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FROM IDEA TO PRODUCT – TRANSLATING KNOWLEDGE  
BETWEEN THE LAB AND THE CLINIC 

Robert S. Huckman          Ayfer H. Ali 
 

ABSTRACT 
 

This dissertation is composed of three essays looking at innovation at 

Academic Medical Centers. It tries to empirically explore the problem of 

translating knowledge from the laboratory bench to the clinic and from the clinic to 

the bench.  

 

Chapter 1, co-authored with Iain Cockburn, establishes the importance of in-

house complementary knowledge in firm decision to license an invention from an 

Academic Medical Center. By using patent data to describe the technology 

portfolio of firms who look at patents and then decide whether to license them or 

not we are able to provide a description of demand in Markets for Technology. We 

show that firms license inventions that are similar to own technology portfolio 

when such similarity is measured at a broad level using International Patent 

Classes. However, controlling for such broad level proximity, firms are less likely 

to license inventions that are similar when measured at a more granular level.   
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Chapter 2 asks: “Are inventions by teams from Academic Medical Centers 

that combine cross-domain knowledge at a higher hazard of licensing than 

inventions by single domain teams?” Inventors’ educational background is used to 

assign them to the clinical (MDs) or the research domain (PhD). Contrary to our 

expectations, we find that inventions by cross-domain teams are at a lower hazard 

of licensing. Similarly, inventions by cross-domain integrated teams (at least one 

MD/PhD) are at a lower hazard of licensing than inventions by cross-domain 

distributed teams (MD and PhD on team but no MD/PhD). However, medical 

device inventions tend to be at a higher hazard of licensing if invented by cross-

domain teams.  

 

Chapter 3, co-authored with Rob Huckman, looks at how the routine clinical 

work of cardiac surgeons at Academic Medical Centers can impact their innovative 

performance as measured by quantity and quality of academic articles that they 

publish. We use the procedures that these cardiac surgeons perform every year to 

create a measure of clinical focus to understand whether diversity of work impacts 

innovation. Using a panel data with surgeon fixed effects we find that early career 

surgeons benefit from work diversity but late-career surgeons do not.  
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1. BUYER BEHAVIOR IN MARKETS FOR TECHNOLOGY: TECHNOLOGY 
PROXIMITY BETWEEN FIRM PORTFOLIO AND IN-LICENSED PATENTS 
Ayfer Ali         Iain Cockburn 

 
 

1.1       Abstract  
 

Markets for technology promise to increase productivity by better allocating innovative 

capacity across firms.  Research on the demand side of these markets, however, has been limited. 

In this paper, we use a new dataset of patents available for licensing from a large, innovative 

academic medical center (AMC) to understand the structure of these markets. Our data includes 

information on all firms that showed interest in these patents by signing a confidentiality 

agreement and later decided whether to license or not license the focal technology. Strikingly, we 

find that of the 285 patents we observe, about 30% of patents available for licensing are never 

even looked at, and of those that are looked at about 25%  are not eventually licensed. Firms with 

a higher number of own patents and older firms are more likely to take a license.  A licensed 

patent is looked at on average 3.24 times, compared to 2.23 times for patents that have been 

considered but never licensed.  

Because market safety issues are ameliorated in this market, we hypothesize that the lack 

of demand is due partly to the necessity for complementary technologies in the licensing firm. 

We measure technology complementarity by utilizing widely recognized technology similarity 

measures which calculate the overlap of International Patent Classes (IPC) between the AMC 

patent and the firm’s own patent portfolio. We find that technological proximity1 is indeed a 

determinant of the decision to in-license once a patent has been looked at. Firms are more likely 

to license technologies that are similar – i.e. “close” – to their own.  While this is true when the  

proximity measure is computed at the broader subclass level of the IPCs, we note that at the 

                                                            
1 We use technology proximity and technology similarity interchangeably.  
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more granular, main group level, conditional on subclass-level proximity, greater similarity 

between the licensee’s patents and the AMC patent makes execution of a license agreement less 

likely. This implies that “close” fit is good but “very close” fit is detrimental for in-licensing. 

Additionally, we offer improved measures for technology proximity between patent portfolios.  

 
1.2       Introduction 
 

Markets for technologies (MFT), where ideas and early stage technologies are traded, 

promise substantial allocative efficiencies and opportunities for productivity growth by 

promoting gains from trade and specialization of innovative labor (Arora and Gambardella, 

2010).  They are needed when the locus of innovation is outside of the firm best fit to 

commercialize it.  Suppliers of technology can be lone inventors or users uninterested in 

entrepreneurship, not-for-profit institutions specializing in publicly funded academic  research or 

firms that do not possess the downstream assets to commercialize their technologies in any or all 

markets (von Hippel, 1976; Bresnahan and Trajtenberg, 1995; Teece, 1986;). On the demand 

side, potential efficiencies also exist as firms with downstream assets could use their strengths by 

buying (better) technology from outside instead of (only) relying on their own R&D capabilities 

(Pisano, 1990).   

The potential benefits of markets for technologies can only be realized if they can 

efficiently provide stable matching between each idea for sale and the firm best fit to 

commercialize it (Gale and Shapley, 1962; Roth, 2008). Market design theorists have pointed out 

a few characteristics of markets that are needed for such efficiency – thickness, lack of 

congestion and safety. A market is thick if a large proportion of the potential buyers and sellers 

participate in the market. It is not congested if it gives each participant an opportunity to consider 

multiple transactions. And, finally, it is safe for participants when they choose the market over 
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other ways of transacting and reveal their true preferences without engaging in welfare reducing 

strategic behavior (Roth, 2008).  

Gans and Stern (2010) highlight the three main characteristics of ideas that can prevent 

markets for technologies from operating efficiently – idea complementarity, user reproducibility 

and value rivalry.  Idea complementarity is the notion that ideas are only useful in combination 

with other complementary ideas. Its existence reduces the number of potential matches to any 

given buyer or seller and increases the requirements for market thickness. User reproducibility 

refers to the fact that once disclosed, ideas can easily be reproduced and the buyer can then 

become a seller or not pay for the idea (Arrow, 1962). Value rivalry is the fact that value gained 

by one user may diminish as others also use the idea. User reproducibility and value rivalry can 

reduce market safety by inducing strategic behavior by the participants which would result in 

overall reduction of welfare (Roth, 2008) 

Strategy research related to Markets for Technologies has concerned itself mostly with 

market safety issues that may force firms to choose to not transact in the market or can make 

them engage in strategic behavior (Arrow 1962; Pisano, 1990; Gans et al, 2008; Anton and Yao, 

1994; Arora and Fosfurri, 2003; Teece, 1986; Zeckhauser, 1995) In this study we are able to 

abstract from market safety issues and concentrate on idea complementarity and its significance 

for market thickness.     

In our paper we explore a small market for technologies in the context of technology 

licensing from an Academic Medical Center . We observe not only all concluded licenses but 

also the population of all firms who showed an interest in our sample of patents by signing a 

confidentiality agreement, evaluative material transfer agreement or an option to an exclusive 
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license. This allows us to describe the structure of demand in a market for technology, something 

that has never been accomplished before.  

This market is special in that problems of safety and congestion in markets for 

technologies are alleviated or non-existent. Our ideas are patented providing a good degree of 

appropriability and reducing issues of reproducibility by non-licensees. Second, while our seller 

is interested in generating income its overarching goal in licensing is to see these technologies 

commercialized and serving the greater good. As a result, it is willing to negotiate with the buyer 

and price is not the reason why a license is not concluded with a potential buyer. Licensing 

officer incentives are aligned with the goal of commercialization, not profit maximizing, and 

significant resources and effort are expended in attempt to commercialize these inventions. 

Furthermore, the institution is in the business of research and patient care and will not compete 

with the licensor downstream. As a result, it has no strategic reasons to withhold invention 

related information from the potential buyer. Additionally, asymmetric information problems, 

especially with regard to uncertainty regarding the technology quality are attenuated – the 

inventions come from one of the largest and most respected research institutions in the world.  

Given the elimination of many market safety and congestion issues however, we are still 

faced with a puzzle: of our sample of 285, approximately half (47%) are never licensed and some 

85 (30%) are never even looked at.  Of those that are looked at, but not licensed, the first firm to 

look arrives, on average, 2.75 years after the patent has been filed, or approximately 4-4.5 years 

after the invention disclosure. Of those that are licensed at least once, first license occurs at 4 

years after patent filing or approximately 5.5 years from invention disclosure on average. A 

patent that has been looked at, but not licensed, gets 2.23 looks, while one that has been licensed 

has been considered for licensing by 3.24 firms and licensed by 2.02 on average.  
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In this study we show that even when market safety issues have been substantially 

alleviated, markets for technologies remain thin in the sense that a large number of inventions 

remain not only unlicensed but also never looked at. This leads us to focus on the importance of 

idea complementarity for the efficient working of these markets. We explore the topic by asking 

the following research question:  “How does technology complementarity affect firm decision to 

buy a specific idea in markets for technologies?”  

We hypothesize that a firm’s decision to license a particular invention is dependent on 

how technologically close its patent portfolio is to the patent under consideration. Using widely 

accepted measures of technological distance we show that firms license inventions that are close 

to what they own at the broad level of measurement indicating that idea and asset 

complementarity are important in their decision making process.  However, we also find that 

controlling for broad level fit, a very close fit at the more granular level of measurement lowers 

the likelihood of a license due to potentially duplicating in-house efforts.  

 

1.3       Literature Review and Hypothesis Development 

1.3.1 Markets for technologies 

The volume of trade in markets for technologies has been expanding in recent years. 

Arora and Gambardella (2010) review recent data from various sources to arrive at a market size 

of approximately $100 billion globally in 2002 which is about double their earlier estimate of 

$35-50 billion in the mid-1990s. They also estimate that the market has grown at a higher rate 

than the average global GDP growth rate in the last two decades (Arora et al. 2001; Arora and 

Gambardella, 2010, cf. Athreye and Cantwell, 2007; Robbins, 2006). Other survey based studies 
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point to the increasing importance and rate of out and in-licensing by firms (Sheehan et al, 2004; 

Zuniga and Guellec, 2008; Lichtenthaler and Ernst, 2007; Tsai and Wang, 2009) 

There is some evidence, however, that not all technologies supplied get licensed. Using 

PatVal survey data Gambardella et al. (2007) show that 11% of firm-owned patents in the sample 

are licensed but another 7% remain unlicensed even when the firm wants to license them.  While 

there is no information on firm effort in the licensing process, patent quality differences explain 

the firm’s willingness to out-license a particular patent but not whether a license actually occurs. 

This leads the authors to speculate that it is market and organizational inefficiencies that result in 

such a licensing shortfall. The result is consistent with other findings that firms are unable to find 

interested parties with whom to even start negotiations in 75% of the cases in which they want to 

license and are able to conclude licenses for only 4% of the technologies they wish to license. 

They often cite high search costs for licensees as the reason (Razgaitis, 2004). 

1.3.2 Demand in Markets for Technologies 

There is little information regarding firms’ demand for outside technologies in the 

literature. The few available studies are mostly based on survey data on firm practices rather than 

specific licenses, use different definitions of in-licensing and are difficult to generalize by 

geography or industry. Using data from a survey on low and medium technology firms from 

Taiwan, Tsai and Wang (2009) find that 95% of the 753 firms in their sample licensed 

technology from outside. Rate of in-licensing also appears to differ by country. While attitudes 

towards in-licensing are similar between Japan and the UK, for example, the incidence of in-

licensing is higher in Japan where companies also search more for technology to in-license 

(Pitkethly, 2001).  

6



 

Some studies imply passivity on the demand side of these markets and show that the 

party that initiates the licensing contact is often the supplier (Atuhanegima and Patterson, 1993).  

Ford (1988), however, provides statistics without a source that claim that 66% of technology 

sellers and 45% of technology buyers report that the buyer is the one that initiates the technology 

deal.  Those who in-license seem to value the technology that they have acquired. In a survey of 

firms using university technology, Thursby and Thursby (2004) find that more than half of the 

respondents use university technology in new product development and 23% note that in-

licensed patents from universities were crucial in the development of their products.   

A large portion of the research on the demand side of markets for technologies has 

focused on the firm’s decision to “make” or “buy” outside technologies and the factors that 

influence that decision. Pisano (1990) shows that the firm’s choice of external or internal 

sourcing of R&D depends on considerations of market safety, specifically concerns of 

appropriability and future hold up due to small-numbers bargaining. Firms are more likely to 

acquire external technology to shorten product development times and gain competitive 

advantage especially in fragmented IP-regimes (Atuahenegima, 1993; Kurokawa, 1997; 

Cockburn et. al 2010). 

Other studies however show that the success of a strategy of external technology 

acquisition depends on in-house R&D investment indicating that the two are complements rather 

than substitutes (Cassiman and Veugelers, 2006; Lowe and Taylor, 1998; Tsai and Wang, 2007). 

Internal R&D is necessary not only to be able to absorb technologies that the firm has decided to 

acquire but also to monitor the state of the technology outside the firm’s boundaries and evaluate 

potential technology acquisitions (Rosenberg, 1990; Cohen and Levinthal, 1990; Arora and 

Gambardella, 1994).  
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With our study we contribute to this literature by describing the structure of demand in a 

market for technologies. We use a new dataset of patents from an academic medical center and 

observe all instances when a firm showed an interest in a technology and its decision to conclude 

or not a license for that technology later.  While the supply side studies have focused on the 

importance of the product and its attributes to understand this market, our demand-side focused 

study lets us also explore firm characteristics in the licensing decision. Specifically we are 

interested in the importance of technology complementarity in firm decision making. We are 

able to look at complementary technological capabilities in the firm in a very concrete way by 

observing the patents that the firm already owns and their characteristics.  This allows us to 

answer the question: “Does the technology developed inside the firm influence its decision to 

acquire a specific outside technology, given interest in the technology.”  

1.3.3 The Importance of Complementary Technologies 

The importance of complementary assets in firms’ technology acquisition decisions has 

been explored before (Teece, 1986; Pisano, 1990). Two studies by Killing (1978) and Caves et 

al. (1983) look at how in-licensed technologies relate to a firm’s current products and 

capabilities. They provide descriptive statistics on the type of technologies that firms in-license 

using a convenience sample of 34 licensee companies in the UK and Canada with over 80 

licenses in 1974. They find that 22 percent of the licenses were concluded to strengthen the 

firm’s existing products and 70 percent complemented their current capabilities. However, they 

only rely on licensee survey reports rather than a technology proximity measure and their 

definition of proximity relates to the products and firms’ capabilities rather than the firms’ 

existing technologies.   
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Little is known about the influence of a firm’s technology portfolio in acquiring 

innovation from outside.  Related studies have looked at the importance of technological 

proximity for firms’ diversification decisions. Breschi et al. (2003) find that a firm’s 

diversification decision is path dependent and firms expand into related fields.  Building on the 

resource based view of the firm, Silverman (1999) also shows that firms diversify into areas 

where their existing technological resources are most relevant.  Furthermore, in the context of 

strategic alliances, firms whose technologies are more similar to their alliance partners’ prior to 

the alliance tend to “absorb capabilities” from their partners (Mowery et al., 1996).  In fact 

technological proximity has been used to quantify spillovers (Jaffe, 1987).   

In a recent study, Laursen et al (2010) assume that firms license technologies that are 

close to what they currently hold and show that firms with a more diverse current portfolio of 

technology, implying higher “monitoring” and "assimilation” capacity, will license technology 

that is further away from their current in-house expertise. However, while shedding some light 

on the importance of absorptive capacity for in-licensing, their study uses a control group of 

firms that do not license at all in the period under study. This could lead to significant selection 

problems. Firms that never showed an interest in licensing may be different at some unobserved 

level. Our sample, in that sense, provides a significantly better way of understanding the 

relationship between firms’ own technology and what they eventually license as we observe both 

firms that license and those that show an interest but later withdraw from the market.   

Based on findings above that firms may be more willing to diversify into technologically 

closely related areas, we propose the following hypothesis:  

H1: Firms are more likely to license inventions that are close to their own technological 

portfolio, ceteris paribus.  
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We expect that a firm is better able to know about available technology in an area that is 

closely related to its current knowledge base, reducing search costs for outside inventions. 

Furthermore, once such inventions are identified, it will be less costly for the firm to correctly 

evaluate it and assimilate such outside technology into its current portfolio (Cohen and 

Levinthal, 1990; Arora and  Gambardella, 1994). The firm’s existing technological capabilities 

will then help it extract the most value from it (Silverman, 1999). In this study we don’t witness 

a firm’s search for new technology since we only observe firms in the “evaluation” stage. 

Additional data, in terms of commercialization outcomes will let us observe the process of 

“value extraction” from the firm’s current resources as well.  

More importantly however, technology similarity is necessary because ideas are often 

only useful with other ideas (Gans and Stern, 2010). Heller and Eisenberg (1998) argue that 

especially in biomedical research, inventions are so interdependent that when intellectual 

property rights are held by different entities, commercialization can effectively be blocked in 

case of coordination failure. Such idea complementarity makes inventions only relevant to a few 

buyers which further lowers chances of a match in the marketplace. As such, the existence of 

complementary ideas evidenced by technology similarity will be crucial in a firm’s decision to 

license an invention.  

Licensing ideas complementary to the ones that it already owns can greatly benefit a firm 

that is developing new products. However, we expect that technologies that are very similar to 

what the firm owns in the sense that they can be substitutes to in-house developed inventions will 

not be licensed. Let’s assume that the quality of the in-house and the in-licensed technology are 

similar and perfectly observable to the firm. The firm has already incurred significant costs for 

its version of the invention and expects to receive the full amount of the future revenue stream. If 
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it decided to in-license a very similar technology, however, it would most likely pay future 

royalties to the licensor. As a result, it would choose not to license.  

The difficulty of evaluating early stage technologies and the costly transfer of tacit 

knowledge associated with outside inventions will further lower the chances of a firm licensing 

even if the quality of the outside invention was better  (Polanyi, 1966; von Hippel, 1994; 

Agarwal, 2006). Furthermore, it is possible that many firms have incentives that reward company 

scientists for advancing their own technology to the product stage rather than in-licensed 

technology. Those same scientists are most likely the ones who are evaluating outside 

technology as well. Behavioral issues such as the so-called “not-invented-here” syndrome which 

may cause scientists to evaluate outside inventions as inferior to their own have also been 

pointed out as potential reasons for preferring in-house technologies  (Katz and Allen, 1982).  

This leads us to our second hypothesis:  

H2: Firms are less likely to license inventions that are technologically very close (i.e. 

potential substitutes) to their own technology portfolio, ceteris paribus.  

We are able to distinguish between H1 and H2 by using an improved version of a widely 

accepted measure of technological proximity - the cosine, i.e. the uncentered correlation between 

the technological classes of a focal patent and the firm patent portfolio (Jaffe, 1986). Instead of 

USPTO patent classes however we use International Patent Classes that have a nested structure 

and allow us to measure proximity at different levels of granularity. As suggested by previous 

scholars, we also improve on proximity measures by using all of the IPC codes assigned to a 

patent rather than the main IPC code (Benner and Waldfogel, 2008). 
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1.4 Data  

1.4.1 Research Setting 

The main dataset for our study comes from the technology licensing office (TLO) of a 

large Academic Medical Center. It contains 285 patents filed and granted from 1980 to 2008 and 

the associated 307 agreements -- options, confidentiality agreements or licenses -- signed with 

interested firms for those patents between 1980 and 2010. These patents are the result of 

employee research and invention. Each employee or affiliate is required to assign to the AMC all 

rights to all intellectual property developed while at the institution or with funds administered 

through the institution.  

The invention commercialization process starts with an invention disclosure from which 

a patent is filed which then is licensed through the TLO. When an employee thinks she has 

developed an invention worth protecting she files an invention disclosure form with the TLO. 

The invention is then reviewed by a TLO officer with expertise in her subject area who takes on 

the case. After further consultations with the inventor and further research with respect to the 

invention’s commercialization potential a decision is made on whether to file a patent or release 

the invention into the public domain. An outside legal firm is then retained to do a patentability 

search and do the patent filing. As soon as the patent process has been started, the TLO starts 

looking for potential licensees who will develop their technology further and bring it to market.   

There are a few ways in which potential licensees can learn of the invention and these 

have changed over the years based on new technologies and TLO learning. Brief, non-

confidential descriptions of the invention are sent to potential licensees by the case manager after 

market and industry research. The same description is put on the TLO website where firms can 

search for it. Firms can also find out about new research results and inventions through research 
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articles and conference presentations by the inventors, through published patent applications or 

granted patents and of course through direct contacts with the inventor.  

Once a firm decides it is interested in a technology, representatives sign a confidentiality 

agreement (CDA) which gives them access to the confidential description of the research which 

often includes the patent application and sometimes the invention disclosure as well.2 The patent 

application contains valuable information about the invention and the intellectual property rights 

(IPR) protection strategy.  The signing of a CDA does not involve a fee and does not provide an 

exclusive right to the technology. In fact CDAs with multiple firms at the same time are 

common. It does however allow the TLO to know of a firm’s interest.  

Once a CDA has been signed, the firm may return to explore the technology further and 

reserve the right to license it by signing an option. Options involve some (albeit minimal) fees 

and often a requirement that the optionee reimburse unreimbursed past and current patent filing 

and maintenance costs. Amounts can be negotiated and waived if the firm is cash-restrained 

which is sometimes true of startups. Options normally last less than a year but can be extended 

for up to an additional year given the right reasons.  

A firm can bypass the option stage and decide to sign a license for an invention. Licenses 

can be non-exclusive, exclusive in field (e.g. diagnostic uses only, a specific treatment area), 

exclusive, co-exclusive and end user licenses. Licenses usually, but not always, require the 

licensing firms to reimburse all or a portion of patent expenses and give them the right to 

participate in decision making on patent prosecution.  Licenses provide revenue to the TLO 

through a combination of a license issue fee, license maintenance fees, milestones payments, 

                                                            
2 Note that the American Inventors Protection Act granted the USPTO the right to publish patent applications after 18 

months from first filing (priority) date. However, it also gives the right to the applicant to request that the application not be 
published  “but only if the invention has not been and will not be the subject of an application filed in a foreign country that 
requires publication 18 months after filing (or earlier claimed priority date) or under the Patent Cooperation Treaty” - 
http://www.uspto.gov/patents/resources/general_info_concerning_patents.jsp - accessed on November 23, 2011 
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percentage of sublicensing fees and royalties. License terms are quite standard based on the 

technology type but negotiation and variation are possible. Licenses also require that a firm not 

shelve the technology it is licensing and in addition to maintenance fees and milestone payments 

may ask for due diligence reports and other evidence of development efforts.  

The TLO works with the licensing firm throughout the life of the patents licensed. An 

exclusive license can be terminated by the firm for any reason and may be relicensed to another 

firm for development. Amendments can be signed to change due diligence terms or royalty 

agreement.  Sublicenses may be concluded with firms that will develop the invention further or 

will sell a product in a different market. The TLO does not routinely terminate licenses but if due 

diligence milestones are not met has the right to.  

It is important to note that the licensor in this process is a non-profit institution that does 

not have the willingness or the ability to compete downstream with potential licensees. One of 

the explicitly stated goals of the licensor is to see that the technology serve the greater good by 

being commercialized. As a result, the licensor is interested in maximizing not only the revenue 

from a potential licensing deal but also gets utility from seeing the technology brought to market 

and curing human disease or facilitating further research.  TLO officers have incentives aligned 

with those goals.  

As is the case with most TLOs, if a conflict occurs between academic and commercial 

goals, academic goals take precedence.3  In fact, in all licenses the hospital retains the right to 

practice the invention for research and educational purposes. When a government funded 

                                                            
3 Please see a presentation by an officer from another TLO (MIT) for standard TLO goals,  http://web.mit.edu/e-

club/www/presentations/tlo.pdf 
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research is licensed, the government also gets a non-exclusive royalty free (NERF) right to the 

invention and retains march-in rights in service of the greater good. 4 

What this implies for our dataset is that when a license does not occur, it is almost never 

due to the parties not being able to reach an acceptable price – i.e. negotiate terms. It is because 

the potential licensee decided that it was no longer interested in the technology for reasons other 

than price. This is also seen through qualitative data in the case files - comments by officers 

about why the potential licensee may not have returned for a license after signing a CDA never 

list price as the reason. Of course, at the very least, to break even the TLO would like to get 

reimbursed for incurred patent expenses. The utility of the AMC is subject to the costs of 

patenting, licensing and infringement and license monitoring.   

1.4.2 AMC Data  

Our data contains all the solely AMC-owned patents that were filed since 1980, after the 

Bayh Dole act, and were granted by mid-2008.  Patents that are jointly owned with other 

institutions such as universities or companies were excluded as licensing or development activity 

by the co-owner is not observed in such cases. Patents that are the result of for-profit sponsored 

research are similarly excluded because sponsorship by industry almost always results in an 

automatic exclusive option to all the patent rights and in some cases an automatic license with 

pre-agreed terms which takes the patent off the market. If the sponsoring company did not desire 

a license after the invention disclosure was made, then that is a signal to other potential licensees 

that the new technology may not be of high quality since the sponsor would have better private 

information than a potential licensee that was not involved. In either situation, these patents 

                                                            
4 http://www.uspto.gov/web/offices/pac/mpep/documents/appxl_35_U_S_C_203.htm - accessed November 24, 2011 
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would not have been directly comparable to the rest and useful for our analyses. This leaves us 

with 285 patents available for licensing.  

The data also includes all the agreements that were signed with for-profit institutions that 

have the ability to commercialize an invention protected by a patent. These include 

confidentiality agreements (CDAs) which indicate that a company has shown interest in a certain 

patent, material transfer agreements (MTAs) for evaluation of biomaterials or prototypes, options 

to a license for a certain period of time, end-user licenses, non-exclusive licenses, exclusive 

licenses, sublicenses and patent assignments.  

A unique agreement per company and patent was selected if multiple agreements were 

signed within 5 years of the first agreement with the same company. For example, if a company 

signed a confidentiality agreement, then followed up with an option and finally signed an 

exclusive license for the same patent, only the last was selected.  If a company signed a CDA but 

not a license and then 6 years later signed a license, we included both the original CDA and the 

license as separate agreements. Similarly, amendments to agreements were not included unless 

they included additional patents and in that case were only included for the new patent.   

For our purposes, agreements were divided into two categories – “deals done” and “deals 

not done.”  If a license was signed, the agreement was considered a “deal done” and this 

included exclusive and nonexclusive licenses and sublicenses. Agreements were classified as 

“deals not done” if they indicated an interest in the patent through a CDA, MTA or option but no 

license was concluded.  This resulted in 307 agreements and overall 600 patent–agreement pairs 

since many agreements have multiple patents under them and many patents have been looked at 

and licensed multiple times.  
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1.4.3 Firm Data 

Each firm’s technology profile at the time of agreement signing was compiled using 

patent data.  We matched licensee names to patent assignee names conducting assignee name 

disambiguation by manually going through more than 450 000 company names and by searching 

for common misspellings.  This is important as company names are not standardized at the 

USPTO. For example, Microsoft patents can be under Microsoft, Microsoft Inc., Microsoft Inc, 

Micosoft (misspelling) and direct matching to Microsoft Inc. would exclude multiple patents 

under the other names. In addition, certain companies patent under subsidiary names. For 

example Zeneca Plant Science and Zeneca Pharmaceuticals are part of the same company and we 

assume that patents assigned to Zeneca Plant Science are also available for use to Zeneca 

Pharmaceuticals and vice versa without a license.   

Alternative automated ways for name matching are available and we used the ‘soundex’ 

function that assigns a string consisting of a letter and numbers to words based on how they 

sound.  We also tried matching using the SAS ‘COMPGED’ function which measures the “edit 

distance” between two strings – i.e. the number of deletions, insertions, or replacements in the 

characters of a word required to arrive at the observed word.5 In our case, both were inferior to 

manual matching as they excluded many relevant observations and included irrelevant ones.  

For the purposes of this paper, we defined a company’s technology position as a stock of 

patents filed before the time of agreement signing and did not use a depreciation factor for older 

patents. There are a few studies that show that learning depreciates over time (e.g. Benkard, 

2000) and company focus may change and lead to a different technological expertise now from 

                                                            
5http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#p1r4l9jwgat

ggtn1ko81fyjys4s7.htm accessed October 1, 2011. 
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the one many years ago. However, it is not clear how long it takes for such technological 

expertise to change or expire.  

One way to determine how long certain technological expertise is relevant for the 

company is to look at patent validity – if the patent is still valid, then the firm still has that 

technological ability. However, data limitations prevent us from finding out what patents are still 

‘alive’.  Computation of patent validity at a point in time is impossible without the availability of 

patent priority data which determines patent term. We have manually gathered that data for 

AMC patents but we don’t have such data for firm patents. In addition, not all patents are 

maintained to the end of their term. The assignee needs to pay a certain fee to keep a patent alive 

3.5, 7.5 and 11.5 years after it is granted.6 Such payment data is also not available in an 

aggregated form.  Furthermore, some patent terms are adjusted because it takes the USPTO 

longer to review them. That information is not available in an aggregated form, either.  

One difficulty with determining patent portfolio size and content for the companies that 

are party to these agreements is that most of them are in the pharmaceutical and biotech industry 

which have seen many mergers and acquisitions in the last few decades. We could not find data 

on such M&A activity until 1992 and the post-1992 data is not complete for all of the companies 

so was not included in this version of the paper.7 The available data is often difficult to interpret 

as many companies sell or acquire specific plants or businesses such as the “vaccine business” or 

their “nutritional business” but it is unclear what patents are licensed or sold off with these 

divestitures and acquisitions. The only exceptions to the exclusion of M&As from our dataset are 

the top 10 pharmaceutical companies that have seen multiple large mergers and acquisitions in 

                                                            
6 This term can be extended to 4, 8 and 12 years with the payment of a fine in the six months between 3.5th 

and 4th anniversary.  
 

7 For post-1992 we were able to find some data through Lexis-Nexis Company Dossier service but the data 
was not complete, especially for non-US firms 
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the 1990s – 2000s. Acquisitions of large companies or mergers between two or more large 

companies were tracked using the web, mainly through company history pages, and verified 

through Lexis-Nexis Company Dossier service for M&As after 1992.  Examples of these include 

the acquisition of Hoechst by Aventis, the merger of Glaxo Wellcome with SmithKline Beecham 

and so on.  

It is important to note at this point that four companies and two joint ventures with eight 

agreements and twelve patent-agreement observations were excluded because the company data 

was not reliable.  Regarding the two JVs, it was not clear what kind of parent company patents 

and knowledge they had access to.  Considering them completely unrelated to the parent 

companies was probably not correct either. All 4 of the remaining companies are highly 

diversified, with over 30,000 patents each and two of them have a pharmaceutical or medical 

device business but the majority of their business is in other industries such as electronics, 

manufacturing, household goods, aviation, and finance.  One of these companies was so large 

that it had completed 982 acquisitions and divestitures in the 18 years since 1992. Another one 

had a very common name and it was not possible to disambiguate the name from the other 

companies in the patent assignee file with the limited resources we had. By mistakenly including 

patents of unrelated companies, we would mischaracterize the licensee’s technological position.  

Including these diversified companies would have made them not comparable to the other 

companies and would have distorted our results. This brought down our sample size to 295 

agreements and 588 patent-agreement observations.  

