetic data to improve on a deficiency in the current inferential methods.

A disadvantage of the method-of-moments variance estimate derived in Raghunathan,

Reiter and Rubin (2003) is that it may be negative. Reiter (2002) and Reiter and

Drechsler (2010) use slightly modified, more conservative estimates when negative

variance estimates are calculated. Negative variance estimates may also be generally

avoided by choosing a large synthetic sample size, or large number of imputations

(Reiter 2002). The adjustment for density maximization (ADM) procedure, as first

proposed by Morris (1988), provides an alternative approach to the variance estima-

tion problem. ADM was originally proposed to produce shrinkage factor estimates in

normal hierarchical models that lie inside the boundaries of the interval [0,1], which

is not guaranteed by standard maximum likelihood methods. This procedure implies

positive variance estimates. In Chapter 5 of this thesis, we investigate by simulation
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and empirical data study, using ADM to produce positive variance estimates with

fully synthetic data.

1.3 Partially synthetic data for a large-scale health-

care study

In chapter 6 of this thesis, we demonstrate creating partially synthetic data for

the Cancer Care Outcomes Research and Surveillance (CanCORS) Consortium. Can-

CORS is a multisite, multimode, multiwave study of the quality and patterns of care

delivered to population-based and healthcare-system-based cohorts of newly diag-

nosed patients with lung and colorectal cancer. The Consortium is committed to

sharing the data gathered to the widest possible audience to facilitate research by ex-

ternal analysts in healthcare, without comprising the confidentiality of respondents’

identities and/or sensitive attributes. Compared to previous applications using so-

cioeconomic data, the structure and potential analytic use of healthcare data are

different. Hence, this applied contribution presents new challenges and innovations

in using synthetic data for statistical disclosure control, for example imputing variable

relationships that are clinically feasible. We review the methods for the creation and

analysis of partially synthetic data, and some current measures for data utility and

disclosure risk assessment. We discuss our approach to identification of variables to

synthesize, and specification of the imputation models, followed by quantification of

the data utility and disclosure risk of the synthetic data we generate.
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1.4 Data set used in practical illustrations

To illustrate the new methods presented in this thesis, we synthesize data from the

Joint Canada/United States Survey of Health (JCUSH), jointly produced by Statistics

Canada and the United States National Center for Health Statistics. This data set

contains data collected from November 4, 2002 to March 31, 2003. The public-use

file was released in June 2004 after application of traditional statistical disclosure

controls, including variable grouping and capping, and data suppression. Survey

variables collected cover chronic health conditions, functional status, determinants

of health, and healthcare utilization. The principal objectives of the study were to

foster collaboration between the two national statistical offices, and to produce a

single data source for comparability studies between the two health systems. The

sample size consisted of ≈ 3, 500 respondents in Canada, and ≈ 5, 000 respondents

in the United States. The sample was stratified by province in Canada (five strata),

and by four geographic regions in the United States (northeast, midwest, west and

south). The survey was administered by telephone using the random digit dialing

sample selection method. The primary sampling unit was one adult aged 18 years or

older per household from persons living in private occupied dwellings. The primary

reasons for choosing this data set for empirical study of the new analysis methods in

Chapters 4 and 5 are:

1. A healthcare data set has not been previously used for illustration purposes in

the synthetic data literature. Previous data sets utilized have generally been

surveys with a demographic or economic focus.
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2. The original nine-stratum sampling mechanism provides a great data source to

investigate different levels of design information to be included in the synthetic

data.

For illustration purposes, we treated the publicly available data set as the popu-

lation, and created observed and synthetic samples with 30% of the population units.

Central to Chapters 3-5 is an understanding of the creation and analysis of fully

synthetic data sets. This material is reviewed next in Chapter 2.



Chapter 2

Multiple Imputation for Synthetic

Data

Here we review the creation and analysis of fully synthetic data from the original

paper by Raghunathan, Reiter and Rubin (2003).

2.1 Creation of synthetic data

Consider the following hypothetical example. Suppose a government statistical

agency collects detailed information on expenditure, income and household character-

istics, of a sample of n = 10, 000 households resident in private dwellings throughout

a legal district. The size of the target population is N = 500, 000. The original sam-

pling mechanism (denoted I0) is stratified by a geographical unit indicator (such as

township), and is known for all units in the population, and this variable (and other

background variables known for all N units prior to data collection) form the matrix
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X. There are p survey variables (unknown prior to data collection) of interest includ-

ing weekly expenditure on a defined list of goods and services, current weekly income,

employment status, and socio-demographic information, which form the (N × p) ma-

trix Y . Let Y0 be the (n × p) matrix representing the portion of Y corresponding

to sampled or included units. Let Yexc be the ((N − n)× p) matrix representing the

portion of Y corresponding to excluded units. Define Z0 = {X, Y0} to be the known

and observed microdata available to the agency which includes original survey design

variables.

The statistical agency wishes to release the survey data collected to meet the

demand for public access, and to facilitate research by external analysts. However,

for confidentiality reasons, the data set Z0 cannot be released. To minimize disclosure

risk, the agency chooses to synthesize all survey variables. The task is to create

m > 1 synthetic data sets (denoted by Z
(1)
syn, ..., Z

(m)
syn ) for Z0. Multiple data sets are

required to capture accurately the sampling variance in population quantity estimates,

given the synthetic data, due to additional uncertainty from imputation. The agency

decides the sample size of each synthetic data set will be nsyn = 5, 000. Each Z
(l)
syn

(l = 1, ..,m) is created in two steps as follows:

• Step 1: Impute the excluded values Yexc from the posterior predictive distri-

bution π(Yexc|Z0). (Note, the agency can choose to impute all N population

records so that the imputed synthetic population data set contains no observed

values Y0). From Step 1 we obtain a complete-data population, P
(l)
com = (X, Y

(l)
com)

(l = 1, . . . ,m) where Y
(l)

com = (Y0, Y
(l)

exc).

• Step 2: Randomly sample without replacement nsyn units by resampling mech-
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anism Isyn from P
(l)
com, producing a synthetic data set Z

(l)
syn = (X, Y

(l)
syn).

Note, we have used the term resampling from the imputed complete-data popu-

lation to distinguish from the original sampling mechanism I0, and not in the sense

of drawing new samples from a given sample.

Define Zsyn =
{
Z

(l)
syn, l = 1, 2, ...m

}
to be the collection of synthetic samples that

are released, and Pcom =
{
P

(l)
com, l = 1, 2, ...m

}
to be the collection of imputed syn-

thetic populations from which they were resampled. The definition of Z
(l)
syn in Step 2

assumes there are no confidentiality constraints on releasing X. If X is completely

confidential and cannot be released at all, one may use X to create the synthetic data

but release only synthesized survey variables.

Conceptually for Step 1, we impute to replace observed values because we do not

want to release the true values. Nor do we necessarily wish to release the same units as

originally sampled, so we impute excluded values as well. Generally, it is not practical

to release the entire imputed population, hence in Step 2 we resample from P
(l)
com. It

was proposed in Raghunathan, Reiter and Rubin (2003), that Isyn and I0 can define

different sampling mechanisms because each synthetic sample Z
(l)
syn is redrawn from

an imputed population P
(l)
com, which does not contain any information on I0. For our

hypothetical example, this means the agency can resample nsyn = 5, 000 households

by simple random sampling, ignoring the stratum indicators. Step 2 can be merged

into Step 1 by only imputing synthetic values for resampled units drawn by Isyn. To

generate draws of multiple survey variables from their posterior predictive distribu-

tion, joint modeling (Schafer 1997) and sequential regression multivariate imputation

(SRMI) (Van Buuren and Oudshoorn 2000, Raghunathan et al. 2001) approaches
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may be used. For technical guidelines on specification of the imputation models for

common variable types, refer to Reiter (2005a).

2.2 Analysis of synthetic data sets

The synthetic data Zsyn generated by the agency are released to analysts. The

analyst needs some rules to combine the data across the m synthetic data sets it re-

ceives, to draw inference on some scalar population quantity Q, such as a population

mean or regression coefficient. Raghunathan, Reiter and Rubin (2003) derived ap-

proximations to the first and second moments of the posterior distribution π(Q|Zsyn).

The authors assumed both I0 and Isyn defined simple random sampling mechanisms.

The key assumptions and inferential equations from this paper are stated below. For

theoretical justification, the reader is referred to Raghunathan, Reiter and Rubin

(2003, Section 4, pp. 9-11).

Suppose that, given the observed data set, the analyst would use the point estimate

q0 and an associated measure of uncertainty v0 for inference about Q. Let (q(l), v(l))

be the values of q0 and v0 computed using synthetic data set Z
(l)
syn.

The key assumptions are:

(i) Sample sizes are (a) large enough to permit normal approximations to posterior

distributions and thus only the first two moments are required for each distri-

bution, which can be derived using standard large sample Bayesian arguments;

and (b) non-informative priors are assumed for all parameters, such that the in-

formation in the likelihood function dominates any information in the analyst’s

prior distribution. Both are reasonable assumptions in large data sets.
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(ii) The point estimate q0 is unbiased for Q and asymptotically normal, with respect

to repeated sampling from the finite population (X, Y ). The variance of the

unbiased estimator is V0.

(iii) The sampling variance estimate v0 is unbiased for V0, and the repeated sampling

variability in v0 is negligible; that is, v0 and V0 are interchangeable.

(iv) Let Q(l) be the unbiased estimate of Q from P
(l)
com. Given synthetic data set Z

(l)
syn,

the estimate q(l) is unbiased for Q(l), and asymptotically normal with sampling

variance V (l), and V (l) is an unbiased estimate for V0.

(v) The sampling variance estimate v(l) is unbiased for V (l), and the sampling vari-

ability in v(l) is negligible. That is, v(l)
∣∣P (l)

com ≈ V (l). Thus, v(l) and V (l) are

interchangeable.

(vi) The variation in V (l) across the m synthetic populations is negligible; that is,

V (l) ≈ V0. Then by (iv) and (v), v(l) ≈ V0.

We assume the form of (q(l), v(l)) reflects the resampling mechanism Isyn. Com-

bining information from all m synthetic data sets, the following quantities are needed

for inference:

q̄m =
m∑
l=1

q(l)

m
(2.1)

bm =
m∑
l=1

(q(l) − q̄m)2

(m− 1)
, (2.2)

v̄m =
m∑
l=1

v(l)

m
. (2.3)
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The analyst uses q̄m as the estimate of Q. The sampling variance of q̄m is estimated

by the method-of-moments estimate

Vsyn =

(
1 +

1

m

)
bm − v̄m . (2.4)

Extensions for multivariate Q are presented in Reiter (2005b). Note that Raghu-

nathan, Reiter and Rubin (2003) denoted the variance estimator as Tm. We have

switched to the Vsyn notation to avoid confusion with the variance estimator for mul-

tiple imputation for missing data Tm =
(
1 + 1

m

)
bm + v̄m (Rubin 1987); furthermore,

Vsyn is not a total of two components. Specifically, the mean within variance v̄m is

subtracted in (2.4) because there is an additional level of sampling when creating the

synthetic data already included in the estimate bm. The randomization validity of the

inferential methods for fully synthetic data was justified in Raghunathan, Reiter and

Rubin (2003). It should also be noted that the method-of-moments estimator for Vsyn

may be negative. An alternative variance estimation method applying adjustment for

density maximization (ADM) (Morris 1988) to produce positive variance estimates is

investigated in Chapter 5.

For moderate m, inferences for scalar Q can be based on a t-distribution with

degrees of freedom

dfsyn = (m− 1)

(
1− 1

rm

)2

= (m− 1)

(
1− m

m+ 1

v̄m

bm

)2

, (2.5)

where rm =
(1+ 1

m)bm
v̄m

such that a nominal 100(1 − α)% confidence interval estimate
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for Q is

q̄m ± tdfsyn,α/2
√
Vsyn . (2.6)

For large m, inference can be based on a standard normal distribution. For this thesis,

we have assumed m to be large.



Chapter 3

Congeniality for Synthetic Data

Sets

3.1 Case studies

3.1.1 Ignoring the original survey design

Example 3.1.1

Consider the following simulation setup. Let each unit i = 1, .., N in the true

population be a member of stratum j, where j = 1, 2. The stratum indicators are

known for all units and are available for creating the synthetic data sets but not for

public release. The population size of each stratum is N1 = N2 = 10, 000. Survey

values for stratum 1 are drawn from a N(µ1 = 100, σ1 = 1) distribution, and survey

values for stratum 2 are drawn from a N(µ2 = 10, σ2 = 1) distribution. The stratum

means have been chosen to define two very distinct strata so that the design effect
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(Lohr 1999) for the observed data set is very small. It would be obvious if the

analyst had access to the observed data set to use a stratified random sample (STRS)

estimator to obtain an efficient estimate of the population mean (the quantity of

interest).

The observed sample consists of n1 = n2 = 1, 500 units from each stratum. Given

the observed sample, m = 200 synthetic populations are imputed using a normal

imputation model conditional on the stratum indicator. We evaluate both simple

random sample (SRS) and STRS resampling mechanisms for nsyn = 3, 000. The

true population value of Ȳ is 55.00. We base our evaluation on the coverage of the

nominal 95% confidence interval for the population mean across 1,000 replications.

Thus the margin of error is given by 1.96
√

0.05× 0.95/1000 = 0.014, implying that

we cannot distinguish interval estimate coverage from the 95% nominal level when

the coverage rate of the true population mean is between 93.6% and 96.4%. Results

are summarized in Table 3.1. The abbreviation CR stands for coverage rate, and

AW for the average width of the interval estimate.

Table 3.1: Simulation study results - ignoring the original survey design

Data Samp. mech. &
analysis proced.

Avg.q̄m Var.q̄m Avg.Vsyn CR AW

Observed STRS 55.00 4× 10−4 4× 10−4 95.0 0.083
Synthetic SRS 55.00 9× 10−4 500× 10−4 99.3 2.46

STRS 55.00 5× 10−4 5× 10−4 94.6 0.083

Avg.q̄m: Average value for the posterior mean estimate of Q, across 1,000 replications

Var.q̄m: Variance of the posterior mean estimates for Q, across 1,000 replications

Avg.Vsyn: Average value for the posterior variance estimate of Q, across 1,000 replications

CR: coverage rate

AW: average width

When I0 and Isyn both define STRS resampling and analysis procedures, syn-
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thetic data results match the observed data set results, and we say data utility is

preserved. But for the SRS resampling and analysis procedure, synthetic data in-

terval estimates show gross overcoverage (CR=99%). We pose the question, what

is driving the gross overcoverage when ignoring the original survey design in resam-

pling and analyzing the synthetic data? What does this imply about the assumptions

underlying the inferential methods for fully synthetic data?

3.1.2 Imputation model and analysis procedure condition on

different sets of records

Example 3.1.2

This example comes from the investigation to create partially synthetic, public

data for the Cancer Care Outcomes Research and Surveillance (CanCORS) lung

cancer patient survey data set (Chapter 6). CanCORS is a large-scale study of the

quality and patterns of care given to population-based and healthcare-system-based

cohorts of newly diagnosed patients with lung and colorectal cancer, across 11 study

sites in the US (Ayanian et al. 2004). More than 500 survey variables were collected.

The demographic variables age, education, race, marital status and sex were identified

as high disclosure risk and would be synthesized. All other variables (including clinical

variables) were not synthesized. Predictors for the imputation models were identified

by stepwise regression to minimize Akaike’s Information Criterion (AIC). Refer to

Chapter 6 for full justification of the selection of high disclosure risk variables and

specification of the imputation models.

As part of our data utility assessment to compare analytic results using the syn-
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thetic data relative to inference using the observed data set, we ran models based on

the published analysis in Huskamp et al. (2009). In this paper, the authors seek to

identify the factors associated with hospice discussion rates amongst stage IV lung

cancer patients. The original analysis was based on the 1, 517 patients who had

Stage IV lung cancer, which represents approximately 30% of the full set of records

conditioned upon in the imputation models. Analytical results for the synthesized

covariate ‘race’ as a predictor of hospice discussion, unadjusted for other covariates

are presented in Table 3.2. Note that the hospice discussion response variable was

not synthesized.

Table 3.2: Descriptive characteristics and estimated probabilities of hospice discussion
by race, unadjusted for other covariates. (Standard errors in parentheses)

Characteristic Patients % Discussed Hospice % p-value
Obs. Syn. Obs. Syn. Obs. Syn.

Race/ethnicity
White 73.7 72.0 55.2 (1.3) 54.4 (1.5)
Black 10.7 11.4 42.6 (1.3) 50.0 (4.1)
Hispanic 5.9 5.7 40.4 (1.3) 45.8 (5.3) < 0.001 0.62
Asian 5.1 5.3 49.4 (1.3) 51.6 (6.0)
Other 4.7 4.8 64.5 (1.2) 54.0 (6.9)

The marginal sample counts using synthetic data agree with the observed data

set statistics in Table 3.2. However, as a predictor of hospice discussion, ‘race’ was

strongly significant using the observed data set, but insignificant using synthetic data

(pobs < 0.001 vs psyn = 0.62). What explanation can be given for the change in conclu-

sion of significance, beyond the additional uncertainty due to the multiple imputation

procedure?
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3.2 Congeniality for multiple imputation for syn-

thetic data

We denote the different types of input in multiple imputation for synthetic data

as follows:

• Imputation input : Z0 + A

• Analysis input : Zsyn

where A denotes any additional information available to the imputer such as

model assumptions and information from past similar surveys. Also as previously

mentioned in Section 2.1, if X is completely confidential and cannot be released at

all, then Zsyn = Ysyn. The analysis input also encompasses the analyst’s purpose of

investigation and assessment of any information provided by the agency.

In the synthetic data setting, Z0 is not a source of input for the analyst. How-

ever, we shall define Zuser
0 as input analysts would have used if they had access to

the observed data set. We also define Puser
0 to be the analysis procedure given data

set Zuser
0 , and Psyn to be the analysis procedure given data Zsyn. The analysis pro-

cedure encompasses a survey design assumption (for design-based estimation), or a

distributional assumption (for model-based estimation). Let h denote a Bayesian

model.

Definition 1

A Bayesian model h is said to be congenial to the analysis procedure P =

{Puser
0 ,Psyn} if:
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(i) The posterior mean and variance of Q under h given Zuser
0 are asymptotically

the same as the estimate and variance from the analysis procedure Puser
0 , that

is

[Q̂(Zuser
0 ), U(Zuser

0 )] ' [Eh[Q|Zuser
0 ], Vh[Q|Zuser

0 ]] (3.1)

(ii) The posterior mean and variance of Q under h given Zsyn are asymptotically

the same as the estimate and variance from the analysis procedure Psyn, that

is

[Q̂(Zsyn), U(Zsyn)] ' [Eh[Q|Zsyn], Vh[Q|Zsyn]] (3.2)

Because multiple imputation is a Bayesian procedure, (3.1) - (3.2) are required to

show inferential equivalence of the frequentist analysis procedure to some Bayesian

model. Definition 1 is analogous to (2.3.1) and (2.3.2) in Meng (1994), p. 543.

Definition 2

The analysis procedure P = {Puser
0 ,Psyn} is said to be congenial to the impu-

tation model g(Ysyn|Z0, A) if one can find an h such that asymptotically

(i) h is congenial to P under Definition 1.

