Nations' Income Inequality Predicts Ambivalence in Stereotype Content: How Societies Mind the Gap

The Harvard community has made this article openly available. **Please share** how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:9551327</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Nations’ Income Inequality Predicts Ambivalence in Stereotype Content:
How Societies Mind the Gap

Federica Durante1*, Susan T. Fiske2, Nicolas Kervyn3, Amy J. C. Cuddy4,

and

1 University of Milan – Bicocca, Italy
2 Princeton University, USA
3 Catholic University of Louvain at Louvain-la-Neuve, Belgium
4 Harvard Business School, USA
5 Institute of Research on Global Issues, South Africa
6 Economic Commission for West Africa (Ecowas), Nigeria
7 Emory University, USA
8 National Prosecuting Authority, South Africa
9 University of Oxford, UK
10 University Kebangsaan Malaysia, Malaysia
11 University of Queensland, Australia
12 University of Toronto, Canada
13 Dublin City University Business School, Ireland.
14 University of Ulster, UK
15 University of Padova, Italy
16 Bangalore, India
17 Panteion University of Social and Political Sciences, Greece
18 University of Crete, Greece
19 Harvard University, USA
20 ICS - University of Lisbon, Portugal
21 Pontificia Universidad Católica de Chile, Chile
22 Harvard University, USA
23 Makerere University, Uganda
24 University of Lima, Peru
25 Tufts University, USA
26 University of Costa Rica, Costa Rica
27 University of Granada, Spain
28 University of Huelva, Spain
29 University of Auckland, New Zealand
30 Philipps University Marburg, Germany
31 University of Lausanne, Switzerland

After the first four authors, the remaining authors are listed alphabetically by the last name of our primary contact at the university.

Word count (exc. abstract/references/figures/tables):

* Correspondence should be addressed to Federica Durante, Dipartimento di Psicologia, Università di Milano–Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano – Italy
E-mail: federica.durante@unimib.it
Abstract

Income inequality undermines societies: the more inequality, the more health problems, social tensions, and the lower social mobility, trust, life expectancy. Given people’s tendency to legitimate existing social arrangements, the Stereotype Content Model (SCM) argues that ambivalence—perceiving many groups as either warm or competent, but not both—may help maintain socio-economic disparities. The association between stereotype ambivalence and income inequality in 37 cross-national samples from Europe, the Americas, Oceania, Asia, and Africa investigates how groups’ overall warmth-competence, status-competence, and competition-warmth correlations vary across societies, and whether these variations associate with a measure of income inequality (Gini index). More unequal societies do report more ambivalent stereotypes, while more equal ones dislike competitive groups and do not necessarily respect them as competent. Unequal societies may need ambivalence for system stability: income inequality compensates groups with partially positive social images.

Keywords: ambivalence, stereotype, income inequality, warmth, competence

In press at British Journal of Social Psychology
Inequality corrodes human relations. As Alexis de Tocqueville (1835/2003) noted, material differences divide people socially, and obstruct empathy, favoring exploitation and slavery. Coming from aristocratic France, in 1831 de Tocqueville travelled the United States, impressed by the “equality of conditions” (p. 11), which, in his opinion, helped Americans to trust each other. Indeed, for thousands of years the quality of human life has improved by raising material living standards, but nowadays for rich countries to get richer adds nothing to quality of life (Wilkinson & Pickett, 2010). What instead seems to matter the most in developed nations is the level of inequality in society, namely, the size of income disparities.

Many problems plague more unequal societies: the more inequality, the more health problems, social tensions, and the lower life expectancy, social mobility, education, trust, happiness and well-being (see Wilkinson & Pickett, 2009, for a review). If on the one hand, both history and recent events (e.g., the Arab spring, the Occupy movement) argue in favor of people’s need for justice and therefore for fighting against inequality, on the other hand, both history and recent events (e.g., the economic crisis) show the existence of a perplexing degree of acquiescence that contributes to the maintenance of unequal systems. Certainly, collective actions have played a critical role in reducing inequality. However, when considering the level of persistent disparity within and between societies, the relative lack of collective actions may be surprising.

The American historian Howard Zinn (1968) claimed that “society’s tendency is to maintain what has been” and “rebellion is only an occasional reaction” (pp. 16; cited in Jost, Banaji, & Nosek, 2004). Social psychologists Jost and Banaji (1994) offer an explanation for such a tendency by arguing that individuals are inclined to rationalize the status quo, thus perceiving the existing social arrangements that affect them as fair, legitimate, and justified. The stereotype content model (SCM; Fiske, Cuddy, Glick, & Xu, 2002) suggests that depicting societal groups in ambivalent ways—such as fortunate in one sphere while
unfortunate in another—may mask and help to maintain socio-economic disparities. Using the SCM, the present work begins to investigate the relationship between ambivalent societal stereotypes and income inequality across nations, hypothesizing that the more a society is unequal, the more ambivalence appears as a rational buffer that helps to conceal inequality and maintain the system.