1.4.4 Patent data 

We use patent data to characterize the technology position of a company and the specific 

AMC technology (Jaffe, 1987; Silverman, 1999).  It has been noted that patents are an 
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incomplete indicator of a firm’s stock of knowledge as they don’t account for expertise that is 

not protected by a patent. However, multiple studies have used patent data as a proxy for a 

company’s knowledge base using the argument that measures based on knowledge protected by 

a patent are highly correlated with uncodified and unpatented knowledge (Silverman, 1999; Patel 

and Pavitt, 1994; Narin et. al., 1987).  

Patent data have an advantage in that they are reliably available since 1963 and contain 

information that can be used to characterize the specific inventions in various ways. The most 

important information for our analyses is the technology class which has been assigned to the 

patent. Unlike many other papers that have relied on the USPTO classification system, we use 

the International Patent Classification (IPC) codes assigned to our patents by the EPO as found 

in the PatStat database.8 We also use all of the patent IPC codes rather than assigning the first 

one to be the ‘main’ IPC code. Since the EPO itself does not assign a main IPC code we do not 

worry about weighting one IPC code more than another (Benner and Weldfogel, 2008). 

The IPC codes are different from the USPTO classification codes in multiple ways.  Most 

importantly, each IPC code has five nested levels of detail from broad to detailed –  section, 

class, subclass, main group and subgroup level. USPTO classification provides only a class and a 

subclass. Furthermore, IPC codes divide the technology spectrum into finer slices - at the IPC 

subclass level which is comparable in the level of detail to the USPTO class level: there are 640 

unique subclasses while the USPTO has only about 400 unique classes (Hall et al. 2001, WIPO 

website9).  This nested quality is important for our analyses because it lets us measure 

technology fit at various levels of detail. Furthermore, with the exception of the finest level of 

                                                            
8 Pat Stat website at:  http://www.epo.org/searching/subscription/raw/product-14-24.html, accessed January 

2012 
  

9 WIPO website, FAQ, http://www.wipo.int/classifications/ipc/en/faq/index.html accessed Sept 9, 2011 
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measurement – the subgroup level (which we don’t use) - patent IPC codes are not laterally 

nested.10 USPTO patent classes are often laterally nested at the subclass level.  

Another important piece of information that is available on a patent are the citations a 

patent makes to other patents and the citations future patents make to a focal patent.  In addition 

to providing links to other patents such citations are used to determine whether a patent 

represents a pioneering or more incremental invention. Unlike citations in academic articles, the 

citations to previous patents, also referred to as prior art, delineate and limit the scope of a 

patent. If a patent cites a prior patent, it means that it cannot lay a claim to the invention in the 

previous patent. Normally, the more prior art a patent has, the more incremental it is considered 

and the more developed the technological area to which it belongs. Conversely, fewer backward 

citations imply that a patent is pioneering. Similarly, forward citations are used to determine the 

importance of the patent and are correlated with the value of inventions (Trajtenberg, 1990). If a 

patent is cited by numerous patents, it indicates that many inventors are building on the original 

invention and hence the invention is more significant (Hall et al., 2001). Furthermore, while only 

authors can add citations to papers, patent citations are added to the patent both by the patent 

filer and the patent examiner.   

In our paper we use count of patents cited by the focal patent as one of our explanatory 

variables. The use of forward citations of the focal patent, however, presents some difficulties. 

To receive forward citations a patent has to be published and the longer a patent has been 

published the higher chance it has of being cited (Mehta et al., 2001).  Through analysis of the 

                                                            
10 What this implies is that two patent IPC codes that appear next to each other are not nested within each 

other at t any of the levels except the subgroup level, which we do not use. For example A61F 2/04 is a subset of 
A61F 2/02 at the subgroup level. However, A61F 2 and A61F 3 (at the main group level) are not nested within each 
other.  See at 
http://www.wipo.int/ipcpub/#refresh=symbol&notion=scheme&version=20120101&symbol=A61F0002940000, 
accessed January 11, 2012.  
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overall US patent data Hall et al. (2001) show, that the average patent receives just one half of its 

lifetime citations by the tenth anniversary of its publication. About 48% of our hospital patents 

have been granted since 2000 and as such have likely not received even 50% of their expected 

lifetime citations (Hall et al., 2001). Our data is right censored - the last patent in our dataset was 

granted in July 2008 and has had only two years to get cited. Because we can’t compare total 

citation count, we construct a variable that measures ‘citations per year.’ The cites per year 

variable makes patents of different ages comparable with regards to their forward citations but at 

the expense of making a strong assumption that the distribution of forward citations is uniform 

with regard to time. It would, for example, underestimate the importance of younger patents that 

receive fewer citations early but become very important later on.  

A combination of patent citation and patent technology class information has led to the 

creation of other, composite measures to describe patents.  Two important ones are patent 

originality and patent generality. The patent originality measure uses the sum of the squared 

shares of cited patents that belong to a certain technology class to create a Herfindahl-Hirschman 

index (HHI) over all technology classes. The measure is 1 minus that HHI. Since we use multiple 

technology classes per patent, our measure is modified to include not the share of patents in each 

class but the share of  patent IPC codes assigned to the cited or citing patents. The fewer 

different IPC codes the cited patents belong to, the smaller the originality measure and less 

original the patent is considered to be. For example, if a patent that belongs to organic chemistry 

cites patents that are in software, organic chemistry and aviation, that would be considered a 

more original patent than one that cites only patents in organic chemistry (Hall et al., 2001).11  

The generality measure is created in a similar way – only this time, forward cites are used 

and the HHI is created over the squared share of each IPC code summed over all citing patent 
                                                            

11 We used the correction in Hall et al., 2001 for the calculation of these measures.  
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IPC codes and subtracted from one.  A focal patent that is prior art to patents in multiple 

different classes is considered more general as it is a platform for multiple technologies in 

different fields. An example of a very general patent here could be an invention in molecular 

biology that has been cited by patents in classes as diverse as plants, drugs, electricity, 

manufacturing and electronics. Compare that to a less general molecular biology patent that is 

only cited by other patents in the molecular biology field (Hall et al., 2001).  The generality 

measure has a serious shortcoming because most patents have not received all of their future 

cites at the time of observations and hence their generality may be underrepresented.  

Another composite measure created from patent statistics is the patent scope. It is defined 

as the number of IPC codes assigned to a patent. The more IPC codes a patent has, the broader 

its scope is considered to be. It has been shown to determine patent valuations by venture 

capitalists and patent licensing outcomes (Lerner, 1994; Gambardella et. al., 2007; Decheneaux 

et al., 2008)  

1.4.4.1 Technology Similarity/Proximity Measures 

The main independent variables that we construct using patent data are our technology 

proximity measures between the focal AMC patent(s) and the patent portfolio of the interested 

firm. For this purpose we use the cosine measure pioneered by Jaffe (1986) but with 

modifications that utilize all IPC codes instead of the main USPTO patent class and at different 

levels of detail of the IPC code - subclass and main group.  

The cosine measure calculates the angular distance between two vectors that characterize 

the firm’s and the AMC patent’s position in a technology space defined by patent classes.  For 

this purpose we create a technology position vector for a firm’s portfolio Fi=(Fi1, Fi2, Fi3… Fik), 

where each ‘entry’ is the share of a firm’s patents (in our case IPC codes since one patent may 
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have multiple IPC codes) in a certain technology class k. A technology position vector, Fj  is also 

created for the specific hospital patent under the firm’s agreement. The angular distance between 

the two vectors is then the measure of technology similarity and it ranges between zero and one, 

one being a perfect fit and zero being no overlap in technology.  It is calculated using the 

following formula:  

௜ܲ௝ ൌ
௜ܨ

ᇱܨ௝

ටሺܨ௜
ᇱܨ௜ሻሺܨ௝

ᇱܨ௝ሻ
, 0 ൑ ௜ܲ௝ ൑ 1 

For companies that did not have patents filed before the date of the agreement the cosine 

measure is not defined. We replace the proximity measure for such observations with zeros 

indicating no fit and run results with and without replacement.  We also provide descriptive 

statistics and models where we exclude observations for which the cosine measure is not defined.  

We modify the cosine measure further by computing a “within section” cosine measure 

constructed based on the above formula, except we exclude all IPC codes in the firm patent 

portfolio which do not match the AMC focal patent IPC codes at the section levels. For example, 

if the AMC patent under consideration has the following two IPC codes A61K 9/12 and C07B 

12/07, we only keep the firm IPC codes that are in the A and C sections deleting IPC codes in B, 

F, G and H. This measure looks at proximity of the closest part of a company’s technology 

portfolio to the focal patent. Again firms that are left with no IPC codes that are in the two 

sections will get a cosine measure of zero.  

Both the broad and the within section cosine measures are calculated at the group and 

subclass IPC code level. However, in our models we use the regular cosine measure at the 

broader level and the within section cosine measure at the more detailed, main group, level. Our 

results do not change in direction or magnitude if we replace the within-section cosine measure 
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at the main group level with the regular cosine measure at the main group level (i.e. without 

excluding the sections that do not match the AMC patent IPC code sections) 

1.4.5 Control Variables 

For each patent – agreement pair, we also calculate a technology age measure which is 

the time in years from the hospital patent’s patent priority date to the agreement date. The 

priority date is the date on which the first patent on a certain invention disclosure was filed with 

the USPTO. This original patent can then be divided into multiple patents if the USPTO deems 

that it contains more than one separate invention. Continuation patents can be filed from the 

original patent and continuation-in-part patents, in particular, can add some new matter. 12 Since 

the priority date is closest to the invention disclosure date, technology age calculated with the 

priority date rather than patent filing date is an indication of how mature the technology is. 

Technology risk is more likely to be resolved for older inventions as inventors or others have 

developed it further to bring it closer to market.  

An indicator variable for device was generated by looking through each patent’s claims. 

Claims of an apparatus with human body contact or some sort of an implant were marked as 

devices. The criterion was whether the invention would have required an approval by the FDA as 

a device in order to be used in the market. For example, an apparatus for growing cells would not 

be considered a device but rather a research tool. Devices include stents, artificial joints, 

catheters, surgical instruments, MRI machines and so on.  

To describe the technology further, we used indicator variables for the IPC code sections 

to which the patent belongs. Since many patents have multiple IPC codes that sometimes  belong 

                                                            
12 Note that the priority date is NOT the same date as a provisional patent date.  For more information on 

priority dates, please see http://www.yale.edu/ocr/pfg/guidelines/patent/continuation.html, accessed November 29, 
2011 
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to different sections, we made them into mutually exclusive categories i.e. patents in section A 

only, patents in section A and C only and so on. Most of our patents are in section A – “Human 

Necessities” which includes class A61 – “Health; Life Saving; Amusement” which includes most 

drugs and medical devices. The next important section in our data is section C – “Chemistry; 

Metallurgy” which under classes C07 and C12 includes organic chemistry and biochemistry, 

molecular biology and genetic engineering.  Section G – “Physics” includes patents related to 

imaging, ultrasound and measuring.  The omitted category in our models is “C&G only” with 22 

observations and 4 additional patents that include IPC codes in B or F section.    

We also compute a few firm level variables based on patent measures. Because many of 

our firms, especially those that appear multiple times in our data undergo mergers and 

acquisitions, we are not able to include firm fixed effects. Furthermore, even though some firms 

have multiple agreements, most firms have only one or two. Our main concern in controlling for 

firm differences was to separate the old pharmaceutical companies whose expertise is mostly in 

small molecule drugs from the biotechnology companies that are specialized in molecular 

biology.  To be able to do this, we created two variables – R&D age at time of agreement and 

total number of granted patents applied for before time of agreement. The R&D age is defined as 

the time from the first filing of a patent by the firm to the time that it signs the specific agreement 

with the AMC. Unfortunately, our patent data goes only to 1963 so big pharmaceutical firms that 

have been in existence since the 1800s and licensed a technology in 1990 will be at a similar age 

with a firm that was created in 1980 and licensed a technology  in 2007. Similarly R&D age is 

not defined for firms with no patents.  

Another firm level variable that is better at distinguishing the old pharmaceutical 

companies from the young biotechnology companies is the number of firm patents at the time of 
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agreement. Since old pharmaceutical companies have undergone multiple mergers, they have a 

substantially larger number of patents than young biotech firms. In that sense the “number of 

patents” variable is a proxy for both size and age.  Because there is a high correlation between 

R&D age and number of patents, we only include the number of patents variable in our models. 

Because we expect non-linear effects as well, since this variable’s range is very high, we also use 

its square in our analyses. 

We are interested in how the influence of proximity on licensing varies with age and size 

– i.e. with the type of the firm.  Because we have two proximity measures, interaction effects 

will be difficult to interpret. For that reason, we separate our firms in three groups based on age – 

early startups, growth startups and old companies where early startups will have filed their first 

patent between 0 and 10 years before an agreement was signed with our AMC.  Mature startups 

will have filed their first patent between 10 and 20 years before the agreement and old firms 

would have filed their first patent more than 20 years before the agreement.  Based on size, we 

split the firms in two groups – those that have fewer than 500 patents and those that have more 

than 500 patents. Those that have fewer than 500 patents are generally biotech or medical device 

firms. The other group contains all the small molecule pharmaceutical companies.  

1.4.6 Descriptive Statistics 

1.4.6.1 Patent Level Descriptive Statistics  

 Descriptive statistics for the patent level dataset are included in Tables 1.1a and 1.1b. The 

patents are separated into three different groups – those that were never looked at, those that 

were looked at but were never licensed and those patents that were licensed at least once. 

Significance levels of two tailed t-tests of comparisons between the first two groups and the 

“licensed” group are indicated next to the mean of the variable in the respective group. For 
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example, the stars next to the mean value of the variable “Number of Cited Patents” in the 

“Never Looked At” group indicate that the difference of the means of the “Number of Cited 

Patents” between the “Never Looked At” and “Licensed At Least Once” groups is statistically 

significant. 

The cohort variables in Table 1b that group patents into cohorts based on their priority 

date show an interesting story– 88% of the patents that were looked at but not licensed have a 

priority date after 1995 compared to only 40% of those that have never been looked at and 25% 

of those that have been licensed. It is important to point out this can influence how the rest of the 

variables are distributed across group. This observation is not surprising because we expect that 

patents that have been only recently filed pose a higher risk for commercialization as the 

technology has not yet been tested and proven. We expect that the probability of licensing 

increases up to a certain patent age and then decreases as the remaining patent life becomes too 

short for high investments to be recovered.  

The “lead inventor experience” variable is defined as the number of inventions that the 

inventor has previously disclosed and patented at this specific technology licensing office (TLO). 

It is a proxy for the inventor’s experience both innovating and navigating the licensing process. 

Many firms can view an inventors’ previous experience as a signal of the quality of the invention 

and its commercialization potential. Furthermore, a larger number of inventions can imply 

stronger and broader IP rights if the inventor has worked on similar problems before and his 

previous inventions are related to the current ones.  We note that, as expected, the “lead inventor 

experience” variable is smaller in the “never looked at” group than in the licensed group and this 

difference is statistically significant. The patent scope variable, defined as the number of unique 
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IPC classes on each patent (Lerner, 1994) is also intended to measure breadth of IP rights. In this 

case we find that it differs significantly between the “never looked at” and “licensed” group.  

As expected, forward cites per year and two year forward cites are largest among the 

licensed patents indicating that those are more important and more inventions build on them. 

However, the result is only statistically significant for the difference between the “Looked At, 

Not Licensed” group and the “Licensed” group.  

“Number of Cited Patents” is an indicator of how pioneering the technology is. Radically 

innovative patents would have little or no prior art because if a patent cites a previous patent, it 

means that it builds on it. We note that while 92% (140 out of 152) patents in the “Licensed” 

group cite prior patents, only 77% (66 out of 85) do in the “Never Looked At” group. This 

indicates that the more pioneering a patent is, the less likely it is to be looked at or licensed and 

the trend holds over all groups. This also implies that university technology is ahead of industry 

developments. 

This implication that firms prefer to license in more established technologies even if that 

leads to narrower IP rights is confirmed by the average age of patents cited by the AMC patents 

under the agreements. We note that of those patents that cite at least one prior work those in the 

“Never Looked At” group cite on average younger patents than those in the other groups and this 

difference is statistically significant.  

Patent originality and generality use the IPC classes to which forward cites or backward 

cites belong. As such when patents have no prior art or no forward cites as of yet, their generality 

and originality measures are undefined. As a result there are fewer observations in these 

categories. For originality, we substitute one which equals fully original for patents that have no 
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prior art. While it does not follow the formula by which originality is calculated, it follows the 

intuitive understanding of originality.  

Our generality measure depends highly on the age of the patent. Patents that are younger 

may not even have a generality measure that is defined because they don’t have citations. Older 

patents, on the other hand, are expected to be on average more general as they have more 

citations which will have a higher chance of belonging to multiple unique classes. In fact, in our 

dataset we see that while only 25% of the whole set of  patents are missing a forward citation and 

a generality measure, only 50% of the ‘looked but not licensed category’, with the youngest 

patents on average, have any forward cites. And while we see that as a whole they have the 

highest mean generality measure, this may reflect the influence of outliers in a smaller sample.  

We can’t replace the generality measure with a zero for patents that have no future citations 

because it is possible that such citations will be received in the future. As such, we don’t use the 

generality measure in most of our models since it significantly reduces our sample size.  

Interestingly, while 38% of the patents in the ‘never looked at’ group are devices, only 

29% and 20% in the ‘looked at but not licensed’ and ‘licensed’ categories respectively are 

devices, indicating that devices are much less likely to be licensed. Licensed patents also have a 

higher number of agreements associated with them – on average 3.24 compared to only 2.23 for 

the ‘looked at but never licensed’ group and this finding is statistically significant.  

1.4.6.2 Patent-Agreement Level Descriptive Statistics  

The next level of descriptive statistics is at the agreement – patent level. In this dataset 

there are 588 observations and each observation is a patent agreement pair. Each agreement is 

either a ‘deal done’ or ‘deal not done’ and some agreements contain multiple patents. Since some 
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patents also have multiple agreements on them, a patent may be in the ‘deal not done’ column 

with a certain agreement and in the ‘deal done’ column with a different agreement.  

Our most important independent variables are the proximity measures. The cosine 

measure at the subclass level defines the overall broad-level proximity between a firm and a 

patent while at the main group level it represents proximity at a finer detail.  The main group 

level cosine measure is more appropriate for “within section” fit. Both measures have a range 

between 0 and 1 with 1 indicating a perfect similarity and 0 indicating no similarity between the 

focal patent and the firm patent portfolio. We note that our cosine measure at the subclass level is 

smaller in the “no deal” group than in the “deal” group, indicating that firms license technologies 

that are closer to the technology that they own. At the cosine main group level measured within 

the AMC patents’ sections, there seems to be no difference between the two groups.  

It is important to note that the cosine measures are not defined for agreements with firms 

that have no patents as they don’t have IPC classes for matching with the AMC patent. In Table 

1.2a, we first show the mean of this variable after we replace the cosine measure with a zero 

indicating no similarity between the patent and firm technology for firms that have no patents. 

The difference of the means of the cosine subclass level between the “deal” and “no deal” groups 

is statistically significant in this sample. We then exclude those observations where the cosine is 

not defined and calculate the means without replacement. The means of the cosines are not 

significantly different between the groups any more.  

Firm R&D age differs significantly between the two groups, with older firms more likely 

to conclude licenses. In fact, it is firms that are younger than 10 years that drive this result as 

seen in Table 1.2b. They are likely to look at patents but not license. This is also true for firms 

that have no patents which could be very young i.e. startups but which could also be firms that 
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are not engaged in R&D such as contract research organizations (CROs). Similarly, firms with 

more patents are more likely to license. The results are also confirmed by the age and size 

distribution of firms in the “deal” and “no deal” groups in Table 1.2b. In fact, Table 1.2b shows 

that a larger share of the “no deal” than of “deal” observations are with firms that have no patents 

or have fewer than 500 patents.   Finally, licensing agreements (“deals”) include more hospital 

patents than “no deal” agreements, indicating that firms prefer to license large portfolios of 

patents indicating more complete intellectual property rights for related inventions.  

In confirmation of our previous result on the age of technology offered for licensing, we 

find that “deals” are significantly more likely to occur when the technology is older, indicating 

again that firms prefer more established inventions. They also prefer inventions with higher 

impact indicated by the difference between means in the two groups along the “citations 

received” variable. As expected from the patent dataset devices represent a higher percentage of 

the “deals not done.”  

The last set of descriptive statistics is at the agreement level. The difference from the 

previous table is that we are counting each agreement only once. We started with 307 agreements 

and excluded 12 firms for a sample size of 295 agreements. Again we report cosine statistics 

with replacement and no replacement. The cosine statistics at the agreement level are calculated 

over all the IPC codes over all the patents that the hospital has under the agreement. Also, at the 

agreement level we do not report a within section cosine, but rather a regular cosine at the group 

level. The results are in the same direction as the ones at the patent-agreement level but the 

differences in means between the two groups are not significant any more.  

 

36



V
ar
ia
b
le

O
b
s
M
ea
n

St
d
. D

ev
.
M
in

M
ax

O
b
s
M
ea
n

St
d
. D

ev
.
M
in

M
ax

N
u
m
b
er
 o
f 
Fi
rm

 P
at
en

ts
1
5
3

1
0
2
8
.4
3

2
7
4
0
.2
4

0
1
6
3
9
2

1
4
2

1
3
2
8
.6
7

3
0
3
9
.9
7

0
1
5
2
6
6

Fi
rm

 T
ec
h
n
o
o
lo
gy
 A
ge
 A
t 
Ti
m
e 
o
f 
A
gr
ee
m
en

t
1
5
3

1
2
.4
4

1
2
.4
0

0
4
3

1
4
2

1
3
.3
3

1
2
.7
9

0
4
6

N
u
m
b
er
 o
f 
P
at
en

ts
 o
n
 A
gr
ee
m
en

ts
1
5
3

1
.8
8

1
.2
8

1
6

1
4
2

2
.1
2

2
.1
1

1
1
9

A
gr
ee
m
en

t 
Le
ve
l C
o
si
n
e,
 M

ai
n
 G
ro
u
p
 L
ev
el
†

1
5
3

0
.2
0

0
.2
7

0
0
.9
6

1
4
2

0
.1
8

0
.2
6

0
0
.9
4

A
gr
ee
m
en
t 
Le
ve
l C
o
si
n
e,
 M

ai
n
 G
ro
u
p
 L
ev
el
 (
n
o
 r
ep

la
ce
m
en

t)
††

1
1
4

0
.2
6

0
.2
8

0
0
.9
6

9
9

0
.2
6

0
.2
7

0
0
.9
4

A
gr
ee
m
en
t 
Le
ve
l C
o
si
n
e,
 S
u
b
cl
as
s 
Le
ve
l†

1
5
3

0
.2
7

0
.3
2

0
1

1
4
2

0
.2
9

0
.3
3

0
1

A
gr
ee
m
en
t 
Le
ve
l C
o
si
n
e,
 S
u
b
cl
as
s 
Le
ve
l (
n
o
 r
ep

la
ce
m
en

t)
††

1
1
4

0
.3
6

0
.3
3

0
1

9
9

0
.4
2

0
.3
2

0
1

 †
O
b
se
rv
aƟ

o
n
s 
fo
r 
w
h
ic
h
 a
 c
o
si
n
e 
m
ea
su
re
 w
as
 n
o
t 
d
efi
n
ed

 b
ec
au
se
 t
h
e 
fir
m
 h
as
 n
o
 p
at
en
ts
 o
f 
it
s 
o
w
n
 w
er
e 
as
si
gn
ed

 a
 c
o
si
n
e 
m
ea
su
re
 o
f 
0
.

 †
†O

b
se
rv
aƟ

o
n
s 
fo
r 
w
h
ic
h
 a
 c
o
si
n
e 
m
ea
su
re
 w
as
 n
o
t 
d
efi
n
ed

 w
er
e 
ex
cl
u
d
ed

 f
ro
m
 t
h
is
 c
al
cu
la
Ɵ
o
n
.

N
o
 D
ea
l

D
ea
l

Ta
b
le

 1
.3
 T
h
is
 t
ab
le
 c
o
n
ta
in
s 
d
es
cr
ip
ti
ve
 s
ta
ti
st
ic
s 
fo
r 
th
e 
ag
re
em

en
t 
le
ve
l d
at
a.
 E
ac
h
 o
b
se
rv
at
io
n
 c
o
rr
es
p
o
n
d
s 
to
 a
 u
n
iq
u
e 
ag
re
em

en
t.
 T
w
o
 

si
d
ed

 t
‐t
es
ts
 o
f 
d
if
fe
re
n
ce
 in

 m
ea
n
s 
b
et
w
ee
n
 "
D
ea
l "
 a
n
d
 "
N
o
 D
ea
l"
 ; 
si
gn
if
ic
an
ce
 in
d
ic
at
ed

 in
 t
h
e 
"N

o
 D
ea
l"
  m

ea
n
 c
o
lu
m
n
; *
**

 p
<0
.0
1
, *
* 

p
<0
.0
5
, *
 p
<0
.1

37



 

1.5 Results:  

1.5.1 Patent Level Models 

Because we have some patents that are “never looked at”, some that are “looked at but never 

licensed” and some that are “licensed at least once”, we run a number of analyses to understand 

what patent characteristics may influence licensing or interest in an invention in general. We run 

a multitude of regressions using the variables that we have described above. The results are in 

Tables 1.4a and 1.4b.  

The first models we run, reported in Table 1.4a try to explain what variables influence 

whether a patent has been looked at by a firm, how many times it has been looked at and how 

much time has passed before the first look. Each agreement, whether a CDA, MTA, option to 

license or a license is a “look”. The second set of models, in Table 1.4b has licensing outcomes 

as the dependent variable – whether a patent has been licensed, how many times it has been 

licensed and time to first license. The first models in Table 1.4a and 1.4b are logit models where 

the dependent variable is whether a patent has an agreement on it i.e. has been looked (Table 

1.4a) and whether a patent has a license on (Table 1.4b). Interestingly, we see that the variable 

that measures the number of citations received, an indication of importance, is not statistically 

significant in explaining whether a patent is looked at or licensed. However, the number of 

previous cites is positively related to whether a patent is looked at or licensed, indicating that 

more established technologies are more likely to be successful in markets for technologies. We 

also note the significance of the lead inventor experience pointing to the importance of quality 

signals in a market with a lot of product uncertainty 

Similar to the descriptive statistics, we see that patents that are devices are less likely to 

be successful. This is unexpected given the importance of physicians in new medical device 
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LOGIT Poisson

Negative 

Binomial 

Regression

Cox Hazard 

Model

Cox Hazard 

Model

Cox Hazard 

Model

Stratified by 

Lead 

Inventor

Frailty by 

Lead 

Inventor

VARIABLES Looked

(looked=1)

Times 

looked

Times looked Times 

looked

Inflate 

(looked=0)

Time to 

Look

Time to 

Look

Time to 

Look

Number of Patents Cited 0.0837*** 0.0311*** 0.0346*** 0.0225*** ‐0.110* 0.013 0.020 0.0219*

0.001 0.000 0.000 0.000 0.096 0.113 0.276 0.083

Patent Citations Received Per Year 0.023 0.042 0.058 0.039 ‐0.737 0.006 0.342* ‐0.009

0.818 0.134 0.230 0.162 0.292 0.875 0.0621 0.903

Patent Scope 0.103 ‐0.0388** ‐0.037 ‐0.0456** ‐0.16 ‐0.0952*** ‐0.007 ‐0.031

0.263 0.045 0.234 0.019 0.405 0.005 0.919 0.515

Lead Inventor Experience 0.118*** 0.0349*** 0.0380** 0.011 ‐0.293*** 0.000 0.115 0.030

0.002 0.000 0.011 0.265 0.00264 0.978 0.144 0.348

Patent Originality 0.318 0.208 0.309 0.560*** 2.399 0.0381 ‐0.976 ‐0.107

0.582 0.261 0.298 0.009 0.186 0.909 0.189 0.833

Device ‐1.047** ‐0.824*** ‐0.844*** ‐0.972*** ‐12.59 ‐0.125 ‐34.3 ‐0.523

0.018 0.000 0.000 0.000 0.977 0.58 1.000 0.215

IPCs in Section A Only 0.425 0.234 0.289 0.409* 1.166 0.370 ‐0.099 ‐0.273

0.558 0.305 0.399 0.093 0.423 0.325 0.898 0.554

IPCs in Section C Only 0.398 ‐0.048 0.024 0.161 0.208 ‐0.040 ‐0.096 ‐1.226**

0.615 0.851 0.949 0.553 0.891 0.925 0.916 0.031

IPCs in Section G Only ‐0.250 ‐0.620** ‐0.457 ‐0.565* ‐12.69 ‐0.287 ‐0.550 ‐0.826

0.761 0.035 0.271 0.059 0.988 0.521 0.595 0.164

IPCs in Sections A and C Only 0.404 0.152 0.166 0.183 ‐0.617 ‐0.060 ‐0.151 ‐1.309***

0.576 0.507 0.626 0.449 0.678 0.875 0.841 0.006

IPCs in Sections A and G Only 1.318 0.795*** 0.826* 0.680** ‐24.07 0.397 ‐0.445 ‐0.565

0.207 0.005 0.061 0.019 1 0.424 0.729 0.404

IPCs in Sections A, C and G Only 1.827 0.843*** 0.946** 0.779*** ‐0.836 0.117 ‐0.566 ‐0.6

0.147 0.002 0.031 0.006 0.633 0.817 0.643 0.407

Patent Priority Date in 1981-85 ‐0.901 0.646*** 0.305 0.749*** 3.522 0.346 ‐1.815 0.614

0.245 0.001 0.394 0.001 0.111 0.414 0.285 0.378

Patent Priority Date in 1986-90 ‐0.481 0.062 ‐0.132 ‐0.006 1.798 ‐0.286 ‐3.095** ‐1.127**

0.389 0.743 0.633 0.976 0.376 0.361 0.041 0.029

Patent Priority Date in 1991-95 0.163 ‐0.085 ‐0.139 ‐0.165 1.193 ‐0.711** ‐2.789** ‐1.177**

0.765 0.642 0.601 0.390 0.565 0.023 0.050 0.021

Patent Priority Date in 1996-00 ‐0.001 0.413** 0.415 0.461** 2.454 0.307 0.105 0.177

0.998 0.016 0.109 0.010 0.216 0.298 0.924 0.708

Constant ‐0.923 ‐0.025 ‐0.132 0.109 ‐2.673

0.380 0.939 0.785 0.757 0.323

lnalpha ‐0.457***

0.006

Observations 285 285 285 285 285 200 200 200

Groups 86

*** p<0.01, ** p<0.05, * p<0.1

Table 1.4a This table contains models of patent consideration for licensing i.e. "looks at patent" based on patent characteristics. P‐values 

reported under coefficients.