(ii) The posterior predictive density for Y
(l)

com (l = 1, ...,m) derived under h is iden-

tical to the imputation model

h(Y (l)
com|Zuser

0 ) = g(Y (l)
com|Z0, A) (3.3)

for all possible Y
(l)

com.
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(iii) The posterior predictive density for Y
∗(l)

syn (l = 1, ...,m) derived under h is iden-

tical to the imputation model

h(Y ∗(l)syn |Zsyn) = g(Y ∗(l)syn |Z0, A) (3.4)

for all possible Y
∗(l)

syn .

(note: we use the notation Y
∗(l)

syn (l = 1, ...,m) to distinguish from Ysyn ∈ Zsyn).

The conditioning sets differ on each side of the equality in (3.4) and potentially

in (3.3). For congeniality to hold, Definition 2 (ii) requires that if the user had

access to some portion of the observed data set to conduct inference, any significant

relationships in the analysis procedure must be included in the imputation model.

Definition 2 (iii) requires that if we were to generate a new synthetic data set given

Zsyn, the posterior predictive distribution we would use is identical to the imputation

model used to generate Zsyn, because for congeniality to hold, both Z0 and Zsyn must

be drawn from the same target population. This means that Zsyn must be defined by

the same sampling distribution as Z0.

In the next section, we use the definition of congeniality for synthetic data to

answer the questions posed in the motivating examples in Section 3.1.
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3.3 Illustration of congeniality and uncongeniality

for synthetic data

3.3.1 Ignoring the original survey design

Example 3.1.1 (Continued)

Refer back to the case study described in Section 3.1.1. We define ȳ to be a sample

mean and s to be a sample standard deviation. Let ỹ(l) denote an imputed value from

synthetic data set Z
(l)
syn.

Table 3.3: Imputation model and analysis procedure options

Imputation model I (SRS) Imputation model II (STRS)

g1(ỹ
(l)
i |Z0, A) g2(ỹ

(l)
ij |Z0, A)

∼ tn−1

(
ȳ0,
(
1 + 1

n

)1/2
s0

)
∼ tnj−1

(
ȳ0j,
(

1 + 1
nj

)1/2

s0j

)
i = 1, ..., nsyn i = 1, ..., nsyn,j ; j = 1, 2

Analysis procedure I (SRS) Analysis procedure II (STRS)

Q̂1(Zsyn) = ȳsyn Q̂2(Zsyn) = N1

N
ȳsyn1 + N2

N
ȳsyn2

U1(Zsyn) = s2
syn/nsyn U2(Zsyn) =

(
N1

N

)2 s2syn1
nsyn1

+
(
N2

N

)2 s2syn2
nsyn2

Table 3.3 shows the imputation model and analysis procedure options available in

this example (ignoring finite population correction factors). The question of interest

is whether imputation model II (STRS) is congenial to analysis procedure I (SRS), as

required by Definition 2 (iii) (3.4). That is, can we recover the two-stratum population

structure from the synthetic data that is resampled and analyzed by simple random

sampling. Now imputation model II is congenial to analysis procedure II (Definition
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2 (ii) (3.3) - they both assume STRS estimators), and therefore we would like to show

whether E[Q̂1(Zsyn)] = E[Q̂2(Zsyn)] and U1(Zsyn) = U2(Zsyn).

Using simple random sampling, the sample counts by stratum are random vari-

ables defined by the distributions nsyn1 ∼ Bin
(
nsyn,

N1

N

)
and nsyn2 ∼ Bin

(
nsyn,

N2

N

)
,

whereas nsyn1 and nsyn2 are fixed and known under STRS. If we re-express Q̂1(Zsyn)

as

ȳsyn =
nsyn1

nsyn

ȳsyn1 +
nsyn2

nsyn

ȳsyn2

Then using conditional expectations we can show

E[Q̂1(Zsyn)] = E

[
E

[
nsyn1

nsyn

ȳsyn1 +
nsyn2

nsyn

ȳsyn2

∣∣∣nsyn1

]]
= E

[
nsyn1

nsyn

µ1 +
nsyn2

nsyn

µ2

]
=
N1

N
µ1 +

N2

N
µ2

= E[Q̂2(Zsyn)] ,

and
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Var[Q̂1(Zsyn)] = E

[
Var

[
nsyn1

nsyn

ȳsyn1 +
nsyn2

nsyn

ȳsyn2

∣∣∣nsyn1

]]
+

Var

[
E

[
nsyn1

nsyn

ȳsyn1 +
nsyn2

nsyn

ȳsyn2

∣∣∣nsyn1

]]
= E

[(
nsyn1

nsyn

)2

σ2
Ȳ1

+

(
nsyn2

nsyn

)2

σ2
Ȳ2

]
+ Var

[
nsyn1

nsyn

µ1 +
nsyn2

nsyn

µ2

]
=

1

n2
syn

[
E [nsyn1]2 σ2

Ȳ1
+ E [nsyn2]2 σ2

Ȳ2

]
+

1

n2
syn

[
Var [nsyn1] (σ2

Ȳ1
+ µ2

1) + Var [nsyn2] (σ2
Ȳ2

+ µ2
2)
]

≈
(
N1

N

)2

σ2
Ȳ1

+

(
N2

N

)2

σ2
Ȳ2

= Var[Q̂2(Zsyn)] .

The approximation in the second to last line comes from ignoring the variability in

nsyn1 and nsyn2, which is justified when nsyn is large, and so asymptotically congeniality

is satisfied. However, the size of nsyn required may reduce the disclosure risk benefits

of using synthetic data. For the simulation study in Example 3.1.1, more than 80%

of the population units are required to be released in each synthetic data set in order

to eliminate the gross overcoverage in the interval estimate for the population mean.

That is, analysis procedure I is not efficient relative to analysis procedure II, for fixed

nsyn and/or m, because information is lost on the population structure at the analysis

stage, and without the stratum indicators, it takes longer to recover the two-stratum

structure of the target population.
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3.3.2 Imputation model and analysis procedure condition on

different sets of records

Example 3.1.2 (Continued)

Refer back to the case study described in Section 3.1.2. To understand better the

statistical implications of different conditioning sets of records, we used a posterior

predictive simulation given the observed data set to predict hospice discussion rates

for black patients using (i) the full data set (Z0); and (ii) stage IV patients only

(Zuser
0 ). We chose black patients because they showed a large deviation in estimated

probability of hospice discussion between observed and synthetic data analytic re-

sults (see Table 3.2). The mean posterior predictive probability of hospice discussion

amongst black patients across the entire data set was Q̂(Z0) = 0.29. Let Q(Zuser
0 ) de-

note the posterior predictive probability for hospice discussion amongst black patients

given Zuser
0 , that is Stage IV patients only. We calculated the posterior predictive p-

value to be Pr(Q(Zuser
0 ) < 0.29) = 0.009, and the difference in posterior predictive

distributions is confirmed in Figure 3.1 by the contrast in location and spread of the

two histograms. These results show Definition 2 (ii) (3.3) has been violated. These

results make sense clinically because hospice discussion rates are lower if measured

for cancer patients at all disease stages, whereas rates are elevated if measured for

later Stage IV cancer patients only.

To confirm our reasoning, we ran the imputation model again but conditional on

the same set of records as used in the analysis procedure. The revised analytical

comparison results are in Table 3.4. Utilizing the same set of records has assisted in

preserving the conclusion of significance (pobs < 0.001 vs psyn = 0.003) for the ‘race’
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covariate as a predictor of hospice discussion.

Table 3.4: Descriptive characteristics and estimated probabilities of hospice discussion
by race, unadjusted for other covariates. Imputation model and analysis procedure use
same set of records. (Standard errors in parentheses)

Characteristic Patients % Discussed Hospice % p-value
Obs. Syn. Obs. Syn. Obs. Syn.

Race/ethnicity
White 73.7 74.6 55.2 (1.3) 55.6 (1.5)
Black 10.7 9.9 42.6 (1.3) 42.0 (4.2)
Hispanic 5.9 6.1 40.4 (1.3) 40.4 (5.3) < 0.001 0.003
Asian 5.1 5.1 49.4 (1.3) 50.2 (5.8)
Other 4.7 4.3 64.5 (1.2) 58.5 (6.5)

3.4 Discussion

In this chapter we have proposed a definition of congeniality for multiple imputa-

tion for synthetic data. We have used the definition to understand better the role of

the original survey design in the synthetic data resampling mechanism and analysis

procedure, and establish in an example that congeniality holds asymptotically if the

original survey design is ignored, and replaced by a simple random sample design.

A simple random sample design just ignores the population structure from which a

more complex design will produce more efficient estimators for a fixed synthetic data

sample size or number of imputations. These results confirm previous simulation

study results and comments in Reiter (2002), Drechsler et al. (2008), and Reiter and

Drechsler (2010), on inclusion of survey design information in synthetic data sets.

We have also used the definition to explain discrepancies between synthetic data and

observed data set analytic results, when the imputation model does not condition
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Figure 3.1: Comparison of posterior predictive distributions for hospice discussion
rate amongst black patients

upon the same set of records as the analysis procedure. Both our case studies were

common examples of uncongeniality in practice.

Definition 2 implies that in order for congeniality to be satisfied, there must exist

asymptotically some true, unique imputation model g for given analysis procedures

P(Zuser
0 ) and P(Zsyn). This raises two questions:

(i) How can imputers identify, and know they have identified, the ‘true’ model g?

(ii) Given the infinite number of potential future analyses, it is impossible for the im-
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puter to satisfy congeniality for all potential future analyses. What constitutes

a representative analysis, how many representative analyses should be run, and

what results from the multiple analytical comparisons should be communicated

to analysts?

Analytical solutions appear not to be available to answer the first question. The

imputer must rely on the empirical data utility checks suggested in Karr et al. (2006)

and Woo et al. (2009), such as confidence interval overlap and empirical distribution

comparison, to check the quality of the synthetic data generated relative to inference

using the observed data set. The theoretical model g represents the ideal imputation

model, which can guide the imputer to identify the source of a discrepancy between

observed data set and synthetic data analytic results, as illustrated by the case studies

in Examples 3.1.1 and 3.1.2.

The second question is best answered on a case by case basis as it depends on

the analysis procedures P(Zuser
0 ) and P(Zsyn) that are relevant to the observed and

synthetic data. The most practical solution is for the imputer to endeavor to make the

imputation models as complex as possible, without releasing confidential information,

and provide assurance to the pool of respective analysts, that the synthetic data has

been created by expert statisticians.



Chapter 4

Recovery of the Observed Data Set

Sampling Distribution of Sufficient

Statistics Using Synthetic Data

The definition of congeniality for synthetic data presented in Section 3.2 requires

that in order for congeniality to be satisfied between the imputation model and the

analysis procedure, we should be able to recover the observed data set sampling

distribution given the synthetic data. This suggests an alternative approach to fully

synthetic data inference:

(i) Infer the sufficient summaries (q0, v0) of the observed data set given Zsyn.

(ii) Proceed to draw inference on Q as if the analyst obtained q0 and v0 by direct

access to the observed data set Z0.
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The objective is to recover select statistics from the observed data set that would be

used in a frequentist analysis procedure for inference on Q, as opposed to the full

posterior distribution of Q.

Because the alternative analysis equations need to be derived separately for every

quantity of interest and survey design assumption, we cannot present a single set

of combining rules that apply for any scalar quantity of interest. Instead, we will

demonstrate the alternative approach by simulation and empirical data study. For all

derivations in this chapter, we make the same assumptions as listed in Section 2.2.

4.1 Estimation of an observed sample mean using

synthetic data

Example 4.1.1

Suppose the analyst wishes to estimate the population mean for a univariate

survey variable Y . With no access to additional information other than the synthetic

variable Ysyn, the analyst assumes Isyn to define simple random sampling. Thus the

required observed data set statistics are q0 = ȳ0 and v0 = s2
0/n. Suppose the analyst

correctly assumes the population data are normally distributed and without loss of

generality, let nsyn = n.

Let ỹ
(l)
i be the imputed value for the ith record from synthetic data set Z

(l)
syn, which

is drawn from the posterior predictive distribution

ỹ
(l)
i |Z0 ∼ N (q0, v0(n+ 1)) ,
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and so

q(l)|Z0 =
1

n

n∑
i=1

ỹ
(l)
i |Z0 ∼ N

(
ȳ0, v0

(
n+ 1

n

))
,

and

q̄m|Z0 =
1

m

m∑
l=1

q(l)
∣∣∣Z0 ∼ N

(
ȳ0, v0

(
n+ 1

m× n

))
.

Given our assumptions and applying large sample Bayesian arguments to condition

on Zsyn, we have

q0|Zsyn ∼ N

(
q̄m,

v̄m

m

(
n+ 1

n

))
.

Therefore

E[q0|Zsyn] ≈ q̄m , (4.1)

and

Vsyn,alt = Var[q0|Zsyn] ≈ v̄m

m
+
v̄m

mn
. (4.2)

We now have an alternative variance estimator Vsyn,alt. The first term in (4.2)

represents the within-imputation sampling variance, and the second term represents

the variability from estimating the population mean Q(l) from the imputed population

P
(l)
com. We evaluate (4.1) and (4.2) by the same simulation study as in Example 3.1.1.

Results are presented in Table 4.1, and are adjusted for the finite population correction

factor.
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Table 4.1: Simulation study results - estimation of an observed sample mean given
synthetic data

Data Samp.
mech. &
analysis
proced.

Variance
estimator

Avg.q̄m Var.q̄m Avg.Vsyn CR AW

Observed STRS 55.00 4× 10−4 4× 10−4 95.0 0.083
Synthetic SRS Vsyn 55.00 9× 10−4 500×10−4 99.3 2.46

Vsyn,alt 55.00 9× 10−4 9× 10−4 94.0 0.374
STRS Vsyn 55.00 5× 10−4 5× 10−4 94.6 0.083

Vsyn,alt
† 55.00 5× 10−4 5× 10−4 94.4 0.083

Avg.q̄m: Average value for the posterior mean estimate of Q, across 1,000 replications

Var.q̄m: Variance of the posterior mean estimates for Q, across 1,000 replications

Avg.Vsyn: Average value for the posterior variance estimate of Q, across 1,000 replications

CR: coverage rate

AW: average width
† analysis equations (4.1) - (4.2) applied within each strata

First examine the results using synthetic data and a SRS resampling mechanism

and analysis procedure. The interval estimates using the Vsyn estimator showed gross

overcoverage as expected from previous results (see Section 3.1.1). The coverage rate

using the alternative approach was approximately 95%, but the average width was

4.5 times greater than the observed data set interval width.

The optimal synthetic data results were obtained when using the STRS resampling

mechanism and analysis procedure, and either the Vsyn or Vsyn,alt estimator (both

confidence interval coverage and average width results matched the observed data set

results). The approximate equivalence satisfies congeniality Definition 2 (iii) (3.4),

which requires equivalence of the synthetic data sampling distribution to the observed

data set sampling distribution for a fixed target population.
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4.2 Theoretical results

Let synthetic data Zsyn be created as outlined in Section 2.1. We require the

inferential quantities (2.1) - (2.3), and the following population quantities:

Q̄m =
m∑
l=1

Q(l)

m
, (4.3)

Bm =

∑m
l=1

(
Q(l) − Q̄m

)2

m− 1
, (4.4)

V̄m =
1

m

m∑
l=1

V (l) (4.5)

where Q(l) denotes the computed value of the population quantity Q based on the

imputed complete-data population P
(l)
com. We require expressions for E[q0|Zsyn] and

Var[q0|Zsyn].

We make use of the posterior distribution

Q(l)|Z0 ∼ N (q0, v0) , (4.6)

and hence

Q̄m|Z0 ∼ N (q0, v0/m) . (4.7)

Applying large sample Bayesian arguments, we have
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q0|Pcom, v0 ' N

(
Q̄m,

(
1 +

1

m

)
v0

)
. (4.8)

The additional v0/m is to account for finite m (Rubin 1987, pp. 87-91).

In (4.8) we cannot replace v0 with v̄m because v̄m is only available if we are

conditioning on Zsyn. If we are conditioning on Pcom, then V̄m = 0 because each

P
(l)
com is a complete population. The quantity Bm is the estimate for the population

quantity Var(Q|Pcom). A naive approach would be to use the estimate v̂0|Pcom = Bm

ignoring any adjustment for taking a sample from a population. Adopting this naive

approach we have

q0|Pcom ' N

(
Q̄m,

(
1 +

1

m

)
Bm

)
. (4.9)

Also note the posterior distribution

Q̄m|Zsyn ∼ N(q̄m, v̄m/m) . (4.10)

Combining (4.9) and (4.10) we have

E[q0|Zsyn] = E[E[q0|Pcom]
∣∣Zsyn] (4.11)

= E[Q̄m

∣∣Zsyn] (4.12)

= q̄m ; (4.13)

and
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Var[q0|Zsyn] = E[Var[q0|Pcom]
∣∣Zsyn] + Var[E[q0|Pcom]

∣∣Zsyn] (4.14)

= E[(1 + 1/m)Bm

∣∣Zsyn] + Var[Q̄m

∣∣Zsyn] (4.15)

= (1 + 1/m)E[Bm

∣∣Zsyn] + v̄m/m (4.16)

≈ (1 + 1/m)bm − v̄m , (4.17)

where approximation (4.17) follows from equation [7] in Raghunathan, Reiter and

Rubin (2003), p. 11.

Now compare the mean and variance in (4.13) and (4.17) to the posterior moments

derived in Raghunathan, Reiter and Rubin (2003) (see equations (2.1) and (2.4) which

are restated below).

E[Q|Zsyn] = q̄m ;

Vsyn = Var[Q|Zsyn] = (1 + 1/m)bm − v̄m .

We have obtained the equivalent expressions for E[Q|Zsyn] and Var[Q|Zsyn]. How-

ever, q0 is a sample quantity, but Q is a population quantity. The error is due to the

naive approximation E[v0|Pcom] ≈ Bm, which ignores any sampling adjustment given

by I0. That is, any efficiency gains from a more complex original survey design are

ignored in the derivations in Raghunathan, Reiter and Rubin (2003), which assumed

Isyn was a simple random sample. This is the same conclusion drawn to explain the
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gross overcoverage in interval estimates obtained in the case study in Section 3.3.1,

where we ignored the original survey design in the resampling and analysis of fully

synthetic data.

4.3 Estimation of an observed population propor-

tion using synthetic data

Example 4.3.1

In this example, we wish to estimate the population proportion (Q = p) for a

binary variable Y . The hypothetical population is composed of N = 1, 000 units with

two variables (X, Y ). We draw X from a standard uniform distribution, and then

draw Yi ∼ Bin(1, pi), where ln pi
1−pi = 0.5 +Xi for i = 1, .., N . We assume X is known

for all units and is available for sampling the collected data, but not for public release.

In the generated population, the proportion value is 0.626. We base our evaluation

on the coverage of the nominal 95% confidence interval for the population proportion

across 1,000 replications.