Ambivalence and the SCM

Among the functions of stereotypes, Tajfel (1981) argued that stereotypes contribute to the maintenance of the system “explaining or justifying a variety of social actions” (p. 146). More recently, ambivalent stereotypes especially appear to serve this function, because they paint both advantaged and disadvantaged groups as possessing distinctive but counterbalanced strengths and weaknesses, as if every “class gets its share” (Lane, 1959, p. 39), leading people to perceive society as fair (Glick & Fiske, 2001; Kay & Jost, 2003).

Underlying ambivalent stereotypes, favorable and unfavorable biases co-exist, beyond outgroup antipathy (e.g., Eagly & Kite, 1987; Eagly & Mladinic, 1989; Glick & Fiske, 1996, 2001, 2011; Katz & Hass, 1988). In this context, the SCM (Fiske et al., 2002) innovates by looking at various stereotypes simultaneously and from society’s perspective, as shared, cultural, public images. Not only are many societal stereotypes ambivalent, combining both hostile and favorable beliefs about a group, but also warmth and competence are the two basic dimensions capturing cultural contents. Although labels differ (socially vs. intellectually good-bad, Rosenberg, Nelson, & Vivekanathan, 1968; communion vs. agency, Bakan, 1966; see also Abele & Wojciszke, 2007), warmth and competence repeatedly appear as basic dimensions of social judgment (see Fiske, Cuddy, & Glick, 2007; Cuddy, Fiske, & Glick, 2008) and intergroup behavior (Cuddy, Fiske, & Glick, 2007), because they help individuals’ social interactions, indicating how helpful or harmful a target may be (Fiske et al., 2002).
Ambivalent combinations of competence and warmth also emerge in compensation-hypothesis studies (Judd, James-Hawkins, Yzerbyt, & Kashima, 2005), revealing trade-offs of competence and warmth when people rate individuals or groups in a comparative context. A compensatory process occurs when judging more positively on one dimension offsets another: participants tried to “rectify this disparity [on one dimension] by asserting that the situation must be reversed on the other dimension of social judgment” (Judd et al., 2005, p. 910), but only on competence and warmth (see Kervyn, Yzerbyt, & Judd, 2010, for a review).

According to the SCM, competence and warmth judgments respectively stem from perceived socio-economic status (high-low) and perceived interdependence (cooperative-competitive). These socio-structural factors predict groups’ location on the competence-warmth stereotype map (Fiske, 2012; Fiske et al., 2002; Fiske et al., 2007). Crossing status and interdependence, four kinds of stereotype content emerge: High-status, cooperative groups seem both competent and warm, a univalent and positive stereotype; low-status, competitive groups receive univalent but negative stereotypes, seeming both cold and incompetent. High-status, competitive groups are ambivalently judged as competent, but not warm; while low-status, cooperative groups are ambivalently considered as warm, but incompetent.

SCM hypotheses — perceived competence and warmth differentiate groups’ stereotypes, many ambivalent (or mixed), with status predicting competence, and competition predicting (low) warmth — have extensive support, using varied target groups: occupations, nationalities, races, socio-economic groups, religions, and gender subtypes (see Cuddy et al., 2008, for a review). Most relevant here, Cuddy et al. (2009) tested SCM hypotheses using eight European (mostly individualistic) and three East Asian (collectivistic) samples, finding cross-cultural similarities on the main SCM hypotheses, with cross-cultural differences (more modest, collectivistic cultures do not locate reference groups in the high-high cell). SCM
provides a pancultural tool for predicting group stereotypes from structural relations with other groups in society, and for comparing across societies.

As noted, individuals are inclined to maintain the status quo rather than to subvert it, most obviously likely for high-status people (e.g., Schmitt, Branscombe, & Kappen, 2003). However, favorable attitudes toward the preservation of the social order, albeit unjust, are also shared, at least under certain conditions, by disadvantaged groups (Jost et al., 2004; Kay et al., 2009; Lane, 1959; Tajfel, 1981; Stott & Drury, 2004). Holding ambivalent beliefs about social categories may help people (especially the more deprived) to tolerate their situation (e.g., Jackman, 1994), because when one’s group is low on one dimension, it is rewarded on the other. For this reason, ambivalent stereotypes can legitimate the status quo in ways that purely hostile stereotypes cannot (Fiske et al., 2002). Because people are more likely to endorse collective actions only when injustice is relatively clear (see Ellemers & Barreto, 2009), these subtle, ambivalent forms of prejudice may discourage people from challenging unequal systems. Becker and Wright (2011) have indeed recently demonstrated how exposure to benevolent sexism (Glick & Fiske, 1996, 2011), a paternalistic belief that portrays women as “wonderful but incompetent,” hence best suited for low-status positions, decreases women’s engagement in collective action, while exposure to hostile sexism increases it (both effects were mediated by system justification motives).

Ambivalent gender stereotypes are in fact more prevalent in countries with higher gender inequality at a societal level (Brandt, 2011; Glick et al., 2000, 2004). Furthermore, social problems more reliably associate with income distribution “when income differences are measured across nation-states and other large geo-political units” (Wilkinson & Pickett, 2007, p. 1966). Hence, to explore the ambivalence-inequality association, our cross-national study used SCM theory and method to investigate the ambivalent warmth-competence
relationship and its relationship to an income-inequality measure, namely, the Gini index (Brandolini & Smeeding, 2007).