Zero Inflated Poisson
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LOGIT Poisson

Negative 

Binomial 

Regression

Cox 

Hazard 

Model

Cox 

Hazard 

Model

Cox 

Hazard 

Model

Stratified 

by Lead 

Inventor

Frailty by 

Lead 

Inventor

VARIABLES Licensed

licensed=1

Times 

licensed

Times 

licensed

Times 

licensed

Inflate 

licensed=0

Time to 

License

Time to 

License

Time to 

License

Number of Patents Cited 0.0926*** 0.0307*** 0.0305*** 0.008 ‐0.286*** 0.010 0.036 0.006

0.000 0.000 0.000 0.224 0.001 0.280 0.140 0.694

Patent Citations Received Per Year 0.048 0.0695** 0.0819* 0.038 ‐2.630** ‐0.027 0.339 ‐0.060

0.650 0.031 0.066 0.288 0.012 0.567 0.125 0.394

Patent Scope 0.143 0.005 0.007 ‐0.020 ‐0.397 ‐0.021 0.031 0.029

0.111 0.827 0.823 0.435 0.164 0.567 0.685 0.566

Lead Inventor Experience 0.103*** 0.0330** 0.0304* ‐0.008 ‐0.193** ‐0.0374* 0.269** ‐0.045

0.003 0.015 0.076 0.596 0.036 0.083 0.040 0.200

Patent Originality 0.384 0.389 0.417 0.267 ‐1.486 ‐0.101 0.299 ‐0.617

0.527 0.150 0.215 0.441 0.297 0.830 0.712 0.266

Device ‐1.014** ‐1.013*** ‐0.973*** ‐1.181*** ‐0.444 ‐0.210 ‐39.300 ‐0.775*

0.029 0.000 0.000 0.000 0.684 0.454 1.000 0.082

IPCs in Section A Only 2.641*** 1.310** 1.331** 1.022* ‐0.841 ‐2.254*** 0.267 ‐1.915*

0.004 0.011 0.016 0.067 0.695 0.005 0.830 0.063

IPCs in Section C Only 3.429*** 1.375*** 1.425** 0.710 ‐4.456* ‐2.894*** 0.676 ‐2.987***

0.001 0.010 0.014 0.225 0.084 0.000 0.623 0.006

IPCs in Section G Only 1.869* 0.619 0.653 0.570 ‐0.271 ‐2.799*** 0.602 ‐2.048*

0.075 0.291 0.304 0.368 0.914 0.002 0.720 0.079

IPCs in Sections A and C Only 3.083*** 1.248** 1.321** 0.566 ‐5.361** ‐3.264*** ‐0.390 ‐3.839***

0.001 0.015 0.017 0.312 0.024 0.000 0.745 0.000

IPCs in Sections A and G Only 3.711*** 2.097*** 2.202*** 1.097* ‐32.300 ‐2.662*** 0.631 ‐3.023***

0.001 0.000 0.000 0.067 1.000 0.002 0.712 0.008

IPCs in Sections A, C and G Only 3.355*** 1.216** 1.234* 0.556 ‐4.815** ‐3.808*** ‐0.044 ‐2.919**

0.004 0.039 0.058 0.379 0.049 0.000 0.978 0.011

Patent Priority Date in 1981-85 1.438* 1.873*** 1.787*** 1.644*** 1.010 ‐0.316 ‐19.160 ‐0.946

0.080 0.000 0.000 0.001 0.689 0.542 0.253

Patent Priority Date in 1986-90 1.743*** 1.471*** 1.436*** 1.191** ‐0.864 ‐0.212 ‐19.67*** ‐1.096

0.005 0.000 0.001 0.014 0.692 0.624 0.000 0.108

Patent Priority Date in 1991-95 2.239*** 1.518*** 1.559*** 1.136** ‐2.809 ‐0.831* ‐18.09*** ‐0.898

0.000 0.000 0.000 0.017 0.196 0.064 0.000 0.183

Patent Priority Date in 1996-00 0.401 1.110*** 1.092** 1.371*** 2.358 0.077 ‐20.93*** ‐0.617

0.493 0.006 0.014 0.004 0.247 0.862 0.000 0.365

Constant ‐5.715*** ‐3.190*** ‐3.251*** ‐1.472* 7.626**

0.000 0.000 0.000 0.073 0.033

lnalpha ‐0.893***

0.002

Observations 285 285 285 285 285 152 152 152

Groups 62

*** p<0.01, ** p<0.05, * p<0.1

Table 1.4b This table contains models of licensing based on patent level dependent characteristics. P‐values under coefficients. 

Zero Inflated Poisson
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developments (Chatterji et al 2008). It could, however be due to the fact that new devices do not 

always require AMC resources or government funding to develop and the best ones may be 

patented outside of the AMC technology commercialization process. Alternatively, the 

successful ones could be developed in close collaboration with industry under sponsored 

research agreements and may thus be excluded from our dataset.  

The results are repeated in the next two models – the Poisson and negative binomial- 

where the dependent variable is the number of times a patent has been considered for licensing or 

licensed.  Because from Table 1.1a we see that both dependent variables “times looked” at and 

“times licensed” are over-dispersed with the standard error slightly higher than the mean, we 

conduct a likelihood ratio test which shows that the negative binomial, rather than the Poisson, is 

the appropriate model. 

We also run a zero-inflated version of these models because we have an excess number 

of zeros in both variables (number of times looked and number of times licensed). In our sample 

of 285 patents, 85 patents have never been looked at and 132 have never been licensed (includes 

not looked at and looked at but not licensed). This zero-inflated models have two parts –a 

Poisson model and a logit model.  The dependent variable in the Poisson part of the model is the 

number of times a patent has been looked at or licensed, conditional on being looked at or 

licensed, respectively. The separate inflation model which is a simple logit explains the excess 

zeros. Even though the zero inflated negative binomial model would be more appropriate, it 

doesn’t converge and we report results from the zero inflated Poisson. A Vuong test shows that 

the zero inflated model is more appropriate than the regular Poisson.  

The results from the zero-inflated Poisson models are similar to the previous three 

models.  Interestingly, once controlled for the number of patents cited, a higher patent originality 
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predicts more agreements, conditional on there being at least one agreement on the patent. The 

lack of lead inventor experience seems to determine whether a patent is never looked at or 

licensed but not the number of times it has been looked at or licensed. Our patent scope results 

contradict previous literature and seem to influence our dependent variables negatively and in 

some models at a statistically significant level (Lerner, 1994; Decheneaux, 2009; Gambardella et 

al. 2007) 

The last three models are Cox hazard models. Here the dependent variable is time to first 

agreement. Positive results indicate that as the independent variable increases, so does the hazard 

of an agreement. Note, however, that for ease of interpretation beta coefficients are reported 

rather than hazard ratios.  Hazard ratios can be calculated by raising e to the power of the 

reported coefficient.  We report a regular Cox hazard model in the first column, then stratified by 

lead inventor and then by a shared frailty (the equivalent of a random effects model) where each 

group is identified by a lead inventor and includes said lead inventor’s patents. Our results are 

similar to those from the previous models but are not statistically significant in the same manner.  

The models in Table 1.4b are the same as the ones in Table 1.4a, except that the 

dependent variables are related to licensing – i.e. licensed, times licensed, and time to license. 

The direction and the significance of the results are practically the same as well, except for the 

scope variable which is no longer negative and statistically significant. Another difference is that 

the “patent cites per year” variable is now positive and statistically significant in two of our 

models.  

1.4.2 Patent-Agreement Level Models 

Our patent-agreement level analyses are our main results. They test our hypothesis that 

technology proximity between a focal patent and a potential licensee’s patent portfolio is a 
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determinant of whether a license will take place. All our models are logistic regressions (logits) 

with a dependent variable – “deal” – that is equal to one if a license was signed and zero if a deal 

was not done. Our full model is the last one in the respective table and it includes all our control 

variables. We start with a logit of our dependent variable with only the respective 

proximity/similarity measures. We then try a bare-bones proximity and licensee variable model. 

For our remaining models we start again with the fit measure and add patent citation based 

measures such as forward cites, backward cites and scope. We then add patent variables 

constructed based on cites and IPC codes - originality measure, generality measure.  Technology 

type controls are added next – i.e.  a device indicator variable and mutually exclusive dummy 

variables based on IPC classification by sections. Age variables are included next - technology 

age at time of agreement and cohort dummies for each 5 year period since 1980 based on the 

patent priority date. Finally, we add licensee variables – the number of granted patents that the 

licensee had filed before the time of the agreement and the square of the number of such patents.  

Our main models in Table 1.5a test our hypotheses above that firms are more likely to 

license inventions that are similar but not too similar. We operationalize our technology 

proximity measures using the cosine variables described above. This model includes our entire 

sample with 588 patent–agreement level observations. We replace the cosine measures with 0s in 

cases in which they are not defined because the agreement firm has no patents. In table 1.5b we 

exclude those observations with undefined cosine measures and are left with 424 observations. 

As seen from the tables, the sign and statistical significance of our proximity coefficients is 

unchanged.  

We see in these models that a higher technological proximity between the firm and the 

AMC patent, measured at the IPC code subclass level, is more likely to be associated with a 
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 5.1a  5.2a  5.3a  5.4a  5.5a  5.6a  5.7a  5.8a

Cosine Subclass Level 1.157*** 1.285*** 1.127*** 1.977*** 1.361*** 1.238*** 1.085** 1.276***
0.006 0.002 0.008 0.001 0.003 0.008 0.022 0.008

Within Section Cosine, Group Level -0.921** -1.056** -0.968** -2.079*** -1.259*** -1.031** -0.856* -1.042**
0.032 0.014 0.028 0.001 0.010 0.037 0.094 0.041

Patent Scope 0.050 0.051 0.112*** 0.105*** 0.271*** 0.260***
0.122 0.229 0.005 0.010 0.000 0.000

Number of Patents Cited 0.001 0.009 0.006 0.004 -0.004 -0.006
0.948 0.375 0.526 0.637 0.763 0.643

Patent Citations Received Per Year 0.373*** 0.218** 0.404*** 0.378*** 0.264** 0.272**
0.001 0.043 0.000 0.001 0.037 0.033

Patent Originality -0.195 1.014** 0.853 1.310** 1.291**
0.717 0.047 0.101 0.028 0.032

Device -0.332 -0.308 -0.180 -0.110
0.274 0.321 0.612 0.765

IPCs in Section A Only 1.539*** 1.492** 1.746*** 1.570**
0.009 0.012 0.009 0.018

IPCs in Section C Only 2.551*** 2.454*** 3.264*** 3.199***
0.000 0.000 0.000 0.000

IPCs in Section G Only 0.768 0.828 1.588* 1.519*
0.344 0.286 0.055 0.076

IPCs in Sections A and C Only 1.573*** 1.408** 2.133*** 1.923***
0.008 0.017 0.001 0.004

IPCs in Sections A and G Only 1.948*** 1.737** 2.096** 1.889**
0.005 0.013 0.013 0.020

IPCs in Sections A, C and G Only 0.266 -0.134 -0.552 -0.605
0.701 0.852 0.510 0.464

Technology Age in Years 0.0760*** -0.005 -0.006
0.001 0.837 0.812

Patent Priority Date in 1981-85 1.888*** 2.038***
0.004 0.002

Patent Priority Date in 1986-90 2.088*** 2.122***
0.000 0.000

Patent Priority Date in 1991-95 2.762*** 2.793***
0.000 0.000

Patent Priority Date in 1996-00 -0.075 -0.063
0.884 0.906

Lead Inventor Experience -0.022 -0.015 -0.019 -0.033 -0.017 -0.019 -0.037 -0.027
0.204 0.413 0.297 0.132 0.398 0.340 0.120 0.263

Number of Firm Patents 0.000156* 0.000265**
0.065 0.013

Number of Firm Patents Squared 0.000 -1.78e-08**
0.557 0.030

Patent Generality -0.354
0.428

Constant 0.110 -0.131 -0.325 0.347 -2.805*** -2.965*** -4.666*** -4.709***
0.526 0.484 0.170 0.586 0.000 0.000 0.000 0.000

Observations 588 588 588 440 588 588 588 588

*** p<0.01, ** p<0.05, * p<0.1

Table 1.5a This table shows logit models with a dependent variable equal to 1 if the confidentiality agreement became a license (i.e. "deal") 
and 0 if the agreement did not result in a license (i.e. "no deal").  Each observation corresponds to a patent-agreement pair - a patent can 
have multiple agreements and each agreement can be associated with multiple patents. Patent level measures correspond to the hospital 
patent which is under the agreement. Firms for which a cosine measure was not defined because the firm has no patents of its own 
were assigned a cosine measure of 0 in these models.  P-values  under coefficients. Robust Standard Errors
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5.1b 5.2b 5.3b 5.4b 5.5b 5.6b 5.7b 5.8b

Cosine Subclass Level 1.039** 1.430*** 0.928** 1.905*** 1.434*** 1.149** 1.234** 1.683***
0.019 0.001 0.040 0.003 0.009 0.040 0.034 0.006

Within Section Cosine, Group Level -0.983** -1.033** -1.046** -2.287*** -1.508*** -1.193** -1.211** -1.375**
0.023 0.017 0.019 0.000 0.006 0.034 0.042 0.022

Patent Scope 0.0694* 0.054 0.108** 0.0879* 0.324*** 0.308***
0.057 0.293 0.019 0.063 0.000 0.000

Number of Patents Cited -0.003 0.009 0.012 0.008 -0.008 -0.010
0.778 0.436 0.282 0.486 0.599 0.525

Patent Citations Received Per Year 0.440*** 0.387** 0.541*** 0.492*** 0.356** 0.383**
0.001 0.016 0.000 0.000 0.025 0.019

Patent Originality 0.729 1.492** 1.199* 1.755** 1.902**
0.327 0.018 0.064 0.024 0.019

Device -0.631 -0.605 -0.343 -0.235
0.100 0.121 0.408 0.583

IPCs in Section A Only 1.773** 1.682** 2.107** 1.953**
0.037 0.045 0.024 0.042

IPCs in Section C Only 2.723*** 2.596*** 3.492*** 3.495***
0.003 0.004 0.000 0.001

IPCs in Section G Only 0.364 0.555 1.529 1.358
0.783 0.645 0.198 0.288

IPCs in Sections A and C Only 1.854** 1.673** 2.591*** 2.374**
0.031 0.048 0.007 0.016

IPCs in Sections A and G Only 2.922*** 2.746*** 3.320*** 3.135***
0.004 0.006 0.006 0.009

IPCs in Sections A, C and G Only 0.446 0.102 -0.730 -0.746
0.653 0.922 0.564 0.562

Technology Age in Years 0.104*** -0.010 -0.015
0.000 0.778 0.687

Patent Priority Date in 1981-85 1.721** 1.847**
0.018 0.014

Patent Priority Date in 1986-90 1.819*** 1.708**
0.006 0.011

Patent Priority Date in 1991-95 2.170*** 2.148***
0.000 0.000

Patent Priority Date in 1996-00 -0.747 -0.792
0.190 0.179

Lead Inventor Experience -0.016 -0.008 -0.006 -0.009 -0.008 -0.005 -0.016 -0.005
0.432 0.727 0.785 0.754 0.748 0.855 0.607 0.881

Number of Firm Patents 0.000184** 0.000268**
0.039 0.019

Number of Firm Patents Squared 0.000 -1.70e-08**
0.418 0.047

Patent Generality -0.874*
0.0913

Constant 0.168 -0.304 -0.337 -0.233 -3.500*** -3.598*** -5.053*** -5.342***
0.435 0.226 0.250 0.766 0.001 0.001 0.000 0.000

Observations 424 424 424 304 424 424 424 424

*** p<0.01, ** p<0.05, * p<0.1

Table 1.5b This table shows logit models with a dependent variable equal to 1 if the confidentiality agreement became a license (i.e. "deal") 
and 0 if the agreement did not result in a license (i.e. "no deal").  Each observation corresponds to a patent-agreement pair - a patent can 
have multiple agreements and each agreement can be associated with multiple patents. Patent level measures correspond to the hospital 
patent which is under the agreement. Firms for which a cosine measure was not defined because the firm has no patents are excluded 
from these models. P-values  under coefficients. Robust Standard Errors
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license i.e. a “deal.”  Holding subclass level proximity constant, however, a higher technological 

proximity measured at the main group level of the IPC codes is less likely to result in a deal.  

This result is hard to comprehend because of the complexity of the measures. A stylized 

example may be useful to let us abstract from the details of the patent classes by using more 

easily understandable consumer product categories that may be protected by these patents. Note 

that this is a simplification for clarification purposes– our IPC subclass level and IPC main group 

levels do not necessarily correspond to the product categories described here, including their 

breath and generality.  

  Imagine a medical device company A that has 10 patents - 5 for metal and 5 for ceramic 

prosthetic hip implants. These technologies are all in the ‘prosthetic hips’ area at the broad level 

of measurement but different at the more granular level – ‘type of prosthetic hip.’ Another firm 

B also has 10 patents but all 10 for plastic hip implants. A third firm C, also a medical device 

company has patents for stents and catheters but none in the hip implants area. All three firms 

have signed confidentiality agreements showing interest in an AMC patent of a plastic hip 

implant.   If we only looked at the broad level measures, both firm A and firm B would be more 

likely to license the new plastic hip implant patent that is offered by our AMC than firm C – their 

technology proximity measure to the patent offered is higher than that of  firm C. Also, firm A 

would be as equally likely to license it as firm B as their proximity measure values are the same 

at this level.  

Now let’s look at firm A and firm B, at the more granular level of proximity, controlling 

for the higher level proximity. Based on our results we would expect that firm A is more likely to 

license the AMC patent than firm B. While firm B already has plastic hip implant patents, firm A 
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has none, so at the granular level of measurement, firm B’s portfolio is closer to the focal patent 

than firm A’s portfolio which makes it less likely to license it.   

These results are in fact intuitive. A match at the broad level (i.e. hip implants) is useful 

since it indicates that both firms may have specific complementary technologies to the focal 

patent. One example would be that both firms have their own technology that deals with specific 

implant shape (i.e. implant is hollow inside to enhance movement) or components needed to 

attach the implant. These broad level technologies would be likely relevant to implants of any 

materials. In general, their existing broad level complementary technologies will increase their 

marginal benefit of licensing any patent for which they are relevant. However, firm B already 

has its own plastic implant technology. If it licensed our focal patent, it would most likely be 

duplicating its own technology at a cost. Furthermore, choosing outside plastic hip technology 

over internally developed one may be harder given the lack of knowledge about the outside 

technology and the difficulty in transferring tacit knowledge (Polanyi, 1966; von Hippel, 1988; 

Agarwal, 2006). This implies that a higher similarity measured at the more granular, detailed 

level is likely to not result in a license.  

To understand whether these results are different for different types of firms, we split our 

sample by firm R&D age and by firm size. Our goal is to separate firms that are based on 

different types of technology platforms - young biotech firms that do mostly large molecule drug 

development and older pharmaceutical firms specializing in small molecule drug discovery. Our 

samples are not entirely “clean” in the sense that there are also medical device and software 

companies in both groups. Furthermore, the distinction between biotech and pharmaceutical 

firms has grown blurrier over the years as pharmaceutical firms have also developed large 

molecule drug technologies and young biotechnology companies who started based on one 
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specific invention have developed related expertise. Interaction effects would have been better 

for these exercises but they would have complicated interpretation significantly because we have 

two different variables we want to interact with multiple size and age variables.  

In Tables 1.6a through 1.6c we split our sample in different groups by age - firms with an 

R&D age of less than 10 years, those with an R&D age between 10 and 20 years and firms older 

than 20 years. We note that our results have the same sign as in the full sample models but are 

not statistically significant in many of the models in the first age group, especially the measures 

based on more granular IPC code slices at the IPC main group level. Our results are, however 

very strong in terms of both size and statistical significance in the 10-20 year old firms group. 

They are also strong in a few of the models in the older firm group. Note however, that the 

addition of technology age and technology cohort variables changes the value and significance of 

the proximity measures indicating that they are related. It is also interesting to point out here that 

technology age is negative and significant among medium aged firms (10-20 years of R&D) and 

positive and significant for older firms (20+ years of R&D). This implies that older firms are 

more likely to license older and more established technologies, while younger firms may be 

more willing to undertake risks. This result is not driven by inventor startups, however, as those 

would have no patents at the time of licensing and would not be in any of the age groups. Note 

that several of our control variables for IPC code section and cohort drop resulting in smaller 

sample sizes for some of the models.  

We then go on to split our samples by size. By looking at firm names and the number of 

patents that they own at time of licensing we find out that most biotechnology firms have fewer 

than 500 patents and most big pharmaceutical companies have more than 500 patents. Again, this 

division is not “clean” in the sense discussed above. The sign of our major results hold again. 
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 6.1a  6.2a 6.3a 6.4a 6.5a 6.6a 6.7a  6.8a

Cosine Subclass Level 0.763 0.818 0.959 1.529 2.012* 2.007* 2.919* 2.934*

0.333 0.315 0.232 0.239 0.096 0.098 0.051 0.079

Within Section Cosine, Group 0.455 0.533 ‐0.158 ‐0.776 ‐1.631 ‐1.614 ‐3.708* ‐3.305

0.584 0.528 0.861 0.552 0.242 0.259 0.075 0.108

Patent Scope ‐0.079 ‐0.159 ‐0.197 ‐0.198 ‐0.190 ‐0.200

0.603 0.472 0.453 0.456 0.502 0.536

Number of Patents Cited ‐0.029 ‐0.018 ‐0.036 ‐0.035 ‐0.048 ‐0.046

0.236 0.517 0.311 0.343 0.341 0.368

Patent Cites Received Per Year 0.686** 0.525 1.143*** 1.132*** 1.211** 1.469**

0.026 0.114 0.002 0.003 0.027 0.022

Patent Originality 0.459 0.634 0.615 ‐0.859 ‐0.627

0.723 0.647 0.662 0.598 0.736

Device 1.327 1.311 1.660 1.009

0.131 0.140 0.225 0.474

IPCs in Section A Only 15.49*** 16.36*** 18.64*** 19.40***

0.000 0.000 0.000 0.000

IPCs in Section C Only 15.67*** 16.54*** 20.15*** 21.22***

0.000 0.000 0.000 0.000

IPCs in Section G Only 13.95*** 14.84*** 17.67*** 18.13***

0.000 0.000 0.000 0.000

IPCs in Sections A and C Only 16.76*** 17.63*** 21.89*** 22.24***

0.000 0.000 0.000 0.000

IPCs in Sections A and G Only 15.17*** 16.03*** 0.006 1.687

0.000 0.000 0.998 0.578

Lead Inventor Experience ‐0.004 0.005 0.010 0.018 0.002 0.002 0.000 0.011

0.919 0.904 0.845 0.773 0.976 0.980 0.998 0.863

Number of Firm Patents 0.062 0.107*

0.103 0.091

Number of Firm Patents Squared ‐0.001 ‐0.001

0.299 0.183

Patent Generality ‐1.616

0.236

Technology Age in Years 0.006 ‐0.097 ‐0.085

0.934 0.319 0.462

Patent Priority Date in 1986-90 18.24*** 17.63***

0.000 0.000

Patent Priority Date in 1991-95 1.112 0.963

0.366 0.481

Patent Priority Date in 1996-00 ‐2.200** ‐2.520**

0.037 0.019

Constant ‐1.077** ‐1.661*** ‐1.114 ‐0.173 ‐17.47*** ‐18.34*** ‐19.05*** ‐20.76***

0.042 0.007 0.137 0.906 0.000 0.000 0.000 0.000

Observations 110 110 110 76 105 105 98 98

*** p<0.01, ** p<0.05, * p<0.1

Table 1.6a Sample of firms that are older than 0 and younger than 10 years at time of agreement
This table shows logit models with a dependent variable equal to 1 if the confidentiality agreement became a license (i.e. 
"deal") and 0 if the agreement did not result in a license (i.e. "no deal"). Each observation corresponds to a patent-agreement 
pair - a patent can have multiple agreements and each agreement can be associated with multiple patents. The sample is 
restricted to agreements where the firm technology age (i.e. time between the first patent that the firm filed and the agreement 
that it signed for the AMC patent)  is smaller than 10 years. Patent level measures correspond to the hospital patent which is 
under the agreement. P-values under coefficients. Robust Standard Errors
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 6.1b  6.2b 6.3b 6.4b 6.5b 6.6b  6.7b 6.8b

Cosine Subclass Level 1.610** 1.787** 1.930** 2.634*** 2.172** 3.022*** 4.013*** 4.397**
0.021 0.046 0.013 0.002 0.010 0.002 0.003 0.027

Within Section Cosine, Group -2.331*** -2.456** -2.533*** -3.507*** -3.074*** -4.145*** -3.993*** -3.781***
0.002 0.012 0.003 0.000 0.001 0.000 0.001 0.006

Patent Scope -0.129 -0.158 0.023 0.087 0.542* 0.593
0.333 0.364 0.901 0.624 0.092 0.118

Number of Patents Cited 0.039 0.053 0.031 0.024 0.0935* 0.111*
0.159 0.138 0.425 0.585 0.056 0.075

Patent Cites Received Per Year 0.196 0.139 0.425 0.472* 0.404 0.482
0.501 0.710 0.137 0.095 0.205 0.174

Patent Originality -1.115 0.691 1.434 0.483 1.305
0.502 0.733 0.505 0.815 0.571

Device -0.541 -0.984 -2.839** -2.752**
0.459 0.210 0.017 0.046

IPCs in Section A Only 2.611** 3.501*** 18.70*** 17.98***
0.032 0.005 0.000 0.000

IPCs in Section C Only 3.341*** 3.901*** 20.70*** 20.42***
0.010 0.003 0.000 0.000

IPCs in Sections A and C Only 1.288 1.915* 17.51*** 16.99***
0.273 0.092 0.000 0.000

IPCs in Sections A and G Only 2.730 4.103** 19.30*** 18.72***
0.108 0.021 0.000 0.000

IPCs in Sections A, C and G Only 0.958 1.817 16.74*** 16.02***
0.469 0.150 0.000 0.000

Lead Inventor Experience 0.014 0.015 -0.034 -0.052 -0.051 -0.045 -0.065 -0.100
0.762 0.743 0.539 0.397 0.358 0.416 0.308 0.186

Number of Firm Patents -0.001 -0.00803**
0.581 0.020

Number of Firm Patents Squared 0.000 5.89e-06*
0.514 0.074

Patent Generality -1.044
0.310

Technology Age in Years -0.179*** -0.182** -0.254**
0.00484 0.042 0.024

Patent Priority Date in 1981-85 -1.687 -0.577
0.395 0.832

Patent Priority Date in 1986-90 -1.366 -1.210
0.392 0.534

Patent Priority Date in 1996-00 -3.448** -3.653*
0.0245 0.063

Constant 0.432 0.461 0.558 2.174 -2.183 -2.668 -17.56*** -17.02***
0.342 0.349 0.434 0.276 0.386 0.297 0 0.000

Observations 134 134 134 108 133 133 114 114

*** p<0.01, ** p<0.05, * p<0.1

Table 1.6b: Sample of firms that are older than 10 and younger than 20 years at time of agreement
This table shows logit models with a dependent variable equal to 1 if the confidentiality agreement became a license (i.e. 
"deal") and 0 if the agreement did not result in a license (i.e. "no deal"). Each observation corresponds to a patent-
agreement pair - a patent can have multiple agreements and each agreement can be associated with multiple patents. The 
sample is restricted to agreements where the firm technology age (i.e. time between the first patent that the firm filed and 
the agreement that it signed for the AMC patent)  is larger than 10 and smaller than 20. Patent level measures correspond 
to the hospital patent which is under the agreement. P-values under coefficients. Robust Standard Errors
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 6.1c  6.2c 6.3c 6.4c 6.5c 6.6c 6.7c  6.8c

Cosine Subclass Level 2.116** 2.827*** 1.998* 2.893* 3.256*** 0.802 0.747 2.926*

0.024 0.002 0.055 0.060 0.007 0.538 0.531 0.078

Within Section Cosine, Group ‐1.626** ‐1.336** ‐1.571** ‐2.974** ‐2.970*** ‐1.626 ‐1.238 ‐1.678

0.018 0.045 0.040 0.018 0.004 0.180 0.373 0.253

Patent Scope 0.142** 0.173* 0.123 0.142 0.300** 0.467**

0.011 0.053 0.107 0.176 0.042 0.018

Number of Patents Cited ‐0.011 ‐0.006 0.0377* 0.013 ‐0.003 ‐0.006

0.432 0.748 0.058 0.573 0.887 0.847

Patent Cites Received Per Year 0.533** 0.613** 0.970*** 0.941*** 0.668** 0.826**

0.013 0.041 0.002 0.001 0.036 0.015

Patent Originality 1.759 2.738** 2.780* 2.344 2.780

0.141 0.041 0.055 0.180 0.174

Device ‐3.125*** ‐2.463** ‐1.232 ‐1.058

0.001 0.020 0.294 0.472

IPCs in Section A Only ‐0.084 ‐0.156 ‐1.048 ‐1.640

0.937 0.856 0.413 0.192

IPCs in Section C Only 2.171* 2.056** 1.225 1.989

0.054 0.027 0.302 0.108

IPCs in Section G Only 3.818** 3.891** 1.352 1.069

0.011 0.038 0.512 0.631

IPCs in Sections A and C Only 0.673 0.549 ‐0.181 ‐1.204

0.514 0.518 0.896 0.379

IPCs in Sections A and G Only 2.360* 2.712** 1.785 1.779

0.086 0.019 0.370 0.349

IPCs in Sections A, C and G Only ‐0.364 0.167 ‐0.152 ‐0.675

0.801 0.911 0.915 0.669

Lead Inventor Experience ‐0.010 ‐0.029 0.003 ‐0.002 ‐0.031 0.014 ‐0.003 0.036

0.780 0.441 0.938 0.960 0.543 0.799 0.956 0.588

Number of Firm Patents 0.0003** 0.00076***

0.037 0.000

Number of Firm Patents Squared 0.000 ‐4.50e‐08**

0.275 0.000

Patent Generality ‐1.169

0.177

Technology Age in Years 0.319*** 0.217*** 0.316***

0.000 0.007 0.001

Patent Priority Date in 1986-90 4.381** 5.029***

0.024 0.010

Patent Priority Date in 1991-95 2.655 2.935

0.155 0.113

Patent Priority Date in 1996-00 1.324 1.601

0.458 0.357

Constant 0.274 ‐0.718 ‐0.558 ‐1.112 ‐3.258** ‐5.041*** ‐5.579*** ‐9.334***

0.416 0.106 0.238 0.369 0.033 0.001 0.001 0.000

Observations 180 180 180 120 180 180 180 180

*** p<0.01, ** p<0.05, * p<0.1

Table 1.6c: Sample of firms that are older than 20 years at time of agreement
This table shows logit models with a dependent variable equal to 1 if the confidentiality agreement became a license (i.e. 
"deal") and 0 if the agreement did not result in a license (i.e. "no deal"). Each observation is a patent-agreement pair - a 
patent can have multiple agreements and each agreement can be associated with multiple patents. The sample is restricted 
to agreements where the firm technology age (i.e. time between the first patent that the firm filed and the agreement that it 
signed for the AMC patent)  is larger than 20 years. Patent level measures correspond to the hospital patent which is under 
the agreement. P-values under coefficients. Robust Standard Errors
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 7.1a  7.2a  7.3a 7.4a 7.5a 7.7a 7.7a  7.8a

Cosine Subclass Level 0.956* 0.915* 1.074** 2.043*** 1.498** 1.466** 1.325* 1.455*

0.080 0.091 0.048 0.008 0.028 0.034 0.081 0.075

Within Section Cosine, Group ‐0.278 ‐0.349 ‐0.436 ‐1.598* ‐0.766 ‐0.741 ‐0.801 ‐1.289