Observed data are collected by sampling n = 100 units with probability pro-

portional to X, without replacement using the Midzuno sampling (Midzuno 1952)

function for πPS sampling, in the sampling library package (Lumley 2011) of the R

software environment for statistical computing and graphics. To create synthetic val-

ues for Y , we draw from the full Bayesian posterior predictive distribution given the

logistic regression of Y0 on X0. That is, we first (i) draw values of the logistic model

parameters (β) from their joint posterior distribution, or approximations to it given
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the observed data set; and second (ii) generate nsyn = 100 synthetic values of p and Y

given the posterior draw of β and known background variable X. A non-informative

beta (conjugate) prior distribution is assumed for p. We generate m = 200 synthetic

data sets.

With no access to the size variable X, the analyst assumes Isyn to define simple

random sampling. The observed-data statistics of interest are q0 =
∑n

i=1 yi
n

= y0
n

and v0 = q0(1−q0)
n

. Given synthetic data set Z
(l)
syn, the sufficient summary statistics

are q(l) =
∑n

i=1 ỹ
(l)
i

n
and v(l) = q(l)(1−q(l))

n
, assuming nsyn = n, and ignoring the finite

population correction factor. We desire expressions for E[q0|Zsyn] and V ar[q0|Zsyn].

First, from the posterior predictive distribution conditional on the observed data

set, we derive expressions for the mean and variance of q(l):

E[q(l)
∣∣q0] =

1

n
E
[
E
[
q(l)|p

] ∣∣∣y0

]
=

1

n
E
[
np
∣∣∣y0

]
= y0 ,

and
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Var[q(l)
∣∣q0] =

1

n2

[
E
[
Var

[
q(l)|p

] ∣∣∣y0

]
+ Var

[
E
[
q(l)|p

] ∣∣∣y0

]]
=

1

n2
E
[
np(1− p)

∣∣∣y0

]
+

1

n2
Var

[
np
∣∣∣y0

]
=

1

n
E
[
p
∣∣∣y0

] (
1− E

[
p
∣∣∣y0

])
+ Var

[
p
∣∣∣y0

](
1− 1

n

)
=

1

n

y0

n

(
1− y0

n

)
+
y0(n− y0)

n2(n+ 1)

(
n− 1

n

)
= v0 ×

(
1 +

n− 1

n+ 1

)
.

Combining data across all m synthetic data sets, and applying large sample

Bayesian arguments to condition on Zsyn, we have

E[q0|Zsyn] ≈ q̄m , (4.18)

and

Var[q0|Zsyn] ≈ v̄m

m
×
(

1 +
n− 1

n+ 1

)
. (4.19)

Simulation study results to evaluate (4.18) and (4.19) are summarized in Table

4.2, and include the finite population correction factor. We have calculated observed

data set estimates using both design-based and model-based approaches. The model-

based approach is a regression-adjusted estimate given the set of predictors used in

the imputation models.

Using synthetic data and a SRS resampling mechanism and analysis procedure,

the Vsyn estimator produced the same nominal coverage as the model-based, observed
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Table 4.2: Simulation study results - estimation of an observed population proportion
given synthetic data

Data Samp.
mech. &
analysis
proced.

Variance
estimator

Avg.q̄m Var.q̄m Avg.Vsyn CR AW

Observed πPS Design 0.626 3.2×10−3 3.2× 10−3 96.6 0.258
Model 0.626 3.2×10−3 3.2× 10−3 97.5 0.223

Synthetic SRS Vsyn 0.621 2.4×10−3 3.5× 10−3 97.5 0.230
Vsyn,alt 0.621 2.4×10−3 3.9× 10−3 99.8 0.243

πPS Vsyn 0.624 2.5×10−3 3.5× 10−3 96.0 0.226

V †syn,alt - - - -

Avg.q̄m: Average value for the posterior mean estimate of Q, across 1,000 replications

Var.q̄m: Variance of the posterior mean estimates for Q, across 1,000 replications

Avg.Vsyn: Average value for the posterior variance estimate of Q, across 1,000 replications

CR: coverage rate

AW: average width
† no analytic solution available

data set estimate. We did not obtain gross overcoverage in interval estimates from

ignoring the original survey design, because the design effect for the observed data

set was ≈ 1. The slightly larger average confidence interval width (0.230 > 0.223),

reflects the additional variability from multiple imputation. However, the interval

width is shorter than the width of the design-based observed data set interval estimate

(AW=0.258), because the design-based estimate does not make use of the predictor

information conditioned upon in the imputation model.

The alternative approach produced a coverage rate of ≈ 100%. The analyst needs

to have access to the size variable X to reduce the overcoverage. However, there

is no analytical solution using the alternative approach and a πPS synthetic data

resampling mechanism and analysis procedure. On the other hand, for disclosure

protection the overcoverage is advantageous, because there is more uncertainty in
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the inferential estimates analysts compute if information on the observed data set is

withheld.

4.4 Estimation under an incorrect distributional

assumption

Example 4.4.1

In this example, we investigate the performance of the alternative approach when

an incorrect distributional assumption is made by the analyst.

Assume we wish to estimate the population mean of some univariate survey vari-

able Y , where lnY ∼ N(µ = 3, σ2 = 9). The population is of size N = 10, 000 and

an observed sample of size n = 500 is drawn by simple random sampling. The mean

of the generated population is Ȳ = 2.99. The synthetic population data are imputed

based on a normal model given observed data set statistics q0 = x̄0 and v0 = s2
0,x/n,

where X = lnY . A simple random sample of size nsyn = 500 is drawn from each

synthetic population. This process is repeated to create m = 50 synthetic data sets,

for each of 1,000 replications.

The analyst assumes Y follows a gamma distribution, so that Ȳ ∼ 1
n
Gamma(n, 1/µ)

and the required sufficient statistic is ȳ0.

To derive the inferential equations, the Bayesian setup is as follows:

• Prior: µ|α ∼ IGamma[µ0,
µ20

(r−1)
] (r > 1); for known hyperparameters α =

(µ0, r);
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• Likelihood: ȳ0|µ ∼ Gamma[µ, µ2/n];

• Posterior: µ|y0, α ∼ IGamma[µ∗y,
(µ∗y)2

(n+r−1)
] where µ∗y = (1 − W )ȳ0 + Wµ0 and

W = r
r+n

.

(The square brackets ‘[ ]’ refer to definition of the distribution by the first and

second moments).

Using the analyst’s gamma distribution assumption, we have the following poste-

rior predictive quantities

E[ỹ
(l)
i |ȳ0, α] = E[E[ỹ

(l)
i |µ]

∣∣ȳ0, α] = E[µ
∣∣ȳ0, α] = µ∗y ;

and

Var[ỹ
(l)
i |ȳ0, α] = E[Var[ỹ

(l)
i |µ

]
|ȳ0, α] + Var[E[ỹ

(l)
i |µ]

∣∣ȳ0, α]

= E[µ2/n
∣∣ȳ0, α] + Var[µ

∣∣ȳ0, α]

=
1

n

{
E[µ
∣∣ȳ0, α]

}2
+
n+ 1

n
Var[µ

∣∣ȳ0, α]

=
(µ∗y)

2

n

(
1 +

n+ 1

n+ r − 1

)
.

Given our assumptions and applying large sample Bayesian arguments to condition

on Zsyn, we have

E[ȳ0

∣∣Zsyn] ≈ q̄m −Wµ0 ; (4.20)
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and

Var[ȳ0

∣∣Zsyn] ≈ v̄m

(
1 +

n+ 1

n+ r − 1

)
. (4.21)

Table 4.3: Simulation study results - incorrect distribution assumption - lognormal
distributed population data

Data Samp.
mech. &
analysis
proced.

Var.
estim.

Distrib.
assum.

Avg.q̄m Var.q̄m Avg.Vsyn CR AW

Obs. SRS LN 2.99 8.0×10−3 8.0×10−3 95.3 0.362
Syn. SRS Vsyn LN 2.99 8.0×10−3 8.0×10−3 94.2 0.367

Vsyn,alt LN 3.04 8.0×10−3 8.0×10−3 94.1 0.353
Gam 2.99 8.0×10−3 16× 10−3 99.5 0.501

Avg.q̄m: Average value for the posterior mean estimate of Q, across 1,000 replications

Var.q̄m: Variance of the posterior mean estimates for Q, across 1,000 replications

Avg.Vsyn: Average value for the posterior variance estimate of Q, across 1,000 replications

CR: coverage rate

AW: average width

Results in Table 4.3 (which include the finite population correction factor), show

that using synthetic data, analysis under the incorrect gamma distribution assump-

tion produces a sampling variance estimate twice the observed-data estimate, and

overcoverage for the nominal 95% confidence interval.

Next, we reverse the roles of the gamma and lognormal distributions; we draw

the population from a gamma distribution but posit that the analyst analyzes the

synthetic data as lognormally distributed.

Results in Table 4.4 show that, using synthetic data, the incorrect lognormal dis-

tribution assumption results in severe undercoverage for the nominal 95% confidence

interval estimate, and moreover, the point estimate is biased. This example demon-

strates that the correct distributional assumption by the analyst is crucial for valid
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Table 4.4: Simulation study results - incorrect distribution assumption - gamma dis-
tributed population data

Data Samp.
mech. &
analysis
proced.

Var.
estim.

Distrib.
assum.

Avg.q̄m Var.q̄m Avg.Vsyn CR AW

Obs. SRS Gam 2.99 8.0×10−3 8.0×10−3 95.3 0.362
Syn. SRS Vsyn Gam 2.99 8.0×10−3 10× 10−3 96.4 0.389

Vsyn,alt Gam 2.96 8.0×10−3 8.0×10−3 94.7 0.348
LN 3.78 13× 10−3 54× 10−3 0.0 0.910

Avg.q̄m: Average value for the posterior mean estimate of Q, across 1,000 replications

Var.q̄m: Variance of the posterior mean estimates for Q, across 1,000 replications

Avg.Vsyn: Average value for the posterior variance estimate of Q, across 1,000 replications

CR: coverage rate

AW: average width

inference when using the alternative approach. But if the correct distributional as-

sumption is made, inferential results equivalent to the observed data set estimates

are obtained using the Vsyn,alt estimator.

4.5 Empirical study

For empirical evaluation of the alternative approach, we utilize data from the

Joint Canada/United States Survey of Health (JCUSH) as described in Section 1.4.

We investigate estimation of two quantities of interest: (i) mean annual household

income; and (ii) mean number of general physician (GP) visits in a year per person.

We chose these quantities because the distributions of the population data are skewed

(skew(income)=0.78; skew(GP visits)= 3.27; see Figure 4.1) and the presence of

outliers creates a disclosure risk. For the imputer, skewed data presents interesting

modeling challenges because the popular linear regression model may not accurately

describe the distribution of the observed variables. We investigated SRS and a two-
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stratum resampling mechanism and analysis procedure, where the two strata are the

US and Canada. Results are not shown for a nine-stratum synthetic data resampling

method because we are interested in the effect of ignoring the original survey design,

and the results would just be an extension of Example 4.1.1. We used two different

imputation models: (A) conditional on region only; and (B) conditional on region,

age, age2, sex, race, marital status and education. Income was transformed by taking

the cube root before imputation under a normal linear model to mitigate the skewness.

The mean annual household population income is $54,247. GP visits were modeled by

a Poisson generalized linear model. The mean annual number of GP visits per person

is 3.12. We used m = 50 imputations for each of 500 replications. We assessed the

performance of the alternative approach by coverage of the nominal 95% confidence

interval for each quantity of interest. Results are summarized in Tables 4.5 and 4.6.
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Figure 4.1: Histograms of selected observed data in JCUSH, section 4.5

For the estimation of mean income using synthetic data, interval estimates using
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Table 4.5: Empirical study results - estimation of mean(income)

Data Samp.
mech. &
analysis
proced.

Variance
estimator

Avg.q̄m Var.q̄m Avg.Vsyn CR AW

Observed 9-STRS 54,207 4.61×105 4.61×105 95.8 2,661
Imputation model A
Synthetic SRS Vsyn 54,853 5.01×105 1.06×106 97.6 3,996

Vsyn,alt 54,856 5.01×105 5.54×105 95.0 2,917
2-STRS Vsyn 54,490 4.55×105 1.02×106 98.8 3,908

Vsyn,alt 54,490 4.55×105 5.51×105 95.2 2,907
Imputation model B
Synthetic SRS Vsyn 54,833 3.96×105 8.16×105 94.2 3,479

Vsyn,alt 54,833 3.96×105 5.63×105 96.2 2,940
2-STRS Vsyn 54,816 4.21×105 8.06×105 97.4 3,462

Vsyn,alt 54,816 4.21×105 5.63×105 94.4 2,940

Avg.q̄m: Average value for the posterior mean estimate of Q, across 500 replications

Var.q̄m: Variance of the posterior mean estimates for Q, across 500 replications

Avg.Vsyn: Average value for the posterior variance estimate of Q, across 500 replications

CR: coverage rate

AW: average width

the Vsyn,alt estimator were closer to the observed data set results. There were no strik-

ing differences between results for the two imputation models studied, nor between

results for the SRS and the 2-STRS resampling mechanism and analysis procedure.

For estimation of the mean number of GP visits, the synthetic data results ap-

pear unbiased, but the sampling variance (by both Vsyn and Vsyn,alt estimators) was

underestimated, producing coverage rates well below the 95% nominal level. Figure

4.2 compares histograms of GP visits imputed for one population and of the true

population of values. We see the scale of the imputed population is reduced by about

one-third relative to the true population. Although an essentially unbiased estimate

of the mean was obtained, for estimation of scale-variant quantities data utility is

compromised. The results in Table 4.6 indicate the true population distribution has
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Table 4.6: Empirical study results - estimation of mean(GP visits)

Data Samp.
mech. &
analysis
proced.

Variance
estimator

Avg.q̄m Var.q̄m Avg.Vsyn CR AW

Observed 9-STRS 3.12 5.0×10−3 5.0×10−3 95.0 0.277
Imputation model A
Synthetic SRS Vsyn 3.13 5.0×10−3 1.6×10−3 69.6 0.156

Vsyn,alt 3.13 5.0×10−3 1.0×10−3 56.2 0.119
2-STRS Vsyn 3.13 5.0×10−3 1.6×10−3 72.2 0.157

Vsyn,alt 3.13 5.0×10−3 1.0×10−3 61.4 0.118
Imputation model B
Synthetic SRS Vsyn 3.13 5.0×10−3 1.8×10−3 76.2 0.162

Vsyn,alt 3.13 5.0×10−3 1.3×10−3 66.4 0.141
2-STRS Vsyn 3.13 5.0×10−3 1.8×10−3 75.2 0.163

Vsyn,alt 3.13 5.0×10−3 1.3×10−3 72.2 0.140

Avg.q̄m: Average value for the posterior mean estimate of Q, across 500 replications

Var.q̄m: Variance of the posterior mean estimates for Q, across 500 replications

Avg.Vsyn: Average value for the posterior variance estimate of Q, across 500 replications

CR: coverage rate

AW: average width

not been correctly modeled, and that the imputation model requires improvement

either by a different response distribution assumption, and/or conditioning on more

predictors in the imputation model. On the other hand, for the protection of dis-

closure risk, this may be of benefit because true values of strong outliers are not

released.

In this chapter we illustrated an alternative approach to fully synthetic data in-

ference to recover the observed data set sampling distribution of sufficient statistics

using synthetic data. The alternative approach requires equations for inference to be

derived separately for every quantity of interest. The empirical data example also

demonstrated the importance of an acceptable imputation model, that gives a rep-

resentative indication of the distribution of the observed variables without releasing
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Figure 4.2: Histogram comparison for GP visits - true and imputed population values

confidential information, as the first priority before selection of an inference approach.

The alternative approach is not presented as a replacement to the existing combin-

ing rules, but as a complementary tool. Practitioners are still advised to apply the

existing inferential equations, but the alternative approach has shed some light on

the role of the original survey design in the analysis of fully synthetic data, to satisfy

congeniality.



Chapter 5

Application of Adjustment for

Density Maximization to Sampling

Variance Estimation in Fully

Synthetic Data Inference

In chapter 2, Section 2.2, we reviewed the inferential combining rules for fully

synthetic data (equations (2.1) - (2.4)) to estimate a scalar population quantity Q. It

was noted that a disadvantage of the method-of-moments sampling variance estimator

Vsyn =
(
1 + 1

m

)
bm − v̄m, is that it can be negative, (although asymptotically it is

an unbiased estimator of the posterior quantity Var(Q|Zsyn)). In order to obtain

confidence intervals for Q, a positive variance estimate is required. Reiter (2002) and

Reiter and Drechsler (2010) used slightly modified, more conservative estimates when

negative variance estimates were calculated. Negative variance estimates may also
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be avoided by choosing a large synthetic sample size (nsyn), or a large number of

imputations (m) (Reiter 2002).

The adjustment for density maximization (ADM) procedure, proposed by Morris

(1988), provides an alternative approach to sampling variance estimation. The ADM

procedure multiples the posterior density of interest by an adjustment factor deter-

mined by a matching Pearson distribution, such that the posterior mean is estimated

and not the posterior mode, and positive variance estimates are produced. ADM has

been used to estimate shrinkage factors in a normal hierarchical model (Morris and

Tang 2011), and to improve inferences of random effects in other multi-level models,

as in Christiansen and Morris (1997) for a Poisson multi-level model. In this chapter,

we propose using ADM for sampling variance estimation with fully synthetic data.

5.1 Background on ADM

This section provides a brief outline of ADM from Morris (1988), which justified

using ADM for estimation of shrinkage factors in hierarchical models, so that there

is zero probability of a shrinkage estimate outside the boundaries of the interval [0, 1]

(which implies non-zero and non-negative variance estimates), which is not guaranteed

by standard maximum likelihood methods. Using ADM to produce positive variance

estimates has not been theoretically justified, hence the investigation in this chapter

is exploratory and requires substantial theoretical development to justify a principled

method for variance estimation with synthetic data.

Let Y be a random variable which follows a Pearson distribution with mean pa-

rameter µ0. The density of Y is
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π(y) = KW (γ, µ0)exp

(
−γ
∫
y − µ0

W (y)
dy

)
1

W (y)
, (5.1)

with respect to dy, y varying over an interval with 0 < W (y) <∞, where W (y) =

w2y
2 + w1y + w0, with w0, w1, and w2 all known, and KW (γ, µ0) is the normalizing

constant. The variance Var(y) = W (µ0)
γ−w2

is finite if γ > w2, and is a quadratic function

of the mean parameter µ0. For fixed W , we can think of (5.1) as a two parameter

distribution, denoted by

Pearson(γ, µ0;W ) = Pearson

[
µ0,

W (µ0)

γ − w2

]
, (5.2)

for unknown parameters µ0 and γ. We define “Pearson measure” to be the density

with respect to dy/W (y).

For a unimodal density f(y) > 0, which is to be approximated by a Pearson(γ, µ0;W )

density for specified W , let l(y) = ln(f(y)W (y)). Then, with respect to Pearson mea-

sure dy/W (y), f(y)W (y) is a density and

f(y)W (y) = exp(l(y)) . (5.3)

We also express f(y)W (y) as

exp

(
−γ
∫
y − µ0

W (y)
dy

)
, (5.4)

by matching two derivatives of the logarithms at the modal value. Letting dl(y)
dy

=

0, with y0 the root of this derivative, then µ0 = y0 and d2l(y)
dy2

= γ
W (y0)

, because the

logarithm of (5.4) has first and second derivatives −γ(y − µ0)/W (y) and −γW (y) +
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γ(y−µ0)W ′(y)/W 3(y). Given f(y) and W (y), one then chooses the Pearson(γ, µ0;W )

distribution with µ0 = y0 and γ = −d2l(y)
dy2

W (y0), where dl(y)
dy

= 0. We can then easily

obtain the first and second moments of Y , which are

E[Y ] = µ0 , Var[Y ] =
W (µ0)

γ − w2

. (5.5)

That is, by maximizing the adjusted likelihood f(y)W (y) with respect to Pear-

son measure, we obtain an estimate of the posterior mean of Y , and not the pos-

terior mode, assuming a non-informative prior on µ0. Hence, if the approximation

Pearson(γ, µ0;W ) is chosen because the density of its range agrees with f(y), we can

produce parameter estimates in the domain of values for y where the density of f(y)

is positive, and not outside or on the boundary of this range.