Hypotheses

To establish comparability with earlier efforts, we first tested the four SCM hypotheses, namely, how social groups rated in warmth, competence, status, and competition, expecting that: (1) societal groups would array on perceived warmth and competence; (2) many groups would appear either more competent or more warm (but not necessarily both or neither); (3) perceived status would positively correlate with competence, and (4) competition negatively with warmth. An even broader cross-national comparison allows both a larger sample and more variability in inequality than previous datasets provided.

The inequality hypotheses investigated first overall correlations between warmth and competence, and whether these co-varied with Gini inequality coefficients. The GINI index measures the degree of inequality in the distribution of income within a society. As calculated by the American Central Intelligence Agency, the cumulative family income is plotted against the number of families arranged from the poorest to the richest. Low Gini coefficients indicate a more equal distribution, with 0 corresponding to complete equality, and 100 corresponding to complete inequality.¹

We considered a society as more ambivalent when the overall warmth and competence correlation, calculated across societal groups within each sample, was around zero: The less correlated the warmth and competence dimensions, the more the society’s groups appear as a cloud of points (Figure 1), rather than a vector, as they would under a high warmth-competence correlation (Figure 2). The more circular cloud reflects the distribution of many groups into the ambivalent quadrants of the space; the vector-shape would show most groups being univalent, low-low or high-high.² Thus we expected higher inequality
(Gini) associated with lower warmth and competence correlation coefficients (Hypothesis 5). This would fit greater inequality requiring more compensation.

The inequality focus also compared how stereotypic traits and their respective socio-structural predictors (status-competence, competition-warmth) vary across societies. Perhaps viewing some groups ambivalently helps mask the status-competence dimension as the main source of social difference, emphasizing the competition-(low)warmth dimension as an additional source of social difference. A group might appear low status and low competence, but compensated by stereotypically appearing cooperative and friendly. This mechanism, that inequality could be masked by emphasizing another dimension besides status-competence, suggests the hypothesis that correlations between inequality (Gini) and ambivalence (the warmth-competence correlation) will themselves depend mostly on variance in the competition-warmth correlation (Hypothesis 6).

Alternatively, correlations between inequality and ambivalence could result from compressing or exaggerating perceived status differences (versus actual differences measured by the Gini). If societies tend to conceal inequality, then the inequality-ambivalence correlation would itself correlate with the status-competence correlation, showing either compression (negative correlation) or exaggeration, as when people endorse meritocracy (positive correlation; Hypothesis 7).

Method

Data were collected in: Australia, Belgium, Bolivia, Canada, Chile, Costa Rica, England, Greece, India, Israel, Italy, Malaysia, Mexico, Northern Ireland, New Zealand, Peru, Portugal, South Africa, Spain, Switzerland, and Uganda. Data from South Korea, Japan, Hong Kong, and United States (US) were retrieved from previous studies (Cuddy et al., 2009; Fiske et al., 2002, Study 1) and reanalyzed here.

Preliminary Groups-listing Study
Following Fiske et al. (2002) and Cuddy et al. (2009), in each country a preliminary study identified societal groups considered most salient. In their respective native languages, approximately 1,379 participants, mostly students, 55.14% female, sample sizes between 28 and 100, averaging 25.07 years, voluntarily completed a self-administered, open-ended questionnaire listing: what various types of people their society categorizes into groups; which groups were considered to be of very low status; and of which groups they consider themselves to be member.

These questions aimed to identify relevant social groups in the least constrained way, insuring that all types of groups would be mentioned. Groups listed by at least 15% of participants then appeared in that country’s main-survey questionnaire. Across samples, the number of distinct groups ranged between 14 (Chile) and 33 (Bolivia, UPB-BC) (Table SI.1 in the on-line supporting information presents demographic information for each sample). Overall, 235 different societal groups were listed, many of which were context-specific (i.e., 140 social categories were mentioned only in one preliminary study). Given present purposes, we checked for the possibility that specific target groups would be chosen only in more equal versus unequal countries. Considering the societal groups listed in at least 10 out of 29 (see Footnote 3) preliminary studies (i.e., Blacks, Catholic people, children, Christians, disabled people, gays, immigrants, Jews, men, middle-class, Muslims, old people, poor people, rich people, students, unemployed people, women, working class, young people), for each target group, we took into consideration the Gini coefficients of the countries in which it was listed and then calculated the median. Results showed that all these groups were mentioned about equally in both high versus low equal countries: Gini medians ranged from 33.70 to 39.20, just on either side of the sample median Gini of 36.80.

Main Survey
Samples and participants. Thirty-seven samples were recruited, one from each of the countries mentioned, with the exceptions of: Australia (two samples, Asian- and European-Australians), Bolivia (four different Bolivian universities; see Footnote 3), Israel (two samples, Israeli-Jews and -Arabs), Italy (two samples, students and nonstudents), New Zealand (two samples, European- and Maori-New Zealanders), Northern Ireland (two samples, Catholic and Protestant Irish), Switzerland (four samples, Swiss-German students, Swiss-Italian students, Swiss-French students and Swiss-French nonstudents), US (two samples, students and nonstudents).

Respondents (N= 3,222) voluntarily participated in the main survey. Sample sizes varied (n = 30-272), mostly students, 60.7% female, mean age 23.7 years (Table S1.2 in the on-line supporting information presents demographic information for each sample).