0.646 0.563 0.483 0.058 0.320 0.341 0.377 0.199

Patent Scope ‐0.176* ‐0.167 ‐0.111 ‐0.114 0.334** 0.331**

0.057 0.162 0.285 0.276 0.033 0.032

Number of Patents Cited ‐0.014 0.005 ‐0.008 ‐0.007 ‐0.005 ‐0.008

0.299 0.767 0.672 0.698 0.820 0.745

Patent Cites Received Per Year 0.470*** 0.353* 0.585*** 0.566*** 0.272 0.413*

0.008 0.089 0.000 0.001 0.158 0.059

Patent Originality 0.285 1.760** 1.683** 2.000** 1.806*

0.746 0.019 0.027 0.028 0.070

Device ‐0.386 ‐0.377 ‐0.514 ‐0.714

0.333 0.343 0.301 0.175

IPCs in Section A Only 1.733* 1.707* 2.458** 2.233**

0.058 0.062 0.015 0.037

IPCs in Section C Only 1.890* 1.892* 3.583*** 3.574***

0.057 0.055 0.002 0.002

IPCs in Section G Only ‐1.329 ‐1.266 0.818 0.651

0.395 0.413 0.602 0.684

IPCs in Sections A and C Only 1.149 1.138 2.556** 2.494**

0.211 0.214 0.015 0.023

IPCs in Sections A and G Only 2.452** 2.377** 2.450* 2.987**

0.033 0.041 0.091 0.041

IPCs in Sections A, C and G Only ‐0.374 ‐0.425 ‐0.841 ‐0.915

0.744 0.718 0.540 0.526

Technology Age in Years 0.018 ‐0.042 ‐0.053

0.633 0.382 0.270

Patent Priority Date in 1981-85 1.241 1.310

0.198 0.185

Patent Priority Date in 1986-90 1.485* 1.049

0.065 0.189

Patent Priority Date in 1991-95 2.219*** 2.398***

0.003 0.001

Patent Priority Date in 1996-00 ‐1.132* ‐1.310*

0.078 0.052

Lead Inventor Experience ‐0.007 ‐0.005 ‐0.016 ‐0.011 ‐0.013 ‐0.013 ‐0.003 0.002

0.794 0.839 0.589 0.761 0.704 0.704 0.934 0.963

Number of Firm Patents 0.005 0.0147**

0.225 0.011

Number of Firm Patents Squared 0.000 ‐4.67e‐05***

0.173 0.005

Patent Generality ‐0.933

0.156

Constant ‐0.331 ‐0.396 0.038 0.292 ‐2.953** ‐2.955** ‐5.220*** ‐5.073***

0.251 0.210 0.930 0.771 0.026 0.026 0.001 0.002

Observations 266 266 266 191 266 266 266 266

*** p<0.01, ** p<0.05, * p<0.1

Table 1.7a Sample of firms that have more than 0 and less then 500 patents at time of agreement
This table shows logit models with a dependent variable equal to 1 if the confidentiality agreement became a 
license (i.e. "deal") and 0 if the agreement did not result in a license (i.e. "no deal"). Each observation corresponds 
to a patent-agreement pair - a patent can have multiple agreements and each agreement can be associated with 
multiple patents. The sample is restricted to agreements where the firm has more than 0 and less then 500 patents. 
Patent level measures correspond to the hospital patent which is under the agreement. P-values under coefficients. 
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7.1b  7.2b 7.3b 7.4b 7.5b 7.7b  7.7b  7.8b

Cosine Subclass Level 1.510 1.683 0.335 0.315 3.400* 0.493 1.803 7.380***

0.237 0.159 0.819 0.866 0.061 0.812 0.365 0.008

Within Section Cosine, Group ‐2.406*** ‐1.996*** ‐2.605*** ‐4.194*** ‐4.014*** ‐2.920** ‐2.787** ‐3.484***

0.000 0.003 0.001 0.001 0.000 0.015 0.024 0.004

Patent Scope 0.171** 0.159* 0.056 0.057 0.257 0.475**

0.013 0.050 0.511 0.582 0.121 0.047

Number of Patents Cited 0.006 0.017 0.0619*** 0.0443* 0.016 0.034

0.661 0.453 0.007 0.078 0.532 0.343

Patent Cites Received Per Year 0.667** 0.868* 1.367*** 1.257*** 1.113*** 1.446***

0.025 0.053 0.003 0.001 0.005 0.002

Patent Originality 1.469 2.614 2.615 1.548 3.103

0.387 0.107 0.128 0.464 0.311

Device ‐3.683*** ‐3.017** ‐1.310 ‐1.775

0.004 0.018 0.317 0.286

IPCs in Section A Only 13.60*** 13.53*** 9.123*** 9.607***

0.000 0.000 0.000 0.000

IPCs in Section C Only 16.44*** 15.46*** 12.29*** 14.25***

0.000 0.000 0.000 0.000

IPCs in Section G Only 18.15*** 17.64*** 12.49*** 13.81***

0.000 0.000 0.000 0.000

IPCs in Sections A and C Only 14.38*** 14.10*** 10.46*** 10.48***

0.000 0.000 0.000 0.000

IPCs in Sections A and G Only 16.85*** 16.95*** 13.47*** 15.03***

0.000 0.000 0.000 0.000

IPCs in Sections A, C and G Only 14.57*** 14.51*** 11.17*** 12.00***

0.000 0.000 0.000 0.000

Technology Age in Years 0.247*** 0.260*** 0.275**

0.000 0.007 0.013

Patent Priority Date in 1981-85 4.600** 7.769***

0.048 0.000

Patent Priority Date in 1986-90 3.913* 5.313***

0.054 0.005

Patent Priority Date in 1991-95 1.843 2.079

0.366 0.270

Patent Priority Date in 1996-00 1.495 1.150

0.470 0.556

Lead Inventor Experience ‐0.004 ‐0.009 0.022 0.017 ‐0.032 0.008 0.033 0.040

0.918 0.815 0.614 0.768 0.601 0.895 0.691 0.659

Number of Firm Patents 0.000 0.00108***

0.321 0.001

Number of Firm Patents Squared 0.000 ‐5.66e‐08**

0.689 0.003

Patent Generality ‐1.282

0.198

Constant 0.797* 0.066 ‐0.166 ‐0.210 ‐16.71*** ‐17.56*** ‐15.89*** ‐23.23***

0.069 0.910 0.755 0.890 0.000 0.000 0.000 0.000

Observations 158 158 158 113 158 158 158 158

*** p<0.01, ** p<0.05, * p<0.1

Table 1.7b Sample of firms that have more than 500 patents at time of agreement
This table shows logit models with a dependent variable equal to 1 if the confidentiality agreement became a license (i.e. 
"deal") and 0 if the agreement did not result in a license (i.e. "no deal"). Each observation corresponds to a patent-agreement 
pair - a patent can have multiple agreements and each agreement can be associated with multiple patents. The sample is 
restricted to agreements where the firm has more than 500 patents. Patent level measures correspond to the hospital patent 
which is under the agreement. P-values under coefficients. Robust Standard Errors
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Interestingly, the results are only statistically significant for the cosine measure at the subclass 

level in the smaller sized group and only for the cosine measure at the more granular, main group 

level for the larger firms. This implies that finding a closely related technology is more important 

for smaller firms while not duplicating efforts may be more important for larger firms. Note, 

however, that controlling for size in the sample of firms with more than 500 patents gives us very 

large and highly significant coefficients for both proximity measures in the full model.  

The next set of models in Table 1.8 includes only the first agreement that is signed for a 

patent whether it is a “deal” or “no deal.” We are interested in these results because we are 

concerned that whether the first agreement is a “deal” or “no deal” may signal patent quality and 

may influence future licenses, especially non-exclusive licenses of which there may be 

potentially many per patent. An exclusively licensed invention, on the other hand, takes the 

patent off the market. Of the 200 patents that have at least one agreement, 6 are excluded 

because of licensee issues (discussed in the data section) and we are left with 194 patent-first 

agreement pairs. Our technology proximity results from the previous models still hold in this 

sample and are statistically significant indicating that the results are robust and are not driven by 

a few patents that have been licensed multiple times since each patent appears only once in this 

dataset.  

1.6 Conclusion 

In this paper we addressed a gap in the literature on markets for technology by taking a 

close look at the demand for technology. While this has been attempted in previous papers, our 

unique dataset that includes not only firms that licensed technologies but also showed interest in 

them but did not license provides an important control group for our description of the structure 

of such markets.  We showed that proximity matters in the technologies firms decided to license. 
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8.1 8.2 8.3 8.4 8.5 8.7 8.7 8.8

Cosine Subclass Level 2.095** 1.465* 1.664* 3.993*** 1.847* 1.722 2.725** 2.744**

0.017 0.090 0.065 0.002 0.090 0.114 0.021 0.021

Within Section Cosine, Group ‐2.651*** ‐1.856** ‐2.325** ‐4.984*** ‐2.507** ‐2.519** ‐2.473** ‐2.460**

0.002 0.033 0.011 0.001 0.029 0.022 0.018 0.031

Patent Scope 0.101** ‐0.003 0.145* 0.106 0.438** 0.448***

0.042 0.971 0.051 0.252 0.011 0.009

Number of Patents Cited ‐0.001 ‐0.012 0.011 0.008 0.010 0.012

0.943 0.608 0.540 0.618 0.731 0.660

Patent Cites Received Per Year 0.299 0.062 0.344 0.350 ‐0.137 ‐0.134

0.186 0.531 0.128 0.113 0.109 0.110

Patent Originality 0.207 0.964 0.935 0.953 1.159

0.861 0.252 0.287 0.494 0.469

Device 0.097 0.031 0.343 0.380

0.857 0.957 0.645 0.603

IPCs in Section A Only 2.117** 2.331** 3.986** 3.803**

0.020 0.031 0.010 0.013

IPCs in Section C Only 3.147*** 3.164*** 6.434*** 6.290***

0.002 0.006 0.003 0.002

IPCs in Section G Only 1.287 1.287 4.725** 4.085**

0.258 0.311 0.016 0.022

IPCs in Sections A and C Only 2.074** 2.057* 4.641** 4.441**

0.022 0.053 0.015 0.018

IPCs in Sections A and G Only 1.924 1.993 3.914 4.154

0.135 0.154 0.136 0.146

IPCs in Sections A, C and G Only 2.584** 2.772** 4.991** 6.382*

0.028 0.035 0.023 0.054

Technology Age in Years 0.161** ‐0.058 ‐0.132

0.021 0.588 0.410

Patent Priority Date in 1981-85 3.338** 3.556**

0.027 0.039

Patent Priority Date in 1986-90 5.322*** 5.178***

0.000 0.000

Patent Priority Date in 1991-95 4.809*** 4.518***

0.000 0.001

Patent Priority Date in 1996-00 ‐0.249 ‐0.300

0.788 0.760

Lead Inventor Experience ‐0.026 ‐0.0989** ‐0.024 ‐0.024 ‐0.065 ‐0.064

0.436 0.038 0.518 0.528 0.233 0.258

Number of Firm Patents ‐0.000661** ‐0.001

0.010 0.306

Number of Firm Patents Squared 6.67e‐08*** 0.000

0.004 0.272

Patent Generality ‐3.808***

0.003

Constant 0.576*** 0.515** 0.267 4.183** ‐2.811** ‐3.138** ‐7.631*** ‐7.324**

0.006 0.022 0.480 0.014 0.026 0.035 0.010 0.014

Observations 194 194 194 145 194 194 194 194

*** p<0.01, ** p<0.05, * p<0.1

Table 1.8 First Agreement Models
This table shows logit models with a dependent variable equal to 1 if the FIRST confidentiality agreement became a license (i.e. "deal") 
and 0 if the agreement did not result in a license (i.e. "no deal").  Each observation corresponds to a patent-agreement pair. Only the first 
agreement for each patent was selected. Patent level measures correspond to the hospital patent which is under the agreement. Firms 
for which a cosine measure was not defined because the firm has no patents of its own were assigned a cosine measure of 0 in 
these models. P-values  under coefficients. Robust Standard Errors
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Our identification comes from variation within a group that showed at least a threshold level of 

interest in the technology by contacting the licensing office and signing a confidentiality 

agreement. Future research will expand on this by identifying a larger population of potential 

buyers in this market based on some other measure of interest –  we currently do not include 

informal channels through which information may have been obtained or inquiries that did not 

result in signing of a confidentiality agreement.  

We also contribute to the literature on measurement of technology proximity by using a 

new patent statistic – the international patent class which with its nested structure allows for 

proximity measurement at the broad as well as granular level between different (portfolios of) 

patents. We also improved on existing measures by including multiple classes rather than just 

one, resulting in more robust results (Benner and Weldfogel, 2008). Further comparison and 

validation of these new measures is in order.   

Ultimately the real question is whether these technologies make it to the product market 

once they are licensed and how the technology proximity, either at the broad or the granular level 

influences that outcome. It would be interesting to know whether in-licensed technologies that 

are very close to the licensee’s in-house developed technology are strategically shelved or 

perhaps not absorbed by the firm due to behavioral resistance to outside innovations, the so 

called “not-invented-here” syndrome (Katz and Allen, 1982; Thursby and Thursby, 2004). We 

view this paper as a first step in this exciting direction.   
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2. TRANSLATING INVENTIONS INTO PRODUCTS: INVENTORS’ EDUCATIONAL 
BACKGROUND AND TECHNOLOGY LICENSING FROM ACADEMIC MEDICAL 
CENTERS 
 

2.1 Abstract 

The great leaps that have been made in basic life sciences in recent decades have brought 

to light the need for translating these research findings into practical applications.1 NIH’s support 

for translational research emphasizes the need for interdisciplinary and multidisciplinary team 

collaboration as well as training of interdisciplinary researchers, specifically people who are 

educated both in the clinical and research domains. In this paper I use invention and patent data 

from two large Academic Medical Centers with over $1.2 billion in combined research revenue 

in 2011. My goal is to understand whether inventions created by inventors with boundary 

bridging, cross-domain2 educational background are at a higher hazard of licensing. I use 

licensing as a proxy for translating an invention into a product. 

I find that, contrary to expectations, inventions created by teams with cross-domain 

expertise– i.e. a combination of clinical and research education as proxied by an MD, PhD or 

MD/PhD degree in team members, have a significantly lower hazard of licensing compared to  

inventions by teams that are made up solely of clinicians or solely of bench researchers.  

2.2 Introduction 

Large amounts of money have been given in grants in recent years for translational 

research aimed at turning basic scientific knowledge into practical applications. Yet, we know 

                                                            
1 See for example overview of Translational Research as part of the Clinical Research Roadmap Initiative 

at: http://commonfund.nih.gov/clinicalresearch/overview-translational.aspx, accessed February 19, 2012  
 

2 I use the term domain to refer to the clinic or the research bench as the use of discipline could be confused 
by discipline within science for example. Cross‐domain then refers to teams that combine inventors with clinical and 
research backgrounds. This is also different from the term cross-functional as it relates not to the type of job role one 
is occupying within a company but to the knowledge background of the inventor measured by their education. 
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little about what makes the process of translation successful. A recent study of the life cycle of 

translational research for medical interventions notes that the average “translation lag” – i.e. the 

median time from earliest publication or patenting to time of first licensed clinical use was 24 

years with an interquartile range of 14 to 44 years (Contopoulos-Ioannidis et al., 2008; cf. 

Morris, 2011). 

The NIH has placed an emphasis on “nurtur[ing] a cadre of well-trained multi- and 

interdisciplinary investigators and research teams” and “synergiz[ing] multidisciplinary and 

interdisciplinary clinical and translational research and researchers to catalyze the application of 

new knowledge and techniques to clinical practice at the front lines of patient care.”3 It has been 

hypothesized that collaboration between the clinical and research domains is necessary for the 

translation process because very often clinicians are not only users of research but they possess 

unique expertise and knowledge by virtue of their interaction with patients (Demonaco et al., 

2006; Baldessarini, 1985). Such knowledge can be crucial in informing further research and 

understanding ways in which basic research can be used in the clinic. 

 This emphasis is also based on the finding that the “burden of knowledge” has increased 

over time as knowledge in a field has become “deeper,” thus forcing researchers to specialize 

more narrowly in their fields (Jones, 2009; Baumol et al. 2009). Such narrow specialization, 

especially in the life sciences and in times when knowledge creation has increased tremendously, 

may prevent one from seeing the interdependencies among different scientific and clinical 

findings. Thus, integration of knowledge becomes necessary for translation of basic science into 

the clinic (Kelley et. al. eds and IOM, 1994). 

                                                            
3 “Focus on NINR and the NIH Roadmap,” http://www.ninr.nih.gov/NR/rdonlyres/2C476ABF‐E1F7‐4BA3‐

B6F5‐06EDF71225DE/0/RoadmapFocusFINAL113006.pdf accessed Feb 19th, 2012. 
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 Interdisciplinary teams and individuals trained in both the clinical and research domains 

have been thought to be the ones who can accomplish the enormous task of translating science 

into the clinic and have had significant support.4 Of the 129 medical schools in the country, 109 

had an MD/PhD program as of 1990 and the NIH had invested $400 million in its own MST 

(MD/PhD) program from its inception to 1990 (Kelley et. al. eds and IOM, 1994). In addition, 

research has shown that first time NIH R01 grant applicants with an MD/PhD are significantly 

more likely to receive funding than those with an MD only or a PhD only. And among those that 

obtained such first funding, MD/PhDs were significantly more likely to get a second such grant 

compared to single degree researchers (Dickler at al., 2007). 

 In this paper, I explore whether teams with cross-domain knowledge are indeed faster to 

translate their inventions into the clinic compared to single-domain teams. For this task I use a 

dataset of 691 patents assigned to two Academic Medical Centers (AMCs). I am testing 

hypotheses that inventions by cross-domain teams (teams with both an MD and a PhD or an 

MD/PhD inventor) are at a greater hazard of being licensed, controlling for the type of invention, 

the scope of the patent, the innovativeness of the ideas and the experience of the lead inventor. 

Licensing is a way for new inventions to become products and is my proxy for translations of 

inventions into the clinic. 

 Surprisingly, I find that cross-domain teams are at a significantly lower hazard of 

licensing their inventions compared to single domain teams. As expected, I find that the 

experience of the inventor is positive and significant and leads to faster licensing as does the size 

of the team. 

 

                                                            
4 By interdisciplinary here I mean teams that combine clinical and research backgrounds i.e. are comprised 

of members with MD degrees and PhD degrees. 
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2.3 Theory and Hypotheses Development 

The influence of team diversity on productivity has been an important topic in the 

management literature. Theoretical models of team diversity have shown that a randomly chosen 

group of diverse problem solvers can outperform a group of high-ability problem solvers (Hong 

and Page, 2004).  Empirically, teams that combine individuals with different information 

backgrounds based on their functions in the organization, also called cross-functional teams, 

have been studied extensively in the management literature for over half a century (e.g. 

Bunderson and Sutcliffe, 2002; Keller, 2001; Ancona and Caldwell, 1992; Galbraith, 1973; 

Kanter, 1988). In an innovative organization it has been argued that their importance stems from 

the need to “integrate expertise”, “obtain and use distributed information” and provide for 

“speedy interdepartmental transfer” (Edmondson and Nembhard, 2009). Such a need is said to 

arise because of the different access to information and models of the world with which different 

departments operate inside the organization (Lawrence and Lorsch, 1969). 

The research on whether cross-functional new product development (NPD) teams are in 

fact more innovative and faster to deliver new products has resulted in mixed findings. Some 

studies of cross-functional teams have found no effect (Cady and Valentine, 1999), but the 

majority have found a negative effect of functional diversity on performance (McDonough, 

2000; Horowitz and Horowitz, 2007; also see reviews by Bettenhausen, 1991 and Williams and 

O’Reilly, 1998). Most of the studies that find a positive effect of team functional diversity on 

performance have been able to do so through mediator and moderator variables relating to group 

processes, task and group environment. 

 One of the key studies in this research stream looks at both direct and indirect effect of 

functional diversity on team performance for new product development teams (Ancona and 
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Caldwell, 1992). It finds that diversity has a direct negative effect on performance as evaluated 

by managers, particularly on dimensions of innovation. Team members’ own evaluation of team 

performance is also negatively related to team diversity. The indirect effect of team diversity in 

this study, however, was positive as rated by managers. This effect was mediated by external 

communications. Groups that had higher levels of external communication were more highly 

rated and functionally diverse groups were more likely to communicate more externally.  

 Diverse teams face many challenges. Conflicts between different departments and 

functions within an organization may exhibit themselves in a cross-functional team. Task 

conflicts can further exacerbate the performance of a team (Pelled et al., 1999). In-group and out-

group stereotyping can hinder communication and problem solving (Bunderson and Sutcliffe, 

2002; Rico et al., 2007).  

 Diverse teams face informational challenges as well – they are not always able to 

communicate with the other team members to share the diverse information that they bring. 

Empirical studies have shown that group members often share only information that is common 

to all group members and are willing to discount their own knowledge and experiences in order 

to conform to group beliefs or hierarchy (Sherif, 1936; Asch, 1955; Nembhard et. al., 2006).  

Furthermore, it is not possible to encode and share all knowledge that an individual possesses, 

which limits the ability to use all available information in the group for problem solving 

(Polanyi, 1967; von Hippel, 1994).  

 The theoretical advantage of diverse knowledge in problem solving could be realizable if 

it were possible to integrate the diversity within one person on the team. Conflicts would be 

alleviated and information sharing would be less costly because the person who possesses 

diverse knowledge can serve as a “translator” thus mitigating team based challenges. The effects 
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of intrapersonal diversity – i.e. diversity within one person because of the person’s educational or 

job background - has been studied previously. One study shows that in top management teams 

(TMTs) intrapersonal functional diversity on the team has a positive effect on information 

sharing and unit performance while interpersonal diversity had a negative effect (Bunderson and 

Sutcliffe, 2002). Similarly, the proportion of multi-knowledge individuals has an indirect 

positive effect, through information sharing, on product innovativeness and a direct positive 

effect on time efficiency of new product development teams as rated by managers (Park et al, 

2009).  

These results are based on innovation in companies, however, and on team performance 

as defined by speed or “innovativeness” and judged by managers who have appointed the teams 

rather than by more solid measures of innovative output. Managers may select teams to match 

the type of problem – i.e. select teams with intrapersonal diversity if such diversity is expected to 

help problem solving. Such selection is impossible to control for, except in experimental settings. 

One study shows that selection, or self-selection in this case, can lead to such positive findings. It 

finds that people with a more varied experience select to be entrepreneurs but conditional on 

being entrepreneurs, those with more varied experience earn less (Astebro and Thompson, 2011). 

As all non-experimental studies, my study doesn’t entirely do away with selection but I use 

various controls and robustness checks to alleviate such concerns.  

Furthermore, innovation in companies may be different from academic innovation. 

University inventions have tended to be on average much more important and general – i.e. 

basic, than industry inventions as indicated by patent citation measures. (Henderson et. al., 1997) 

The results could be different when bridging cutting edge science in very specialized and 
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different domains such as the clinic and the research bench. Yet, this question has not been 

explored in the university technology transfer literature.  

University patenting, licensing and technology commercialization have been studied 

extensively, mostly with aggregated survey data gathered by the Association of University 

Technology Managers (AUTM) and with patent and licensing data from MIT (Shane, 2002; 

Decheneux et. al, 2008; Nerkar and Shane, 2007; Thursby et.al. 2004). Most of the research, 

however, has been based on the importance of patent characteristics and citation based measures 

of innovativeness. For example, Nerkar and Shane (2007) find that more pioneering inventions 

and patents with a wider scope are more likely to be commercialized, once licensed. Elfenbeim 

(2004), using Harvard University inventions, finds that the hazard of licensing increases in the 

inventor’s prior publications as firms are more aware of such research.  

 Inventing team characteristics, however, have been largely ignored. Similarly, Academic 

Medical Centers (AMCs) have not figured extensively in the research on University innovation. 

This is surprising as AMCs tend to receive almost three times as much federal funding as regular 

universities and a higher amount of licensing income from their technologies (AUTM, 2006). In 

2007, for example, of the universities that received over ten million in licensing income, all but 

two were Medical Schools (AUTM, 2007). 

 Academic Medical Centers represent the ideal setting in which to explore the interaction 

of the clinical and research domains and its influence on the translation of inventions into 

products. As institutions, AMCs combine both clinical practice and research labs and are 

therefore expected to spur interdisciplinary research and attract individuals with cross-domain 

expertise such as MD/PhDs. Such a research setting lets me explore the influence of team 
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characteristics along with invention characteristics to understand the translation of new 

technologies to the market and from there to the clinic. 

 The main question that I am trying to answer in this paper is whether inventions by cross-

domain teams are at a greater hazard of being licensed than inventions by teams where all 

members come from the same domain.  Furthermore, I explore whether having at least one 

person with a dual domain expertise on the team provides an added benefit to just having team 

members from different domains working together. Individuals with dual domain expertise could 

be able to integrate the different needs and knowledge of their domains to come up with 

inventions that can more easily be introduced into the clinic.  

 In an interview, an inventor with an MD/PhD from one of the AMCs in my dataset 

mentioned that he was better able to understand how a particular product will be used in the 

clinic because of his clinical experience. He gave examples of his own inventions from before he 

became a clinician which, he claimed, had suboptimal designs because he did not have a good 

understanding of how clinicians would use the product. After getting his MD he was able to 

adapt the design or the specific features of the cutting edge devices that he was developing to be 

more useable in the clinic. He argued that this leads to his current inventions becoming products 

faster than inventions that he created before he received his medical degree. Had he just worked 

with an MD instead of getting such a degree himself, he was afraid he may not be able to 

understand the different clinical need as well as he does now.  

These anecdotal experiences lead me to develop the following hypotheses that can be 

tested using the dataset that I have:  

Hypothesis 1: Teams with cross-domain expertise come up with inventions that are at a greater 

hazard of licensing than teams with single-domain expertise. 
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Hypothesis 2: Teams with an MD/PhD on the team come up with inventions that are at a greater 

hazard of licensing than teams with single-domain expertise and teams with cross-domain 

expertise lacking an MD/PhD. 

2.4 Data 

To test the above hypotheses I use invention data from a technology licensing office 

(TLO) that is in charge of the intellectual property of two academic medical centers (AMCs). 

Each observation in the data is a patent that has been applied for and granted between 1977 and 

2008. That data is supplemented with patent data from the United States Patent and Trademark 

Office (USPTO) and licensing data from the same TLO as well as inventor data from various 

sources described below.  

2.4.1 Research Setting 

The employees of both AMCs are required to submit an invention disclosure to the TLO 

if they believe they have conceived of an idea that is novel and has a potential for 

commercialization. In the last decade the disclosure filing has been simplified through the 

availability of online forms. Once this disclosure is received at the TLO it is reviewed by a case 

manager who completes any missing information. Extensive research is then conducted by the 

TLO regarding the novelty of this invention, the quality and the potential for commercialization. 

A decision is made about whether to file an application for one or more patents based on this 

invention disclosure and a patent attorney from an external firm is retained to conduct a 

patentability opinion and proceed with patent filing. The case manager, inventor and the outside 

firm then coordinate to make any further decisions on the filing with the USPTO or patenting 

authorities in different countries.  
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 The TLO also actively researches potential licensees for the invention. This involves 

finding out what other firms are doing research in this field and the general state of the art in the 

relevant technological area. Often, companies that may be interested are contacted. Inventors can 

and do initiate contacts to help commercialization as well since they jointly receive 25% of all 

income above expenses that is generated by the patent and another 25% goes to their lab. A short 

description of the invention is also available online for interested parties who can independently 

search for technologies from this TLO. Firms interested in the invention sign a confidentiality 

agreement to learn more about it before they decide to take an option or a license.  

2.4.2 Invention Data 

 In the analysis for this paper my level of observation is a patent that has been granted in 

the United States to one of these two institutions. It becomes at-risk for licensing from the 

patent’s priority or provisional filing date.5 This is the closest date to the invention disclosure 

date and is different from the listed filing date in over 70% of the cases in my dataset. This 

discrepancy results from the fact that many patent applications result in multiple patents – 

divisions, continuations and continuation-in-parts of the parent application.6 The expiration of a 

patent is determined by the priority date which is the earliest filing date in cases where a 

provisional patent has not been filed.7 

                                                            
5 A priority date is the date on which the first patent from a particular invention was filed. Later that first 

patent may be abandoned and other divisions or continuations filed from it. Note that after June 8, 1995 inventors 
were allowed to file provisional patents which provide them with a year to decide whether a patent is going to be 
filed or not. The provisional patent date is not the same as the priority filing date from which the patent term is 
calculated.   

 
6 Talks with TLO officers indicated that I should use the filing date rather than the patent grant date as they 

start marketing an invention soon after the provisional patent is filed.  
 
7 A patent expires 20 years from the first filing date if that filing date is after June 8th, 1995. If the patent 

was filed before Jun 8, 1995, the term is either 20 years from the first filing date or 17 years from the grant date 
whichever is longer. A patent that has expired cannot be licensed as it is free for anyone to use.  
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 Each patent publication on the USPTO web site also contains information on the 

inventors that are associated with it. This information can differ from the invention disclosure 

form because if an invention disclosure is split in different patents, the participation of team 

members on each patent can differ. For example, one inventor could have participated in 

inventing one of the claims in one patent but none of the claims in another. As such, data on the 

inventors listed on the patent publication is more accurate than TLO inventor data. In addition, 

while scientific papers may contain numerous authors who contributed little to the final product, 

a patent inventor, by law, must have contributed “to the conception of the invention” i.e. to at 

least one of the claims of the patent. If an inventor is not named on the patent or if someone who 

did not contribute an idea is named, the patent could be invalidated.8 

 The USPTO web site also contains information on the assignee of the patent. This is 

particularly important in the cases where inventions are the result of collaboration between 

members of different institutions, such as other companies or universities. I exclude patents that 

have as assignees or co-assignees institutions outside of the two AMCs that I am considering. 

When multiple institutions are assignees, they each have the right to license the patent without 

consulting with the co-assignees and licenses done by a different entity would not necessarily be 

observed by me.  Often, co-assignees sign inter-institutional agreements to market and license 

the technology together but that can delay the time to licensing. An indicator variable for “more 

than one assignee” would not be useful to control for inventions handled by different or multiple 

TLOs as the outside institutions would be different. However, I include patents that were 

assigned together to the two AMCs that are in my dataset as they are managed by the same TLO 

and I observe all their licensing agreements. 

                                                            
8 For more information see: http://www.uspto.gov/web/offices/pac/mpep/documents/2100_2137_01.htm, 

Accessed January 14, 2010. 
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 There are patents in this dataset that were invented through collaborative efforts with 

companies or that resulted from sponsored research agreements (SRA) where a company gave 

money or equipment to support the research of a specific inventor or a department. These SRAs 

can be very specific – i.e. designing a prototype of an invention or very broad – i.e. supporting a 

lab’s research without interference in the research direction. Patents resulting from SRAs are 

excluded from my dataset for a few reasons. First, they have a high rate of licensing (95%), 

almost invariably to the company that sponsored the research. Second, the company that 

sponsors the research will sometimes insist on patent filing for inventions that they are interested 

in licensing even if the TLO would not have filed a patent otherwise and I am not able to 

ascertain when that is the case. Third, while most SRAs give right of first refusal to the company, 

some give them automatic licenses at terms decided at the time of SRA signing and I cannot 

separate out inventions resulting from such SRAs since I don’t have the text of every SRA. After 

I exclude all joint or sponsored patents I end up with 691 patents for my dataset.  

 On the USPTO website I am also able to observe abandonment dates for patents for 

which the maintenance fees have not been paid. This happens if the TLO decides after the patent 

is granted that it is unprofitable for them to maintain it by paying the maintenance fees. 