5.2 Hierarchical framework for synthetic data in-

ference

We now express the inferential methods for synthetic data derived in Raghu-

nathan, Reiter and Rubin (2003) (and reviewed in Chapter 2), in a two-level hierar-

chical model framework. We apply the same assumptions as listed in Section 2.2. In

particular, sample sizes (n and nsyn) are (a) large enough to permit normal approxi-

mations to posterior distributions and thus only the first two moments are required

for each distribution, which can be derived using standard large sample Bayesian ar-

guments; and (b) non-informative priors are assumed for all parameters, such that

the information in the likelihood function dominates any information in the analyst’s
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prior distribution. Both are reasonable assumptions in large data sets, and distribu-

tions stated in the hierarchical framework are asymptotic distributions (denoted by

the symbol ∼· ).

Our scalar population quantity of interest is Q. We assume a non-informative prior

distribution for Q. The synthetic data sets are created by the agency as described

in Section 2.1, and released to external analysts. Each synthetic data set is drawn

from an imputed complete-data population P
(l)
com. We do not draw repeated samples

from the same P
(l)
com. We define Q(l) to be an unbiased point estimate of Q given P

(l)
com,

which the agency can calculate, but the analyst cannot because they do not have

access to P
(l)
com. From the collection of imputed populations, Pcom = (P

(1)
com, ..., P

(m)
com),

the agency could calculate the following quantities:

Q̄m ≡
m∑
l=1

Q(l)

m
, (5.6)

and

Bm ≡
m∑
l=1

(Q(l) − Q̄m)2

(m− 1)
. (5.7)

Using each synthetic data set Z
(l)
syn, for l = 1, . . . ,m and m < ∞, the analyst

calculates the complete data statistic q(l) as an unbiased point estimate of Q(l), and

v(l) as an unbiased estimate of the sampling variance of q(l). We assume negligible

sampling variability in the estimates v(l) across the collection of synthetic data sets

Zsyn=(Z
(1)
syn, ..., Z

(m)
syn ). The analyst calculates the following inferential quantities:
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q̄m ≡
m∑
l=1

q(l)

m
, (5.8)

bm ≡
m∑
l=1

(q(l) − q̄m)2

(m− 1)
, (5.9)

and

v̄m ≡
m∑
l=1

v(l)

m
. (5.10)

We assume independence between any pair of complete data statistics (q(l), v(l))

and (q(k), v(k)) for l = 1, . . . ,m, k = 1, . . . ,m, and l 6= k. This is justified because

each synthetic data set Z
(l)
syn is sampled from an imputed population P

(l)
com, which

conditional on the observed data, is independent of any other imputed population

P
(k)
com. Combining the data across the m synthetic data sets, the hierarchical model is

Level− 1 : q̄m|Q̄m, v̄m, Bm
∼· N

(
Q̄m,

v̄m

m

)
; (5.11)

Level− 2 : Q̄m|Q, v̄m, Bm
∼· N

(
Q,

(
1 +

1

m

)
Bm

)
. (5.12)

There is no bm term in the Level-1 model (5.11) because each q(l) is an estimate for

a different Q(l), l = 1, ..,m; that is, we do not draw repeated samples from the same

population P
(l)
com, to calculate multiple q(l) estimates for a single Q(l), for fixed l. Also,

because we assume there is negligible sampling variability in the estimates v(l), then

v(l) and v̄m are interchangeable. The extra Bm/m in (5.12) is an adjustment required
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for finite m because each imputed complete-data population P
(l)
com is generated from

the infinite number of possible complete-data populations (Rubin 1987, pp.87-91).

It follows that the approximate marginal distribution of q̄m is

q̄m|Q, v̄m, Bm
∼· N

(
Q,

v̄m

m
+

(
1 +

1

m

)
Bm

)
, (5.13)

and the approximate posterior distribution of Q is

Q|q̄m, v̄m, Bm
∼· N

(
q̄m,

v̄m

m
+

(
1 +

1

m

)
Bm

)
, (5.14)

assuming a non-informative prior on Q; that is, uniform measure on the positive

real line (−∞,∞). For the analyst, the quantity Bm is an unknown variance pa-

rameter and requires estimation given the synthetic data Zsyn. One approach is to

use method-of-moments to derive the approximation E[Bm|q̄m, v̄m, bm] ≈ bm − v̄m, as

shown in Raghunathan, Reiter and Rubin (2003). Using this approach, we obtain the

approximate posterior distribution of Q derived in Raghunathan, Reiter and Rubin

(2003) (see (2.1) and (2.4)); that is,

Q|q̄m, v̄m, bm ∼· N(q̄m,

(
1 +

1

m

)
bm − v̄m) , (5.15)

and we can see that the variance estimate may be negative.
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5.3 Using ADM for variance estimation with fully

synthetic data

In this section, we derive an alternative variance estimator for fully synthetic data

using ADM to produce a positive estimate. Specifically, we desire an estimate B̂m

using synthetic data, which we will obtain by maximizing a posterior distribution of

Bm, approximated by the density of a Pearson distribution.

Although Q̄m and Bm can be calculated by the agency, for the analyst, Q̄m and

Bm are unknown parameters and require estimation using statistics calculated from

the synthetic data Zsyn. Using the standard one-way analysis of variance setup,

conditional on Bm, the distribution of (m−1)bm
(v̄m+Bm)

is χ2
m−1. Thus, the likelihood function

of Bm is

L(Bm) ∝ (v̄m +Bm)−(m−1)/2 × exp

(
− (m− 1)bm

2(v̄m +Bm)

)
. (5.16)

To use ADM for variance estimation, firstly we need a prior density π(Bm). Be-

cause we are assuming non-informative prior distributions for all parameters, we

select the scale-invariant prior π(Bm) ∝ B
(c−1)
m , for known c > 0, and set c = 1 so

that Bm ∼ Unif(0,∞), and the posterior density of Bm is the same as the likelihood

function for Bm.

There are three choices available for the Pearson distribution, namely the scaled

Gamma, Inverse Gamma and F-distributions. To be consistent with Morris (1988),

we choose the scaled Gamma distribution for our approximation. The adjustment

factor with respect to Pearson measure is Bm (the variance function of the Gamma
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distribution as a conjugate prior is linear in Bm). The adjusted posterior density for

Bm using ADM is

π(Bm

∣∣bm, v̄m) ∝ Bm(v̄m +Bm)−(m−1)/2 exp

(
− (m− 1)bm

2(v̄m +Bm)

)
.

The adjusted log-posterior density is

l(Bm) ∝ logBm −
(m− 1)

2
log(v̄m +Bm)− (m− 1)bm

2(v̄m +Bm)
.

We wish to solve for B̂m that satisfies the equation

∂l

∂Bm

=
1

Bm

− m− 1

2(v̄m +Bm)
+

(m− 1)bm

2(v̄m +Bm)2
= 0 , (5.17)

which requires finding the roots of a quadratic equation. Rewriting (5.17) as

∂l

∂Bm

=
− ((m− 3)B2

m − [(m− 1)(bm − v̄m) + 4v̄m]Bm − 2v̄2
m)

2Bm(v̄m +Bm)2
= 0 , (5.18)

we see that for m > 3, the numerator of (5.18) is a convex quadratic function of

Bm, which is negative at Bm = 0, and therefore has two real roots. The positive root

is the ADM estimator B̂m,ADM (Morris and Tang 2011), which is

B̂m,ADM =
((m− 1)(bm − v̄m) + 4v̄m) +

√
((m− 1)(bm − v̄m) + 4v̄m)2 − 8(m− 3)v̄2

m

2(m− 3)
,

(5.19)
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where B̂m,ADM > 0, which we input into the variance equation from (5.14)

Var(Q
∣∣Zsyn) = VADM ≈

v̄m

m
+

(
1 +

1

m

)
B̂m,ADM ,

and hence we have a positive estimate for Var(Q
∣∣Zsyn), as opposed to the nega-

tive estimates which may be calculated with the variance estimate Var(Q
∣∣Zsyn) =(

1 + 1
m

)
bm − v̄m (5.15). However, VADM is not an unbiased estimate of Bm.

5.4 Evaluation of the ADM variance estimator

For continuity, our evaluation utilizes the same examples as in Chapter 4. If

negative variance estimates are calculated using the method-of-moments estimator

(2.4), we use the modified variance estimate V ∗ = max(0, V ) + δ × (nsyn

n
v̄m), where

δ = 1 if V = 0 (Reiter 2002). In this section, we denote the method-of-moments

estimator (2.4) as VMOM, to clarify that we are evaluating the method-of-moments

estimation approach with the proposed ADM-based estimator.

5.4.1 Simulation study I

Example 5.4.1

Refer to Example 4.1.1 for a description of the simulation setup for estimation

of the population mean in a two-stratum normal population. Survey variables from

stratum 1 are drawn from a N(100, 1) distribution, and survey variables from stratum

2 are drawn from a N(10, 1) distribution. Also note that the choice of the stratum

mean parameters ensures a sizable proportion of negative variance estimates to assess
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the ADM approach to sampling variance estimation. The observed stratum sample

sizes are 1,500 units each, and m = 200 synthetic data sets are created.

Table 5.1: Simulation study results - example 5.4.1

Data Samp.
mech. &
analysis
proced.

Var.
estim.

Avg.q̄m Var.q̄m %
V < 0

Avg.V CR AW

Obs. STRS 55.00 4× 10−4 0 4× 10−4 95.0 0.083
Syn. SRS VMOM 55.00 9× 10−4 46 500×10−4 99.3 2.46

VADM 55.00 9× 10−4 0 161×10−4 100 1.54
Syn. STRS VMOM 55.00 5× 10−4 0 5× 10−4 94.6 0.083

VADM 55.00 5× 10−4 0 5× 10−4 94.2 0.085

Avg.q̄m: Average value for the posterior mean estimate of Q, across 1000 replications
Var.q̄m: Variance of the posterior mean estimates for Q, across 1000 replications
% V < 0: Percentage of posterior variance estimates that were negative
Avg.V: Average value for the posterior variance estimate of Q, across 1000 replications
CR: coverage rate
AW: average width

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

D
en

si
ty

(a) VMOM

−0.5 0.0 0.5 1.0

0
1

2
3

4
5

6

D
en

si
ty

(b) VADM

Figure 5.1: Example 5.4.1 - synthetic data variance estimate density plots (SRS re-
sampling mechansim and analysis procedure).

Simulation results are summarized in Table 5.1. The top half of the table is for

results using synthetic data and a SRS resampling mechanism and analysis procedure.
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We see that 46% of variance estimates were negative using the VMOM estimator. In

contrast, using ADM to obtain a variance estimate has to produce positive variance

estimates. For both variance estimation approaches however, interval estimates for

the population mean showed gross overcoverage. The 100% coverage rate arises from

ignoring the more complex original survey design when resampling and analyzing the

synthetic data. This research problem was addressed in Chapter 3. We conclude

based on efficiency criteria, that the VMOM estimator does no better or worse than

the ADM approach to variance estimation.

We can see in Figure 5.1 the benefits of using an ADM approach to variance

estimation when there is a large proportion of negative variance estimates using the

VMOM estimator. Approximately half of the area under the density plot for VMOM

(Figure 5.1 (a)) lies in the domain of values VMOM < 0. In contrast, the density plot

for VADM (Figure 5.1 (b)) has positive density in the domain of values VADM > 0, with

zero density for values VADM < 0.

For completeness, we also show in Table 5.1 the simulation results when the

synthetic data are resampled and analyzed according to the original survey design

(STRS). Negative variances are not a problem for the VMOM estimator. The ADM-

based confidence interval is just slightly larger, consistent with the overestimation

in Bm required to produce positive variance estimates. We conclude all variance

estimation approaches do equally well to approximate the observed data set results.
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5.4.2 Simulation study II

Example 5.4.2

Refer to Example 4.3.1 for a description of the simulation setup for estimation

of a population proportion where the observed data set is sampled by πPS without

replacement. The observed data set sample size is n = 100, and m = 200 synthetic

data sets are created. Results are summarized in Table 5.2.

Table 5.2: Simulation study results - example 5.4.2

Data Samp.
mech. &
analysis
proced.

Var.
estim.

Avg.q̄m Var.q̄m %
V < 0

Avg.V CR AW

Obs. πPS design 0.626 3.2×10−3 0 3.2× 10−3 96.6 0.258
model 0.626 3.2×10−3 0 3.2× 10−3 97.5 0.223

Syn. SRS VMOM 0.621 2.4×10−3 0 3.5× 10−3 97.5 0.230
VADM 0.621 2.4×10−3 0 3.8× 10−3 97.9 0.238

Syn. πPS VMOM 0.624 2.5×10−3 0 3.5× 10−3 96.0 0.226
VADM 0.624 2.5×10−3 0 3.9× 10−3 96.9 0.237

Avg.q̄m: Average value for the posterior mean estimate of Q, across 1000 replications
Var.q̄m: Variance of the posterior mean estimates for Q, across 1000 replications
% V < 0: Percentage of posterior variance estimates that were negative
Avg.V: Average value for the posterior variance estimate of Q, across 1000 replications
CR: coverage rate
AW: average width

The VMOM estimator did not produce negative variance estimates in this simula-

tion example. Both VMOM and VADM estimators did equally well to approximate the

observed data set results. The variance estimate density plots in Figure 5.2 appear

identical to each other, and all plots have positive density in the domain of values

VMOM > 0 (or VADM > 0), with zero density for values VMOM < 0 (or VADM < 0).
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Figure 5.2: Example 5.4.2 - synthetic data variance estimate density plots (SRS re-
sampling mechansim and analysis procedure).

5.4.3 Empirical study

For our empirical evaluation, we utilize the Joint Canada/United States Survey of

Health (JCUSH) as described in Section 1.4, and as used in the empirical evaluation

in Section 4.5. To recap, we investigate estimation of two quantities of interest (i)

mean annual household income; and (ii) mean number of general physician (GP)

visits in a year per person. We chose these variables because the distributions of the

assumed population data are skewed (skew(income)=0.78; skew(GP visits)= 3.27;

see Figure 4.1), and hence, the ADM approach is of potential use to produce positive

variance estimates. The mean annual household population income is $54,247. The

mean annual number of GP visits is 3.12 per person. The original survey is a nine-

stratum survey design. The imputation models are conditional on the predictors

strata indicator, age, age2, gender, race, marital status and education. Income is

transformed by taking the cube root before imputation under a normal linear model
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to mitigate the skewness. GP visits are modeled by a poisson generalized linear

model. We use simple random sampling to resample and analyze the synthetic data.

Results are not shown for a nine-stratum synthetic data sampling design because

negative variance estimates are not a problem in this case. We used m = 10 and

m = 50 imputations, across 500 replications each. We assessed the performance of

the ADM variance estimates by coverage of their nominal 95% confidence intervals

for each quantity of interest.

Table 5.3: Empirical study results - estimation of mean(income)

Data Samp.
mech. &
analysis
proced.

Var.
estim.

Avg.q̄m Var.q̄m %
V < 0

Avg.V CR AW

Obs. 9-STRS 54,206 4.61×105 0 4.61× 105 95.8 2,661
m = 10
Syn. SRS VMOM 54,800 5.04×105 7.4 9.24× 105 99.8 7,165

VADM 54,800 5.04×105 0 1.56× 106 100 10,304
m = 50
Syn. SRS VMOM 54,853 3.96×105 0 8.16× 105 94.2 3,479

VADM 54,853 3.96×105 0 8.96× 105 96.8 3,665

Avg.q̄m: Average value for the posterior mean estimate of Q, across 500 replications
Var.q̄m: Variance of the posterior mean estimates for Q, across 500 replications
% V < 0: Percentage of posterior variance estimates that were negative
Avg.V: Average value for the posterior variance estimate of Q, across 500 replications
CR: coverage rate
AW: average width

In this empirical example, negative variance estimates were a problem using the

VMOM estimator when the number of imputations was m = 10. Specifically, 7.4% of

variance estimates were negative for estimation of mean income, and 4.6% of vari-

ance estimates were negative for estimation of mean GP visits. The negative variance

problem was resolved using m = 50, or using the ADM approach to variance estima-
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Figure 5.3: Variance estimate density plots for mean(income)

Table 5.4: Empirical study results - estimation of mean(GP visits)

Data Samp.
mech. &
analysis
proced.

Var.
estim.

Avg.q̄m Var.q̄m %
V < 0

Avg.V CR AW

Obs. 9-STRS 3.12 5.0×10−3 0 5.0× 10−3 95.0 0.277
m = 10
Syn. SRS VMOM 3.13 5.0×10−3 4.6 2.1× 10−3 97.6 0.349

VADM 3.13 5.0×10−3 0 3.6× 10−3 99.6 0.503
m = 50
Syn. SRS VMOM 3.13 5.0×10−3 0 1.8× 10−3 76.2 0.162

VADM 3.13 5.0×10−3 0 2.0× 10−3 75.0 0.172

Avg.q̄m: Average value for the posterior mean estimate of Q, across 500 replications
Var.q̄m: Variance of the posterior mean estimates for Q, across 500 replications
% V < 0: Percentage of posterior variance estimates that were negative
Avg.V: Average value for the posterior variance estimate of Q, across 500 replications
CR: coverage rate
AW: average width

tion. The overcoverage in interval estimates for m = 10 is due to ignoring the original

survey design and a small number of imputations. For the estimation of mean in-



Chapter 5: Application of Adjustment for Density Maximization to Sampling
Variance Estimation in Fully Synthetic Data Inference 67

−0.005 0.000 0.005 0.010 0.015 0.020

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

D
e

n
s
it
y

(a) VMOM

−0.005 0.000 0.005 0.010 0.015 0.020

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

D
e

n
s
it
y

(b) VADM

Figure 5.4: Variance estimate density plots for mean(GP visits)

come, coverage rates are reduced to the nominal 95% level using m = 50 imputations,

and both VMOM and VADM interval estimates were approximately equivalent to the

observed data set results. For estimation of mean GP visits, the interval estimates

show severe undercoverage using m = 50 imputations, for all variance estimators.

This is likely due to an inadequate imputation model, as discussed in Section 4.5.

The effects of an inadequate imputation model to capture accurately the true target

population distribution are hidden by the small number of imputations when m = 10.

This chapter has demonstrated an application of ADM to achieve positive vari-

ance estimates when analyzing fully synthetic data, which is not guaranteed by the

method-of-moments estimator to approximate Var[Q|Zsyn]. A key feature of ADM is

to overestimate the sampling variance to produce a positive (but biased) estimate.