Questionnaire and procedure. In their native languages, participants rated the groups from their countries’ respective preliminary studies on items reflecting warmth, competence, status, and competition. Two items measured each construct (Appendix SI.A on-line presents all items) on 5-point scales (1 = not at all to 5 = extremely). As in previous SCM studies, participants rated how the groups are viewed at a cultural level: “We intend to investigate the way societal groups are viewed by the […] society. Thus, we are not interested in your personal beliefs, but in how you think they are viewed by others.” This instruction aimed to reduce social desirability concerns and to detect socially shared group stereotypes, in effect collective lay theories about how groups interrelate.

Results

Reliabilities, for each construct, within each sample, were generally sufficient: Competence $\alpha = .64-.93$ (median = .85); warmth $\alpha = .54-.93$ (median = .75); status $\alpha = .60-.95$ (median = .86); competition $\alpha = .56-.95$ (median = .71).

SCM Hypotheses
As in previous SCM studies, to test whether groups’ stereotypes fell along the two primary dimensions, competence and warmth scores for each societal group were averaged across participants within each sample. These means indeed arrayed groups in a two-dimensional Competence x Warmth space. Two types of cluster analysis examined its structure: Hierarchical cluster analysis (Ward’s, 1963, method, which minimizes within-cluster variance and maximizes between-cluster variance) helped determine the best-fitting number of clusters; then, \(k \)-means cluster analyses examined which groups fit into which cluster. For 25 out of 37 samples (67\%), agglomeration statistics from the hierarchical cluster analysis pointed to a four-cluster solution. Five clusters were, instead, the best fit for the 12 remaining samples—Asian- and White-Australian, Canadian, English, Greek, Indian, European- and Maori-New Zealand, Malaysian, Japanese, Spanish, and Ugandan samples.

To test for ambivalent stereotypes, in each sample, competence and warmth means were compared within (paired \(t \) test) and between (independent \(t \) test) clusters. To be identified as ambivalent (either high-competence/low-warmth or low-competence/high-warmth), a cluster had to meet two conditions established previously (Cuddy et al., 2009; Fiske et al., 2002): Warmth and competence means differed significantly; a cluster’s mean for the high dimension was higher than a cluster low on that dimension, and its mean for the low dimension was lower than a cluster high on that dimension. As expected, the majority of groups ended up in ambivalent clusters in 20 out of 37 samples. Three exceptions (Portugal, and Northern Ireland – Catholic sample) were all univalent or all ambivalent (Japan). Two samples showed an almost equivalent numbers of groups contained in univalent versus ambivalent clusters (Indian, 17 vs. 16 groups, and Swiss German, 13 vs.14 groups, respectively), while the remaining 12 samples showed more groups gathered in univalent than ambivalent clusters (Appendix SI.B on-line presents cluster analysis results for each sample).
Despite the fact that in each country participants evaluated their own societal groups, some groups present in most societies, such as immigrants (labeled also as illegal immigrants or migrant workers), and unemployed people consistently ended up in the low-competence/low-warmth (LC-LW) cluster across cultures. We could furthermore notice some regional idiosyncrasies: for instance, in the European samples, the group Gypsies is included in the LC-LW cluster, while in the South American samples we found the group illiterates in that quadrant. The HC-HW cluster, instead, comprised the ingroups and the reference groups, which vary from society to society. The LC-HW cluster consistently included old people, children, and disabled people, as the HC-LW consistently included rich people.

To test SCM structure-trait predictions, status and competition scores for each societal group were averaged across participants within each sample, and their means correlated with competence and warmth means, respectively. As expected, perceived status positively correlated with competence ($r_s = .67-.99$, all $p < .001$; average $r = .90$). Perceived competition-warmth correlations averaged $r = -.32$: ranging from $r = -.42$ to -.92, $p < .05$, in 15 out of 36 samples (see Footnote 4); three samples were marginal, $p < .07$: $r = -.37$, -.35, and -.36. Unexpectedly, perceived competition correlated positively with warmth in the Israeli-Arab sample ($r = .45, p < .05$). The remaining competition-warmth correlations were non-significant, but 11 were in the predicted negative direction while six were not (see Table 1). As in previous datasets using these methods, the average status-competence correlation showed twice the effect size of the average (negative) competition-warmth correlation.6

Overall, Hypotheses 1-4 were supported in all our samples. Because each society rated its own social categories, these results suggest that evaluating different target groups does not affect the SCM basic tenets.

Ambivalence and Inequality Hypotheses
The distribution of target groups, within each sample, in the Competence x Warmth space suggested degrees of ambivalence: In some samples, the array of points tends to distribute across the four corners of the space (a circular cloud of points, showing a zero warmth-competence correlation; e.g., Figure 1), while in others, the points distribute more along a diagonal (from bottom left to top right, showing a positive warmth-competence correlation; e.g., Figure 2). Thus, warmth and competence relate to each other in different ways, in different societies. To measure different patterns across nations, we considered the overall warmth and competence (W-C) correlation within each sample: The more the groups distribute along a diagonal, the higher and more positive the W-C correlation; and vice versa, the more spread out the groups’ distribution, the lower the W-C correlation. In SCM terms, the lower the W-C correlation, the more the ambivalence; the higher a positive W-C correlation, the less the ambivalence. Therefore, the W-C correlation indexed ambivalence.