Maintenance fees in the US are due 3.5, 7.5 and 11.5 years after the patent has been granted.9 As 

abandonment is equivalent to expiration, an abandoned patent is not available for licensing. I 

supplement the USPTO data which is not always updated online by data from IP Thompson’s 

Delphion website.10 

                                                            
9 Fees for 2007 depending on the size of the entity that owns the patent are as follows: at 3.5 years after 

first patent grant ‐ $465 or $930 for small and large entity respectively, at 7.5 years $1190 and $2380, at 11.5 years 
$1965 and $3930.  When the fees are not paid, the patent is abandoned at the 4th, 8th or 12th year respectively. If fees 
are paid with an additional fine sometime between year 3.5 and 4, the patent is not abandoned.  
Source: http://www.uspto.gov/web/offices/com/sol/notices/71fr32285.pdf 
 

10See at:  www.delpion.com accessed January, 2010 
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 Additional patent data, specifically patent cites, was obtained from the NBER patent 

dataset (Hall et. al, 2001). International Patent Classification (IPC) codes for each patent were 

obtained from the PatStat database by the EPO.11 Patent cites are different from research article 

cites in that when a focal patent cites a previous patent it means that it is building on the previous 

invention. It further means that the material protected in the previous invention is limiting the 

scope of the current patent because the current patent cannot lay a claim on it. Furthermore, cites 

are added to the patent not only by the entity that files the patent but also by the patent examiner. 

A patent that cites multiple patents is believed to be less pioneering and narrower. Previous 

studies have found that a more pioneering university patent is more likely to get licensed (Nerkar 

and Shane, 2007; Dechenaux, 2008). A patent that is cited multiple times is considered important 

and valuable (Hall, 2005).  

 However, it is also well known that inventors tend to cite their own prior patents as they 

build on their inventions. This would mean that an invention with a higher number of prior self-

citations or future self-cites will indicate a stronger research portfolio of the inventor and a 

stronger protection of intellectual property. Licensing agreements often include multiple patents 

and inventions in the same area and by the same inventor and firms will often license subsequent 

inventions by an inventor if they already have licensed one, especially if it enhances the 

protection to the first patent. This will speed up the time to licensing of inventions that are part of 

a stronger research portfolio which can be positively correlated with patent prior art. As a result, 

the predictions on the influence of prior art will depend on what portion of it is based on self-

citations. It is also possible that the “portfolio” effect and the “pioneering” effect will cancel each 

other. 

                                                            
11See  http://www.epo.org/searching/subscription/raw/product‐14‐24.html for more information. 

Accessed January 2012 
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 I use the number of IPC codes on each patent as a measure of its scope. A patent with a 

larger scope will be more likely to be licensed because it would give a better protection and will 

be more valued by a potential licensor. Lerner (1994) shows that patent scope is related to a 

higher valuation by VCs in funding new firms. He finds that a one standard deviation increase in 

patent scope results in a 21% higher valuation for the firm. A larger patent scope has also been 

shown to increase the hazard of licensing an invention and commercializing it once it has been 

licensed in the university licensing setting (Elfenbeim, 2004; Nerkar, 2007).  

 To control for technology type, I use the main USPTO assigned patent classes and 

categorize the patents into six main groups – drugs, molecular biology, surgery, chemistry, optics 

and electricity and other with other including only 6% of patents. Appendix 2.1 provides a 

description of patent classes that are included in each category.   

 An alternative control for technology type uses all the IPC codes assigned to each patent 

at the subclass level. I select the 15 IPC codes at the subclass level that most frequently appear in 

my dataset. The 691 patents in my dataset have altogether 2074 IPC codes with 62 unique values 

at the subclass level. The top 16 of these unique values by frequency account for 91% of all IPC 

subclass level codes. I create a dummy variable for each of these 16 subclass level IPC codes. A 

17th category of “other” is a dummy for patents that do not belong to any of the 16 categories 

above – there are 33 patents in my dataset whose IPCs belong exclusively to the “other” 

category. Because a patent can have multiple IPC codes, a patent can belong to different 

categories as defined above. 

 This classification is important because the probability of licensing and the time to 

licensing depend on the type of technology being considered. For example, a medical device may 

be licensed faster than a drug molecule because it has a different clinical trial and FDA approval 
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timeline and return on investment. Furthermore, different types of firms will consider devices 

and drugs. Even within the large category of medical devices, some may be very different in 

terms of licensing than others – for example, software for an MRI machine will most certainly 

differ in licensing probability from a new catheter. Similarly, a research tool such as a 

genetically altered mouse may have an entirely different licensing profile than a drug molecule. 

Measuring these using various patent class measures provides further robustness.  Since patented 

inventions are by definition unique, there is no classification that can account for all of the 

different patent characteristics. In classifying them, I am interested only in characteristics that 

will alter their licensing probability and timeline. 

 In addition to the patent classification using IPC classes, I have also classified them into 

types of claims by reading through the patent claims for each of the patents. I have three main 

categories -- process, object and combined process and object. It is possible that an object such 

as a new chemical composition will likely provide different strength of protection to a patent 

than a process claim for a method of treatment of a disease. Such level of protection then may 

influence whether and how soon these patents are licensed. These three categories are mutually 

exclusive.  

 I have further divided the patents into device and non-device inventions. A medical 

device is an apparatus that has human body contact and would require an FDA approval as a 

medical device. Even though there is a wide variation within medical devices with regard to their 

complexity and novelty, this classification is nevertheless useful as the approval process is quite 

similar for most devices and the types of firms that license these inventions are different from the 

firms that license non-device inventions.    
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2.4.2 Inventor Data 

To test the importance of cross-domain experience on the team on licensing outcomes I 

use inventor educational background as an indicator of team diversity. It departs from previous 

literature where cross-functional teams have been classified as such based on different functional 

positions in the firm. Part of the reasoning has been that people with different functional 

positions would have different goals in addition to having different outlook on the world and 

these goals may be conflicting and may hinder team performance (Lawrence and Lorsch, 1969).  

In this case, I am interested in team composition as it relates to the different types of knowledge 

team members bring to the team. Because these inventors are all at top academic medical 

centers, they have one similar goal – to advance the knowledge of the scientific community and 

publish academic articles. I assume that many MDs will also have a goal to serve their patients 

and people with MD/PhDs will have a goal to enrich their clinical work with their research work 

and their lab work with the knowledge that they get from the clinic. Note however, that while 

MDs and MD/PhDs could choose to devote their career exclusively to research, PhDs do not 

have access to the clinic. 

 To find the educational background of inventors I use a number of sources described 

below. In their invention disclosures inventors are supposed to disclose their educational degree 

which is then on record with the TLO. More than half of the information about the inventors’ 

background came from that file. However, because a few mistakes were discovered in that file, 

the data was further checked against other sources.   

For every single inventor, a search was done through the AMCs internal directories.  

Unfortunately, the directory only has current information, so the rest of the degree information 

came from web sources.  Each inventor’s name was searched through the ProQuest Dissertations 
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and Theses Database, accessed through the Harvard University Library System.12 A search was 

then conducted for every name using Google. CVs or university biography pages were used 

when available. Often, academic articles also include a researcher’s degree and that information 

was very useful by letting us compare the date of the article and degree with the date of the 

invention. Sites such as vitals.com and healthgrades.com provide information on physician’s 

medical education as well as year of graduation and licensing and were also a good, but last 

resort, source of information.13  

Having information on graduation dates was useful in cases where a person has a patent 

and an article before getting an MD or PhD.  In a few cases there were people who were already 

in an MD or a PhD program at the time of patent filing and they were considered MDs or PhDs 

respectively. Inventors that had only a Master’s degree or a Bachelor’s degree were classified as 

“other”. For 11 of those, we were not able to ascertain the educational degree that the inventor 

had. In the dataset of 691 patents there are 1505 inventors because many patents have multiple 

inventors.   

 Team size is an important variable to control as it is potentially correlated both with team 

type and licensing outcome and can bias results. Team size is related to team type because teams 

with a higher number of inventors are more likely to be diverse. Inventions created by one 

inventor only, for example, cannot combine cross-domain expertise unless that cross-domain 

expertise is in one person. This relationship holds in my dataset as well – teams with a larger 

number of inventors are more likely to be cross-domain teams. Previous research has also found 

that patents with multiple inventors are cited more, implying that they are of a higher quality and 

as such may be more likely to get licensed (Wuchty et. al., 2007). One reason why licensing may 

                                                            
12See  http://www.proquest.com/en-US/catalogs/databases/detail/pqdt.shtml, accessed 2011 

 
13See  http://www.vitals.com and http://www.healthgrades.com, accessed 2011 
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be affected by the number of inventors on the team may be that the more inventors there are on 

the team the more possible links there are to potential licensees through inventors’ industry 

contacts.  Tables 1 and 2 provide descriptions of team size and inventor educational degree

Table 2.1 Frequency distribution of 
number of inventors in team 

Team size Number of Patents 
1 215
2 252
3 153
4 43
5 19
6 5
7 3
9 1

Total 691

 
Table 2.2 Number of Inventors by 
Educational Degree 

Inventor Degree Number of 
Inventors

MD/PhD 266
MD Only 570
PhD Only 578
Other Only 80
Degree Information  
Not Available 

11

Total 1505
 

Because about 70% of patents have more than one inventor on them I need to devise a 

composite measure for team type based on the educational background of the inventors. To test 

my hypotheses, I divide my patents into five main groups – Cross-Domain Integrated, Cross-

Domain Distributed, Single-Domain Research, Single-Domain Clinical and Other. Cross-

Domain Integrated teams are those that have people who possess knowledge of both the clinical 

and research domain based on their educational background and that knowledge is integrated in 

at least one person of the team. This implies that the team has at least one inventor with an 

MD/PhD degree (two domains integrated in one person) but it may have additional MD/PhDs, or 

MDs or PhDs on the team. Cross-Domain Distributed teams have at least one MD and at least 

one PhD on the team but no inventor with an MD/PhD. All team members in Single Domain 

Research teams have PhDs (also can have a team member with an “other” degree in addition to 

PhDs) and all team members in Single Domain Clinical teams are MDs (also can include a 

member with an “other” degree in addition to MDs). All Cross-Domain and Single-Domain 
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teams can have researchers that are not PhDs or MDs. However, teams that have no MDs or 

PhDs are classified as “Other.”  

 It is important to note that we don’t have educational information for 11 inventors, four 

of these inventors belong to Cross-Domain Integrated teams and as such those inventions don’t 

need to be dropped. Similarly, because Cross-Domain and Single-Domain teams can have 

members with Other degrees, we have 80 such inventors and only 6 teams that are in the Other 

category – i.e. have all of their members in the Other education category. Table 3 below contains 

a frequency distribution of the types of teams in the dataset.  

Table 2.3 Frequency Distribution of Patents by Team Type 
Team Type Number of Patents 
Cross-Domain Integrated 226 
Cross-Domain Distributed 128 
Single-Domain Clinical 173 
Single-Domain Research 151 
Other 6 
At Least One Inventor with  
Unknown Degree Information and NOT 
Cross Domain Integrated 7 
Total 691 

 

For each patent, I also find out the lead inventor as noted by the TLO. The lead inventor 

(LI) is generally the Primary Investigator of the lab or the person with the most contributions to 

the patent. The lead inventor is also the one who participates most actively in patent prosecution 

and often has contacts with industry which may help during the licensing process. Some lead 

inventors have gone through the process of patent prosecution and licensing with previous 

inventions. While I don’t observe patenting at other organizations by these inventors, this 

variable is still important as, at the very least, it measures the experience of the lead inventors 

working with this TLO. There are a few patents in my dataset for which the lead inventor is 
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missing or is not on the patent itself. This happens when an invention is disclosed and is then 

split into multiple patents and while one person has contributed the most to the whole invention, 

he is not an inventor on a specific patent. That person still remains the lead inventor for all 

inventions on the case. Patents like these are dropped in some of the analyses where lead 

inventor variables are included.  

2.4.3 License Data 

 The information on licenses was extracted from the TLO’s database. Patents may have 

more than one license associated with them – some are licensed through non-exclusive 

agreements, some are sublicensed by the first licensor. Additionally, many licenses are 

terminated and the invention then gets relicensed to a different entity. For my study I select the 

date of the earliest license for each patent in my dataset. Even if the first license gets terminated I 

consider licensing to be a proxy for attempt at commercialization or use in industry.  

Of my 691 patents 358 (51%) are licensed at least once. Below is a table of the frequency 

distribution of licensing by team type.  

Table 2.4 Licensing by Team Type 
Team Type Unlicensed 

Patents 
Licensed 
Patents 

Total 

Cross-Domain Integrated 114 112 226
Cross-Domain Distributed 62 66 128
Single-Domain Clinical 71 102 173
Single-Domain Research 78 73 151
Other 5 1 6
Undefined 3 4 7
Total 333 358 691

 
 
2.5 Models and Results 

The data for this study is right censored – I stop observing many patents that are still 

available for licensing at the end of the data-gathering process in early 2011. Furthermore, 
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because inventions are disclosed at different times, patents that were filed in the 1970s are 

observed until abandonment or expiration while later patents I observe for only some of their 

life. To account for all peculiarities of the data I use survival analysis models.  

Survival analysis looks at time to licensing but accounts for right censoring as well as for 

inventions that are only in the data for a short period of time but do not achieve a license. I use 

parametric and non-parametric survival analysis models as well as random effects and shared 

frailty by lead inventor. I also do robustness checks by using standard models such as OLS of 

time to license and logit of probability of licensing within 10 years of first patent filing on case.  

The simplest way to get some understanding of the distribution of survival data is to 

describe it graphically especially by separating it into the groups that we are interested in 

comparing. Below is a plot of the Kaplan-Maier estimate which is a non-parametric maximum 

likelihood estimate of the survivor function or the probability of survival past time t. It is given 

by the formula        

Ŝ(t)=∏ ሺ
௡ೕିௗೕ

௡ೕ
௝|௧ೕஸ௧ ሻ 

where nj is the number of patents at risk at time tj and dj is the number of failures (licenses) at 

time tj.  
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Graph 2.1 Kaplan – Meier Survival Estimates by Team Type

 

We note from the above graph that Cross-Domain Integrated (label: cd_int) and Cross-

Domain Distributed (label: cd_dist) inventions follow similar survival curves while the Single 

Domain teams are different. Inventions by Single Domain Clinical (label: sd_clin) teams seem to 

get licensed faster than the rest, especially when they first become available.  Inventions by 

Single-Domain Research teams, on the other hand, seem to be the slowest to license.    

Simple statistics of the dataset are also reported based on the survival function estimate. 

The median, based on the survival function is the time after which only 50% of the sample 

survives (i.e. remains unlicensed) and the mean is the time that the average patent survives. 

Compare that to a raw calculation of the mean time of each patent in the sample without 

correction for censoring in the last column. Various test of equality of the survivor functions of 
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the different team types show that they are statistically significantly different. The result is robust 

to excluding the “Other” team type.  

Table 2.6 Sample descriptive statics of survival by team type based on the Kaplan-Maier 
nonparametric estimate of the survival function. Time is reported as number of days 

Team Type Num of 
Observations

Median 
(50% of 
Sample 
Survives 
This Long) 

Mean (The 
Average Patent 
Survives This 
Long) 

Time in 
Sample (not 
calculated 
from survival 
function) 

Cross Domain Integrated 226 4339 4747.456(*) 2903 

Cross Domain Distributed 128 4657 4428.759(*) 3142 

Single Domain Clinincal 173 2248 3856.621(*) 2638 

Single Domain Research 151 3851 4469.332(*) 3082 

Other 6 n/a 7063.167(*)   5703 

Whole Sample 684 3851 4586.775(*) 2937 
 * largest observed analysis time is censored, mean is underestimated 

 

Unfortunately, the non-parametric models shown above do not allow one to control for 

multiple variables. To be able to include the covariates into the regression, I use a semi-

parametric proportional hazard model – the Cox Hazard Model. It estimates a baseline non-

parametric hazard function – h0(t).  

hሺt|x୨ሻ ൌ ݄଴	ሺݐሻ݁௕ೣ	௫ೕ 

The covariates however enter the model linearly, i.e. they modify the hazard function 

multiplicatively, giving it the name proportional.  

Table 2.7a-c include results from a Cox Proportional Hazard with no lead inventor 

controls (2.7a), models stratified by lead inventor (2.7b) and random effects  models by lead 

inventor (2.7c).The random effects and stratification models are included to control for a 

potential omitted variable that is correlated both with the type of the team and the type of the 
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invention. It is possible, for example, that certain inventors select to work on a particular 

invention type – a clinician may work mostly on medical devices while most PhD teams work on 

molecular biology problems. Also the lead inventor may choose people to contribute to the team 

based on the team needs and certain lead inventors may be better at this selection than others. At 

the same time, we expect that different types of inventions will have a different hazard of 

licensing. It becomes particularly important then to control for invention type to avoid a selection 

bias. 

It can be argued that team composition is not entirely endogenous in our sample. For one 

thing, the inventors on each particular patent are not determined by the lead inventor or by self-

selection because of the nature of inventor determination at the USPTO. A team member can 

only be named an inventor on a patent if she contributed to the conception of the invention as 

mentioned above, not just reducing the idea into practice. As one invention turns into multiple 

patents, different team members may end up as inventors on different patents depending on how 

the various invention claims get divided between different patents. Including the above controls, 

however, is still important.  

As discussed in the previous section, I use various invention type controls – I divide 

inventions into various categories based on their main USPTO classes. Those classes are 

described in Appendixes 2.1 and 2.2. Furthermore, I select the top 16 IPC codes and create 

categorical variables for whether a certain patent belongs to the particular IPC code. I further 

read and classify the patents into devices and non-devices based on whether they would require 

FDA approval for device. And lastly, I categorize patents into different groups based on whether 

they claim a process (method) or an object (composition of matter, article of manufacture or 

apparatus) or both.  
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While none of these are perfect invention type controls, they are different ways of 

addressing the issue of potential inventor selection into different types of technologies. An even 

better test would be to assume that each lead inventor creates a specific type of invention with its 

own different hazard of licensing. The Cox model allows us to control in two ways for lead 

inventor selection of invention type and team type - by using random effects by inventor and by 

stratifying by inventor.  

Strata in a Cox Hazard model are disjointed groups based on certain characteristics – in 

this case, the lead inventor.  Stratified models estimate a separate baseline hazard function for 

each stratum. They then assume that the covariates influence each stratum equally – the variable 

“device” influences the hazard function of lead inventor A and B in the same way.  Shared frailty 

models (or the equivalent of random effects) on the other hand estimate the same baseline hazard 

function for all values of the lead inventor variable. They then assume that there is a latent 

variable that modifies the hazard function multiplicatively and has a different value for each 

group, in our case each lead inventor.   

The stratified models are the preferred ones for this paper as they control for invention 

type in the way that I expect the data to behave. However, they exclude all patents of inventors 

who have only one invention. For that reason I report both the models stratified by lead inventor 

and the random effects models.   

Table 2.7 presents the main results. In the first, third and fifth columns I compare the 

licensing hazard of all cross-domain integrated and cross-domain distributed teams to all single 

domain teams (the omitted category) using a regular Cox hazard model, a Cox Hazard model 

stratified by lead inventor and a random effects by lead inventor Cox hazard model respectively.  
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Table 2.7 Cox Hazard Model Results of licensing. USPTO Main Patent Class based technology controls. All 
standard errors clustered by invention disclosure and reported under coefficients. LI=Lead Inventor 

  

    
Stratified 
by LI 

Stratified 
by LI 

LI Random 
Effects 

LI Random 
Effects 

Cross-Domain Integrated -0.409** -0.024 -1.042** -0.865* -0.585** -0.458* 
  0.190 0.213 0.436 0.481 0.256 0.279 

Cross-Domain Distributed -0.497**  -0.263  -0.250   

  0.230  0.281  0.252   

Single-Domain All  0.338  0.075  0.022 

   0.222  0.267  0.234 

Patents Cited 0.0125*** 0.0129*** 0.0182*** 0.0187*** 0.0242*** 0.0248*** 

  0.004 0.004 0.005 0.005 0.006 0.006 

Forward Citations 0.636*** 0.636*** 0.529*** 0.534*** 1.064*** 1.078*** 

  0.232 0.232 0.192 0.190 0.248 0.250 

Patent Scope 0.0416* 0.0397* 0.0748* 0.0748** 0.0813** 0.0821** 

  0.022 0.022 0.039 0.038 0.032 0.032 

Device -0.038 0.171 0.838*** 1.085*** 0.322 0.645** 

  0.293 0.267 0.310 0.260 0.336 0.304 

Device X Cross-Domain 
Integrated 

1.121** 0.903** 0.746 0.445 0.788 0.445 

0.452 0.442 0.689 0.664 0.596 0.580 

Device X Cross-Domain 
Distributed 

0.954**  0.824*  1.336***   

0.468  0.448  0.508   

Team Size 0.103 0.101 0.049 0.035 0.105 0.088 

  0.066 0.066 0.110 0.109 0.076 0.076 

Patent Filed Pre-1990 0.267 0.302 -0.932** -0.856** -0.231 -0.176 

  0.253 0.252 0.401 0.408 0.288 0.288 

Patent Filed 1990-1999 0.266 0.291 -0.387 -0.340 0.024 0.050 

  0.224 0.224 0.335 0.339 0.245 0.245 

Process Claims Only 0.184 0.178 0.591*** 0.571*** 0.413* 0.392* 

  0.174 0.173 0.154 0.153 0.212 0.210 

Process and Object Claims -0.058 -0.056 0.167 0.138 -0.076 -0.087 

  0.164 0.165 0.156 0.154 0.200 0.198 

Molecular Biology Patent 0.740** 0.714** 1.286** 1.047** 1.218*** 1.128** 

  0.367 0.362 0.514 0.446 0.437 0.443 

Drug Patent 0.671* 0.625* 1.422*** 1.201*** 0.935** 0.847** 

  0.347 0.341 0.513 0.431 0.426 0.431 

Chemistry Patent 0.865** 0.839** 1.826*** 1.588*** 1.613*** 1.522*** 

  0.380 0.374 0.510 0.439 0.443 0.451 

Surgery Patent 0.156 0.129 1.319** 1.104** 0.754* 0.656 

  0.357 0.357 0.532 0.473 0.456 0.463 

Optics/Electric Patent -0.561 -0.645 0.749 0.556 -0.409 -0.576 

  0.491 0.483 0.767 0.931 0.659 0.666 

Observations 684 684 684 684 684 684 
Num. of Inv. Disclosures 296 296 

*** p<0.01, ** p<0.05, * p<0.1 

87



 

Columns two, four and six compare cross-domain integrated teams to all other teams 

again using the respective models above. All standard errors are clustered by invention 

disclosure since multiple patents can result from one invention disclosure and the licensing 

probability of patents from the same invention disclosure may be correlated as firms often 

choose to license portfolios.  

 The models in which the omitted variable is all single-domain teams test our first 

hypothesis that all cross-domain teams’ inventions are at a greater hazard of licensing than 

single-domain teams’ inventions. The models where the omitted variable is cross-domain 

distributed teams test our second hypothesis that inventions by cross-domain integrated teams are 

at a higher hazard of licensing compared to inventions by cross-domain distributed teams.    

The results are contrary to expectations –inventions by teams with cross-domain 

expertise are at a lower hazard of licensing than inventions by single-domain teams contradicting 

our first hypothesis. This result is, in fact, driven by cross-domain integrated teams whose 

inventions are also at a lower hazard of licensing when compared only to inventions by cross-

domain distributed teams, which also contradicts our second hypothesis. Furthermore, the latter 

effect is significant in all models except for the models with no lead inventor group controls.  

It is important however, that when we interact the cross-domain integrated and cross-

domain distributed variables with the dummy variable “device” we always get positive and at 

times statistically significant results. In fact, the magnitude of that coefficient is sometimes larger 

(also in absolute value) than the magnitude of the coefficient on the team type variables. This 

indicates that while on average inventions by cross-domain teams are at a lower hazard of 

licensing, when those inventions are medical devices, they may in fact be at a higher hazard of 

licensing than non-device inventions created by single-domain teams.   
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Table 2.8 Cox Hazard Model Results of licensing. IPC Subclass based technology type controls. All standard errors 
clustered by invention disclosure and reported under coefficients.  

        

Stratified 
by Lead 
Inventor 

Stratified 
by Lead 
Inventor 

Lead 
Inventor 
Random 
Effects 

Lead 
Inventor 
Random 
Effects 

Cross‐Domain Integrated  ‐0.366*  0.020  ‐1.134**  ‐0.859*  ‐0.512**  ‐0.331 

   0.201  0.222  0.456  0.513  0.255  0.282 

Cross‐Domain Distributed  ‐0.503**  ‐0.330  ‐0.311    

   0.236  0.324  0.259    

Single‐Domain All  0.335  0.220  0.087 

   0.225  0.309  0.242 

Patents Cited  0.00684**  0.00695**  0.020***  0.021***  0.022***  0.023*** 

   0.003  0.004  0.006  0.006  0.006  0.007 

Forward Citations  0.639***  0.652***  0.429**  0.439**  0.935***  0.962*** 

   0.217  0.218  0.188  0.185  0.254  0.255 

Patent Scope  0.102  0.092  ‐0.100  ‐0.103  0.021  0.014 

   0.119  0.119  0.131  0.134  0.109  0.110 

Device  ‐0.472*  ‐0.240  0.516*  0.680***  ‐0.210  0.129 

   0.275  0.261  0.305  0.256  0.336  0.305 
Device X Cross‐Domain 
Integrated  1.135**  0.896**  0.537  0.374  0.770  0.431 

   0.467  0.454  0.646  0.638  0.572  0.556 
Device X Cross‐Domain 
Distributed  1.004**  0.496  1.286***    

   0.464  0.527  0.497    

Team Size  0.096  0.091  0.069  0.057  0.096  0.082 

   0.069  0.068  0.119  0.118  0.078  0.078 

Patent Filed Pre‐1990  0.243  0.269  ‐0.901*  ‐0.859*  ‐0.139  ‐0.098 

   0.269  0.269  0.482  0.500  0.288  0.288 

Patent Filed 1990‐1999  0.288  0.305  ‐0.367  ‐0.338  0.050  0.067 

   0.225  0.227  0.379  0.381  0.243  0.242 

Process Claims Only  0.127  0.125  0.266*  0.263*  0.108  0.099 

   0.173  0.174  0.139  0.139  0.207  0.206 

Process and Object Claims  ‐0.046  ‐0.037  ‐0.056  ‐0.069  ‐0.295  ‐0.301 

   0.167  0.167  0.141  0.140  0.186  0.185 
IPC Subclass Dummies 
(Top 16 by Frequency) 

Included  Included  Included  Included  Included  Included 

Some 
Significant 

Some 
Significant 

Some 
Significant 

Some 
Significant 

Some 
Significant 

Some 
Significant 

     

Observations  684  684  684  684  684  684 

Number of groups              296  296 

*** p<0.01, ** p<0.05, * p<0.1 
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The negativity of the results is robust to multiple specifications of invention type based 

on patent measures – i.e. USPTO classes vs. IPC subclasses. The only exception is the 

comparison of cross-domain integrated to cross-domain distributed teams with the IPC based 

measure in the model without controls for lead inventor groups. The coefficient on our cross-

domain team variable there is positive but very small and highly insignificant. Recall that patents 

can belong to multiple IPC subclasses but only one USPTO class.  Please see Table 2.8 above for 

comparisons.  

Tables 2.9 and 2.10 go on to explore the results further by including only patents that 

have more than one inventor. Team size is correlated with team type because patents that have 

only one inventor cannot belong to the cross-domain distributed teams. Furthermore, the use of 

cross-domain expertise may be different in single inventor teams and teams with multiple 

individuals who each have a different knowledge background.  

The results in Table 2.9 are largely consistent with our findings from the whole sample 

models in Table 2.7 but statistical significance is weaker. For example, in the models without 

lead inventor controls, when cross-domain integrated teams are compared to cross-domain 

distributed teams (column 2), the coefficient is now positive even with USPTO class controls, 

albeit very small and statistically insignificant. Similarly, in the first model, where both 

distributed and integrated cross-domain team inventions are compared to the single-domain team 

inventions, the coefficient on the cross-domain integrated team variable is not statistically 

significant any more at any of the generally accepted levels.  
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Table 2.9 Cox Hazard Model Results of licensing. USPTO Main Patent Class based technology controls. Sample 
excludes sole inventor patents. All standard errors clustered by invention under coefficients.  LI=Lead Inventor 

      
Stratified 
by LI 

Stratified 
by LI 

LI Random 
Effects 

LI Random 
Effects 

Cross-Domain Integrated -0.368 0.022 -1.197** -1.202** -0.720** -0.573* 

  0.234 0.215 0.503 0.541 0.311 0.316 

Cross-Domain Distributed -0.488*  -0.077  -0.277   

  0.259  0.309  0.302   

Single-Domain All  0.301  -0.164  -0.025 

   0.248  0.299  0.274 

Patents Cited 0.0109*** 0.0113*** 0.0190*** 0.0203*** 0.0272*** 0.0286*** 

  0.004 0.004 0.007 0.007 0.007 0.007 

Forward Citations 0.448* 0.438* 0.348* 0.321 0.852*** 0.843*** 

  0.265 0.264 0.202 0.199 0.305 0.307 

Patent Scope 0.0488* 0.044 0.0659* 0.0644* 0.057 0.055 

  0.028 0.028 0.040 0.038 0.038 0.038 

Device -0.056 0.241 0.669* 1.044*** 0.236 0.703* 

  0.373 0.323 0.370 0.317 0.420 0.364 

Device X Cross-Domain 
Integrated 

1.052* 0.737 1.700** 1.208 1.395** 0.881 

0.557 0.528 0.766 0.748 0.708 0.672 

Device X Cross-Domain 
Distributed 

0.920*  0.864  1.371**   

0.518  0.542  0.573   
Team Size 0.058 0.067 0.087 0.091 0.134 0.126 

  0.087 0.084 0.127 0.128 0.098 0.099 

Patent Filed Pre-1990 0.219 0.260 -0.806* -0.715 -0.113 -0.059 

  0.280 0.279 0.438 0.438 0.336 0.337 

Patent Filed 1990-1999 0.112 0.120 -0.098 -0.069 -0.001 0.018 

  0.241 0.242 0.331 0.336 0.279 0.278 

Process Claims Only 0.160 0.154 0.578*** 0.586*** 0.371 0.377 

  0.219 0.218 0.194 0.196 0.258 0.256 

Process and Object Claims -0.056 -0.052 0.158 0.150 -0.017 -0.002 

  0.212 0.213 0.174 0.178 0.240 0.238 

Molecular Biology Patent 0.782* 0.748* 1.759* 1.451* 1.481*** 1.346** 

  0.460 0.453 0.907 0.869 0.568 0.573 

Drug Patent 0.775* 0.709 1.795* 1.494* 1.144** 0.984* 

  0.441 0.432 0.928 0.877 0.561 0.564 

Chemistry Patent 1.114** 1.062** 2.318*** 2.009** 2.220*** 2.039*** 

  0.482 0.471 0.879 0.835 0.577 0.584 

Surgery Patent 0.437 0.413 1.463* 1.206 1.263** 1.116* 

  0.442 0.446 0.857 0.840 0.593 0.598 

Optics/Electric Patent -0.133 -0.221 1.034 0.788 0.220 -0.033 

  0.626 0.624 0.999 1.091 0.814 0.817 

Observations 469 469 469 469 469 469 

Number of groups         227 227 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 2.10 Cox Hazard Model Results of licensing. IPC Subclass based technology type controls.  Sample 
excludes sole inventor patents. All standard errors clustered by invention disclosure and reported under 
coefficients.  