Hence, even if applied when not required (and assuming an acceptable imputation

model), underestimation of variance will not be a problem, but interval estimates will
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be wider than those produced by the VMOM estimator. As mentioned at the begin-

ning of Section 5.1, the work in this chapter is preliminary, because the theoretical

justification to use ADM for variance estimation has not been addressed. In addition,

further work is required to investigate the sensitivity of results to informative prior

distributions for π(Bm). These steps are required before we can promote usage of

ADM for variance estimation with synthetic data as a principled approach.



Chapter 6

Partial Synthesis of a Large-Scale

Healthcare Study

The Cancer Care Outcomes Research and Surveillance (CanCORS) Consortium

is a large-scale healthcare study of services and outcomes of care delivered to pop-

ulation and healthcare-system-based cohorts of newly diagnosed patients with lung

and colorectal cancer (Ayanian et al. 2004). The study is administered across 11

study sites in the US, in multiple waves. Patients are surveyed by telephone and

information is gathered on the care received during different stages of illness, clinical

and patient-reported outcomes, and patient preferences and behaviors. Additional

data are obtained from physician surveys and medical records. The wide scope of

data collection and numerous measurements provide opportunities for research on

multiple topics, both by members of the Consortium and by external investigators.

As discussed in Chapter 1, several statistical agencies have begun to use partially

synthetic approaches to create public-use data for major surveys, but application of
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synthetic data techniques to large-scale healthcare survey data is rare. Disclosure con-

trol for CanCORS data entails some interesting challenges and innovations. Firstly,

the presence of clinical variables requires that any modification to the observed data

set must produce variable relationships that are clinically feasible. Secondly, the

external analysts of CanCORS data are likely to be clinicians and health services

researchers. It is important to demonstrate that these analysts can obtain valid sta-

tistical inferences by running typical healthcare analyses on synthetic data. Thirdly,

CanCORS is a large sample from a small, well-defined target population. The target

population size in the first wave of the study was approximately 15,000 patients for

lung cancer, and 12,000 patients for colorectal cancer. After identification of appro-

priate samples, approximately 5,000 patients were surveyed for each cancer type. This

is a sampling fraction of between 30% and 40%, and thus disclosure risk protection

by random sampling is limited in this study, because there is more certainty that a

unit in the target population will be sampled for inclusion in the observed data set.

Partially synthetic data sets (Reiter 2003) consist of a mix of synthetic values

for sensitive variables or key identifiers, and the originally observed values for all

other data points. In contrast to fully synthetic data, not all values are replaced

by imputations; hence we maintain the benefits of fully synthetic data to protect

confidentiality, but with decreased sensitivity to the specification of the imputation

models. The inferential methods for partially synthetic data derived in Reiter (2003)

are reviewed in the next section.
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6.1 Background on partially synthetic data

6.1.1 Inference with partially synthetic data

Let Si = 1 if unit i is selected to have any of its observed values replaced, and

let Si = 0 otherwise. Let S0 = (S1, . . . , Sn), where n is the number of records in the

observed data set. Let Y0 = (Yrep, Ynrep) be the data collected in the original survey,

where Yrep includes all values to be replaced with multiple imputations, and Ynrep in-

cludes all values not replaced with imputations. Let Y
(l)

rep be the replacement values for

Yrep in synthetic data set l, for l = 1, ..,m. Each Y
(l)

rep is generated by simulating values

from the posterior predictive distribution π(Y
(l)

rep|Y0, S0), or some close approximation

to the distribution such as those of Raghunathan et al. (2001). The agency repeats

the process m times creating synthetic data sets Z
(l)
syn = (Ynrep, Y

(l)
rep), for l = 1, ...,m,

and releases the collection of synthetic data sets Zsyn = (Z
(1)
syn, . . . , Z

(m)
syn ) to the public.

We refer to the agency as the ‘imputer’, and in the context of CanCORS, this refers to

the Statistical Consulting Center (SCC). Investigators outside the Consortium take

the role of the ‘analysts’ or ‘public-users’.

To obtain valid inference for a scalar estimand Q, analysts can use the combining

rules presented by Reiter (2003). Suppose that given the original data set, the analyst

would estimate Q with some point estimate q0, and the sampling variance of q0 with

some estimate v0. Let q(l) and v(l) be the complete data estimates from synthetic data

set Z
(l)
syn. The analyst computes q(l) and v(l) by acting as if each Z

(l)
syn is the observed

data set.

The point estimate of Q given the synthetic data is q̄m =
∑m

l=1 q
(l)/m. The
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estimated variance of q̄m is Tp = bm/m + v̄m, where bm =
∑m

l=1(q(l) − q̄m)2/(m − 1)

and v̄m =
∑m

l=1 v
(l)/m. To understand how the variance estimator Tp, differs from the

variance estimator for fully synthetic data Vsyn (2.4), consider the case when m =∞.

Because the same, original units are released in each synthetic data set, the quantity

v̄∞ is by itself an estimate of Var(Q|Zsyn). For m < ∞, we replace v̄∞ with v̄m,

and we add bm/m for the additional variance due to the use of a finite number of

imputations. Inferences for scalar Q, when n is large, can be based on a t-distribution

with degrees of freedom νm = (m− 1)(1 + r−1
m )2, where rm = (m−1bm/v̄m). Methods

for multivariate inferences are derived in Reiter (2005d).

6.1.2 Disclosure risk

Disclosure risk can be defined as the risk of identification of sampled units in the

released data. To compute probabilities of identification, we use the Duncan-Lambert

risk framework (Duncan and Lambert (1989)), with related approaches in Fienberg,

Makov and Sanil (1997), Reiter (2005c), and Reiter and Mitra (2009). Under this

framework, we mimic the behavior of an ill-intentioned public user (hereon referred

to as the intruder), who possesses the true values of unique or quasi-identifiers for

select target units, and seeks to identify the records in the synthetic data that have

matching identifier values.

Our key modeling assumptions are:

(a) The intruder knows the target is in the survey and the identifiers of all units in

the population.

(b) We investigate 3 sets of identifying variables to illustrate the variation in dis-
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closure risk from varying assumed levels of intruder information:

(i) Set 1 : Age, sex, marital status, race

(ii) Set 2 : Set 1 + education+ income level

(iii) Set 3 : Set 2 + disease stage + study site

Assumption (a) is justified because CanCORS is a large survey from a small, well-

defined target population. That is, there is limited disclosure control benefit from

random sampling (Duncan and Lambert 1989, Fienberg, Makov and Sanil 1997, and

Reiter 2005c). The data vectors listed in (b) do not constitute unique identifiers

(as would name, address, date of birth, case ID), but are the best substitutes for

unique identifiers from the variables available for public release, hence the term quasi-

identifiers. A potential identification risk for target record i occurs when its true

quasi-identifier values match the corresponding values for a synthetic data set record k

(k = 1, .., n). The risk is potential because there will be other records in the synthetic

data with the same set of identifying variables, either true or synthesized, such that

the intruder does not know if a match is the correct match or not. Furthermore,

the set of synthetic data records which match the identifying information for a given

target unit will vary across the released synthetic data sets. We assume the intruder

assigns equal probability of being the correct match to each synthetic data record

identified as a potential match for a given target unit.

Let Rilk = 1 (for i = 1, .., n; l = 1, ..,m; k = 1, .., n) if the quasi-identifying

information for original unit i, matches the quasi-identifying information of unit k, in

synthetic data set l. Define Fil =
∑n

k=1Rilk, to be the number of records in synthetic
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data set l, that match the quasi-identifying information of original unit i. Define the

following risk measures:

1. The maximum number of matches across the collection of synthetic data sets is

MXM =
n∑
i=1

1

m

m∑
l=1

Cil , (6.1)

where Cil = 1 when record i is among the Fil matches from synthetic data set

Z
(l)
syn, and Cil = 0 otherwise. The maximum number of matches is reached if the

intruder always correctly selects the target from the set of potential candidates.

2. For unit i, the expected match risk is

EMRi =
1

m

m∑
l=1

1

Fil

× Cil , (6.2)

The contribution of unit i to the expected match risk reflects the intruder ran-

domly guessing at the correct match from the Fil candidates.

The overall expected match risk rate is

EMR =
1

n

n∑
i=1

EMRi . (6.3)

3. For unit i, the presumed true match risk is

TMRi =
1

m

m∑
l=1

Kil , (6.4)

where Kil = 1 when Fil = 1 and Cil = 1, and Kil = 0 otherwise.
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The overall true match risk is

TMR =
1

n

n∑
i=1

TMRi , (6.5)

and reflects the intruder correctly and uniquely identifying records, averaging

over the collection of synthetic data sets.

6.1.3 Data utility

In a broad sense, the utility of a particular data release is the benefit to soci-

ety of the released information (Woo et al. 2009). A more quantitative definition

might characterize what can be learned from the synthetic data, relative to what

can be learned from the observed data set. Such comparisons can be tailored to

specific analyses, or can be broadened to global differences in distributions. Karr et

al. (2006) discuss measures of data utility for specific estimands using confidence

interval overlap. Woo et al. (2009) introduce some global measures of data utility

using propensity scores, cluster analysis, and empirical distribution estimation. The

confidence interval overlap measure is commonly cited in the literature, and is defined

in Karr et al. (2006) as follows.

For an estimate q, the average overlap is calculated by:

Jq =
1

2

(
Uover,q − Lover,q

U0,q − L0,q

+
Uover,q − Lover,q

Usyn,q − Lsyn,q

)
, (6.6)

where (L0,q, U0,q) denote the lower and the upper bound of the confidence interval

for the estimate q using the observed data set, and similarly (Lsyn,q, Usyn,q) using the
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synthetic data, and (Lover,q, Uover,q) denote the intersection of these intervals. High

values of overlap (0.9 ≤ Jq ≤ 1) are favored over low values. A low overlap could be

the result of wide or poorly centered synthetic data confidence intervals.

Although the synthetic data estimate q̄m is an asymptotically unbiased estimate

of q0, the actual value computed from the synthetic data generated will deviate from

q0. Define Biasq = q̄m − q0 to be the bias of the synthetic data estimate from the

observed data set estimate, and Vq is the sampling variance estimate of q̄m given the

synthetic data. Define Biasq/
√
Vq to be the standardized bias. Following Cochran

(1977) Section 1.8, p. 13, we can compute the effect of bias on the coverage of a

nominal 95% confidence interval.

The upper tail error probability is given by

PU,err =
1√
2π

∫ ∞
1.96−(Biasq/

√
Vq)

e−t
2/2dt , (6.7)

and the lower tail error probability is given by

PL,err =
1√
2π

∫ −1.96−(Biasq/
√
Vq)

−∞
e−t

2/2dt . (6.8)

The total error probability is PTot,err = PL,err + PU,err, which should be 0.05 for a

nominal 95% confidence interval estimate.

In this thesis, we compare descriptive statistics of the observed and synthetic

CanCORS data, and compare estimates for models based on two published analyses

of the observed CanCORS data set. Because we expect the data utility results for

non-synthesized variables to be better than those for synthesized variables, we also
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summarize results by this grouping.

6.2 Application to the CanCORS patient survey

data set

6.2.1 Identification of high disclosure risk variables

For the protection of data confidentiality, high disclosure risk and sensitive vari-

ables should potentially be synthesized. Identifying all the variables that pose dis-

closure risk is an important and labor intensive task, and the research literature

on strategies to identify high disclosure risk variables is limited. The general strat-

egy adopted for our study is discussed below and is based on the strategy in Hawala

(2008), with additional consideration for the clinical variables in our healthcare study.

We define high disclosure risk variables to be those (either individually or in

combination) with two characteristics: (i) an intruder is likely to have an external

data source containing them; and (ii) they can uniquely identify an individual when

matched against the intruders’ external information source. The observed CanCORS

data set for synthesis already excluded the variables: patient name, address, and

exact age. From the remaining variables, we identified the demographic variables age

(grouped into 5 year age bands), sex, education, marital status, and race as posing

high disclosure risk.

Clinical variables in combination with demographic variables also pose high dis-

closure risk. However, we chose to retain their original values to preserve clinical

relationships, and eliminate the need to impute with skip patterns determined by
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the structure of the patient survey. We included clinical variables in our disclosure

risk assessment, however, as components of the quasi-identifying sets of information

(Section 6.1.2).

We defined sensitive variables as those whose disclosure, if attributed to the correct

individual, would be considered a breach of data confidentiality for the respondent.

All information collected can be considered sensitive from the perspective of the

respondent, in particular, health insurance details, grouped income levels and medical

history.

To summarize the above qualitative definitions, we have four possible types of

variables:

(i) High disclosure risk and sensitive

(ii) High disclosure risk and non-sensitive

(iii) Low disclosure risk and sensitive

(iv) Low disclosure risk and non-sensitive

Our focus is on minimizing the disclosure risk from variables in groups (i) and (ii).

If a sensitive variable in group (iii) cannot be attributed to an identifiable target, data

confidentiality is not threatened.
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6.2.2 Imputation models

Imputation models were run separately for lung and colorectal cancer because

there might be different relationships among clinical and demographic variables de-

pending on the cancer type. The observed data sets each had > 500 variables. The

number of variables to be included in the partially synthetic, public data was reduced

to ≈ 300 based on the following exclusions:

• Categorical variables whose responses are highly concentrated (> 95%) in one

category.

• Variables containing names or addresses of people or places.

• Variables on consumption of specific types of alternative therapy, vitamins and

herbal supplements, but retain the general indicator for usage of these ser-

vices/products.

• Variables not associated with, or a consequence of the active patient treatment

plan, such as recollection of symptoms at notification of cancer.

The first two criteria protect data confidentiality prior to application of any sta-

tistical disclosure control method. The third and fourth criteria were applied to

avoid issues with multicollinearity, such as including indicators for both symptoms

experienced at diagnosis, and in the last 4 weeks.

Apart from sex, which is binary, all variables were defined as unordered categorical

variables for imputation. We simplified the structure of the categorical variables to be

synthesized by reducing the number of levels (see Appendix A, Table A.1) to avoid

sparse cell counts, and thereby ensure stable parameter estimates in the model fit
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required for the imputation models. The recoded structure is also akin to that used

commonly in analyses.

We chose a parametric approach to imputation. Imputation for the binary vari-

able, sex, was based on a logistic regression model. Imputations for all other variables

were based on multinomial logit models. Our imputation models are consistent with

those for similar demographic variables synthesized in previous studies (see Reiter

2005a, Kinney and Reiter 2007, Drechsler and Reiter 2008, and Reiter and Mitra

2009). Non-parametric approaches to imputation of synthetic data have been stud-

ied, including classification and regression trees (CART) (Reiter 2005b), and random

forests (Caiola and Reiter 2010). There is no published literature to favor one ap-

proach over the other, and evaluation of a non-parametric approach to create partially

synthetic data for CanCORS is an area for future work.

Using a parametric approach, we need to specify the set of predictors to impute

each variable. To try to capture all variable relationships of importance to the public

user, a large number of predictors are desired in each imputation model. However,

fitting ≈ 300 predictor variables in each imputation model is impractical. To select

the set of predictors for each imputation model, a stepwise regression was conducted

within each of the 12 sections of the administered survey questionnaire. Within each

section, variables were added and dropped until Akaike’s Information Criterion (AIC)

was minimized. We ran the stepwise regression by section to include the important

predictor variables from each section. This variable reduction procedure resulted in

an average of ≈ 50 predictor variables for each imputation model. To avoid the

potential for over fitting which increases disclosure risk, no interactions were included
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in the imputation models, only main effects. The baseline model for each stepwise

regression always included the variables survey version code, cancer stage, cancer

histology, vital status at time of interview (alive/dead/unknown) and PDCRID site,

because these variables are generally used as control variables in analyses. We did

not consider variable selection approaches for high-dimensional data, such as the

LASSO (Tibshirani 1996) or SCAD (Fan and Li 2001), because we do not anticipate

that external analysts of CanCORS data would use high-dimensional data analysis

methods.

Synthetic data sets are drawn from the posterior predictive distributions for each

variable using the sequence of conditional distributions specified below. The notation

Y
(∗)

nrep denotes the predictor variables selected by stepwise regression for the variable

to be imputed. The notation X denotes the variables conditioned upon in all models.

1. Impute sex using a logistic model to draw from

π(Y (sex)
rep

∣∣Y (sex)
nrep , X) .

2. Impute race using a multinomial model to draw from

π(Y (race)
rep

∣∣Y (sex)
rep , Y (race)

nrep , X) .

3. Impute marital status using a multinomial model to draw from

π(Y (marstat)
rep

∣∣Y (race)
rep , Y (sex)

rep , Y (marstat)
nrep , X) .
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4. Impute education using a multinomial model to draw from

π(Y (educ)
rep

∣∣Y (marstat)
rep , Y (race)

rep , Y (sex)
rep , Y (educ)

nrep , X) .

5. Impute age using a multinomial model to draw from

π(Y (age)
rep

∣∣Y (educ)
rep , Y (marstat)

rep , Y (race)
rep , Y (sex)

rep , Y (age)
nrep , X) .

Other possible orderings of the conditional distributions are possible.

For each posterior predictive distribution, we first (i) draw values of the model

parameters from their posterior distribution, or an approximation to the distribution

given the observed data set; and second (ii) generate synthetic values given the drawn

values of the parameters and the selected predictor variables given the results of the

stepwise regression. Non-informative prior distributions were assumed for all param-

eters. For full technical details on methods used to draw parameters and synthetic

values, refer to Reiter (2005a), Appendix B pp. 203-204. We used the software pack-

age for multiple imputation ‘mi’ (Su et al. 2011), in the R software and computing

environment to run our imputation models. We ran into some computational con-

straints when imputing the multinomial variables due to dimensionality or scarcity.

To avoid this issue, we used the Gaussian based routines for categorical variable im-

putation in health surveys developed in Yucel, He and Zaslavsky (2011), to make

use of the existing functionality in the ‘mi’ package for multivariate imputation for

continuous data.
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6.3 Data utility for the partially synthesized data

For all synthetic data results in this section, we apply the inferential methods for

partially synthetic data as described in Section 6.1.1.

6.3.1 Analytic comparison I - Logistic regression model for

probability of hospice discussion

We used a logistic regression based on the statistical model in Huskamp et al.

(2009), applied to the 1,517 patients diagnosed as having stage IV lung cancer, to

identify factors associated with whether or not patients have discussed hospice care

with their physicians. The authors argue that discussing hospice care with a health-

care provider could increase awareness of hospice, and possibly result in earlier use.

The analysis in Huskamp et al. (2009) was based on five complete, observed data

sets imputed for missing values (He et al. 2009). The results in this section are based

on the partial synthesis of one of these five data sets. Hence, the observed data set

results reported here closely, but do not exactly match the analytic results reported in

Huskamp et al. (2009). The combining rules for tests of multivariate hypotheses when

using multiple imputation simultaneously for missing data and partial synthesis are

detailed in Kinney and Reiter (2010). Given that the item non-response rates were

relatively low (< 3%, He et al. 2009), it is unlikely that the synthetic data results

will be sensitive to ignoring the imputation of missing data.

Table 6.1 displays descriptive characteristics for synthesized variables and esti-

mated probabilities of hospice discussion, not adjusting for other covariates. Adjusted
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estimates are reported in Table 6.2. We also quantify data utility in Table 6.3 with

respect to the parameters of the hospice logistic model. Note that we do not focus our

discussion on the practical interpretation of the synthetic data results to draw clin-

ical conclusions. Our aim is to illustrate interpretation of the data utility measures

described in Section 6.1.3.