- Insert Figure 1 and 2 about here -

W-C correlations were calculated at the target-group level within each sample. As Table 1 illustrates, correlations ranged between -.19 (ns) and .91 (p < .001), average r = .40. Out of 37 samples, 16 showed a small, non-significant W-C correlation, that is, a higher degree of ambivalence according to our definition. Because the number of groups evaluated by participants in each sample varied (i.e., from 14 to 33), we also considered R^2 as an estimate of W-C correlations’ effect size. The R^2 of the aforementioned 16 coefficients were also small, ranging from .0002 to .1283. The remaining 21 W-C correlation coefficients were positive and significant, ranging from $r = .39$ to .91 (all ps < .05; R^2 from .15 to .83), that is, a lower degree of ambivalence. As expected, the percentage of target groups gathered in ambivalent clusters was significantly higher in samples with small, non-significant W-C correlations (on average, 60.82%) than in samples with positive, significant ones (on average, 44.72%), $t(35)=2.03, p = .05$. Further correlations compared the percentages of HC-LW and
LC-HW groups in each sample with the W-C correlations. The W-C coefficients significantly correlated with percentages of LC-HW groups, $r = -.48, p < .01$, but did not with percentages of HC-LW groups, $r = .09, p = .58$, suggesting that our ambivalence index was mostly driven by the LC-HW combinations.

- Insert Table 1 about here -

Next, Fisher’s z-transformation normalized the distribution of W-C coefficients, allowing us to correlate the standardized coefficients with the Gini ones. A significant correlation, $r = -.34, p < .05$, indicated that more ambivalent societies are also generally more unequal, supporting Hypothesis 5 (see Figure 3). Inequality emphasizes more than one dimension of intergroup perception (not just unequal status-competence but also differentiated competition-warmth) to compensate.7

- Insert Figure 3 about here -

The robustness of the inequality-ambivalence association was tested in several ways. First, in a regression analysis, Gini coefficients (centered around the mean), the number of groups rated by each sample (centered around the mean), and their interaction were regressed onto W-C correlations (Fisher standardized) to rule out the possibility that the number of target groups evaluated in each sample had an impact on the W-C correlation’s size and, therefore, on the inequality-ambivalence association. The model explained 15.2% of variance. Gini was the best and only predictor ($\beta = -.33, p = .05$); neither the number of groups ($\beta = .09, p = .60$) nor the interaction term ($\beta = .16, p = .36$) were significant.

Second, we further tested Hypothesis 5 controlling for other potential related factors. Wilkinson and Pickett (2009) suggest that when inequality is measured across whole societies versus small areas, its association with social problems is “stronger with inequality than with average income, and, in most cases, controlling for average income strengthens the associations with inequality” (p. 498). Therefore, in a regression analysis, both our measure
of income inequality (Gini) and a measure of average income (GDP per capita 2009) were regressed onto the Fisher standardized W-C correlations. Results showed that Gini predicted W-C correlations ($\beta = -.39, p = .08$) whereas GDP did not ($\beta = -.09, p = .69; R^2 = 11.6\%$). Further, arguably, the ideology concerning power and inequality in a given society (and not income inequality per se) might be responsible for the prevalence of ambivalent stereotypes. To control for the role of ideology, the Distance Power Index (PDI; Hofstede, 1980) was considered. PDI indexes the extent to which the less powerful members of a society accept and expect power to be distributed unequally, in other words, indexes the extent to which society’s inequality is endorsed by those at the bottom of the social ladder as much as by those at the top. “The fundamental issue here is how a society handles inequalities among people” (http://geert-hofstede.com/dimensions.html). Gini and PDI coefficients were regressed onto the Fisher standardized W-C correlations, and results showed that that Gini predicted W-C correlations ($\beta = -.39, p < .05$) whereas PDI did not ($\beta = -.06, p = .74; R^2 = 16.9\%$).

Status-competence and competition-warmth correlations were also Fisher standardized and correlated with Gini coefficients. Testing Hypothesis 6, competition-warmth and Gini coefficients significantly correlated, $r = .48, p < .01$, indicating that more equal societies show stronger negative competition-warmth associations; in other words, more equality, more dislike for competitive groups. In unequal societies, competition is more acceptable. Testing Hypothesis 7, no significant pattern was found for the Gini and the status-competence correlations ($r = .21, p = .23$).

Finally, we checked for the unpredicted structure-trait combinations: status-warmth and competition-competence correlations. As previously, they were calculated at the level of target groups within each sample; both unpredicted patterns were inconclusive: for competition-competence, average $r = .27, 16$ positive correlations (range .40-.97, all $ps <$
four negative correlations ($r = -.48, p < .05$; three marginally significant, $r = -.45, -.40, -.35$, all $ps < .06$), the remaining 16 were non-significant. The status-warmth average $r = .26$, 14 positive correlations (range .39-.78, all $ps < .05$), the remaining non-significant (see Table 1). Fisher-standardized correlations with Gini coefficients showed that Gini coefficients significantly correlated with the competition-competence correlations ($r = .49, p < .01$), indicating that in more equal societies being competitive does not necessarily imply being competent. Gini and status-warmth coefficients were only marginally associated ($r = -.29, p = .09$), suggesting a tendency, in more egalitarian settings, to perceive high-status groups as warm.