      Stratified 
by Lead 
Inventor 

Stratified 
by Lead 
Inventor 

Lead 
Inventor 
Random 
Effects 

Lead 
Inventor 
Random 
Effects 

Cross-Domain Integrated -0.292 0.126 -1.140** -1.067** -0.467 -0.285 

  0.238 0.223 0.498 0.517 0.294 0.305 

Cross-Domain Distributed -0.510*  -0.124  -0.270   

  0.263  0.361  0.293   

Single-Domain All   0.331  0.005  0.072 

    0.249  0.354  0.274 

Patents Cited 0.006 0.006 0.0283*** 0.0289*** 0.0240*** 0.0256*** 

  0.004 0.004 0.009 0.009 0.008 0.008 

Forward Citations 0.484* 0.500** 0.240 0.229 0.739** 0.749** 

  0.248 0.247 0.187 0.185 0.305 0.306 

Patent Scope 0.197 0.198 -0.068 -0.060 0.058 0.072 

  0.191 0.195 0.147 0.154 0.155 0.157 

Device -0.485 -0.142 0.330 0.580** -0.167 0.243 

  0.370 0.331 0.353 0.264 0.421 0.356 

Device X Cross-Domain 
Integrated 

1.225** 0.877* 1.278* 1.042 1.377** 0.978 

0.523 0.497 0.764 0.733 0.661 0.627 

Device X Cross-Domain 
Distributed 

0.910*  0.493  1.020*   

0.498  0.538  0.543   

Team Size 0.073 0.075 0.136 0.138 0.100 0.100 

  0.090 0.088 0.147 0.148 0.098 0.099 

Patent Filed Pre-1990 0.127 0.161 -0.821 -0.753 -0.094 -0.055 

  0.306 0.307 0.533 0.552 0.332 0.333 

Patent Filed 1990-1999 0.142 0.144 -0.218 -0.190 -0.030 -0.024 

  0.237 0.240 0.348 0.347 0.271 0.270 

Process Claims Only 0.110 0.118 0.282* 0.290* 0.138 0.156 

  0.227 0.226 0.157 0.157 0.266 0.264 

Process and Object Claims 0.005 0.011 0.035 0.021 -0.195 -0.194 

  0.215 0.216 0.175 0.173 0.232 0.229 

IPC Subclass Dummies 
(Top 16 by Frequency) 

Included Included Included Included Included Included 

Some 
Significant 

Some 
Significant 

Some 
Significant 

Some 
Significant 

Some 
Significant 

Some 
Significant 

      

Observations 469 469 469 469 469 469 

Number of groups         227 227 

*** p<0.01, ** p<0.05, * p<0.1 
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Statistical significance of the team type variable coefficients disappears in most of the 

models in which the sample is restricted to teams with two or more inventors and in which IPC 

based controls are used. The coefficients on cross-domain team variables are not at all significant 

in the random effects models but still remain significant in the stratified models. The results 

imply that our negative results were driven largely by patents invented by cross-domain 

integrated teams with single inventors – i.e. lone inventors with MD/PhD degrees.  

It is important to mention that the lack of significant negative results still does not 

support our hypothesis that inventions by cross-domain teams are at a higher hazard of licensing 

than single-domain team inventions or that inventions by cross-domain integrated teams are at a 

higher hazard of licensing than inventions by cross-domain distributed teams. It alleviates 

however the problem of explaining negative results that are counter to our stated hypotheses.  

Of the control variables, one is particularly important to note – the number of patents 

cited by the focal patent which is an indicator of how pioneering the invention is. Inventions with 

fewer cited patents are more pioneering and according to previous study they are also more 

likely to be licensed (Nerkar et al., 2007). In our dataset that result does not hold. Inventions that 

cite more patents are at a higher hazard of licensing. As noted above, this could be due to the fact 

that inventions with more prior art may be citing patents by the same inventor which may imply 

a larger and potentially better protected patent portfolio. It could also imply, however, that 

industry needs time to catch up with university technology and more cutting edge patents take 

longer to be recognized. Further research to understand the mechanism behind this result is 

needed because of its implications for technology transfer policy.  
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2.6 Conclusion 

In this paper, I try to understand the role of cross-domain expertise on patent licensing 

from Academic Medical Centers. My results are contrary to expectations implying that 

inventions by Cross Domain teams are at a lower hazard of licensing than those by Single 

Domain teams. These results are influenced by the type of technology implying that the 

importance of cross-domain expertise on the inventing team varies by various types of inventions 

and that identifying those areas and directing MD/PhDs into them may present efficiency gains. 

Potential educational subsidies for MD/PhDs specializing in degrees that would be associated 

with future device inventions, for example, could be considered. However, more research needs 

to be done in this area before such recommendations can be made.   

Even if the results are predictive of trends in the larger population they do not imply 

causality as my teams and inventions are simultaneously determined – i.e. teams of different 

educational background are not randomly assigned to come up with a specific invention, instead 

people choose to work on a certain type of invention. Random assignment of inventors to teams 

that can then come up with a specific invention is not possible. Choice of area in which to work 

is personal and hard to control for. While I control for the technological class and subclass of a 

patent, there may be other characteristics of the invention that are correlated both with the 

inventor degrees and with licensing. 

Furthermore, lower rates of licensing may not mean that MD/PhDs or cross-domain 

teams are not crucial to the translational process. Patents and patent licensing measure only a 

certain type of creative and translational activity. It is possible that cross-domain teams are better 

at translating existing inventions into the clinic rather than coming up with new licensable ones. 
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It could also be that even though their inventions are at a lower hazard of licensing, they may be 

faster to commercialize once licensed. 

More research is needed to understand the role of cross-domain work, teams and 

individuals for the process of translating basic science into the clinic. This paper is providing a 

starting point and puzzling findings that can spur further investigation.  
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2.8 Appendixes 

Appendix 2.1 USPTO Main Patent Classes, Classification into Larger Class Groups and Frequency 
of Occurrence in Data 

Class Group 

Main 
USPTO 
Class 

Frequency in 
Dataset    

Class 
Group 

Main 
USPTO 
Class 

Frequency in 
Dataset 

Chemistry  506  2     Other  101  1 

Chemistry  530  36     Other  198  1 

Chemistry  536  25     Other  345  3 

Chemistry  544  1     Other  564  1 

Chemistry  552  2     Other  706  1 

Chemistry  554  7     Other  5  5 

Chemistry  436  12     Other  106  1 

Chemistry  560  1     Other  210  2 

Total Chemistry  86    Other  250  2 

Drug  424  96    Other  340  1 

Drug  514  145    Other  372  1 

Total Drug  241    Other  422  2 
Molecular 
Biology  435  125    Other  427  1 
Molecular 
Biology  800  13    Other  433  2 

Total  Molecular Biology  138    Other  521  1 

Optics/Imaging  356  6    Other  522  2 

Optics/Imaging  359  2    Other  523  2 

Optics/Imaging  378  5    Other  525  2 

Optics/Imaging  382  3    Other  528  1 

Optics/Imaging  385  3    Other  623  8 

Optics/Imaging  702  3    Other  705  1 

Optics/Imaging  324  20    Total Other  41 

Total Optics/Imaging  42         

Surgery  128  14          

Surgery  600  56          

Surgery  601  7       

Surgery  604  18       

Surgery  606  37       

Surgery  607  11       

Total Surgery     143             
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Appendix 2.2 IPC Codes Frequency of Occurrence in Sample Patents. A patent may 
have  multiple IPC Codes 

IPC Code at 
Subclass Level 

Number of 
Occurrences 

IPC Code at 
Subclass Level 

Number of 
Occurrences 

A61 K  657  C7 F  5 

A61 B  250  C8 L  5 

C7 K  248  C8 G  5 

G1 N  135  G9 G  3 

C12 N  123  A47 D  3 

C7 C  115  B6 B  3 

A61 F  58  B41 K  2 

A1 N  50  C7 J  2 

A61 M  49  B29 B  2 

A61 N  46  A1 H  2 

G1 R  44  C9 H  2 

C12 Q  39  A47 G  2 

A61 L  34  H4 N  2 

G2 B  22  G21 K  1 

C7 H  20  H4 Q  1 

C12 M  17  C2 F  1 

C7 D  13  A47 C  1 

A61 G  9  G10 K  1 

C12 P  9  B1 L  1 

G6 T  9  B65 G  1 

H4 L  8  G6 K  1 

G6 F  7  G1 S  1 

C8 B  7  B5 D  1 

C7 B  7  G1 J  1 

G1 T  6  B28 B  1 

C40 B  6  G1 F  1 

A61 Q  6  G1 V  1 

A61 C  6  C9 D  1 

A1 K  6  F2 B  1 

B29 C  6  H1 F  1 

G1 B  6  C7 G  1 
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3. DO DIVERSITY AND FOCUS IN ROUTINE WORK INFLUENCE CREATIVE 
OUTPUT? EVIDENCE FROM CARDIAC SURGERY 
 
Ayfer Ali         Robert Huckman 

 

3.1 Abstract 

Routine, non R&D work has rarely been seen as the wellspring of innovative ideas. In 

this paper we propose that the design of routine work can influence the quantity and quality of 

innovation. We use the setting of cardiac surgery to show that a surgeon’s clinical focus – i.e. the 

quantity and type of procedures he performs -- has an influence on the quantity and quality of his 

academic article publications, which are our proxy for innovative output. We use a panel dataset 

of 162 surgeons who perform procedures at academic hospitals in New York State from 1994 to 

2004. We find that performing a more diverse set of cardiac procedures is associated with a 

higher number of articles for early-career surgeons. We also find that as the percentage of heart 

valve procedures rises as part of the surgeon’s portfolio, so does the number of cite-weighted 

articles related to heart valve procedures. This result does not hold for Coronary Artery Bypass 

Graft (CABG) procedures however – an increase in the percentage of CABG procedures that a 

surgeon performs, does not increase the number of cite-weighted CABG articles.  

3.2 Introduction  

Many workers have dual roles in their jobs.  They must not only execute routine tasks 

efficiently to ensure short-term success, but they must also creatively alter and improve the way 

they perform those tasks over the long term. At the organizational level March (1991) refers to 

these dual roles as exploitation and exploration, respectively, and describes them as competing 

for organizational resources – an organization that spends time exploiting current expertise will 
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not spend that time exploring new ways of doing things.  The view that exploitation and 

exploration represent fundamentally different activities, suggests that individuals or 

organizations that are geared to succeed at exploitation should be less proficient at exploration 

and vice-versa.  At a minimum, one might expect that performance with respect to these two 

types of activities is uncorrelated.   

In this paper, we consider whether the relationship between exploitation and exploration 

is more nuanced than simply being uncorrelated or being a “pure tradeoff”.  Specifically, we 

examine whether the manner in which an individual’s routine work (i.e. exploitation) is 

structured influences his or her innovative performance (i.e. exploration).  We characterize the 

routine work of an individual by its degree of specialization under the assumption that greater 

specialization i.e. repeatedly performing one type of task at the expense of others, might impede 

innovative performance to the extent that it does not expose the individual to significant variety 

(Levitt and March, 1988). 

 We examine this issue within the empirical context of cardiac surgery.  We use this 

context because a relatively large percentage of cardiac surgeons are affiliated with academic 

medical centers, implying that they are responsible for both performing surgical procedures (akin 

to exploitation) and performing academic research (akin to exploration).  With respect to the 

latter activity, cardiac surgeons at academic hospitals often innovate in terms of devising new 

techniques or medical devices (Riskin et al., 2006; Chatterji et al., 2008). Furthermore, they are 

part of the larger academic community that publishes articles on new discoveries and advances in 

their field and their innovative performance is reflected in their publications (Merton, 1957; 

Stephan, 1996).  Ultimately, this context allows us to examine how the structure of an 

individual’s exploitation activities impacts his or her performance in terms of exploration. 
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 We find that the structure of routine work is indeed related to the innovative output of 

cardiac surgeons but only statistically significantly for the sample of early career surgeons. A 

more diverse set of procedures results in more articles published for early-career cardiac 

surgeons. Furthermore, innovation in certain areas (i.e. heart valve procedures) is associated with 

a higher focus in that area, while innovation in other areas (i.e. CABG procedures) is associated 

with a higher focus in related (cardiac but non-CABG) areas.  

 The remainder of this paper proceeds as follows.  Section 3.3 develops our hypothesis. 

Section 3.4 describes the data and Section 3.5 shows our results. Section 3.6 concludes with a 

discussion of generalizability and limitations.  

3.3  Literature Review and Hypothesis Development 

The idea that knowledge can be gained through work is not new.  Learning-by-doing has 

been shown to improve productivity (Wright, 1936; Arrow, 1962; Argote and Epple, 1990).  

Workers can improve performance in several ways such as by learning more-efficient ways to 

perform specific tasks, learning to use tools, or learning to work together more effectively 

(Edmondson et. al, 2003; Huckman and Pisano, 2006; Lapre and Nembhard, 2010).  New 

problems that were not anticipated can become apparent in the course of work and may need to 

be resolved, resulting in modifications in processes and tools that improve productivity (Adler 

and Clark, 1991). Though individual modifications may be incremental, they can accumulate to 

become significant innovations with a large economic value (Rosenberg, 1979; Berndt et al., 

2006).  

Innovation in task performance involves two aspects – problem discovery and problem 

solving (von Hippel and Tyre, 1995; Hyysalo, 2006). Performance with respect to both of these 

aspects may be affected by organizational issues, such as management structure or processes for 
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resource allocation, which may either support or interfere with second-order problem solving and 

innovation (Tucker et al., 2002; Adler and Clark, 1991). In this paper, we propose that such 

innovation is also affected by the organization of routine work itself. 

The positive relationship between specialization and productivity has been previously 

shown at the organizational, divisional and plant levels (Brush and Karnani, 1996; Huckman and 

Zinner, 2007; Vokurka and Davis, 2000). Studies on individual level productivity at the team 

level have also been conducted. Narayanan et al. (2009) use team level data in a software 

maintenance firm to show that specialization improves individual productivity but exposure to 

variety at the workgroup level has non-linear effects – decreasing productivity at very high 

levels. Similarly in an experimental setting, Schilling et al. (2003) find that specialization 

improves individuals’ outcomes but only as much as doing an unrelated task. Doing a different 

but related task, on the other hand, improves outcomes much more than specialization (Schilling 

et al. 2003).  

A study by Boh et al. (2007) on the other hand, finds that while specialization increased 

productivity at the individual level, diverse but related experience is more important for team and 

organizational performance in software maintenance projects. Furthermore, Staats and Gino 

(forthcoming) show that the effect of specialization and variety may be different in the short and 

the long run – in the short run, specialization improves productivity but in the long run, variety is 

more important because workers learn how to learn better (Staats and Gino, forthcoming).  

The importance of specialization and variation in work on performance has also been 

explored in the health care industry. A study by Diwas and Staats (forthcoming) looks at the 

importance of focal and related experience on outcomes in minimally invasive cardiac surgery 

procedures to find that focal experience has a greater effect on surgeon performance than related 
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experience. Similarly, “procedural specialization” -- i.e. the type of procedures that a surgeon 

performs rather than educational specialization – has been shown to be correlated with lower 

patient mortality rates among general surgeons (Hall et al., 2009).  

The impact of diversity on innovative performance has been studied at the organizational 

and team levels. At the organizational level the scope of R&D programs has been shown to 

positively impact innovative outcomes (Cockburn and Henderson, 2001). Theoretical work on 

team level diversity has found that a randomly chosen group of diverse problem solvers 

outperforms a select group of high ability problem solvers precisely because high ability 

problems solvers are similar to each other (Hong and Page, 2004). In reality however, teams with 

diverse members are prone to conflicts and as a result the effect of diversity on performance 

depends on team process variables (Pelled et al., 1999; Bunderson and Sutcliffe, 2002; Rico et 

al., 2007; Bettenhausen, 1991; Williams and O’Reilly, 1998). For example, Ancona and 

Caldwell (1992) found that diversity had a direct negative effect on dimensions of innovation in 

new product development teams. The indirect effect of team diversity however, through external 

communication, was positive.  

Diversity of individual experience has also been studied within the context of the team 

with mixed results. In a non-innovative context, intrapersonal functional diversity in top 

management teams has been shown to have a positive effect on information sharing and unit 

performance (Bunderson and Sutcliffe, 2002). However, in contrast to these positive findings,  

Astebro and Thompson (2011) show that people with a more varied experience in the general 

population select to be entrepreneurs but conditional on being entrepreneurs, those with more 

varied experience earn less (Astebro and Thompson, 2011). In terms of innovation, research has 

shown that the share of “multi-knowledge” individuals (those with diverse functional 
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background) in new product development teams has an indirect positive effect on product 

innovativeness through information sharing (Park et al, 2009).  

  The impact of focus and variety in routine work on innovative outcomes at the 

individual level, however, has not been studied. Levitt and March (1988) propose that at the 

organizational level experience and improvement on an inferior task can result in a “competency 

trap” which can prevent superior procedures from being searched for and adopted (Levitt and 

March, 1988). Individual level theories have not been proposed or tested and it is unclear 

whether the focus of routine work impacts innovation at all. The direction of such a relationship 

also needs to be explored.  

There are a few ways in which the diversity of routine work can impact innovation. A 

diverse set of experiences can enable a worker to identify problems in one area of experience by 

comparing it to another. For example, a surgeon who is performing laparoscopic surgery using 

specific instruments for one area of the body and a different set of instruments for another may 

notice that the difficulty of operating varies by the type of instrument used. Had she not varied 

her work, she would not have thought about applying one set of instruments in a different setting 

to improve suboptimal outcomes. With varied experience she can suggest improvements to the 

tools (see Gauderer, 2009 p. 17 and Riskin et al., 2006 for multiple examples).  

Similarly, surgeons who do a variety of procedures may be better able to apply 

techniques learned and improved in one task of a particular procedure to problems encountered 

in a different procedure. If new problems are encountered in the process of transfer of the 

technique from one procedure to the other, further improvements may be possible. In fact, 

analogical thinking has been shown to impact problem identification, problem solution and 

innovation (Christensen and Schunn, 2007; Kalogerakis et al., 2010).    
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A diverse set of experiences can impact innovation also by allowing workers to combine 

different ideas or techniques to create new and potentially more efficient ones. In fact 

recombination has been described as a way to create innovation in numerous previous studies 

(Schumpeter, 1939; Henderson and Clark, 1990; Nelson and Winter, 1982; Fleming, 2001).  

It is possible, however, that focus in a certain area, rather than experience with a variety 

of tasks may be more important for innovation. Forgetting is a documented phenomenon both at 

the individual and at the organizational level (Johnson and Hasher, 1987; Newell and Simon, 

1972; Argote and Epple, 1990; Argote, Beckman and Epple, 1990). Forgetting at the individual 

level then would imply that people are less likely to use and build on the knowledge that they 

acquire from a task if that task is followed by a much different one. In fact, Simon (1990) 

estimates that approximately seven chunks of information can be stored in an individual’s short 

term memory. Repeated exposure is then needed for patterns and rare deviations from patterns to 

be recognized (Narayanan et al. 2009). Focus, rather than varied experience, would then allow 

for such problem recognition and innovative solution.  

Because there is no previous research that would tell us in what direction diversity of 

experience may influence innovation, we propose the following hypothesis:   

Hypothesis: Diversity of routine clinical work (exploitation) will influence the quantity and 

quality of innovative output (exploration) by cardiac surgeons.  

To test this hypothesis we use a dataset of cardiac surgeons in NY that work at major 

teaching hospitals. We have diagnosis and procedure information on every patient they saw 

between 1994 and 2004 as well as information on their academic publications.  Cardiac surgeons 

at major teaching hospitals have dual roles - their daily clinical work measured by the procedures 
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that they perform represents their exploitation activity and their academic output represents a 

report of their innovative ideas and discoveries – a reflection of exploration.  

Furthermore, surgeons have a long history of innovating both in technique and in devices. 

Chatterji et al. (2008) find that 20% of medical device patents have at least one physician as an 

inventor with surgeons constituting 20% of those inventors. Furthermore, patents by physicians 

are more important and more general as seen from analysis of patent citations received (Chatterji 

et al., 2008). In cardiac surgery, for example, one of the most important medical devices – the 

cardio-pulmonary bypass machine – was created by a surgeon, John H. Gibbon who tested his 

first prototype in 1937.  

Surgeons’ expertise in devising new medical devices is also important because of the 

tacitness of the information that they possess with regard to the techniques that they employ. It is 

impossible to encode information regarding the movement of one’s hand close to a beating heart 

for example, or the way an instrument glides in relation to a blood vessel. As a result, problem 

identification almost invariably occurs by the surgeon and problem solution is often done 

iteratively with surgeons and firms working together (von Hippel, 1994; Chatterji et al., 2008).  

Besides medical devices however, surgeons routinely innovate on techniques as well. 

Examples are many and varied and span the history of surgery itself (Mehta, 2009; Riskin et al., 

2006; Gauderer, 2009). Modifications by fellow surgeons eventually make new techniques safe 

and mainstream (Starr, 2010).   

We try to understand how the diversity of clinical experience influences the quantity and 

quality of surgeons’ exploration as proxied by academic publications. This setting is particularly 

good for testing our hypotheses because surgeons’ practical experience consists of their clinical 

work while their academic output also reflects and is based on that clinical work. Practicing 

109



 

surgeons rarely conduct lab research unrelated to their clinical work. In addition, their academic 

work is a good proxy for innovation since peer reviewed academic journals generally publish 

work containing new ideas or findings. Furthermore, surgeons vet new ideas and techniques in 

the community through these publications.  

What is important for our setting is that surgeon innovations are reflected in academic 

articles that can be observed and whose quality can be proxied using widely accepted measures. 

Articles range from problem descriptions, longitudinal studies that identify correlations to 

descriptions of new techniques and clinical studies using those techniques. As a result, this 

provides us with the perfect setting to test our hypothesis.   

3.4 Description of Data 

3.4.1 Data on Surgeons 

The main data for our paper comes from New York State’s Statewide Planning and 

Research Cooperative System (SPARCS) and includes all inpatient hospital stays in New York 

State between 1994 and 2004.1 Each patient-stay is a unique observation and contains up to 15 

diagnoses and up to 15 procedures as well as separate attending physician and surgeon license 

numbers which we use to link to surgeons’ academic profiles.  

3.4.1.1  Surgeon Selection 

For our paper we use a sample of 162 surgeons who have worked at least one year at a 

major teaching hospital in NY and have performed at least 25 Coronary Artery Bypass Graft 

(CABG) or valve procedures in at least one of the 11 years they are in our dataset.  CABG and 

valve are the routine operations that cardiac surgeons perform and most every cardiac surgeon 

                                                            
1 For more detailed information see http://www.health.ny.gov/statistics/sparcs/  
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performs them. To be in our sample, these surgeons also had to be listed as thoracic, 

cardiothoracic or cardiovascular surgeons in one of three places: 1) the Cardiothoracic Surgeon 

Network website (www.ctsnet.org)2 2) the “Coronary Artery Bypass Surgery in NY State” 

reports for 1994-20043 or 3) the www.nydoctorprofile.com4  website which provides information 

on a physician’s education and specialty. They also had to 4) have performed at least one surgery 

in a major teaching hospital during this time period.  

Restrictions 1) and 2) we put in place because of intricacies of the data. The data lists a 

doctor and a surgeon responsible for the primary surgery on each patient observation. However, 

for people who had some other procedure together with a CABG or valve procedure, such as 

trauma surgery, the surgeon listed on the patient observation could be different from the cardiac 

surgeon. So based on just the first selection criterion we ended up getting about 13 other doctors 

who were cardiologists, trauma surgeons, emergency room (ER) doctors in our sample.  Since 

we are not interested in following their clinical experience as it is not comparable to the rest of 

our sample, we decided to exclude them.5  

The last restriction is put in place because we are interested in article publications and not 

all surgeons publish. Major teaching hospitals are our proxy for incentive to publish and come 

from a list by the American Hospitals Directory. They are certified by the Council of Teaching 

Hospitals (COTH) and have a certain number of resident spots to qualify as a major teaching 

                                                            
2 http://www.ctsnet.org/sections/members/surgeons/ accessed in 2008. 
 
3 http://www.health.ny.gov/statistics/diseases/cardiovascular/ accessed in 2007 and 2008.  
 
4 http://www.nydoctorprofile.com/search_parameters.jsp  accessed in 2008.  
 
5 Based on the fact that only 13 surgeons who were not cardiac surgeons passed our first test over 11 

years of data, we believe that the omission of the cardiac surgeon as the surgeon is rare in the data and does not 
affect our cardiac surgeons’ clinical experience significantly but we don’t have other ways in which to check that 
claim.  
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hospital.6 Furthermore, surgeons who never publish are excluded from our sample because we 

rely on a panel dataset and their outcome variable does not change.   

We also exclude those surgeon-year observations in which a surgeon has fewer than 25 

total patients. Those are, with six exceptions, years in which the surgeon is first or last observed 

and we are not sure that the surgeon practiced in New York State for the whole year. For our 

analysis we are left with a sample to 1307 surgeon-year observations – an unbalanced panel of 

162 surgeons over 11 years. Similarly, we also report results with samples that include only 

surgeons who have fewer than 50% of their patients receiving non-cardiac procedures throughout 

their career. That restriction was put in place because we were worried that surgeons who were 

doing predominantly other thoracic surgery such as lung procedures were not comparable to the 

rest of the sample. 

3.4.1.2 Clinical Focus 

Once we select our sample of surgeons we proceed to select each patient that they have 

treated. Detailed patient observations are then combined to create a composite measure of the 

diversity of different types of procedures that a surgeon performs in a certain year. Each patient 

observation is a stay at a hospital (we removed duplicate observations for ancillary service use) 

and contains a number of detailed variables on patient demographics, attending physician, 

surgeon, hospital, payment as well as up to 15 diagnoses and 15 procedures performed.  For each 

patient we use the procedures reported using standard International Classification of Diseases 

Revision 9, Clinical Modification (hereafter ICD-9) codes and sum those over all patients of 

every surgeon for every year to arrive at surgeon-year level observations for our models.   

                                                            
6 http://www.ahd.com/definitions/prof_teach.html accessed in July 2008.  
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Particularly important for our purposes is that the license numbers are reported for the 

attending physician and the surgeon that treat the patient. We use the surgeon license number to 

find additional surgeon specific information such as education, year of graduation and licensing 

and, most importantly, articles published. The data also contains information on the hospital at 

which the surgery was performed, which helps us determine whether it is a major teaching 

hospital and whether the physician has an incentive to publish or not.  

We use the 15 procedure variables to understand the make of the physician’s clinical 

work. To do this we need to first determine what procedures a cardiac surgeon would perform, 

how they are similar to each other and can be grouped together in categories.  The reason why 

we group ICD-9 procedures into different categories is that ICD-9 codes are very detailed and 

two different ICD-9 codes do not necessarily reflect very different tasks that could potentially 

result in variation in learning. For example, a surgeon may perform a CABG where he only 

bypasses one artery (ICD-9 – 3611) or one where he bypasses two arteries (ICD – 3612). While 

the second procedure is more complex, it is not very different from the first procedure if split 

into its constituent tasks. We create measures of focus based on these categories and include 

those in our models.  There are a large number of ways in which these categories can be created 

and below we report three such groupings.  

There are no previously accepted standards for determining what constitutes a cardiac 

surgeon’s work and cardiac surgeons are also trained in general surgery so could potentially 

perform other surgeries as well. In addition, while the majority of cardiac surgeons’ work is 

indeed on the heart, many cardiac surgeons are trained and often perform surgeries on the lung or 

the other thoracic organs as well. To be able to compare them we need to look at the cardiac 
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surgeries that they perform and then compare them on those particular sets of tasks.  Below we 

report our three different measures of cardiac surgeons’ clinical focus.  

3.4.1.2.1 Task Based Focus Measure 

The first measure, which we call Task Based Focus measure is based on our own 

understanding of cardiac surgeons’ work and how the procedures they do may differ based on 

the tasks required to complete each. That measure divides the procedures into six categories – 1) 

CABG, 2) Heart Valve, 3) Heart Muscle (other than heart valve), 4) Heart Vessel (other than 

CABG), 5) Pacemaker/Defibrillator and 6) Heart Assist Device/Transplant procedures. While 

CABGs are part of the heart vessel surgeries we decided to separate them from the rest of the 

Heart Vessel procedures because of the large volume of GABG surgeries compared to other 

cardiac surgeries. For the same reason we separated Heart Valve procedures from Heart Muscle 

procedures. We also presume that routine surgeries such as CABG and Heart Valve have been 

more standardized and innovation may be less likely in them.  Below we describe the procedures 

in each of the categories. A list of the ICD-9 procedure codes that we used in each category is 

included in Appendix 3.A.  

1)  CABG - involves bypassing a section of a coronary artery with a graft from a 

different blood vessel from another part of the patient’s body  

2) Heart Valve – repair or replacement of a heart valve  

3) Pacemaker/Defibrillator insertion - simpler procedures than the rest that do not 

necessarily require opening the chest wall and can be performed by general surgeons. In our 

case, they are only included if performed by a cardiac surgeon. Often they are auxiliary to other 

surgeries.  
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4) Heart Assist Systems /Transplant – includes insertion of left ventricular assist 

devices, other complex artificial systems that assist the heart muscle in doing its job in severely 

ill patients with congestive heart failure. These devices normally assist patients who wait for 

transplants. Because of the low volume of heart transplants, we include them in this category.   

5) Heart Muscle – these include procedures on the ventricles, heart atrium, myocardium, 

the pericardium and other muscular structures of the heart.  

6) Heart Vessel– treatments of heart and thoracic vessel aneurysms and revascularization 

other than CABG. Includes procedures performed on the thoracic aorta.  

7) Non-cardiac Procedures - includes lung cancer surgeries, other thoracic procedures 

such as on the diaphragm, trauma procedures, diagnostic procedures such as cardiac 

catheterization and anything else that does not have an ICD-9 procedure code that is related to 

open heart cardiac surgery.  

An observation (i.e. patient stay) was classified as non-cardiac if no cardiac procedure 

was reported from the ones in categories 1) through 6). We previously did have a separate “lung” 

category but our understanding at the moment of lung procedures is not sufficient to help us 

classify them into different more detailed categories within the lung surgeries group. In further 

work on this paper, we are planning on distributing a survey to a few surgeons that will ask them 

to independently assign lung procedures to different categories.  

The table below shows a frequency distribution of the six categories along with non-

cardiac procedures performed by our 162 surgeons over 11 years in our dataset.   
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Table 3.1 Frequency distribution of cardiac procedures across Task Based Focus 
categories 
Category Number of Procedures in 

Each Category (all surgeons, 
years) 

Coronary Artery Bypass Graft (CABG) Procedures                                       119,879 
Valve Procedures                                         38,821 
Heart and Thoracic Vessel Procedures (no CABG) - HTV                                           6,723 
Heart Muscle Procedures Other Than Valve                                         21,791 
Heart Assist and Heart Transplant Procedures                                           9,973 
Pacemaker/Defibrillator Procedures                                         18,287 
Total Cardiac Procedures                                        215,474 
Total Cardiac Patients                                       175,484 
Non-cardiac Patients                                       41,137  
Total Patients                                       216,621 

 
Note that the total number of patients is different from the sum of the total procedures. 