Table 6.1: Descriptive characteristics and estimated probabilities of hospice discussion
by synthesized variables, unadjusted results. (Standard errors in parentheses)

Characteristic Patients (%) Discussed Hospice (%) p-value
Obs. Syn. Obs. Syn. Obs. Syn.

Overall 53.2 53.2
Sex
Male 61.3 57.1 53.3 (1.3) 54.7 (2.4)
Female 38.7 42.9 53.0 (1.3) 55.6 (2.6) 0.89 0.43
Race/ethnicity
White 73.7 72.0 55.2 (1.3) 54.4 (1.5)
Black 10.7 11.4 42.6 (1.3) 50.0 (4.1)
Hispanic 5.9 5.7 40.4 (1.3) 45.8 (5.3) < 0.001 0.62
Asian 5.1 5.3 49.4 (1.3) 51.6 (6.0)
Other 4.7 4.8 64.5 (1.2) 54.0 (6.9)
Married/live
with partner
Yes 61.0 60.2 50.4 (1.3) 55.3 (2.4) 0.006 0.06
No 39.0 39.8 57.6 (1.3) 56.3 (2.6)
Age (yrs)
21-54 12.5 12.5 45.5 (1.3) 44.5 (4.1)
55-59 12.4 12.5 52.1 (1.3) 49.1 (4.0)
60-64 13.2 13.1 51.0 (1.3) 49.3 (4.0)
65-69 16.0 16.4 50.8 (1.3) 50.3 (3.6) 0.002 0.007
70-74 17.8 16.7 50.4 (1.3) 55.6 (3.5)
75-79 13.8 14.3 57.1 (1.3) 57.3 (3.5)
80+ 14.4 14.0 65.1 (1.2) 64.7 (3.3)
Education
< High school 22.7 21.6 54.8 (1.3) 55.9 (1.8)
High school or
some college

60.6 62.2 53.5 (1.3) 53.8 (3.2) 0.46 0.22

≥ College degree 16.7 16.3 49.8 (1.3) 47.0 (3.7)
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Table 6.2: Estimated probabilities for hospice discussion, adjusted for other covariates.
(Standard errors in parentheses)

Characteristic Discussed Hospice % p-value
Obs. Syn. Obs. Syn.

Sex
Male 54.5 (9.4) 54.4 (9.9) 0.72 0.93
Female 53.2 (9.9) 54.7 (10.4)
Race/ethnicity
White 54.5 (9.4) 54.4 (9.9)
Black 46.6 (10.6) 53.3 (11.3)
Hispanic 38.1 (11.2) 39.2 (12.2) < 0.001 0.22
Asian 60.0 (11.4) 59.2 (11.7)
Other 78.2 (7.7) 65.3 (11.6)
Married/live with partner
Yes 54.5 (9.4) 54.4 (9.9) 0.031 0.047
No 62.6 (9.6) 62.1 (10.1)
Age (yrs)
21-54 54.5 (9.4) 54.4 (9.9)
55-59 57.5 (9.5) 52.0 (10.0)
60-64 53.7 (9.2) 55.3 (9.8)
65-69 50.5 (8.5) 53.9 (8.8) 0.63 0.94
70-74 52.2 (8.5) 60.5 (8.4)
75-79 60.2 (8.4) 56.3 (8.7)
80+ 59.1 (8.6) 55.2 (9.1)
Speaks english in home
Yes 54.5 (9.4) 54.4 (9.9) 0.045 0.061
No 35.7 (12.3) 37.7 (12.7)
Education
< High school 56.3 (9.9) 60.3 (10.2)
High school/some college 54.5 (9.4) 54.4 (9.9) 0.87 0.48
≥ College degree 56.3 (10.1) 53.1 (10.5)
Income ($)
< 20 000 66.2 (8.6) 63.1 (9.7)
20 000-39 999 64.7 (8.5) 62.3 (9.3)
40 000 - 59 999 64.4 (8.9) 63.0 (9.6) 0.19 0.42
≥ 60 000 54.5 (9.4) 54.4 (9.9)
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Table 6.2: (Continued) Estimated probabilities for hospice discussion, adjusted for
other covariates. (Standard errors in parentheses)

Characteristic Discussed Hospice % p-value
Obs. Syn. Obs. Syn.

Insurance
Medicare 54.5 (9.4) 54.4 (9.9)
Medicaid 48.3 (11.1) 49.5 (11.6) 0.018 0.004
Private 57.3 (7.9) 50.3 (8.6)
Other 77.1 (8.1) 79.9 (7.8)
Treated in VA facility
Yes 46.6 (14.4) 51.1 (14.7) 0.43 0.74
No 54.5 (9.4) 54.4 (9.6)
HMO member
Yes 60.4 (9.3) 60.0 (9.9) 0.25 0.42
No 54.5 (9.4) 54.4 (9.9)
Region
South 60.7 (8.9) 59.3 (9.6)
West 54.5 (9.4) 54.4 (9.9) 0.12 0.055
Other 47.9 (10.0) 44.7 (10.5)
Days from diagnosis to
interview
Quartile 1 54.5 (9.4) 54.4 (9.9)
Quartile 2 67.1 (8.2) 66.1 (8.9) 0.055 0.079
Quartile 3 62.0 (8.6) 61.1 (9.4)
Quartile 4 38.7 (7.6) 24.8 (8.1)
Days from interview until death
Deceased prior to interview 54.5 (9.4) 54.4 (9.9)
1-59 d 11.0 (4.2) 12.2 (4.7)
60-119 d 7.6 (3.1) 8.7 (3.6)
120-179 d 5.7 (2.6) 6.0 (2.8) < 0.001 < 0.001
180-239 d 5.9 (2.2) 6.1 (2.4)
≥ 240 d 64.2 (8.9) 65.0 (9.2)
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Table 6.2: (Continued) Estimated probabilities for hospice discussion, adjusted for
other covariates. (Standard errors in parentheses)

Characteristic Discussed Hospice % p-value
Obs. Syn. Obs. Syn.

Received chemo. before
interview
Yes 54.5 (9.4) 54.4 (9.9) 0.006 0.002
No 59.1 (9.3) 58.4 (9.6)
Comorbidity
None 54.5 (9.4) 54.4 (9.9)
Mild 57.1 (9.6) 57.0 (9.8) 0.23 0.15
Moderate 64.7 (9.1) 65.4 (9.2)
Severe 70.3 (9.4) 68.8 (10.2)
Alive but surrogate completed
interview
Yes 61.7 (9.4) 59.2 (11.2) 0.004 0.008
No 54.5 (9.4) 54.4 (9.9)

Table 6.1 shows that the marginal sample counts for each synthesized variable have

been preserved. Differences between observed data set and synthetic data sample pro-

portions were generally < 1%, with the exception of sex. The synthetic data sample

proportions by sex are consistent with the observed data set sample proportions using

the entire data set of 5,000 records, but there is a higher observed proportion of males

in the subset of Stage IV lung cancer patients, hence the larger deviation in marginal

sample counts by sex. The synthetic data estimated probabilities of hospice discus-

sion were generally within 3% of the observed data set estimates. However, there is a

7% discrepancy in estimated probability for the ‘black’ race factor level, and the con-

clusion of significance for race changes from strongly significant to strongly insignif-

icant. The synthetic data standard errors were approximately 3 times greater than

the observed data set standard errors because of the additional between-imputation

variability, which was not offset by the presence of non-synthesized covariates.
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Table 6.3: Data utility for parameters of the hospice discussion logistic model, adjusted
for other covariates. (Standard errors in parentheses)

Characteristic Coef. Est β
∣∣∣Biasq√

Vq

∣∣∣ CI.
overlap

Coverage
error

Obs. Syn.
Intercept 0.182 (0.381) 0.179 (0.409) 0.010 0.832 0.050
Sex
Female -0.054 (0.148) 0.015 (0.188) 0.364 0.745 0.065
Race/ethnicity
Black -0.323 (0.226) -0.043 (0.254) 1.101 0.767 0.196
Hispanic -0.670 (0.315) -0.632 (0.371) 0.101 0.831 0.051
Asian 0.213 (0.335) 0.205 (0.351) 0.024 0.803 0.050
Other 1.092 (0.323) 0.495 (0.404) 1.479 0.707 0.316
Married/live
with partner
No 0.336 (0.155) 0.322 (0.163) 0.085 0.707 0.051
Age (yrs)
55-59 0.127 (0.266) -0.100 (0.333) 0.684 0.823 0.105
60-64 -0.042 (0.266) 0.034 (0.301) 0.253 0.791 0.057
65-69 -0.166 (0.297) -0.022 (0.321) 0.447 0.794 0.073
70-74 -0.097 (0.304) 0.249 (0.312) 1.109 0.783 0.199
75-79 0.226 (0.322) 0.073 (0.322) 0.474 0.784 0.076
80+ 0.183 (0.320) 0.031 (0.349) 0.436 0.809 0.072
Speaks english
in home
No -0.769 (0.382) -0.700 (0.371) 0.193 0.800 0.054
Education
< High school 0.081 (0.190) 0.247 (0.213) 0.778 0.745 0.122
≥ College degree 0.078 (0.175) -0.054 (0.238) 0.554 0.785 0.088
Income ($)
< 20 000 0.474 (0.241) 0.367 (0.254) 0.422 0.758 0.071
20 000-39 999 0.413 (0.218) 0.333 (0.226) 0.355 0.742 0.065
40 000 - 59 999 0.416 (0.236) 0.359 (0.238) 0.241 0.745 0.057∣∣∣Biasq√

Vq

∣∣∣: standardized bias, Section 6.1.3

CI. overlap: confidence interval overlap, (6.6)

Coverage Error: estimated error in coverage of nominal 95% confidence interval, (6.7) & (6.8)
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Table 6.3: (Continued) Data utility for parameters of the hospice discussion logistic
model, adjusted for other covariates. (Standard errors in parentheses)

Characteristic Coef. Est β
∣∣∣Biasq√

Vq

∣∣∣ CI.
overlap

Coverage
error

Obs. Syn.
Insurance
Medicaid -0.223 (0.343) -0.202 (0.346) 0.059 0.895 0.050
Private 0.109 (0.222) 0.202 (0.213) 0.437 0.726 0.072
Other 1.021 (0.360) 1.215 (0.358) 0.542 0.798 0.084
Treated in VA
facility
Yes -0.298 (0.400) -0.135 (0.401) 0.406 0.817 0.069
HMO member
Yes 0.276 (0.245) 0.200 (0.246) 0.312 0.748 0.061
Region
South -0.266 (0.241) -0.399 (0.247) 0.540 0.751 0.084
Other 0.242 (0.179) 0.230 (0.183) 0.062 0.716 0.050
Days from
diagnosis to
interview
Quartile 2 0.263 (0.190) 0.200 (0.190) 0.329 0.718 0.063
Quartile 3 0.543 (0.193) 0.498 (0.193) 0.231 0.720 0.056
Quartile 4 0.329 (0.201) 0.278 (0.202) 0.252 0.725 0.057
Days from
interview
until death
1-59 d -1.36 (0.255) -1.31 (0.261) 0.196 0.758 0.054
60-119 d -2.26 (0.252) -2.18 (0.255) 0.331 0.754 0.063
120-179 d -2.67 (0.276) -2.56 (0.274) 0.377 0.761 0.066
180-239 d -2.98 (0.335) -2.97 (0.338) 0.042 0.792 0.050
≥ 240 d -2.94 (0.191) -2.94 (0.196) 0.025 0.724 0.050∣∣∣Biasq√

Vq

∣∣∣: standardized bias, Section 6.1.3

CI. overlap: confidence interval overlap, (6.6)

Coverage Error: estimated error in coverage of nominal 95% confidence interval, (6.7) & (6.8)
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Table 6.3: (Continued) Data utility for parameters of the hospice discussion logistic
model, adjusted for other covariates. (Standard errors in parentheses)

Characteristic Coef. Est β
∣∣∣Biasq√

Vq

∣∣∣ CI.
overlap

Coverage
error

Obs. Syn.
Received chemo. before interview
Yes 0.409 (0.147) 0.447 (0.148) 0.258 0.692 0.058
Comorbidity
Mild 0.181 (0.185) 0.163 (0.184) 0.100 0.713 0.051
Moderate 0.098 (0.206) 0.106 (0.204) 0.039 0.725 0.050
Severe 0.417 (0.215) 0.469 (0.214) 0.244 0.731 0.057
Alive but surrogate completed interview
Yes 0.677 (0.235) 0.622 (0.236) 0.234 0.744 0.056
Summary avg.
Synthesized 0.56 0.78 0.11
Non synthesized 0.26 0.75 0.06
All 0.36 0.76 0.08∣∣∣Biasq√

Vq

∣∣∣: standardized bias, Section 6.1.3

CI. overlap: confidence interval overlap, (6.6)

Coverage Error: estimated error in coverage of nominal 95% confidence interval, (6.7) & (6.8)

For the model results adjusted for other covariates in Table 6.2, estimated prob-

abilities using synthetic data differed on average by 1.5% from the observed data set

estimates for non-synthesized variables. There were non-zero discrepancies because

the model fit also depends on values of synthesized variables. The average deviation

for synthesized variables was 4.1%, with race and age estimated probabilities showing

the largest deviations. Again there was a change in significance at conventional levels

for race. For all other factors, conclusions of significance were preserved.

Data utility measures with respect to the parameters of the adjusted hospice

logistic model are reported in Table 6.3. The average standardized bias for non-

synthesized variables was 0.26 versus 0.56 for synthesized variables, and the average

error in coverage probability due to bias was 0.06 for non-synthesized variables, versus
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0.11 for synthesized variables. The largest estimated errors were in excess of 0.20 for

some race and age coefficient estimates. Average confidence interval overlap results

were similar between non-synthesized and synthesized variables, at 0.75 and 0.78

respectively.

Overall, we conclude that data utility has been preserved for non-synthesized vari-

ables and synthesized sex, education and marital status, within reasonable bounds.

However, data utility was not preserved for age and race covariates. We ran the im-

putation models again but only on the n = 1, 517 units in the analysis procedure (and

not the entire data set). The revised bivariate association estimates for synthesized

variables are in Appendix B, Table B.1. There were no changes in conclusions of sig-

nificance relative to the observed data set, and deviations in synthetic data estimated

probabilities from observed data set estimates were generally less than one standard

error.

Revised logistic regression model results adjusted for other covariates are in Ap-

pendix B, Tables B.2 - B.3. The synthetic data estimated probabilities differed by 4%

on average (equivalent to 0.5 standard errors) from the observed data set estimates for

both non-synthesized and synthesized variables. Deviations for age and race factors

were less than 5%. The largest deviation (10%) was actually for the ‘English speaking’

factor, which was not synthesized. We attribute this deviation to variability between

repeated draws from the posterior predictive distributions to impute the synthetic

data. Furthermore, there were no changes in conclusions of significance. The average

standardized bias for coefficient estimates was 0.14 for non-synthesized variables, and

0.44 for synthesized variables. The overall average overlap was unchanged at 0.76.
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The overall average error in coverage probability was slightly lower at 0.069 (0.054

for non-synthesized variables; 0.093 for synthesized variables). However, the coverage

error estimates were greater for age groups ‘55-59’ and ‘75-79’.

To summarize, utilizing the same subset of records in the imputation model as

for the analysis procedure assisted in preserving data utility. In particular, the large

deviations from observed data set estimates for the ‘black’ race factor level were re-

moved, as well as producing smaller bias for non-synthesized variables. Any remaining

discrepancies noted for the age factor level estimates were found to be removed af-

ter conditioning on hospice discussion in the imputation model for age. Meng (1994)

coined the term uncongeniality to refer to the case where the analyst and the imputer

have access to different types of information. In our example, the general imputation

model was derived from the entire data set, but the analysis procedure used a subset

of records. If the imputation model does not capture all the important subgroup

relationships, results from the synthetic data may be biased. Refer to Chapter 3 for

a statistical definition of uncongeniality for synthetic data.

6.3.2 Analytic comparison II - Multinomial logistic regres-

sion model for cancer patients’ roles in treatment de-

cisions

The second analysis was a multinomial logistic regression based on the analytic

study by Keating et al. (2010). The objective of the study was to assess whether

the characteristics of the decision, including evidence about the treatment’s benefits,

whether the decision was likely preference-sensitive, and treatment modality, influ-
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enced patients’ roles in that decision. The authors argue that patients with more

active roles in decisions are more satisfied and may have better health outcomes. The

analysis used 10, 939 decisions from 5, 383 lung and colorectal cancer patients who self-

completed the full patient survey (that is, a surrogate did not complete the survey),

and who had discussed at least one treatment (surgery, radiation or chemotherapy)

with a clinician. The unit of analysis was the decision, and it included up to three

observations per patient (one for each of three treatment modalities that a patient

may have discussed). Standard errors were adjusted to account for correlation among

repeated decisions within patients by using a robust variance estimator in the Stata

software package. We adopt the same statistical analysis methods for each synthetic

data set. Table 6.4 explains the different categories for role in treatment decision

making. Shared control was the base level for decision role.

The results in this section are based on partial synthesis of one of the five complete,

observed data sets imputed for missing values (He et al. 2009). Hence, the observed

data set results reported here closely, but do not exactly match the analytic results

reported in Keating et al. (2010).

Table 6.4: Categories for role in cancer treatment decision making

Level Description Corresponding survey response
1 Patient control You made the decision with little or no input from

your doctors
You made the decision after considering your doctors’
opinions

2 Shared control ∗ You and your doctors made the decision together
3 Physician control Your doctors made the decision after considering your

opinion
Your doctors made the decision with little or no input
from you

* - reference group
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Appendix B, Table B.4 reports the adjusted differences in proportion reporting

by cancer treatment decision role relative to the reference group for each characteris-

tic. Marital status was not significant at conventional levels using the synthetic data,

but was significant using the observed data set. Conclusions of significance were pre-

served for all non-synthesized variables, including all clinical variables, with minimal

deviation in the magnitude of the p-values. Data utility results for coefficients of

the decision role model are reported in Appendix B, Table B.5. For non-synthesized

characteristics, aggregate data utility was better than utility from our first analytic

comparison on hospice discussion. One explanation is the larger subset of patients

analyzed in the second analytic comparison. For synthesized characteristics, data

utility was lowest for physician control coefficient estimates. For example, the bias in

the marital status coefficient estimate has an estimated error in coverage probability

of 0.75. That is, only 25% of the time would we expect the confidence interval for

marital status to cover the true value in repeated sampling. The reasons for the poor

data utility results may include the following:

(i) Decision role for any type of treatment was not a predictor in any imputation

model except for education.

(ii) The treatment indicator variable was not always an explicit predictor in the

imputation models, but other related variables were included. For example,

a response to ‘rate the quality of surgery’ implies the patient had undergone

surgery.

(iii) Differing variable structures between the imputation models and analysis proce-

dure. For example, marital status was imputed as a 6-level categorical variable,
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but analyzed as a binary variable. Decision role was included in the stepwise

regressions with 5 factor levels, but analyzed with 3 factor levels.