All the SCM correlations illustrated above and the Gini coefficients were finally correlated across samples. As Table 2 shows, when ambivalence is higher (i.e., low W-C correlations), both structural factors (i.e., status and competition) are more strongly related to competence. For lower degrees of ambivalence instead (i.e., high W-C correlation), status is associated with warmth. This latter result is not surprising given the very high status-competence correlation that we consistently find, which implies that any dimension correlating with competence (warmth in this case) will also correlate with status. Considering the Gini index, the cross-sample correlations therefore suggest that less egalitarian societies show more ambivalent stereotypes, and both high status and competition lead to perceiving groups as competent. More egalitarian societies, instead, have fewer ambivalent stereotypes, status and competition do not necessarily imply competence, and high-status groups tend to be perceived as warm.

Finally, given the cross-cultural nature of our data, the fact that scales’ reliabilities, and sample sizes varied noticeably across countries, the SCM correlations and the moderating role played by income inequality were checked using meta-analytic techniques, which allow
weighting correlations in order to minimize the variance between samples, and to correct for
the unreliability of measures. Hedges and colleagues’ method (Hedges & Olkin, 1985;
Hedges & Vevea, 1998) was applied, and random-effects models were performed. On each
SCM index, two meta-analyses were carried out: First, as suggested by the Hedges and Vevea
(1998), on Fisher standardized correlations; second, as recommended by Hunter and Schmidt
(2004), on correlations corrected for unreliability (see Lipsey & Wilson, 2001 for the
formulas used). Inverse-variance-weighted mean effect sizes concerning the SCM
correlations are summarized in Table 3. The significance of the average effect sizes can be
inferred from the boundaries of the 95% confidence intervals constructed around the mean
effect size, which in all cases presented in Table 3 do not contain zero.

- Insert Table 3 about here -

Next, inverse-variance-weighted regressions (random-effects model) assessed the
relationship between SCM correlations and income inequality. Weighted regressions were
performed on both Fisher standardized and corrected for unreliability correlations. Results,
summarized in Table 4, corroborated our findings and provided some support for our
Hypothesis 7. In fact, when the status-competence correlations were corrected for
unreliability, the Gini index resulted a significant moderator of such a relationship, namely,
more inequality more competence for high-status groups. In contrast, the unpredicted,
marginally significant relationship between income inequality and status-warmth associations
disappeared when correlations were corrected for unreliability. Finally, note that inverse-
variance-weighted regressions including Gini coefficients and other potential moderators
(i.e., GDP and PDI) showed again the moderating role of income inequality on our W-C
correlation (Fisher correlations: β= -.41, p <.05; unreliability correction: β= -.46, p <.05),
while results for GDP (Fisher correlations: β= -.06, p = .79; unreliability correction: β= -.14,
p = .53) and PDI (Fisher correlations: β = -.07, p = .69; unreliability correction: β = -.07, p = .71) were non-significant.

Discussion

Data from 37 cross-national samples showed the expected significant, negative association between SCM warmth-competence correlations and Gini coefficients, indicating that income inequality implicates ambivalence. Further, SCM’s hypothesized negative relationship between competition and warmth emerged as even stronger in more equal than unequal societies, showing more dislike for competitive groups when income differences are smaller. Finally, more equal societies do not necessarily perceive competitive groups as competent.

The SCM hypothesizes that many societal stereotypes are ambivalent. The present work supported this assumption, but also that different societies display different degrees of ambivalence, and that these relate to the societies’ income differences. Warmth and competence here behaved consistently with the compensation effect (Judd et al., 2005), namely, groups perceived as low on one dimension are raised on the other. That such compensation appeared stronger in more unequal societies suggests that the more income inequality, the more social groups need to be rewarded, as if actual economic disparities are rationalized in social judgments.

SCM also hypothesizes that status predicts competence, while competition predicts (low) warmth. Status did predict competence in all samples, but this structure-trait combination did not correlate with societal income inequality, suggesting that both more and less equal societies share the meritocratic belief that status links to talent and abilities. Alternatively, as shown in Table 4, this result might be due to an error of measurement. In fact, when the status-competence correlations were corrected for unreliability, the Gini index
became a significant moderator, showing that the more income inequality the more high-status groups are perceived as competent. Therefore, although this issue needs to be further investigated, it seems that more unequal societies tend to endorse meritocracy more than relatively equal ones, concealing inequality through exaggerating perceived status differences. Relatedly, status-warmth correlations were only marginally associated to income inequality, suggesting that in relatively equal countries, high-status groups also tend to be perceived as warm. However, when correlations were corrected for measures’ unreliability, this effect disappeared.