This is because if a patient gets procedures from two or more different categories, we count each 

of them separately. However, if a patient gets two procedures from the same category, we don’t 

count them as two separate procedures. For example, if a person received a pacemaker and a 

defibrillator, then that would be counted as only one procedure in the Pacemaker/Defibrillator 

category. If she, however, received a valve replacement and a pacemaker, then we would count 

these procedures in each of their respective categories. From the data above, we see that our 

cardiac patients received on average cardiac procedures from 1.23 of the above categories.  

To measure the diversity of a physician’s clinical work we create a Herfindahl-

Hirschman (HHI) index based on the share of the different cardiac procedure categories above in 

her total cardiac procedure count i.e. we sum the squares of the share of Heart Assist/Transplant 

procedures, the square of the share of CABG procedures and so on with all six cardiac procedure 

categories.  In creating the shares, we use the total number of cardiac Task Based Focus category 

procedures. In this measure we exclude the Non-cardiac category. A large Non-cardiac category 

share will inflate our HHI while possibly containing a very diverse set of procedures itself. In our 
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models we include the share of patients with no cardiac procedures along with the cardiac HHI.  

Below is the formula for our Herfindahl-Hirschman measure: 

ὌὌὍ , 

where citk is the number of procedures in cardiac category i in year t for surgeon k and Stk is the 

sum of procedures across all cardiac categories in the same year for surgeon k.  Below are graphs 

of the distribution of the HHI index based on the Task Based Focus Categories.  

Graph 3.1a Frequency Distribution of the 
HHI index based on the Task Based Focus 
categories across all 162 surgeons over 
1994-2004 

Graph 3.1b Frequency distribution of the 
Yearly Change in the HHI Index within 
Surgeons over all surgeons, all years 

  
 
 
 
3.4.1.2.3 CABG/Valve Based Focus Measure (CVL Focus) 

Because CABG and Heart Valve procedures are the main ones that the surgeons in our 

data perform, together constituting 74% of all cardiac procedures, we decided to create a 

measure that separates the categories from the Task Based Focus measure into larger groups 

centered on CABG and Heart Valve procedures. In this CVL measure we have four cardiac 

surgery categories – “CABG”, “Heart Valve”, “CABG and Valve” and— “No CABG or Valve”.  

Non-cardiac surgeries are excluded. These categories are mutually exclusive by patient – i.e. a 

patient cannot have a procedure in more than one of these categories. This is different from the 

previous measure where a patient could have a procedure in all six different categories 
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simultaneously – for example in CABG, Heart Valve and Pacemaker/Defibrillator.  For that 

reason, in calculating the share of a specific category in the HHI index the numerator was the 

number of cardiac procedures in a certain category performed by the surgeon in  the specific year 

and the denominator was the total number of cardiac procedures in that year by that same 

surgeon. When we calculate shares in the CVL categories the numerator is the number of 

patients who had a procedure in the specific CVL category performed by a specific surgeon and 

the denominator will be the total number of patients that had a cardiac procedure in that year by 

that surgeon.  Below is a description of the categories in the CVL focus measure:  

1) CABG - the patient has received at least one procedure in the CABG Task Based 

Focus (TBF) category but no procedure from the Heart Valve TBF category. Patient 

may have received cardiac procedures from the other TBF categories.  

2) Valve – the patient has received at least one Heart Valve procedure but no CABG 

procedures from the TBF categories. Patient may have received more cardiac 

procedures from the other TBF categories.  

3) CABG and Valve – the patient has received both a CABG and a Heart Valve 

procedure from the TBF categories. Patient may have received cardiac procedures 

from the other TBF categories.  

4) No CABG or Valve Cardiac – the patient has received at least one cardiac procedure 

from at least one TBF category but no procedures in the CABG or Heart Valve TBF 

categories.  

Descriptive statistics and graphs of the CVL based categories are below.  
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Table 3.2: Frequency distribution of cardiac procedures across CABG/Valve Focus 
Measure categories 
 
CVL Category Number of Procedures in 

Category 
Patients with  CABG                                   106,397 
Patients with Valve                                     25,339 
Patients with Both CABG and Valve                                     13,482 
Patients with Cardiac Procedures but No CABG or Valve                                     30,266 
Non-Cardiac-Surgery Patients                                     41,137 
Total Patients                                   216,621 
  
  

Graph 3.2a: Frequency distribution of the 
HHI index based on the CABG/Valve Based 
Focus categories across all 162 surgeons 
over 1994-2004 

Graph 3.2b: Frequency distribution of the 
Yearly Change in the CVL HHI Index 
within Surgeons over all surgeons, all years 

             

 

3.4.1.2.3 Clinical Classification Software (CCS) Based Focus 

Our third focus measure is based on a categorization of diseases and procedures designed 

by the Agency for Healthcare Research (AHRQ) as part of the Healthcare Cost and Utilization 

Project (HCUP). According to its designers, the CCS classifies diseases and procedures “into a 

smaller number of clinically meaningful categories” based on the ICD-9 codes. 7  

The CCS system has three levels of detail and for our purposes we use section 7 – 

Cardiovascular Procedures at the second level of detail. We further select only operating room 

(OR) - based procedures from the second level and exclude non-cardiac vascular procedures 

                                                            
7 http://www.hcup‐us.ahrq.gov/toolssoftware/ccs/ccs.jsp accessed December 25, 2011 
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such as 7.14 - Other vascular bypass and shunt; not heart or procedures that would be performed 

by cardiologists and not cardiac surgeons such as 7.5 Diagnostic cardiac catheterization; 

coronary arteriography or Percutaneous trans luminal coronary angioplasty (PTCA). 

Appendices 3.B1 and 3.B2 describe section 7 of the CCS classification at the different levels of 

detail.  For our purposes we retained five categories at the second level of section 7 of the CCS 

classification described below:  

7. 1 Heart Valve procedures 

7.2 Coronary artery bypass graft (CABG)  

7.6 Insertion; revision; replacement; removal of cardiac pacemaker or  

cardioverter/defibrillator (Pacemaker/Defibrillator) 

7.7 Other OR Heart procedures 

7.10 Aortic resection; replacement or anastomosis 

Section 7.10 –Aortic resection; replacement or anastomosis was absorbed in section 7.2 - CABG 

- as the procedures are similar and there are very few observations in 7.10 in our dataset.  

Similarly, cardiac transplant procedures are not part of section 7 of the CCS at all and there are 

again very few such procedures so they were added to the “Other OR Heart procedures” category 

The CCS categories are comparable to the Task Based Focus Measure categories but 

differ in certain significant ways. Many procedures in the TBF based Heart Vessel category are 

classified in the CABG category in the CCS classification even though they are not technically 

CABG. Similarly, a fair number of the TBF based Heart Muscle procedures are in the Heart 

Valve category according to the CCS classification. However, a large number of the TBF based 

Heart Vessel and Heart Muscle categories are also classified in the “Other OR heart procedures” 

category.  
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Table 3.3 Frequency distribution of cardiac procedures across CCS Focus Measure 
categories 
 
CCS Category Number of Procedures in Each CCS  Category
CCS Valve Procedures                                       38,857 
CCS CABG Procedures                                     122,233 
CCS Other OR procedures                                        31,671 
CCS Pacemaker/Defibrillator Procedures                                       17,764 
CCS Total Cardiac Procedures                                     210,525 
CCS Total Cardiac Patients                                     173,716
CCS Non-cardiac                                       42,906 
Total Patients 216,621
 

 
Graph 3.3a Distribution of the HHI index 
based on the CCS classification based focus 
categories across all 162 surgeons over 
1994-2004 

 
Graph 3.3b Distribution of the  
Yearly Change in the CCS HHI  
Index within surgeons over all surgeons,  
all years 1994-2004

 

 

3.4.1.3 Share of total procedures based measures 

Another way to understand the clinical work of cardiac surgeons is to examine the 

influence of specific types of procedures they perform on their innovative outcome. Some 

procedures are significantly different from others in terms of the tasks needed to complete them 

and their complexity.  Certain areas of academic inquiry and surgical innovation may be newer 

and open to more contributions because standards have not been established in the community. 

For example, there may be more opportunity to innovate in treating congenital heart diseases that 

0
1

2
3

4
D

en
si

ty

.2 .4 .6 .8 1
herfccs

0
2

4
6

D
en

si
ty

-1 -.5 0 .5 1
herfccs_delta

121



 

tend to be more complex and rarer than CABG, which due to the high incidence of 

cardiovascular disease has become a more routine procedure. Furthermore, the effect of specific 

procedures on articles related to that procedure or to other procedures could indicate experiential 

and innovative spillovers.  For that reason, we run a number of models in which we look at how 

the change in the share of a certain category of procedures in a surgeon’s work impacts the 

number and quality of articles that she publishes.  

3.4.2 Data on Academic Articles 

We measure academic output by the number of articles that a surgeon has published in 

peer-reviewed journals. We exclude editorial materials, meeting abstracts, bibliographies, letters, 

review articles or notes which do not necessarily report innovative outcomes and are not always 

peer reviewed. Our interest is in innovative output which is often measured by patents but few of 

our surgeons have actually filed patents. In addition, patents are good indicators for innovations 

involving medical devices but not for innovations in technique or procedure as the latter kind of 

patents are hard to enforce. Academic journal articles are by definition innovative because they 

put forward new insights that physicians glean from their clinical or lab work (Schroeder et al., 

1989; Merton, 1957; Stephan, 1996).  

We obtain our data from the ISI Web of Science citation index. The Web of Science 

(WOS) database provides detailed information about the articles. It includes the title of the 

article, all the authors and their addresses as supplied by them, subject and separate keywords 

reported by the authors or marked by WOS. In addition to the source and year of publication, the 

number of cites each article has received from publication till the current time (the date the data 

is gathered by me in this case) is also reported. 
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We search for surgeon-authors in this database by their last name and a combination of 

their first and, if available, middle initial, as well as at least one address in the state of NY on the 

article. To make certain that the article belongs to the particular physician we compare each 

article’s address to the physician’s hospital at the time it was published and the year prior to 

publication. We have the name of the hospitals at which they practiced from the SPARCS dataset 

and use the Cardiothoracic Surgeons’ Network website at www.ctsnet.org as well as the NY 

State CABG reports for further checks of their hospital of practice during specific years. We also 

use additional checks such as the topic of the surgeon’s article and the availability of other 

physicians with the same last name and initials in the state. For example, there are two 

physicians named Ko Wilson (no middle initial) in NY. One is an ophthalmologist and the other 

is a cardiac surgeon and they write on two very different topics. Another example is of a father 

and a son with the same last name and two initials that match (JJ Rose).  One is a plastic surgeon 

and the other is a cardiac surgeon. At some point in their career they also work at the same 

university hospital. A detailed review of the articles based on the points above lets us make the 

correct article attribution. 

Our article data spans the years from 1994 through 2004. In our models we lag our focus 

data by a year in comparison to our article data based on the assumption that articles conceived 

in a certain year will be published in the next one. This is reasonable given the fact that the 

turnaround time for medical journal articles is about 7 months8, much shorter than that for 

economics and management journals.  

                                                            
8 http://www.californiahealthline.org/articles/1999/10/26/MEDICAL‐JOURNALS‐‐More‐Troubles‐for‐

NEJM‐JAMA.aspx?archive=1 
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In our models we use citations as an indicator of innovativeness and quality of a 

surgeon’s research (Adams and Griliches, 1996; Azoulay, P, 2002).9 They are, however, a very 

imperfect measure of quality. One of the biggest criticisms has been that citations do not 

necessarily reflect building on knowledge. For example, citations may reflect a scientific fad that 

is not based on the merit of ideas. Self-citations pose additional problems. Furthermore, citation 

propensity likely varies by field and subfield. Additionally, articles that report on more basic 

science have been found to be cited more than articles on more applied and narrower topics 

which can be just as valuable from society’s point of view (Lindsey, 1989; Cockburn et al., 

1999).  However, we believe that in our case articles are a good proxy for the quality and 

innovativeness of published research as they are in the same field and most likely occupy a 

similar space in the basic/applied research continuum.  Also, they have a strong history of use in 

economics and management literature (Cockburn and Henderson, 1998; Azoulay, 2002).   

From the article data, we create two measures of a physician’s academic output. The first 

one is a yearly variable that measures the number of articles a surgeon has written in each year. 

To control for the fact that many medical articles have more than one author and that more 

authors imply that an article has received less input from each specific author, each author gets 

credit for only 1/n-th of an article that has n authors. This is based on the fact that in the sciences 

and to a large extent in medicine as well, the names of all the lab or departmental collaborators 

will be on the article with the first author being the person in charge of the experiments and the 

write-up of the results and the last author being the PI of the lab.  

                                                            

9 Citation statistics have been used to indicate quality not only for research purposes but also by 
governments and institutions to determine research spending output. 
http://www.theaustralian.news.com.au/story/0,25197,23990703‐12332,00.html 

 

124



 

Our second outcome measure uses article cites to quantify the quality and innovativeness 

of each physician’s academic output. This measure counts the citations an article has received 

per year since its publication and is also divided by the number of authors.  It is then summed 

over all the articles the surgeon has published in a given year to yield a cite-weighted article 

count.  This measure does not control for the number of articles a surgeon has written in a given 

year.  For example, a surgeon who has written 5 articles that each received 2 citations per year 

will have the same value as a surgeon who wrote 2 articles that each received 5 citations per 

year.  In that way, this is a measure of the quality of the overall research of a surgeon per year. 

This measure also helps compare research quality among people who publish on many different 

topics and those that publish only on a few. This means that a surgeon who only performs 

CABGs and may only write on the topic of CABG but write high quality articles will be the 

same on this measure as someone who does many different procedures in different categories 

and writes less important articles on each of the different topics – i.e. CABG, valve, heart 

transplant etc. This controls for the fact that surgeons who work in different areas have the 

opportunity to publish in many different areas as well.  

Due to data constraints, we are only able to get information for number of citations as of 

June 2008 (when we finalized the data gathering process).  We then use the years passed since 

the publication of the article to find the average citations per year. This assumes that citations are 

uniformly distributed over the years. There is no data to support or disprove this assumption. It is 

possible, for example, that articles reach a peak yearly citation rate at some time after they are 

published possibly at 5 years after publication.  For articles that have been out for less than 5 

years then, we may be under-representing their quality. This is a shortcoming of our data.  
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For some of our analyses we also divide the articles by topic. We use only two topics – 

valve and CABG since the rest are hard to classify into meaningful but small number of 

categories. We use a number of keywords in the title, subject, keyword or abstract to classify 

articles into these two categories. Below are some summary statistics about our articles and a 

graph of their frequency distribution:   

 Table 3.4 Article Publications Data  

Category          1994-2004 
Total number of articles by authors in our dataset 2486 
Total CABG articles 396 
Total Valve Articles 349 
Total First Author articles by surgeons in our data 274 
Lowest number of articles per year per surgeon 0 
Highest number of articles per year per surgeon [not divided 
by number of authors per article] 28 

 

Graph 3.4 Frequency Distribution of Article Publications per Year per Surgeon 

 

 

3.4.2 Data for Control Variables 

In our models we also include a few procedure related and surgeon related control 

variables that we think may be correlated with both surgeon article output and their clinical 
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focus. As mentioned before, we have a panel dataset and our dependent variable is the yearly 

change in (cite-weighted) article publications by a specific surgeon and our independent variable 

of interest is the change in the surgeon’s clinical focus. However, over time, as surgeons advance 

in their career and are more sought after by patients they may have more influence over the  

procedures that they elect to perform and hence over their clinical focus. For that reason we 

control for the surgeon’s career age. This variable is defined as the time from the surgeon’s 

graduation from medical school and was obtained from the New York State Department of 

Education Professional Licensing Office web site.10 Data were checked and complemented by 

surgeon self-reported graduation dates from the Cardiothoracic Surgery Network (CTS) 

website.11  

There are certain problems with measuring career age from time of medical school 

graduation rather than the starting date of practicing as a cardiothoracic surgeon. Some may 

decide to become cardiac surgeons and start their training right after medical school while others 

may have practiced as general surgeons for some years before becoming cardiothoracic 

surgeons. In terms of career age and influence on patient mix then, they would not be similar in 

our dataset even if they graduated at the same time from medical school. Unfortunately, this is 

the best data that is available. We considered professional licensing data but that licensing is 

often received immediately after medical school graduation, not at the start of a cardiothoracic 

career.  There is also an additional downside to using licensing data because it is by state and 

surgeons who practiced in a different state before coming to NY and received they NY State 

license later would be misrepresented.  Our measures of career age based on time from medical 

                                                            
10 http://www.op.nysed.gov/opsearches.htm accessed during 2008 
 
11 www.ctsnet.org  accessed during 2008 
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school graduation and professional MD licensing are also highly correlated – with a correlation 

coefficient of 0.87. 

Another variable that we suspect is correlated with both the mix of procedures that a 

surgeon performs and her academic articles is the complexity of the types of procedures that she 

performs. A surgeon who performs more complex surgeries may also have an opportunity to 

learn and innovate more. We measure complexity by the number of procedures from different 

task based focus categories that the surgeon performs on each patient – a patient that receives 

both a Heart Valve and a CABG procedure would be a more complex case than a patient who 

just received a CABG procedure. Note, however, that multiple procedures from the same focus 

category on the same patient will be only counted as one procedure. To get our surgeon year 

value of complexity we count the procedures that each patient received from our different 

categories and average them over the total number of patients for each surgeon. Our complexity 

variable has a range between 1 and 1.84.  

This complexity measure is re-calculated for our CCS focus measure because the main 

categories are different from the Task Based Focus measure. For example, many cardiac vessel 

procedures that would be in the Heart Vessel category in our Task Based Focus measure are 

included in the CABG category. As a result, the complexity measure is different for patients who 

would have had procedures in two different Task Based Focus categories but now have 

procedures only in one CCS category. The range of the CCS complexity measure is 1 to 1.68 due 

to the smaller number of different categories.   

Our CABG/Valve based focus measure is designed in such a way that each patient 

belongs to one of four categories, rather than procedures belonging to categories. The four 

categories are defined based on whether the patient received: “CABG”, “Heart Valve”, “CABG 
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and Valve” and “Cardiac, but No CABG or Valve” procedures. As a result, complexity cannot be 

defined using the four patient categories above. We thus use the Task Based Focus categories to 

create a complexity measure and include it in addition to the CABG/Valve based focus measure 

in these models. Our results remain the same in direction and statistical significance if we do not 

include a complexity measure at all in the CABG/Valve focus specification.  

3.5  Models and Results 

In all our models, we use Poisson Quasi Maximum Likelihood estimation with surgeon 

fixed effects and clustered standard errors by surgeon. The Poisson QML is a count model with 

estimates that are consistent without the assumption of a particular underlying distribution of our 

variables. Fixed effects OLS provides very similar results which have not been reported here. 

Because it is a fixed effects model, the XTPQML model drops all surgeons who have no article 

publications or cites in the respective models throughout their career.   

For our identification strategy, we use within surgeon variation of clinical and academic 

measures across different years.  Our goal is to avoid potential omitted variable bias such as 

surgeon innate ability or curiosity which may be responsible both for someone’s higher diversity 

or focus of clinical work and higher publication output. We also include a yearly trend variable 

by introducing surgeon’s professional experience which measures the time elapsed since a 

surgeon graduated from medical school and changes every year as one more year is added to her 

experience.  

Our main results are reported in Tables 3.5a-3.5c. Each of the tables contains results with 

two different dependent variables: all cite-weighted articles per year per surgeon in the first three 

columns and the raw number of all articles per year per surgeon in the last three columns. The 

main variable of interest – our HHI based focus measure, differs in each table based on the 
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categories used to construct it. In Table 3.5a – we use our own knowledge of cardiac surgery to 

classify each procedure into one of the Task Based Focus cardiac categories – CABG, Valve, 

Heart Muscle, Heart Vessel, Heart Assist/Transplant and Pacemaker/Defibrillator. We then use 

the share of each of these categories in a surgeon’s total volume of heart procedures to construct 

a Herfindahl-Hirschmann index (HHI) which we include as our main independent variable. In 

Table 3.5b the HHI is based on dividing the above categories into coarser groups where each 

cardiac patient belongs to one of four categories - CABG, Valve, CABG and Valve, Other 

Cardiac patient. The last HHI in Table 5c is created by using the CCS categories with small 

modifications explained in our data section.  

In each of the tables, the first and fourth columns include results from the whole sample. 

The rest of the models are run on subsamples of early-career and late-career surgeons. The 

division between the early and late career surgeons is made by taking the years since graduation 

variable for each surgeon at the time when he enters the dataset. The distribution is skewed with 

a mean of 15.4 and a median of 14 years. We select the median as our division point. Surgeons 

with experience of less than 14 years at time of entry into the dataset are classified as early-

career surgeons and those with 14 or more are classified as late-career surgeons. Below is a 

histogram of the years since graduation variable for each of the 162 surgeons in our dataset. It is 

measured at the time when we first start observing them.  Tables 3.5a, 3.5b and 3.5c with our 

results are on the following page.  
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Graph 3.5 Histogram of “Years since Graduation” for each surgeon at time of entry  
 

 

 

From Tables 3.5 a-c we note that a higher focus is associated with both fewer articles and 

fewer cites for the surgeons in our dataset but that result is only statistically significant for the 

early career surgeons for articles in all models. The coefficient for this variable is marginally 

statistically significant for cite-weighted articles for the Task Based Focus HHI. This implies that 

variation early in the career is associated with a higher quantity of articles but not once these 

articles are quality weighted. Lower clinical focus is not associated with more articles  once the 

surgeon has accumulated a certain amount of experience. It is important to point out that the 

significance of the coefficients on the focus variable on the quantity of articles varies with the 

type of measure used. The level of significance goes down with the CABG/Valve based measure 

in which the categories are much less detailed.  We consider the Task-Based Focus categories to 

be the most detailed and the CABG/Valve the least.  
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Tables 3.5 a-c. Herfindahl-Hirschmann Index Models  
 

Table 3.5a. Fixed Effects Poisson Quasi Maximum Likelihood Model. Focus Measure - HHI of Task Based 
Focus Categories. P-values under coefficients. Robust  standard errors clustered by surgeon 

Dependent Variable: Cite-Weighted Articles Articles 
  All Surgeons Early Career 

Surgeons 
Late Career 
Surgeons 

All 
Surgeons 

Early 
Career 
Surgeons 

Late Career 
Surgeons 

Task Based Focus 
HHI 

-0.385 -1.618* 0.102 -0.214 -1.800** 0.638 

(0.506) (0.053) (0.859) (0.716) (0.030) (0.335) 

Share Non-Cardiac 
Patients 

-0.255 0.209 -0.322 -0.403 0.130 -0.316 

(0.684) (0.896) (0.592) (0.286) (0.864) (0.455) 

Total Number of 
Patients 

0.00303*** 0.00264*** 0.00437*** 0.00238*** 0.0016*** 0.00398*** 

(0.007) (0.004) (0.000) (0.003) (0.005) (0.001) 

Cardiac Complexity 
(TBF) 

0.295 -1.577* 1.003 -0.486 -2.232*** 0.292 

(0.686) (0.059) (0.241) (0.355) (0.002) (0.614) 

Years Since 
Graduation 

0.002 -0.018 0.029 0.007 0.011 0.027 

(0.941) (0.638) (0.333) (0.676) (0.504) (0.254) 

Number of Unique 
Surgeons 115 53 62 118 55 63 
Number of 
Observations 952 397 555 964 406 558 

*** p<0.01, ** p<0.05, * p<0.1      
Table 3.5b. Fixed Effects Poisson Quasi Maximum Likelihood Model. Focus Measure - HHI of 
CABG/Valve Based Focus Categories. P-values under coefficients. Robust  standard errors clustered by 
surgeon 

Dependent Variable: Cite-Weighted Articles Articles 
  All 

Surgeons 
Early 
Career 
Surgeons 

Late Career 
Surgeons 

All 
Surgeons 

Early Career 
Surgeons 

Late Career 
Surgeons 

CABG/Valve Based 
HHI 

-0.266 -1.143 -0.14 -0.373 -1.197* -0.098 

(0.750) (0.289) (0.884) (0.549) (0.073) (0.915) 
Share Non-Cardiac 
Patients 

-0.213 0.146 -0.387 -0.430 0.060 -0.489 

(0.753) (0.926) (0.557) (0.274) (0.934) (0.294) 
Total Number of 
Patients 

0.00309*** 0.00252*** 0.00439*** 0.00244*** 0.00147*** 0.00390*** 

(0.007) (0.008) (0.000) (0.003) (0.009) (0.000) 
Cardiac Complexity 
(TBF Based) 

0.399 -1.311 0.863 -0.541 -1.870*** -0.131 

(0.614) (0.178) (0.340) (0.263) (0.009) (0.829) 
Years Since 
Graduation 

0.001 -0.026 0.031 0.007 0.002 0.030 

(0.974) (0.478) (0.336) (0.686) (0.924) (0.206) 
Number of Unique 
Surgeons 115 53 62 118 55 63 
Number of 
Observations 952 397 555 964 406 558 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 3.5c. Fixed Effects Poisson Quasi Maximum Likelihood Model. Focus Measure - HHI of CCS Based 
Focus Categories. P-values under coefficients. Robust  standard errors clustered by surgeon 

Dependent Variable: Cite-Weighted Articles Articles 
  All Surgeons Early 

Career 
Surgeons 

Late Career 
Surgeons 

All 
Surgeons 

Early Career 
Surgeons 

Late Career 
Surgeons 

CCS Based Focus 
HHI 

-0.213 -1.396 0.239 -0.344 -1.622** 0.346 

0.758 0.190 0.760 0.587 0.039 0.691 

Share Non-Cardiac 
Patients 

-0.222 0.412 -0.341 -0.373 0.266 -0.334 

0.712 0.792 0.602 0.306 0.738 0.484 

Total Number of 
Patients 

0.00298*** 0.00256*** 0.00430*** 0.00241*** 0.00157*** 0.00394*** 

0.008 0.010 0.000 0.003 0.004 0.001 

Cardiac Complexity 
(CCS Based) 

0.292 -1.214 0.989 -0.481 -2.180** 0.309 

0.730 0.135 0.386 0.415 0.014 0.664 

Years Since 
Graduation 

0.002 -0.025 0.031 0.006 0.004 0.027 

0.937 0.476 0.313 0.715 0.793 0.243 
Number of Unique 
Surgeons 115 53 62 118 55 63 

Number of Obs 952 397 555 964 406 558 

*** p<0.01, ** p<0.05, * p<0.1 
 

Another interesting result is that for the early career group, higher cardiac complexity, 

measured here as the average number of cardiac procedure categories per patient, is associated 

with a lower number of articles in all models and fewer cite-weighted articles in one of the 

models. The only variable that is associated very strongly with higher number of raw and cite-

weighted articles is the number of cardiac patients. It is somewhat surprising that a higher 

number of patients and articles are positively correlated as both writing and operating are time-

consuming activities.  It implies that doing more surgeries is the only consistent predictor of 

increased innovative outcomes as measured by articles published which hints at a “learning to 

innovate by doing more routine work” phenomenon. 

Our next set of results in Tables 3.6a-3.6c is from a sample of surgeons who do 

predominantly cardiac procedures. Excluded are all surgeons who over their years in our sample 

have on average more than 50% of their patients receiving only non-cardiac procedures such as 
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lung procedures, other thoracic or vascular procedures and so on. Since we only use each 

surgeon’s cardiac procedures to construct the HHI variables in each model, we believe that the 

excluded surgeons are not necessarily comparable to the predominantly cardiac surgeons and this 

specification gives us a better understating of the effect of clinical focus among predominantly 

cardiac surgeons.  

Our results are similar to those based on the whole sample. One difference is that a higher 

focus measured by the HHI is associated with a lower number of cite-weighed articles among 

early-career surgeons not only using the Task Based categories but also the CCS based 

categories and the results are highly significant. Also, a higher focus negatively impacts cite-

weighted articles in the whole sample models, rather than just the early career samples, in both 

the Task Based Focus and the CABG/Valve models.  

Table 3.6a:  Fixed Effects Poisson Quasi Maximum Likelihood Model. Focus Measure is HHI of Task 
Based Focus Categories.  Sample Restricted to surgeons with more than 50% of their patients receiving 
cardiac surgery. P-values under coefficients. Robust  standard errors clustered by surgeon 
Dependent 
Variable:  

Cite‐Weighted Articles  Articles 

All 
Surgeons 

Early 
Career 
Surgeons 

Late 
Career 
Surgeons 

All 
Surgeons 

Early 
Career 
Surgeons 

Late Career 
Surgeons 

Task Based Focus 
HHI 

‐1.417*  ‐2.715***  ‐0.622  ‐1.063  ‐3.330***  0.112 

0.065  0.000  0.582  0.192  0.002  0.909 

Share Non‐Cardiac 
Patients 

‐0.984*  ‐0.666  ‐0.89  ‐0.820**  ‐0.523  ‐0.597 

0.083  0.721  0.124  0.038  0.6  0.226 

Total Number of 
Patients 

0.00246***  0.00280***  0.00337** 0.00221***  0.00172***  0.00367***

0.005  0.002  0.013  0.004  0.007  0.007 

Cardiac Complexity 
‐0.244  ‐1.699**  0.418  ‐0.625  ‐2.615***  0.266 

0.727  0.041  0.599  0.286  0.000  0.676 

Years Since 
Graduation 

‐0.007  ‐0.022  0.013  0.001  0.014  0.016 

0.772  0.551  0.708  0.946  0.387  0.474 
        

Number of Groups  107  47  60  109  48  61 

Observations  881  348  533  888  352  536 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 3.6b:  Fixed Effects Poisson Quasi Maximum Likelihood Model. Focus Measure - HHI of CABG/Valve 
Based Focus Categories. Sample Restricted to surgeons with more than 50% of their patients receiving cardiac 
surgery. P-values under coefficients.  Robust  standard errors clustered by surgeon 
Dependent Variable:   Cite‐Weighted Articles  Articles 

   All 
Surgeons 

Early 
Career 
Surgeons 

Late 
Career 
Surgeons 

All 
Surgeons 

Early Career 
Surgeons 

Late Career 
Surgeons 

CABG/Valve Based HHI 
‐1.574**  ‐1.829  ‐1.527  ‐1.268*  ‐1.790*  ‐1.034 

0.0458  0.111  0.168  0.062  0.063  0.267 

Share Non‐Cardiac 
Patients 

‐1.161**  ‐0.716  ‐1.180*  ‐0.954**  ‐0.387  ‐0.874* 

0.048  0.714  0.061  0.011  0.703  0.091 

Total Number of 
Patients 

0.0026***  0.0026***  0.0036***  0.0023***  0.0014**  0.0038*** 

0.006  0.006  0.007  0.003  0.013  0.002 

Cardiac Complexity 
  

‐0.222  ‐1.275  0.162  ‐0.617  ‐2.004***  ‐0.12 

0.762  0.195  0.852  0.254  0.006  0.863 

Years Since Graduation 
‐0.014  ‐0.035  0.012  ‐0.003  ‐0.001  0.018 

0.597  0.336  0.728  0.839  0.964  0.419 

              

Observations  881  348  533  888  352  536 

Number of Groups  107  47  60  109  48  61 

*** p<0.01, ** p<0.05, * p<0.1 
 
Table 3.6c:  Fixed Effects Poisson Quasi Maximum Likelihood Model. Focus Measure - HHI of CCS Based Focus 
Categories. Sample Restricted to surgeons with more than 50% of their patients receiving cardiac surgery. P-values 
under coefficients.  P-values under coefficients. Robust  standard errors clustered by surgeon 

Dependent Variable:   Cite‐Weighted Articles  Articles 

  
All 
Surgeons 

Early 
Career 
Surgeons 

Late 
Career 
Surgeons 

All 
Surgeons 

Early 
Career 
Surgeons 

Late Career 
Surgeons 

CCS Based Herfindahl  
  

‐1.351  ‐2.942***  ‐0.577  ‐1.437*  ‐3.020**  ‐0.592 

0.127  0.009  0.618  0.061  0.019  0.517 

Share Non‐Cardiac 
Patients 

‐0.948  ‐0.488  ‐0.939  ‐0.796*  ‐0.257  ‐0.616 

0.113  0.792  0.200  0.066  0.806  0.328 

Total Number of Patients 
  

0.00236**  0.00266***  0.00332**  0.00217***  0.00156***  0.00357***

0.013  0.005  0.012  0.006  0.004  0.008 

Cardiac Complexity CCS 
  

‐0.412  ‐1.497*  0.175  ‐0.714  ‐2.561***  0.155 

0.606  0.074  0.879  0.248  0.007  0.837 

Years Since Graduation 
  

‐0.009  ‐0.035  0.015  ‐0.002  0.002  0.016 

0.730  0.348  0.661  0.915  0.906  0.480 

           

Observations  881  348  533 888  352  536

Number of Groups  107  47  60 109  48  61

*** p<0.01, ** p<0.05, * p<0.1 
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The other important difference is that we find that a higher share of non-cardiac patients 

is negatively associated with number of articles in all focus measure specifications and cite-

weighted articles in the CABG/Valve focus measure specification. This implies that for those 

surgeons that are not focusing on non-cardiac areas having a higher portion of non-cardiac 

patients is associated with lower innovative output. This implies that specialization in cardiac 

surgery is good for innovative output if the surgeon is already specialized in cardiac surgery by 

having more than 50% of his patients already in cardiac surgery. 