(iv) The decision role analysis model is not a standard multinomial logistic model

because of the multiple observations per patient. Existing inferential methods

for obtaining interval estimates for scalar quantities, and for performing large

sample tests of multicomponent hypotheses, have not been shown to extend

to valid inference for more complex analyses on synthetic data, for example,

cluster and factor analysis, or hierarchical models (Reiter 2009).

The mixed results in our data utility assessment demonstrate that it is difficult

to generate synthetic data that would preserve the inferential conclusions from the

observed data set, for all potential future analyses. Our analytic comparisons suggest

a variety of analyst-defined variables, statistical models and data subsets, that may

be used in the analysis procedure, and it is impossible for the imputer to foresee and

capture all such analyses in the imputation models. Given this, it is no surprise to

observe poor data utility results for some quantities of interest. For CanCORS, we

recommend use of synthetic data primarily for exploratory data-analytic purposes, as

a screening device for preliminary research hypotheses prior to requesting full access

to the original data. The benefit is the ability of analysts to explore the data without

incurring the time and monetary costs to gain authorized access. The CanCORS

Consortium can meet this demand at lower risk of respondent identification (see

Section 6.4).
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6.4 Disclosure risk assessment

Tables 6.5 and 6.6 quantify the disclosure risk for the partially synthetic data we

generated, using the measures described in Section 6.1.2.

Table 6.5: Disclosure risk - CanCORS lung cancer partially synthetic data

Quasi-identifier set MXM EMR TMR Max (Fil) Mean(Fil)
Set 1 771 8 0 485 210
Set 2 232 43 18 97 9
Set 3 232 178 143 14 0.5

Table 6.6: Disclosure risk - CanCORS colorectal cancer partially synthetic data

Quasi-identifier set MXM EMR TMR Max (Fil) Mean(Fil)
Set 1 601 7 0 325 153
Set 2 20 4 1 42 4
Set 3 20 18 17 5 0.1

Fil: the number of units in synthetic data set l, that match the quasi-identifying information of

original unit i.

MXM: Maximum number of matches =
∑n

i=1
1
m

∑m
l=1 Cil , where Cil = 1 when record i is

among the Fil matches from synthetic data set Z
(l)
syn, and Cil = 0 otherwise

EMR: Expected match risk for unit i = 1
m

∑m
l=1

1
Fil
× Cil

TMR: Presumed true match risk for unit i = 1
m

∑m
l=1Kil , where Kil = 1 when Fil = 1 and

Cil = 1, and Kil = 0 otherwise.

The true match risk rate is zero for quasi-identifying Set 1 variables for both

lung and colorectal cancer synthetic data, zero meaning that the target record was

never correctly and uniquely identified as a match. For lung cancer disclosure risk

results in Table 6.5, as the number of variables in the quasi-identifying set increases,

the expected (EMR) and true match risk (TMR) increase, because more criteria are

required to identify a match, decreasing the value of Fil (the number of potential

candidates), and increasing the number of cases where Fil = 1 (a unique match). For

colorectal cancer, the EMR for quasi-identifying Set 2 is actually less than the EMR
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for Set 1, because of a corresponding reduction in the number of cases where the

target was in the set of potential candidates; that is, more cases where Cil equals 0.

This is evidence of strong disclosure risk protection from creating synthetic values for

education or marital status, for the colorectal cancer data set.

To illustrate the interpretation of the disclosure risk results, consider

quasi-identifying Set 2 for lung cancer. We anticipate the intruder could uniquely

identify 18 patients out of ≈ 5, 000. The intruder will not know how many of the

unique matches are actually true matches. Furthermore, across the five partially

synthetic data sets, there were 76 unique matches. Of these, 68 records were uniquely

identified in only 1 out of the 5 synthetic data sets, 6 were identified twice, and

only 1 record was identified uniquely in all 5 data sets. This is the reason why the

true match risk is a ‘presumed’ risk because the intruder will not know if a unique

match is the correct one, and the set of potential matches will vary across the released

synthetic data sets. The overall expected match risk is 43 out of 5,000 patients. That

is, allowing for uncertainty from randomly guessing from the potential candidates, it

is expected less than 1% of patients could be correctly identified.

Using quasi-identifiers, it is possible that partial synthesis could reduce the number

of potential match candidates. Thus, we have also quantified disclosure risk measures

on the observed data set. Results are shown in Tables 6.7 and 6.8. The true match

risk of the observed data set is the number of unique matches, and ranges in value

from 0 to 4000. Because we are dealing with original values, Cil = 1 for all i = 1, .., n,

and therefore the expected and true match risk values are larger for the observed

data set. Comparing the disclosure risk values in Tables 6.7 and 6.8 to the values in



Chapter 6: Partial Synthesis of a Large-Scale Healthcare Study 98

Tables 6.5 and 6.6, we conclude that, as expected, disclosure risk is greatly reduced

when releasing synthetic data instead of the observed values.

Table 6.7: Disclosure risk - CanCORS lung cancer original data set

Quasi-identifier set EMR TMR Max (Fil) Mean(Fil)
Set 1 70 0 380 214
Set 2 1770 989 87 11
Set 3 4495 4000 11 2

Table 6.8: Disclosure risk - CanCORS colorectal cancer original data set

Quasi-identifier set EMR TMR Max (Fil) Mean(Fil)
Set 1 70 0 345 156
Set 2 1824 1070 42 7
Set 3 4105 3810 8 1

Fil: the number of units in synthetic data set l, that match the quasi-identifying information of

original unit i.

EMR: Expected match risk for unit i = 1
m

∑m
l=1

1
Fil
× Cil

TMR: Presumed true match risk for unit i = 1
m

∑m
l=1Kil , where Kil = 1 when Fil = 1 and

Cil = 1, and Kil = 0 otherwise.

It should be noted that there are no universal rules on acceptable levels of disclo-

sure risk. The level of disclosure risk tolerated depends on many factors, including the

risk attitude of the database owners, size of the target population and the sampling

fraction, realistic assessment of assumed levels of external information available to

the intruder, and the intruders’ strategies to identify targets. The results in Tables

6.5 and 6.6 illustrate one, statistically based approach to quantify the disclosure risk

of partially synthetic databases.

In this chapter we have demonstrated partial synthesis of the CanCORS cancer

patient survey data set. Our practical application has highlighted a number of areas

where further research is required. There remain open questions on how to select

representative published studies for analytical comparison, how many to select, and
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whether to combine the multiple data utility results into a single index. The content

of, and mode to communicate results of data utility assessment to public- users also

needs to be addressed. These issues were also raised in Chapter 3; hence this chap-

ter provides practical motivation to address these questions. In terms of disclosure

risk assessment, we used a basic intruder strategy and a statistical framework for

calculation. Disclosure risk assessment can be improved by more circumstantiated

identification of the pool of potential intruders, available information sources, strate-

gies for record identification, and modeling the uncertainty in these assumptions.

Limited research has been done on use of Bayesian prior distributions to capture

uncertainty in intruder information, and this is another area for future investigation.



Chapter 7

Conclusion

This thesis has presented three new research contributions for using synthetic data

techniques for statistical disclosure control.

The first contribution is a definition of congeniality for multiple imputation for

synthetic data. For imputers, the definition provides a theoretical framework to

identify the sources of actual and potential differences between observed data set and

synthetic data inferential results, the onus being on the imputer to justify data utility

has been adequately preserved in the synthetic data for public release. For analysts, a

conceptual understanding of sources of uncongeniality and its statistical implications

are important. Analysts need to understand that by virtue of the synthetic data

creation process, synthetic data results will generally not be exactly the same as

observed data set results, and there may be large deviations because of uncongeniality,

either unforeseen, or intentional to protect data confidentiality. Given this, analysts

may wish to adjust their purpose of investigation to more exploratory data analytic

purposes.
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Motivated by the definition of congeniality, we presented an alternative approach

to fully synthetic data inference to recover the observed data set sampling distribu-

tion of sufficient statistics from synthetic data. The alternative approach assisted

to understand better the role of the original survey design in the existing inferential

methods for analysis of fully synthetic data. In our simulation and empirical data

studies, when the observed survey design, and the synthetic data resampling mech-

anism and analysis procedure were the same, fully Bayesian-derived and alternative

approach inferential estimates were equivalent. Our recommendation is to set the

synthetic data resampling and analysis procedure to be the same as the original de-

sign, and that original design information be made available to the analyst where

possible.

The second contribution demonstrated that application of Adjustment for Density

Maximization (ADM) can achieve positive variance estimates when analyzing fully

synthetic data, which is not guaranteed by the existing method-of-moments variance

estimator. This new approach required specification of synthetic data inference in a

hierarchical model framework. The ADM approach is offered as an alternative to,

(not a replacement for) the existing combining rules when the analyst is concerned

the existing combining rules will produce non-positive variance estimates, but further

theoretical justification is required to establish ADM as a principled approach to

variance estimation with fully synthetic data.

Finally, the third contribution demonstrated application of synthetic data tech-

niques for disclosure control in the CanCORS Consortium. In our data utility assess-

ment, we found data utility was not preserved if the set of records for the imputation
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model was not the same as the set of records used in the analysis procedure, an ex-

ample of uncongeniality. We discussed how it would not be uncommon to encounter

such uncongeniality considering the large number of potential public users with spe-

cific research questions, relevant to only a subset of the data, and using variable

structures not included in the imputation models. It is recommended that partially

synthetic, public-data for CanCORS be used primarily to assess preliminary hypothe-

ses, but special access to the original data set should be requested to answer more

specific questions with confirmatory results. For disclosure risk, we found the risk of

identification to be greatly reduced by replacing the original data set with synthetic

values. Our research presents a building block for addressing the increasing demand

of sharing data, yet protecting data confidentiality in clinical outcomes research.

Research in synthetic data is a growing field and attracting increasing interest

from statistical agencies as a method of statistical disclosure control. Reiter (2009)

summarized some future research challenges in multiple imputation for disclosure

limitation. These are ‘flexible synthesis models, synthesis design strategies, confidence

in synthetic data, and expansion of analysis methods ’. We encountered all these

challenges in our applied work in Chapter 6, specifically (i) identifying strategies to

deal with hundreds of variables when building imputation models; (ii) developing

less subjective approaches to identify high disclosure risk variables and to specify the

intruder attack method; (iii) finding a balance between the search for the ‘perfect’

imputation model and inevitable uncongeniality; and (iv) adapting synthetic data

inferential methods to more complex analytic procedures. Our work in Chapter 3

also highlighted the limitations, due to uncongeniality, for gaining public confidence in
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synthetic data. Continued research in these areas will help to increase the acceptance

of using synthetic data for disclosure control, by both statistical agencies and analysts.
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Table A.1: Recoded variable structure - CanCORS data (Section 6.2.2)

Variable Original structure Revised structure
Age 0-52

53-54 0-54
55-59 55-59
60-64 60-64
65-69 65-69
70-74 70-74
75-79 75-79
80-81 80+
82+

Gender Male Male
Female Female

Marital Status Married Married
Divorced Divorced
Living with partner Living with partner
Never married Never married
Separated Separated
Widowed Widowed

Race White White
African American African American
Hispanic or Latino Hispanic or Latino
Asian Asian
American Indian Other
Pacific Islander
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Table A.1: (Continued) Recoded variable structure - CanCORS data (Section 6.2.2)

Variable Original structure Revised structure
Education 1st grade < High school

3rd grade High school diploma
4th grade Some college
5th grade College degree
6th grade > College
7th grade
8th grade
9th grade
10th grade
11th grade
High School Diploma or GED or com-
pleted 12th grade
Vocational Diploma
More than 2 years
More than 4 years
1st year (freshman)
2nd year (sophomore)
3rd year (junior)
College Degree (BA/BS) or 4th year
(senior)
1st year grad or prof school
Masters degree (MA/MS/MPH/MBA
etc.) or 2nd year grad or prof school
Doctorate degree (J.D., M.D., PhD,
etc) or more than 2 years grad or prof
school
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Table B.1: Descriptive characteristics and estimated probabilities of hospice discussion
by synthesized variables, unadjusted results. Imputation model and analysis procedure
use same set of records. (Standard errors in parentheses)

Characteristic Patients (%) Discussed Hospice (%) p-value
Obs. Syn. Obs. Syn. Obs. Syn.

Overall 53.2 53.2
Sex
Male 61.3 52.8 53.3 (1.3) 54.1 (2.4)
Female 38.7 47.2 53.0 (1.3) 54.9 (2.4) 0.89 0.63
Race/ethnicity
White 73.7 74.6 55.2 (1.3) 55.6 (1.5)
Black 10.7 9.9 42.6 (1.3) 42.0 (4.2)
Hispanic 5.9 6.1 40.4 (1.3) 40.4 (5.3) < 0.001 0.003
Asian 5.1 5.1 49.4 (1.3) 50.2 (5.8)
Other 4.7 4.3 64.5 (1.2) 58.5 (6.5)
Married/live
with partner
Yes 61.0 60.8 50.4 (1.3) 54.5 (2.1) 0.006 0.038
No 39.0 39.2 57.6 (1.3) 54.9 (2.3)
Age (yrs)
21-54 12.5 12.3 45.5 (1.3) 46.7 (3.8)
55-59 12.4 12.1 52.1 (1.3) 50.0 (3.7)
60-64 13.2 13.5 51.0 (1.3) 52.7 (3.8)
65-69 16.0 15.5 50.8 (1.3) 52.0 (3.6) 0.002 0.011
70-74 17.8 18.6 50.4 (1.3) 52.0 (3.3)
75-79 13.8 14.0 57.1 (1.3) 51.7 (3.9)
80+ 14.4 14.0 65.1 (1.2) 66.6 (3.3)
Education
< High school 22.7 22.9 54.8 (1.3) 54.5 (2.9)
High
school/some
college

60.6 62.2 53.5 (1.3) 53.8 (1.7) 0.46 0.37

≥ College degree 16.7 14.9 49.8 (1.3) 48.7 (3.4)
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Table B.2: Estimated probabilities for hospice discussion, adjusted for other covari-
ates. Imputation model and analysis procedure use same set of records. (Standard
errors in parentheses)

Characteristic Discussed Hospice % p-value
Obs. Syn. Obs. Syn.

Sex
Male 54.5 (9.4) 60.0 (9.7) 0.72 0.95
Female 53.2 (9.9) 59.7 (10.2)
Race/ethnicity
White 54.5 (9.4) 60.0 (9.7)
Black 46.6 (10.6) 52.1 (11.7)
Hispanic 38.1 (11.2) 42.0 (12.1) < 0.001 0.018
Asian 60.0 (11.4) 63.3 (11.6)
Other 78.2 (7.7) 74.8 (9.6)
Married/live with partner
Yes 54.5 (9.4) 60.0 (9.7) 0.031 0.011
No 62.6 (9.6) 69.2 (9.1)
Age (yrs)
21-54 54.5 (9.4) 60.0 (9.7)
55-59 57.5 (9.5) 56.1 (10.2)
60-64 53.7 (9.2) 57.6 (10.0)
65-69 50.5 (8.5) 54.2 (9.1) 0.63 0.93
70-74 52.2 (8.5) 56.6 (8.8)
75-79 60.2 (8.4) 54.5 (9.3)
80+ 59.1 (8.6) 61.7 (8.8)
Speaks english in home
Yes 54.5 (9.4) 60.0 (9.7) 0.045 0.136
No 35.7 (12.3) 45.9 (13.9)
Education
< High school 56.3 (9.9) 58.0 (11.0)
High school/some college 54.5 (9.4) 60.0 (9.7) 0.87 0.86
≥ College degree 56.3 (10.1) 61.6 (10.0)
Income $
< 20 000 66.2 (8.6) 70.6 (8.5)
20 000-39 999 64.7 (8.5) 69.1 (8.5)
40 000 - 59 999 64.4 (8.9) 69.0 (8.9) 0.19 0.23
≥ 60 000 54.5 (9.4) 60.0 (9.7)
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Table B.2: (Continued) Estimated probabilities for hospice discussion, adjusted for
other covariates. Imputation model and analysis procedure use same set of records.
(Standard errors in parentheses)

Characteristic Discussed Hospice % p-value
Obs. Syn. Obs. Syn.

Insurance
Medicare 54.5 (9.4) 60.0 (9.7)
Medicaid 48.3 (11.1) 54.3 (11.5) 0.018 0.015
Private 57.3 (7.9) 61.8 (8.2)
Other 77.1 (8.1) 81.3 (7.3)
Treated in VA facility
Yes 46.6 (14.4) 52.3 (14.8) 0.43 0.44
No 54.5 (9.4) 60.0 (9.7)
HMO member
Yes 60.4 (9.3) 64.9 (9.5) 0.25 0.27
No 54.5 (9.4) 60.0 (9.7)
Region
South 60.7 (8.9) 64.8 (9.1)
West 54.5 (9.4) 60.0 (9.7) 0.12 0.117
Other 47.9 (10.0) 52.3 (10.6)
Days from diagnosis to
interview
Quartile 1 54.5 (9.4) 60.0 (9.7)
Quartile 2 67.1 (8.2) 70.8 (8.3) 0.055 0.100
Quartile 3 62.0 (8.6) 66.2 (8.8)
Quartile 4 38.7 (7.6) 27.5 (8.9)
Days from interview until death
Deceased prior to interview 54.5 (9.4) 60.0 (9.7)
1-59 d 11.0 (4.2) 13.3 (5.2)
60-119 d 7.6 (3.1) 9.8 (4.1)
120-179 d 5.7 (2.6) 6.9 (3.2) < 0.001 < 0.001
180-239 d 5.9 (2.2) 7.3 (2.9)
≥ 240 d 64.2 (8.9) 69.5 (8.7)
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Table B.2: (Continued) Estimated probabilities for hospice discussion, adjusted for
other covariates. Imputation model and analysis procedure use same set of records.
(Standard errors in parentheses)

Characteristic Discussed Hospice % p-value
Obs. Syn. Obs. Syn.