What instead consistently varies according to the degree of income inequality is the SCM-predicted competition-warmth association. More egalitarian societies especially perceive competitive groups as lacking warmth, suggesting that, given their relative income equality, competition seems unnecessary, so competitive groups are considered untrustworthy and perhaps exploitative. On the other hand, when economic disparities are bigger, people accept competition as inevitable: If competition is part of the system as a legitimate way to improve one’s own position, then competitive groups are not disliked as much as in more egalitarian settings. These different views of competition held by relatively equal versus unequal societies also appear in the significant correlation between Gini coefficients and competition-competence correlations: the more inequality, the more people equate competition as competent (realistic behavior), while the more equality, the less people think competition is necessarily competent.

Before discussing the theoretical and pragmatic implications of our findings, note that the majority of our samples came from relatively equal countries (23 samples: Gini between 28 and 39; 14 samples: Gini between 44 and 65). Adding data coming from more unequal countries as well as from countries with very high level of equality (e.g., Sweden, Norway) would allow us to optimally test our hypotheses. Furthermore, our participants were mostly
students: Although convenience samples might seem risky, compared with representative samples, as they would tend to limit our results only to college student perceptions, this method is justified on three counts. First, the convenience samples, being similar, would tend to decrease the predicted cultural differences, providing a conservative test of our hypotheses. Second, demographic differences within country do not modify the results (Cuddy et al., 2007). Third, the SCM method asks for society’s views, so it tends to emphasize a culturally-shared lay theory of groups in society. Indeed, as suggested elsewhere, people from the same culture, whether actively biased or not, know their own cultural stereotypes (Devine, 1989; Fiske, 1993).

Nevertheless, especially in more unequal countries, access to higher education is linked to socio-economic status; consequently, it could be argued that our evidence may reflect the higher-status people’s point of view. Although, as noted above, SCM theory and method have proven a pancultural tool for detecting societal beliefs, future studies should extend these findings using more representative samples, and taking into account the role of the respondents’ socio-economic position in addressing the ambivalence-inequality hypothesis: this would control for the possibility that higher- versus lower-status groups within a society would be more likely to hold ambivalent societal stereotypes in more unequal versus equal contexts, helping, furthermore, to theoretically bridge an individual level to a societal level analysis. However, US, Italy and Switzerland (French canton) results for student and non-student samples were very similar, as were results for non-student Maori (low-status group in New Zealand) and European New Zealanders (see Table 1).

The findings shed new light on how stereotypes potentially exert control. Stereotypes tell both how a given group of people allegedly do think, feel, behave (descriptively), and how they supposedly should think, feel, behave (prescriptively; Fiske, 1993). The descriptive and prescriptive aspects of stereotypes both exert social control, the description because it
anchors social interactions to what is commonly believed about a certain group, the prescription because it demands the stereotyped group to conform to stereotypical expectations. In other words, “stereotypes reinforce one group’s or individual’s power over another by limiting the options of the stereotyped group, so in this way stereotypes maintain power” and control (Fiske, 1993, p. 623). Furthermore, ambivalent stereotypes are also more easily accepted by the targets because the negative side of such beliefs is masked by the positive one (e.g., Eastwick et al., 2006). Thus, descriptive and prescriptive aspects of ambivalent stereotypes may even be appealing (hence more constraining) for stereotyped people who perceive their group to be socially appreciated in one way or another (i.e., warmth or competence). All this likely encourages people’s acquiescence, while discouraging, even under great social and economic inequalities, social change and collective action.

This does not imply that people will never challenge unequal systems. What the present work depicts is a static picture taken at a particular historical time. The literature on active minorities, for instance, has documented the influence that, over time, minority groups can exert on majorities, leading to system change; socio-psychological research has devoted considerable attention to the conditions that facilitate collective action and social change (see Zomeren & Klandermans, 2011 [special issue]). Most relevant here, SCM links to the legitimacy and stability of status relations between groups as theorized by Tajfel (1981). In one study (Oldmeadow & Fiske, in press), groups were more differentiated on warmth in illegitimate but stable status systems, while on competence in stable than unstable systems, highlighting the importance of system stability in shaping groups’ stereotypes. Therefore, ambivalent stereotypes may be the cognitive alternative available in unjust but stable systems. Future studies should investigate to what extent income inequality affects people’s beliefs and behaviors when systems are perceived as stable versus unstable.
However, because “the content of stereotypes can serve to maintain ideological support for the prevailing social system” (Kay et al., 2007, p. 312), and specific ambivalent stereotypes link to system justification (Jost & Kay, 2005; Kay & Jost, 2003; Kay et al. 2009; see also Becker & Wright, 2011), ambivalence may be a system-justifying strategy endorsed at a macro-social level. Nowadays, given the evolution of democratic systems around the world, many societies (especially the most developed) need a way to maintain social control, supporting equality while facing severe economic disparities among people. Ambivalent societal stereotypes offer one solution. This seems indirectly supported by recent evidence showing that in the US, “stereotypes of 10 ethnic and national groups over 75 years revealed that as anti-prejudice norms grew stronger, historically negative aspects of stereotypes faded from mention” (Bergsieker, Leslie, Constantine, & Fiske, 2012), but the negative content is implied (Kervyn, Bergsieker, & Fiske, 2012), so “modern stereotype assessment methods replicated the contemporary pattern of often-ambivalent stereotype content” (Bergsieker et al., 2012). All these findings highlight the insidious effects of ambivalent societal beliefs. The solution, however, cannot be to go back to hostile and overt forms of stereotypes and prejudice. Therefore, future studies should investigate how to contrast the deterrent effects of ambivalence on social change, especially in light of Wilkinson and Pickett’s (2010) argument: “The historical evidence confirms the primacy of political will. Rather than greater equality waiting till well-meaning governments think they can afford to make societies more equal, governments have usually not pursued more egalitarian policies until they thought their survival depend on it” (p. 241).