In the rest of our models we use a different measure of specialization – we include the 

share of each of the specific categories in the surgeon’s procedure or patient (in CABG/valve) 

volume. The omitted category is Pacemaker/Defibrillator in the Task Based and the CCS 

categories and Cardiac without CABG or Valve in the CABG/Valve categories.  

We find, in Table 3.7a that an increase in the share of all categories at the expense of the 

Pacemaker/Defibrillator category is associated with an increased number of cite-weighted 

articles for the late-career surgeons and the whole sample of surgeons.  However, the result is not 

significant for the Heart Valve category for late-career surgeons and Heart Valve and CABG 

categories for the whole sample. This result is probably due to the fact that the procedures in the 

Pacemaker-Defibrillator category are the least complex ones and as a result do not allow for the 

publication of many articles.  
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Table 3.7a:  Fixed Effects Poisson Quasi Maximum Likelihood Model. Task Based Focus Categories.  P‐
values under coefficients. Robust  standard errors clustered by surgeon 

Dependent 
Variable:   Cite‐Weighted Articles 

Articles

   All 
Surgeons 

Early Career 
Surgeons 

Late Career 
Surgeons 

All Surgeons Early Career 
Surgeons 

Late Career 
Surgeons 

Share CABG 
Procedures 

1.430  ‐1.212 3.467*** 0.589 0.083  1.817*

0.103  0.306  0.000 0.369 0.944  0.086

Share Valve 
Procedures 

0.627  ‐1.522 2.325 1.084 ‐0.162  1.940

0.654  0.560  0.190 0.347 0.924  0.178

Share HTV 
Procedures 

2.294*  0.241  4.724** 0.829 1.385  ‐0.035

0.097  0.895  0.031 0.453 0.194  0.989

Share Heart Muscle 
Procedures 

1.840**  0.319  3.704*** 1.091* 0.114  2.210**

0.036  0.847  0.000 0.091 0.918  0.022

Share Heart Assist 
Transplant Proc  

3.189*  ‐2.907 6.348*** 1.618 ‐2.396**  2.467

0.064  0.301  0.002 0.103 0.031  0.243

Share Non‐cardiac 
Patients 

‐0.540  ‐0.495 ‐0.587* ‐0.574 ‐0.137  ‐0.468

0.300  0.787  0.094 0.108 0.889  0.199
Total Patients  0.0033***  0.0027*** 0.00491*** 0.00250*** 0.00137*  0.00427***

0.001  0.010  0.000 0.002 0.056  0.001

Cardiac Complexity  0.438  ‐0.253 0.616 ‐0.507 ‐0.823  0.253

0.622  0.824  0.635 0.440 0.257  0.815

Years Since 
Graduation 

0.015  ‐0.046 0.044 0.003 ‐0.021  0.028

0.565  0.268  0.141 0.894 0.425  0.245

Number of Groups  115  53  62 118 55 63 

Number of  Obs  952  397  555 964 406 558 

*** p<0.01, ** p<0.05, * p<0.1 

 

It is surprising that trading off any of the categories against the easy Pacemaker/Defibrillator 

category does not result in higher innovative output for early-career surgeons. In fact one of the 

most complex categories Heart Assists and Transplants is associated with a lower number of 

articles for early career surgeons and the result is statistically significant. This implies that a 

larger variety of simpler procedures is correlated with a higher innovative output for early career 

surgeons.  
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Table 3.7b:  Fixed Effects Poisson Quasi Maximum Likelihood Model. CABG/Valve Based Focus Categories.  P‐
values under coefficients. Robust  standard errors clustered by surgeon 

Dependent Variable:  Cite‐Weighted Articles Articles 

   All Surgeons  Early 
Career 
Surgeons 

Late Career 
Surgeons 

All Surgeons Early Career 
Surgeons 

Late Career 
Surgeons 

Share CABG Patients ‐0.079  ‐1.848 0.346 ‐0.235 ‐0.081  ‐0.039

0.854  0.128 0.241 0.542 0.917  0.948

Share Valve Patients ‐1.445*  ‐3.152 ‐1.204 ‐0.181 0.189  ‐0.188

0.091  0.210 0.297 0.811 0.870  0.870

Share CABG and 
Valve Patients 

‐0.307  3.646 0.287 0.649 ‐1.348  2.539

0.900  0.636 0.875 0.720 0.583  0.216

Share Noncardiac 
Patients 
  

‐0.383  ‐1.315 ‐0.280 ‐0.520 ‐0.032  ‐0.506

0.510  0.567 0.519 0.173 0.973  0.247

Total Patients  0.00289***  0.002 0.00428*** 0.00233*** 0.00148*  0.00407***

0.008  0.112 0.000 0.005 0.051  0.001

Cardiac Complexity  0.828  ‐1.161 1.095 ‐0.535 ‐0.750  ‐0.634

0.373  0.600 0.183 0.327 0.434  0.340

Years Since 
Graduation 

0.017  ‐0.021 0.048 0.004 0.001  0.032

0.534  0.489 0.106 0.831 0.973  0.207

Number of Groups  115  53 62 118 55 63

Number of Obs  952  397 555 964 406  558

*** p<0.01, ** p<0.05, * p<0.1     

 

In the CABG/Valve Category results, we see that a higher share of Valve Patients at the 

expense of Cardiac without CABG or Valve is associated with a significantly lower number of 

cite-weighted articles. In fact even a higher share of CABG is associated with a lower number of 

cite-weighted articles, even though the result is insignificant implying that it is the rarer and 

potentially more complex procedures on patients that do not receive CABG and/or Valve that 

increase innovative output as measured by cite-weighted articles 

In the CCS category, late-career surgeon results are consistent with those from the Task 

Based Focus category model – increases in the shares of CABG and Other Cardiac OR 
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procedures (but not Valve) at the expense of Pacemaker/Defibrillator are associated with a 

higher number of cite-weighted articles.  

Table 3.7c:  Fixed Effects Poisson Quasi Maximum Likelihood Model. CCS Based Focus Categories.  P‐values under 
coefficients. Robust  standard errors clustered by surgeon 

Dependent Variable:  Cite‐Weighted Articles  Articles 

   All Surgeons  Early 
Career 
Surgeons 

Late Career 
Surgeons 

All Surgeons Early 
Career 
Surgeons 

Late Career 
Surgeons 

Share CABG Procedures 0.793  ‐1.971 2.669*** 0.463 0.303  1.432

0.332  0.134 0.000 0.460 0.769  0.163

Share Valve Procedures ‐0.268  ‐1.198 1.130 0.991 0.707  1.970

0.844  0.628 0.526 0.403 0.652  0.231

Share Other OR 
Procedures 

0.915  ‐1.356 2.617*** 1.018* ‐0.134  2.087**

0.255  0.560 0.001 0.074 0.902  0.021

Share Noncardiac CCS 
Patients 
  

‐0.305  0.139 ‐0.357 ‐0.565* 0.285  ‐0.603*

0.544  0.937 0.337 0.089 0.768  0.066

Total Patients 
  

0.00307***  0.00245** 0.00495*** 0.00244*** 0.00132**  0.00429***

0.008  0.013 0.000 0.004 0.029  0.002

Cardiac Complexity 
  

0.823  ‐0.763 1.452* ‐0.455 ‐1.253  ‐0.073

0.273  0.455 0.067 0.370 0.108  0.912

Years Since Graduation 
  

0.008  ‐0.029 0.043 ‐0.003 ‐0.004  0.021

0.763  0.343 0.169 0.881 0.859  0.425

Number of Groups  115  53 62 118 55  63

Number of Observations  952  397 555 964 406  558

*** p<0.01, ** p<0.05, * p<0.1     

 

The last two sets of models in Tables 3.8a-c and 3.9a-c have as outcome variables raw 

and cite-weighted articles in specific fields – CABG and Heart Valve respectively. You will note 

that the number of observations is fewer and that is because our models drop surgeons who do 

not have any articles or any cites over their time in our dataset in the specific CABG and Heart 

Valve fields.  We are specifically interested in these models to understand how work in related 

fields influences innovative output in a specific category.  
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3.8 Models Based on Share of Total Procedures in Category. CABG Articles Only 
Table 3.8a:  Fixed Effects Poisson Quasi Maximum Likelihood Model. Task Based Focus Categories. CABG 
Articles Only. P-values under coefficients. Robust  standard errors clustered by surgeon. 

Dependent Variable: Cite-Weighted CABG Articles CABG Articles 
  All 

Surgeons 
Early 
Career 
Surgeons 

Late Career 
Surgeons 

All 
Surgeons 

Early 
Career 
Surgeons 

Late Career 
Surgeons 

Share CABG Procedures -0.554 -2.612*** 3.031** 0.004 0.292 0.985 

0.790 0.000 0.015 0.998 0.904 0.615 

Share Valve Procedures 4.858 -3.584 11.53*** 1.111 -5.881 3.875 

0.110 0.448 0.000 0.644 0.185 0.161 

Share HTV Procedures 4.714 -5.598 16.10** -3.856 -0.830 -6.514 

0.327 0.259 0.011 0.204 0.826 0.175 

Share Heart Muscle 
Procedures 

2.562 -2.023 7.596*** 1.754 0.459 2.983 

0.415 0.495 0.008 0.366 0.879 0.224 

Share Heart Assist 
Procedures 
  

2.890 -9.230 10.62* 1.268 -3.571 1.140 

0.523 0.177 0.070 0.706 0.474 0.803 

Share Non-cardiac Patients -0.503 2.970 -1.345 -1.195 -4.170 -0.114 

  0.722 0.211 0.341 0.547 0.244 0.952 

Total Patients 0.00366** 0.00806*** 0.00533*** 0.00316** 0.001 0.00397* 

  0.034 0.001 0.008 0.040 0.602 0.060 

Cardiac Complexity 1.070 2.500 1.027 2.575 2.111 4.272* 

  0.595 0.416 0.637 0.156 0.420 0.078 

Years Since Graduation 0.011 -0.019 -0.004 0.021 0.079 -0.019 

  0.839 0.841 0.947 0.592 0.158 0.731 

Number of Groups 70 29 41 74 32 42 

Number of Observations 605 228 377 638 256 382 

*** p<0.01, ** p<0.05, * p<0.1 
 

We find that in the Task Based and CCS Based Category models, an increase in the share 

of any category at the expense of Pacemaker/Defibrillator increases the number of cite-weighted 

CABG articles (but not raw articles) for the late-career surgeons. However, for early-career 

surgeons, a higher number of CABG procedures at the expense of the respective omitted 

category in each table is associated with a lower number of cite-weighted CABG articles. This 

result is surprising. But given the fact that CABG surgeries constitute the vast majority of cardiac 
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surgeries for most surgeons it may imply that in diversifying away from CABG is what leads to 

more article in CABG, potentially hinting at cross-pollination between CABG and other 

procedures. 

Table 3.8b:  Fixed Effects Poisson Quasi Maximum Likelihood Model. CABG/Valve Based Focus Categories. 
CABG Articles Only. P-values under coefficients. Robust  standard errors clustered by surgeon. 

Dependent Variable: Cite-Weighted CABG Articles CABG Articles 
  All 

Surgeons 
Early Career 
Surgeons 

Late Career 
Surgeons 

All 
Surgeons 

Early Career 
Surgeons 

Late Career 
Surgeons 

Share CABG Patients 
  

-0.738 -2.011* 0.237 -0.584 0.336 -0.691 

0.605 0.052 0.872 0.648 0.844 0.671 

Share Valve Patients 
  

4.454** 2.152 6.665*** 0.777 -1.173 1.921 

0.026 0.574 0.002 0.657 0.697 0.368 

Share CABG and Valve 
Patients 
  

-2.007 -6.460 -1.379 -0.441 -7.771 2.620 

0.469 0.579 0.600 0.894 0.134 0.405 

Share Non-cardiac 
Patients 
  

0.492 3.520** 1.157 -1.105 -3.337 -0.188 

0.734 0.034 0.478 0.578 0.326 0.931 

Total Patients 
  

0.00356** 0.00961*** 0.004 0.00298** 0.002 0.003 

0.037 0.000 0.123 0.040 0.409 0.121 

Cardiac Complexity 
  

3.128* 1.051 4.668*** 2.439 2.105 2.873* 

0.067 0.761 0.005 0.104 0.479 0.086 

Years Since Graduation 
  

-0.008 -0.022 -0.033 0.019 0.072 -0.018 

0.900 0.817 0.679 0.644 0.194 0.765 

Number of Groups 70 29 41 74 32 42 

Number of Observations 605 228 377 638 256 382 

*** p<0.01, ** p<0.05, * p<0.1     

   

Also surprisingly, an increase in the Valve category in all models is associated with a 

higher number of CABG articles. That a result is not statistically significant in the Task Based 

Focus models and is really driven by late-career surgeons. This implies that there is cross-

pollination from the Heart Valve to the CABG categories meaning that doing more Heart Valve 

procedures may increase surgeons’ insight in CABG surgeries and subsequently help them 

publish articles in that field. But it is also important to remember that our omitted variable is 
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Pacemaker/Defibrillator so this result means that if innovative outcomes in CABG are the 

desired outcome, then surgeons should substitute Heart Valve procedures rather than CABG 

procedures for Pacemaker/Defibrillator procedures.  

Table 3.8c:  Fixed Effects Poisson Quasi Maximum Likelihood Model. CCS Based Focus Categories. CABG 
Articles Only. P-values under coefficients. Robust  standard errors clustered by surgeon. 

Dependent Variable: Cite-Weighted CABG Articles CABG Articles 
  All 

Surgeons 
Early 
Career 
Surgeons 

Late Career 
Surgeons 

All 
Surgeons 

Early 
Career 
Surgeons 

Late 
Career 
Surgeons 

Share  CABG Procedures 
(CCS based)  

-0.289 -3.192*** 3.797** 0.009 -0.118 1.202 

0.898 0.000 0.011 0.996 0.962 0.551 

Share Valve Procedures 
(CCS Based)  

5.059* -1.592 11.21*** 1.366 -5.092 4.609* 

0.085 0.654 0.000 0.569 0.196 0.089 

Share Other OR  
Procedures (CCS Based) 

3.010 -0.908 7.971** 2.116 1.065 3.471 

0.386 0.836 0.021 0.330 0.754 0.222 

Share Noncardiac  
(CCS Based) 

-0.218 2.946 -0.259 -1.456 -4.427 -0.397 

0.863 0.206 0.852 0.459 0.258 0.842 

Total Patients 
  

0.00388** 0.00846*** 0.00622*** 0.00307** 0.001 0.00401* 

0.036 0.000 0.001 0.042 0.543 0.072 

Cardiac Complexity 
  

1.441 0.353 2.531 1.947 1.441 3.108* 

0.419 0.894 0.172 0.181 0.537 0.091 

Years Since Graduation 
  

0.006 0.003 -0.005 0.018 0.087 -0.018 

0.915 0.968 0.942 0.649 0.109 0.750 

Number of Groups 70 29 41 74 32 42 

Number of Observations 605 228 377 638 256 382 

*** p<0.01, ** p<0.05, * p<0.1 
 

The results from the models that have Heart Valve articles as a dependent variable in 

Tables 3.9a-c are less surprising. We find that increasing the share of any cardiac procedure at 

the expense of Pacemaker/Defibrillator increases cite-weighted Heart Valve articles. The results 

are statistically significant  for the whole sample and late-career surgeons sample of the Heart 

For early-career surgeons, it is increasing experience in the specific category i.e. Heart Valve 

that is related to a higher number of cite-weighted Heart Valve articles in all models. This may 
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imply that insights gained doing other kind of cardiac surgery are less easily transferrable to 

Heart Valve related innovations.  

3.9. Models Based on Share of Total Procedures in Category. Valve Articles Only 
Table 3.9a:  Fixed Effects Poisson Quasi Maximum Likelihood Model. Task Based Focus Categories. Valve 
Articles Only. P-values under coefficients. Robust standard errors clustered by surgeon. 

Dependent Variable: Cite-Weighted Valve Articles Valve Articles 
  All 

Surgeons 
Early Career 
Surgeons 

Late Career 
Surgeons 

All 
Surgeons 

Early Career 
Surgeons 

Late Career 
Surgeons 

Share CABG Procedures 
  

6.316*** 4.062 9.033** 2.363 1.322 1.946 

0.002 0.136 0.019 0.221 0.652 0.553 

Share Heart Valve 
Procedures 
  

4.634*** 11.29*** 5.519* 1.099 2.917 0.654 

0.003 0.000 0.063 0.611 0.290 0.852 

Share Heart Vessel 
Procedures 

4.945* 5.785* 8.869** -4.559 -0.874 -5.913 

0.065 0.069 0.048 0.196 0.816 0.353 

Share Heart Muscle 
Procedures 
  

8.006*** 1.426 10.88*** 1.156 -3.771 2.270 

0.000 0.694 0.001 0.604 0.231 0.547 

Share Heart Assist 
Procedures 
  

0.735 4.136 4.762 -4.405 -4.545 -4.682 

0.890 0.309 0.685 0.330 0.242 0.630 

Share Non-cardiac 
Patients 
  

-8.256*** -6.801* -8.160** -1.599 2.628 -3.083* 

0.001 0.066 0.018 0.333 0.392 0.082 

Total Patients 
  

0.00563** 0.00597** 0.006 0.002 0.00388* 0.001 

0.014 0.032 0.101 0.198 0.070 0.712 

Cardiac Complexity 
  

-0.035 -1.425 -0.445 1.250 -0.451 1.115 

0.979 0.347 0.800 0.284 0.811 0.487 

Years Since Graduation 
  

0.154*** 0.123* 0.169*** 0.116*** 0.106 0.112** 

0.000 0.076 0.005 0.003 0.120 0.029 

Number of Groups 52 23 29 55 23 32 

Number of Observations 439 168 271 461 168 293 

*** p<0.01, ** p<0.05, * p<0.1      
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It is also important to note that an increase in the number of Non-Cardiac procedures is 

related to a lower number of Heart Valve articles. Also our career-age variable is significant and 

positive in all of the models meaning that more experience is the only variable that is 

consistently related to a higher number of Heart Valve articles.  

Table 3.9b:  Fixed Effects Poisson Quasi Maximum Likelihood Model. CABG/Valve Based Focus Categories. 
Valve Articles Only. P-values under coefficients. Robust standard errors clustered by surgeon. 
Dependent Variable: Cite-Weighted Valve Articles Valve Articles 

  All 
Surgeons 

Early 
Career 
Surgeons 

Late Career 
Surgeons 

All 
Surgeons 

Early 
Career 
Surgeons 

Late Career 
Surgeons 

Share CABG Patients 
  

-0.191 1.668 -0.690 0.688 2.634* -0.541 

0.927 0.415 0.809 0.508 0.057 0.718 

Share Valve Patients 
  

-1.088 5.779*** -2.810 -0.172 1.512 -1.087 

0.571 0.002 0.225 0.914 0.544 0.527 

Share CABG and Valve 
Patients 
  

4.466 11.89** 1.350 7.511*** 14.01*** 4.798 

0.159 0.036 0.686 0.006 0.002 0.107 

Share Non-cardiac 
Patients 

-8.057*** -6.152** -8.556** -1.884 0.193 -2.955 

0.003 0.049 0.018 0.261 0.944 0.136 

Total Patients  
  

0.00436** 0.005 0.004 0.002 0.003 0.000 

0.045 0.107 0.181 0.191 0.198 0.977 

Cardiac Complexity 
  

-1.934 -3.968* -1.360 -2.162** -3.583** -1.986* 

0.139 0.068 0.376 0.021 0.017 0.095 

Years Since Graduation 
  

0.151*** 0.126** 0.170*** 0.128*** 0.140** 0.114** 

0.000 0.041 0.003 0.000 0.019 0.022 

Number of Groups 52 23 29 55 23 32 

Number of Observations 439 168 271 461 168 293 

*** p<0.01, ** p<0.05, * p<0.1      

   

144



 

Table 3.9c:  Fixed Effects Poisson Quasi Maximum Likelihood Model. CCS Based Focus Categories. Valve 
Articles Only. P-values under coefficients. Robust standard errors clustered by surgeon. 

Dependent Variable: Cite-Weighted  Valve Articles Valve Articles 
  All 

Surgeons 
Early 
Career 
Surgeons 

Late 
Career 
Surgeons 

All 
SurgeonsAh 

Early 
Career 
Surgeons 

Late 
Career 
Surgeons 

Share CABG Procedures  5.648*** 3.934 8.445** 2.560 2.924* 1.684 

0.005 0.107 0.031 0.193 0.057 0.637 

Share Heart Valve  
Procedures 

4.845*** 10.63*** 5.400* 2.441 4.787* 1.526 

0.009 0.000 0.086 0.297 0.056 0.673 

Share Other OR Cardiac 
Procedures 
  

7.746*** 2.000 10.24*** 2.205 -0.896 2.869 

0.000 0.590 0.004 0.358 0.632 0.484 

Share Non-cardiac 
Procedures (CCS Based) 

-8.537*** -6.546* -8.231** -1.993 1.487 -2.972 

0.001 0.055 0.033 0.245 0.610 0.144 

Total Patients 0.00535** 0.00599** 0.005 0.00269* 0.00462*** 0.001 

0.014 0.028 0.113 0.052 0.008 0.737 

Cardiac Complexity 
  

-0.828 -1.533 -0.617 -0.282 -0.476 -0.763 

0.484 0.251 0.664 0.779 0.668 0.511 

Years Since Graduation 
  

0.153*** 0.127** 0.162*** 0.120*** 0.123** 0.103** 

0.000 0.043 0.007 0.001 0.018 0.044 

Number of Groups 52 23 29 55 23 32 

Number of Observations 439 168 271 461 168 293 

*** p<0.01, ** p<0.05, * p<0.1      

 

3.6 Discussion 

In this paper we tried to answer the question: “Does the composition of routine work, 

specifically its diversity, influence innovative outcomes?” Our results indicate that innovation by 

early-career workers may benefit from a diverse set of routine tasks. We also find that innovation 

in certain tasks (Heart Valve) may benefit more from experience in the focal task while 

innovation in other tasks (CABG) may benefit from related experience.  

We tested our results on a sample of cardiac surgeons whose work is based on constant 

fast paced decision making in life and death situations. Even the most routine procedures in this 

setting require alertness and continuous problem solving. Arguably, each patient is unique and 
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may require modifications of the procedure on the spot.12 As such, our results may not 

necessarily be generalizable to settings where tasks are more monotonous and standardized and 

alterations are not needed– for example, entering a form into the computer. However, we believe 

that the results apply to situations where the inputs are not identical, where problem solving and 

decision making are necessary and innovation is encouraged.  

One of the limitations of our work is that we measure focus and diversity of work as a 

yearly variable for each surgeon. It is possible (not likely) that a surgeon may perform only 

CABGs in the spring, only Heart Valve procedures in the summer and so on. A better measure of 

how insight from one task could be transferred to another or how multiple identical procedures in 

a row are better for gaining a new insight would be to track how tasks alternate, i.e. whether a 

Heart Valve procedure is followed by a CABG procedure and so on.   

We believe that this work is important as a first attempt to understand the importance of 

work specialization and diversity on innovative outcomes at the individual level. Our various 

results are difficult to interpret and do not always point to one answer but instead show that 

many different variables such as procedure complexity can be important. We hope that future 

work will elucidate better the mechanisms by which work diversity or focus may influence 

innovation. We also hope that future research will explore other settings in which the results may 

be corroborated or modified.  

 

  

                                                            
12 Note however, that some may argue that not all patients are unique and that procedures and patient care 

can also be standardized.  
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3.8 Appendixes 

Appendix 3.A International Classification of Diseases, 9th revision, Clinical Modification 
(ICD-9-CM) procedure codes used in constructing the categories of the Task Based Focus 
measure 

 

1. Coronary Artery Bypass Grafting (CABG) Procedures 
361, 3610, 3611, 3612, 3613, 3614, 3615, 3616, 3617, 3619 
 

2. Valve procedures 
 350, 3500, 3501, 3502, 3503, 3504, 351, 3510, 3511, 3512, 3513, 3514, 352, 3520, 3521, 
3522, 3523, 3524, 3525, 3526, 3527, 3528, 3599 
 

3. Heart Muscle Procedures  
353, 3531, 3532, 3533, 3534, 3535, 3539, 354, 3541, 3542, 355, 3550, 3551, 3552, 3553, 
3554, 356, 3560, 3561, 3562, 3563, 357, 3570, 3571, 3572, 3573, 358, 3581, 3582, 3583, 
3584, 359, 3591, 3592, 3593, 3594, 3595, 3598, 371, 3710, 3711, 3712, 3724, 3725, 373, 
3731, 3732, 3733, 3735, 3749, 374 
 

4. Heart Vessel Procedures other than CABG 
3603, 362, 363, 3631, 3632, 3639, 369, 3691, 3699, 3834, 3835, 3844, 3845  

 

5. Heart Assist and Heart Transplant Procedures  
3741, 3752, 3753, 3754, 376, 3761, 3762, 3763, 3764, 3765, 3766, 3767, 3751, 336  

  

6. Pacemaker and Defibrillator Procedures  
 377, 3770, 3771, 3772, 3773, 3774, 3775, 3776, 3777, 3778, 3779, 378, 3780, 3781, 3782, 
3783, 3784, 3785, 3786, 3787, 3789, 3794, 3795, 3796, 3797, 3798, 3799, 0050, 0051, 0052, 
0053, 0054  
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Appendix 3.B1 Description of CCS level 2 Categories. Those Included in our focus measure 
are in bold.  Category 16.1 is also included in our measure in category 7.7 and comes from 
section 16.  Miscellaneous diagnostic and therapeutic procedures  
 

Section 7.  Operations on the cardiovascular system  
CCS LVL 
2 CCS LVL 2 LABEL 
7.1 Heart valve procedures [43.] 
7.2 Coronary artery bypass graft (CABG) [44.] 
7.3 Percutaneous transluminal coronary angioplasty (PTCA) [45.] 
7.4 Coronary thrombolysis [46.] 
7.5 Diagnostic cardiac catheterization; coronary arteriography [47.] 
7.6 Insertion; revision; replacement; removal of cardiac pacemaker or 

cardioverter/defibr 
7.7 Other OR heart procedures [49.] 
7.8 Extracorporeal circulation auxiliary to open heart procedures [50.] 
7.9 Endarterectomy; vessel of head and neck [51.] 
7.10 Aortic resection; replacement or anastomosis [52.] 
7.11 Varicose vein stripping; lower limb [53.] 
7.12 Other vascular catheterization; not heart [54.] 
7.13 Peripheral vascular bypass [55.] 
7.14 Other vascular bypass and shunt; not heart [56.] 
7.15 Creation; revision and removal of arteriovenous fistula or vessel-to-vessel cannula 
7.16 Hemodialysis [58.] 
7.17 Other OR procedures on vessels of head and neck [59.] 
7.18 Embolectomy and endarterectomy of lower limbs [60.] 
7.19 Other OR procedures on vessels other than head and neck [61.] 
7.20 Other diagnostic cardiovascular procedures [62.] 
7.21 Other non-OR therapeutic cardiovascular procedures [63.] 
  
 Section 16: Miscellaneous diagnostic and therapeutic procedures 
16.1 Other organ transplantation [176.] 
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Appendix 3.B2 International Classification of Diseases, 9th revision, Clinical Modification 
(ICD-9-CM) procedure codes used in constructing the categories and focus measure based 
on the Clinical Classification Software (CCS) system 

7.1 Heart valve procedures 3500, 3501, 3502, 3503, 3504, 3505, 3506, 3507, 3508, 3509, 3510, 
3511, 3512, 3513, 3514, 3520, 3521, 3522, 3523, 3524, 3525, 3526, 3527, 3528, 3596, 3597, 
3599 
 
7.2 Coronary artery bypass graft (CABG) - includes 7.10 Aortic resection; replacement or 
anastomosis marked in bold  
3611, 3612, 3613, 3614, 3610, 3615, 3616, 3617, 3619, 362, 3620, 363,  3630, 3631, 3632, 3633, 
3634, 3639, 3834, 3844,  3864, 3971, 3973, 3978 
 
7.6 Insertion; revision; replacement; removal of cardiac pacemaker or cardioverter/defibr 
0050, 0051, 0052, 0053, 0054, 0056, 0057, 3770, 3771, 3772, 3773, 3774, 3775, 3776, 3777, 
3778, 3779, 3826, 3780, 3781, 3782, 3783, 3785, 3786, 3787, 3789, 1751, 1752, 3794, 3795, 
3796, 3797, 3798, 3531 
 
7.7 Other OR heart procedures – also includes 16.1 Other organ transplantation ,  marked 
in bold 3532, 3533, 3534, 3535, 3539, 3541, 3542, 3550, 3551, 3552, 3553, 3554, 3555, 3560, 
3561, 3562, 3563, 3570, 3571, 3572, 3573, 3581, 3582, 3583, 3584, 3591, 3592, 3593, 3594, 
3595, 3598, 3600, 3603, 3609, 3691, 3699, 3710, 3711, 3712, 3731, 3732, 3733, 3734, 3735, 
3736, 3737, 374, 3740, 3741, 3749, 3752, 3753, 3754, 3755, 3760, 3761, 3762, 3763, 3764, 
3765, 3766, 3767, 3768, 3790, 3791, 3799, 375 , 3750, 3751, 336 , 3360 
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