Received chemo. before
interview
Yes 54.5 (9.4) 60.0 (9.7) 0.006 0.005
No 59.1 (9.3) 64.5 (9.1)
Comorbidity
None 54.5 (9.4) 60.0 (9.7)
Mild 57.1 (9.6) 62.6 (9.5) 0.23 0.13
Moderate 64.7 (9.1) 70.8 (8.5)
Severe 70.3 (9.4) 74.8 (9.1)
Alive but surrogate completed
interview
Yes 61.7 (9.4) 66.2 (10.5) 0.004 0.004
No 54.5 (9.4) 60.0 (9.7)
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Table B.3: Data utility for parameters of the hospice discussion logistic model, ad-
justed for other covariates. Imputation model and analysis procedure use same set of
records. (Standard errors in parentheses)

Characteristic Coef. Est β
∣∣∣Biasq√

Vq

∣∣∣ CI.
overlap

Coverage
Error

Obs. Syn.
Intercept 0.182 (0.381) 0.179 (0.409) 0.556 0.832 0.068
Sex
Female -0.054 (0.148) -0.014 (0.218) 0.183 0.783 0.054
Race/ethnicity
Black -0.323 (0.226) -0.326 (0.267) 0.013 0.781 0.050
Hispanic -0.670 (0.315) -0.736 (0.339) 0.194 0.802 0.055
Asian 0.213 (0.335) 0.143 (0.341) 0.208 0.794 0.055
Other 1.092 (0.323) 0.705 (0.361) 1.073 0.818 0.188
Married/live
with partner
No 0.336 (0.155) 0.408 (0.162) 0.438 0.705 0.072
Age (yrs)
55-59 0.127 (0.266) -0.163 (0.292) 0.995 0.783 0.172
60-64 -0.042 (0.266) -0.096 (0.309) 0.174 0.800 0.053
65-69 -0.166 (0.297) -0.240 (0.314) 0.238 0.788 0.057
70-74 -0.097 (0.304) -0.142 (0.315) 0.142 0.786 0.052
75-79 0.226 (0.322) -0.229 (0.343) 1.327 0.793 0.264
80+ 0.183 (0.320) 0.072 (0.328) 0.338 0.790 0.063
Speaks english
in home
No -0.769 (0.382) -0.574 (0.386) 0.503 0.812 0.080
Education
< High school 0.081 (0.190) -0.073 (0.204) 0.758 0.734 0.118
≥ College degree 0.078 (0.175) 0.070 (0.203) 0.037 0.742 0.050
Income $
< 20 000 0.474 (0.241) 0.473 (0.244) 0.006 0.748 0.050
20 000-39 999 0.413 (0.218) 0.401 (0.220) 0.052 0.735 0.050
40 000 - 59 999 0.416 (0.236) 0.396 (0.237) 0.084 0.744 0.050∣∣∣Biasq√

Vq

∣∣∣: standardized bias, Section 6.1.3

CI. overlap: confidence interval overlap, (6.6)

Coverage Error: estimated error in coverage of nominal 95% confidence interval, (6.7) & (6.8)
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Table B.3: (Continued) Data utility for parameters of the hospice discussion logistic
model, adjusted for other covariates. Imputation model and analysis procedure use
same set of records. (Standard errors in parentheses)

Characteristic Coef. Est β
∣∣∣Biasq√

Vq

∣∣∣ CI.
overlap

Coverage
Error

Obs. Syn.
Insurance
Medicaid -0.223 (0.343) -0.236 (0.357) 0.037 0.805 0.050
Private 0.109 (0.222) 0.076 (0.229) 0.147 0.743 0.054
Other 1.021 (0.360) 1.073 (0.371) 0.141 0.809 0.052
Treated in VA
facility
Yes -0.298 (0.400) -0.317 (0.410) 0.046 0.824 0.050
HMO member
Yes 0.276 (0.245) 0.271 (0.247) 0.022 0.750 0.050
Region
South -0.266 (0.241) -0.315 (0.241) 0.204 0.714 0.051
Other 0.242 (0.179) 0.212 (0.181) 0.160 0.745 0.057
Days from
diagnosis to
interview
Quartile 2 0.263 (0.190) 0.208 (0.190) 0.286 0.718 0.059
Quartile 3 0.543 (0.193) 0.482 (0.193) 0.311 0.720 0.062
Quartile 4 0.329 (0.201) 0.268 (0.202) 0.302 0.725 0.051
Days from
interview
until death
1-59 d -1.36 (0.255) -1.38 (0.259) 0.089 0.756 0.051
60-119 d -2.26 (0.252) -2.30 (0.256) 0.129 0.755 0.051
120-179 d -2.67 (0.276) -2.64 (0.277) 0.088 0.764 0.050
180-239 d -2.98 (0.335) -3.03 (0.339) 0.160 0.793 0.053
≥ 240 d -2.94 (0.191) -2.97 (0.197) 0.150 0.755 0.052∣∣∣Biasq√

Vq

∣∣∣: standardized bias, Section 6.1.3

CI. overlap: confidence interval overlap, (6.6)

Coverage Error: estimated error in coverage of nominal 95% confidence interval, (6.7) & (6.8)
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Table B.3: (Continued) Data utility for parameters of the hospice discussion logistic
model, adjusted for other covariates. Imputation model and analysis procedure use
same set of records. (Standard errors in parentheses)

Characteristic Coef. Est β
∣∣∣Biasq√

Vq

∣∣∣ CI.
overlap

Coverage
Error

Obs. Syn.
Received chemo. before interview
Yes 0.409 (0.147) 0.420 (0.148) 0.073 0.693 0.051
Comorbidity
Mild 0.181 (0.185) 0.193 (0.185) 0.065 0.715 0.051
Moderate 0.098 (0.206) 0.111 (0.205) 0.063 0.725 0.050
Severe 0.417 (0.215) 0.483 (0.215) 0.306 0.732 0.062
Alive but surrogate completed interview
Yes 0.677 (0.235) 0.684 (0.239) 0.029 0.746 0.050
Summary avg.
Synthesized 0.44 0.78 0.09
Non synthesized 0.44 0.75 0.05
Overall 0.25 0.76 0.07∣∣∣Biasq√

Vq

∣∣∣: standardized bias, Section 6.1.3

CI. overlap: confidence interval overlap, (6.6)

Coverage Error: estimated error in coverage of nominal 95% confidence interval, (6.7) & (6.8)
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Table B.4: Adjusted differences in patient and tumor characteristics with roles in
decisions. (Standard errors in parentheses)

Characteristic Adjusted difference in proportion reporting
Patient Shared

Obs. Syn. Obs. Syn.
Level of Evidence for
treatment
Evidence for * * * *
Uncertain 5.7 (1.4) 5.7 (1.4) -4.2 (1.4) -4.0 (1.4)
No evidence for -1.8 (1.8) -1.7 (1.8) -2.6 (1.7) -2.6 (1.7)
Missing 5.2 (2.7) 5.0 (2.7) -3.8 (2.6) -3.6 (2.6)
Preference sensitive
No * * * *
Yes -6.5 (1.5) -6.2 (1.5) 1.5 (1.6) 1.4 (1.6)
Treatment modality
Surgery * * * *
Radiation -2.7 (1.2) -2.6 (1.2) 2.2 (1.2) 2.2 (1.2)
Chemotherapy 4.3 (0.9) 4.3 (0.9) -1.4 (0.9) -1.3 (0.9)
Received treatment
No * * * *
Yes 3.9 (1.4) 3.9 (1.4) 12.3 (1.3) 12.4 (1.4)
Cancer site
Lung * * * *
Colorectal -0.7 (1.5) -0.4 (1.6) -0.5 (1.5) -0.6 (1.5)
Age at diagnosis, (years)
21-55 * * * *
56-70 1.6 (2.1) 2.6 (3.5) 1.2 (2.1) -2.7 (2.4)
71-80 1.4 (2.3) 1.9 (2.0) 0.9 (2.2) -1.7 (2.4)
≥ 81 1.4 (2.3) 0.6 (4.1) -1.4 (2.3) -2.5 (2.5)
Sex
Male * * * *
Female -2.0 (1.3) 0.3 (1.9) 1.1 (1.3) -0.8 (1.8)

* - reference group
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Table B.4: (Continued) Adjusted differences in patient and tumor characteristics with
roles in decisions. (Standard errors in parentheses)

Characteristic Adjusted difference in proportion reporting
Patient Shared

Obs. Syn. Obs. Syn.
Ethnicity
White * * * *
Black 1.4 (1.9) -1.4 (2.8) 1.6 (1.9) 0.7 (2.5)
Hispanic -5.1 (2.5) -4.4 (3.7) 4.4 (2.6) 0.8 (3.3)
Asian -2.2 (3.0) 0.6 (3.7) -2.3 (3.0) -2.8 (3.4)
Other 0.7 (2.8) 1.2 (3.3) 1.7 (2.9) -0.8 (3.1)
Marital status
Married * * * *
Not married -0.2 (1.4) 1.3 (1.4) -3.0 (1.4) -2.1 (1.6)
Education
< High school (HS) -2.1 (1.8) -0.5 (1.8) 0.6 (1.8) 0.1 (2.2)
HS graduate or some college * * * *
College degree or higher 3.3 (1.5) 3.2 (2.0) -1.8 (1.5) -2.9 (1.8)
Income $
< 20,000 2.3 (2.1) 1.2 (2.1) -1.3 (2.1) -2.3 (2.1)
20,000 to < 40,000 -2.5 (1.8) -3.1 (1.8) 2.4 (1.9) 1.7 (1.9)
40,000 to < 60,000 -0.9 (1.9) -1.2 (1.9) -0.7 (1.9) -1.2 (1.9)
≥ 60,000 * * * *
No. self-reported co-
morbid conditions
0 * * * *
1 1.8 (1.4) 1.8 (1.4) -1.8 (1.4) -1.9 (1.4)
2 1.3 (1.9) 1.2 (1.9) -2.3 (1.9) -2.4 (1.9)
≥ 3 0.8 (2.6) 0.9 (2.6) -0.2 (2.7) -0.3 (2.6)

* - reference group



Appendix B: Supplementary analytic comparison results 117

Table B.4: (Continued) Adjusted differences in patient and tumor characteristics with
roles in decisions. (Standard errors in parentheses)

Characteristic Adjusted difference in proportion reporting
Patient Shared

Obs. Syn. Obs. Syn.
Prediag.health status
Quartile 1 * * * *
Quartile 2 0.4 (1.7) 0.4 (1.7) 1.0 (1.7) 0.8 (1.7)
Quartile 3 4.9 (1.8) 4.9 (1.8) -2.8 (1.8) -3.0 (1.8)
Quartile 4 3.7 (1.8) 3.8 (1.8) -0.4 (1.8) -0.5 (1.8)
CES-D short form
≤ 5 * * * *
≥ 6 2.6 (1.7) 2.2 (1.7) -2.7 (1.7) -2.4 (1.7)
Study site
Los Angeles county * * * *
Alabama -1.7 (2.3) -0.9 (2.3) 5.7 (2.3) 5.6 (2.3)
8 counties in North Califor-
nia

2.5 (1.9) 2.0 (1.9) -2.2 (1.9) -2.2 (1.9)

22 counties in eastern North
Carolina

-8.4 (2.1) -7.9 (2.2) 11.2 (2.4) 10.9 (2.4)

Iowa 1.1 (2.6) 1.3 (2.6) 4.0 (2.7) 3.4 (2.7)
5 HMOs -1.1 (2.1) -0.9 (2.1) 2.1 (2.1) 1.8 (2.1)
15 Veteran Aff. hospitals 0.2 (2.4) 1.8 (2.5) 1.9 (2.5) 1.1 (2.5)

* - reference group
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Table B.4: (Continued) Adjusted differences in patient and tumor characteristics with
roles in decisions. (Standard errors in parentheses)

Characteristic Adjusted difference in
proportion reporting

Physician p-value
Obs. Syn. Obs. Syn.

Level of Evidence for
treatment

< 0.001 < 0.001

Evidence for * *
Uncertain -1.6 (1.0) -1.6 (1.0)
No evidence for 4.4 (1.2) 4.3 (1.2)
Missing -1.4 (1.8) -1.5 (1.8)
Preference sensitive < 0.001 < 0.001
No * *
Yes 4.8 (1.2) 4.8 (1.2)
Treatment modality < 0.001 < 0.001
Surgery * *
Radiation 0.5 (0.9) 0.4 (0.9)
Chemotherapy -2.9 (0.7) -3.0 (0.7)
Received treatment < 0.001 < 0.001
No * *
Yes -16.2 (1.2) -16.3 (1.3)
Cancer site 0.54 0.59
Lung * *
Colorectal 1.2 (1.0) 1.0 (1.1)
Age at diagnosis, (years) 0.19 0.92
21-55 * *
56-70 -2.8 (1.4) 0.1 (2.0)
71-80 -2.2 (1.5) -0.1 (1.6)
≥ 81 0.1 (1.6) 1.8 (2.8)
Sex 0.28 0.85
Male * *
Female 1.0 (1.0) 0.5 (1.0)

* - reference group
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Table B.4: (Continued) Adjusted differences in patient and tumor characteristics with
roles in decisions. (Standard errors in parentheses)

Characteristic Adjusted difference in
proportion reporting

Physician p-value
Obs. Syn. Obs. Syn.

Ethnicity 0.05 0.64
White * *
Black -3.0 (1.3) 0.7 (2.5)
Hispanic 0.7 (1.9) 3.7 (2.4)
Asian 4.4 (2.5) 2.1 (2.7)
Other -2.4 (1.9) -0.4 (2.8)
Marital status 0.005 0.42
Married * *
Not married 3.2 (1.1) 0.7 (1.1)
Education 0.07 0.58
< High school (HS) 1.5 (1.3) 0.6 (1.6)
HS graduate or some college * *
College degree or higher -1.5 (1.0) -0.3 (1.6)
Income $ 0.08 0.08
< 20,000 1.0 (1.5) 1.0 (1.5)
20,000 to < 40,000 0.1 (1.3) 1.5 (1.4)
40,000 to < 60,000 1.7 (1.5) 2.4 (1.5)
≥ 60,000 * *
No. self-reported co-
morbid conditions

0.79 0.77

0 * *
1 -0.1 (1.0) 0.0 (1.0)
2 1.0 (1.4) 1.1 (1.4)
≥ 3 -0.6 (1.9) -0.6 (1.9)

* - reference group
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Table B.4: (Continued) Adjusted differences in patient and tumor characteristics with
roles in decisions. (Standard errors in parentheses)

Characteristic Adjusted difference in
proportion reporting

Physician p-value
Obs. Syn. Obs. Syn.

Prediag. health status 0.02 0.02
Quartile 1 * *
Quartile 2 -1.3 (1.2) -1.1 (1.2)
Quartile 3 -2.1 (1.3) -1.9 (1.3)
Quartile 4 -3.3 (1.2) -3.3 (1.2)
CES-D short form 0.26 0.28
≤ 5 * *
≥ 6 0.1 (1.3) 0.2 (1.3)
Study site < 0.001 < 0.001
Los Angeles county * *
Alabama -4.1 (1.5) -4.7 (1.5)
8 counties in North
California

-0.3 (1.3) 0.1 (1.3)

22 counties in eastern North
Carolina

-2.8 (1.5) -3.0 (1.5)

Iowa -5.1 (1.5) -4.7 (1.5)
5 HMOs -1.1 (1.4) -0.9 (1.4)
15 Veterans Aff. hospitals -2.1 (1.7) -2.9 (1.7)

* - reference group
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Table B.5: Data utility for parameters of the multinomial logit model for patient
decision role.

Characteristic Patient Physician∣∣∣Biasq√
Vq

∣∣∣ CI.
over-
lap

Cov.
Err.

∣∣∣Biasq√
Vq

∣∣∣ CI.
over-
lap

Cov.
Err.

Level of Evidence for
treatment
Evidence for * * * * * *
Uncertain 0.03 0.99 0.05 0.09 0.98 0.05
No evidence for 0.01 1.00 0.05 0.12 0.97 0.05
Missing 0.07 0.98 0.05 0.03 0.99 0.05
Preference sensitive
No * * * * * *
Yes 0.08 0.98 0.05 0.01 1.00 0.05
Treatment modality
Surgery * * * * * *
Radiation 0.06 0.98 0.05 0.09 0.98 0.05
Chemotherapy 0.05 0.99 0.05 0.06 0.98 0.05
Received treatment
No * * * * * *
Yes 0.01 1.00 0.05 0.04 0.99 0.05
Cancer site
Lung * * * * * *
Colorectal 0.06 0.98 0.05 0.05 0.99 0.05
Age at diagnosis, (years)
21-55 * * * * * *
56-70 0.47 0.90 0.08 2.44 0.44 0.68
71-80 0.80 0.81 0.13 2.18 0.48 0.59
≥ 81 0.61 0.84 0.09 0.69 0.82 0.11
Sex
Male * * * * * *
Female 1.34 0.65 0.27 0.12 0.97 0.05

* - reference group∣∣∣Biasq√
Vq

∣∣∣: standardized bias, Section 6.1.3

CI. overlap: confidence interval overlap, (6.6)

Cov. Err.: estimated error in coverage of nominal 95% confidence interval, (6.7) & (6.8)
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Table B.5: (Continued) Data utility for parameters of the multinomial logit model for
patient decision role.

Characteristic Patient Physician∣∣∣Biasq√
Vq

∣∣∣ CI.
over-
lap

Cov.
Err.

∣∣∣Biasq√
Vq

∣∣∣ CI.
over-
lap

Cov.
Err.

Ethnicity
White * * * * * *
Black 0.15 0.96 0.05 2.11 0.44 0.56
Hispanic 0.89 0.77 0.14 1.62 0.59 0.37
Asian 0.66 0.83 0.10 0.25 0.94 0.05
Other 0.77 0.80 0.12 1.24 0.68 0.24
Marital status
Married * * * * * *
Not married 0.12 0.95 0.05 2.63 0.36 0.75
Education
< High school (HS) 0.75 0.81 0.12 0.41 0.89 0.07
HS graduate or some col-
lege

* * * * * *

College degree or higher 0.10 0.95 0.05 1.11 0.71 0.20
Income $
< 20,000 0.30 0.93 0.06 1.28 0.69 0.25
20,000 to < 40,000 0.29 0.93 0.06 0.92 0.77 0.15
40,000 to < 60,000 0.08 0.98 0.05 0.44 0.89 0.07
≥ 60,000 * * * * * *
No. self-reported co-
morbid conditions
0 * * * * * *
1 0.04 0.99 0.05 0.05 0.99 0.05
2 0.03 0.99 0.05 0.03 0.99 0.05
≥ 3 0.01 1.00 0.05 0.01 1.00 0.05

* - reference group∣∣∣Biasq√
Vq

∣∣∣: standardized bias, Section 6.1.3

CI. overlap: confidence interval overlap, (6.6)

Cov. Err.: estimated error in coverage of nominal 95% confidence interval, (6.7) & (6.8)
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Table B.5: (Continued) Data utility for parameters of the multinomial logit model for
patient decision role.

Characteristic Patient Physician∣∣∣Biasq√
Vq

∣∣∣ CI.
over-
lap

Cov.
Err.

∣∣∣Biasq√
Vq

∣∣∣ CI.
over-
lap

Cov.
Err.

Prediag. health status
Quartile 1 * * * * * *
Quartile 2 0.02 0.99 0.05 0.14 0.96 0.05
Quartile 3 0.05 0.99 0.05 0.17 0.96 0.05
Quartile 4 0.02 0.99 0.05 0.04 0.99 0.05
CES-D short form
≤ 5 * * * * * *
≥ 6 0.07 0.98 0.05 0.09 0.98 0.05
Study site
Los Angeles county * * * * * *
Alabama 0.24 0.94 0.06 0.28 0.93 0.06
8 counties in North
California

0.13 0.97 0.05 0.23 0.94 0.06

22 counties in eastern
North Carolina

0.24 0.94 0.06 0.03 0.99 0.05

Iowa 0.16 0.96 0.05 0.27 0.93 0.06
5 HMOs 0.13 0.97 0.05 0.11 0.97 0.05
15 Veterans Aff. hospitals 0.52 0.87 0.08 0.24 0.94 0.06
Summary averages
Synthesized 0.60 0.84 0.11 1.35 0.66 0.33
Non synthesized 0.11 0.97 0.05 0.20 0.95 0.07
All 0.27 0.93 0.07 0.56 0.86 0.15

* - reference group∣∣∣Biasq√
Vq

∣∣∣: standardized bias, Section 6.1.3

CI. overlap: confidence interval overlap, (6.6)

Cov. Err.: estimated error in coverage of nominal 95% confidence interval, (6.7) & (6.8)
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