Arguably, over the past few decades, social psychology has progressively lost its connection to sociology, neglecting the influence of structural factors on people’s behaviors (Oishi, Kesebir, & Snyder, 2009): Modern social psychologists apparently lack a “sociological imagination” (Mills, 1959) or “the ability to look beyond personal experience
and immediate situations to see the influence of social forces operating in a larger societal (or distal, macro) context” (Oishi et al., 2009, p. 336). The importance of considering distant factors was well documented, for example, in Durkheim’s (1897/1951) classic analysis of how collective factors, such as the degree of social integration and moral regulation in a society, affected suicide rates across societies; in Nisbett and Cohen’s (1996) work linking economic and historical factors to violent behaviors in the Southern US (i.e., the culture of honor); and in McClelland’s (1961) pioneering work on need for achievement, which revealed, through historical analyses, that changes in need for achievement predicted changes in the economic activity of the same society later in time. Recently, Fiske (2011) argues for status as dividing people through upward envy and downward scorn; Oishi, Kasebir, and Diener (2011) have shown how income inequality (i.e., Gini) affected Americans’ happiness over the past 37 years; and Loughnan et al. (2011) have demonstrated that greater self-enhancement is found in societies with higher Gini. All this points out that the nature of people’s behavior can be traced not only in individuals, but also in the collective reality created by groups, societies, institutions; that is, macro factors can explain micro psychological phenomena (Oishi et al., 2009; see also Oishi & Graham, 2010). The current work likewise links distal factors (income inequality) and social beliefs (ambivalent societal stereotypes) across nations. Here, some sociological imagination appears.
Footnotes

2 One might expect a negative correlation between warmth and competence, but this has never been observed within any country tested so far.

3 In Switzerland, three preliminary studies (one in each canton), and in Israel two preliminary studies (one for Israeli-Jews and one for Israeli-Arabs) were carried out. In Bolivia, data for the long survey were collected in four universities’ campuses located in two Bolivian cities. In Cochabamba, both the preliminary groups-listing study and the long survey were conducted at the Universidad Privada Boliviana-Cochabamba (UPB-CB). In La Paz, the preliminary groups-listing study was at the Universidad Mayor de San Andres (UMSA), while the long survey was at the UMSA, Universidad Catolica Boliviana (UCB), and Universidad Privada Boliviana (UPB).

4 Status and competition ratings are not available for the Mexican sample.

5 Reported alpha medians include the following unsatisfactory alphas: Warmth, Indian sample (α = .49); Status, Israeli-Arab sample (α = .44); Competition, Swiss-German sample (α = .30), and the four Bolivian samples (UPB α = .26; UPB-BC α = .39; UMSA α = .43; UCB α = .48).

6 Recent data indicate that broader measures of both competition (both symbolic and tangible resources) and warmth (trustworthiness as well as friendliness) drive these correlations to about .75 - .80, closer to the status-competence correlations (Kervyn, Fiske, & Yzerbyt, 2012).

7 A relevant issue not addressed in the present work concerns the country’s ethnic mix of each sample, which might be reflected in the selected target groups. In fact, a society’s
remarkable ethnic divisions might account for the relationship between income inequality and social problems. However, although Wilkinson and Pickett (2009) argue that ethnicity is an important social marker for status differentiation, and, as such, it might worsen the social and health problems deriving from status, their review of more than 150 studies suggests a primacy of income inequality over ethnicity (see also Wilkinson & Pickett, 2010). Therefore, the ethnic composition of the societies investigated here are unlikely to account for the relationship between inequality and ambivalence.

PDI was retrieved from http://geert-hofstede.com/countries.html, December 2011 (PDI is not available for Bolivia and Uganda, i.e., five samples).

A regression analysis including Gini coefficients, and both GDP and PDI was also performed. Gini predicted W-C correlations ($\beta = -.42, \ p = .053$) whereas GDP ($\beta = -.06, \ p = .80$) and PDI ($\beta = -.08, \ p = .69$) did not ($R^2 = 17.1\%$).

The restricted range of the status-competence correlations (Table 1) probably prevents this from correlating with the Gini coefficients. So Hypothesis 7 is perhaps not optimally tested.

All meta-analytic calculations reported in the present paper were performed using the SPSS macro developed by Wilson (2005). Random-effects models were chosen because they account for both within-study variability and variability arising from differences between studies, in this case samples (see Hedges & Vevea, 1998; Hunter & Schmidt, 2000). In the Hedges and Vevea’s (1998) method, random-effects models weight each study (i.e., sample) by the inverse of the sampling variance plus a constant that represents the variability across the population effects (Lipsey & Wilson, 2001). According to several authors, real-world data are likely to have heterogeneous population effect sizes (e.g., Field, 2001, 2003;
Hunter & Schmidt, 2000, 2004), and random-effects models should be the default approach in social sciences (Field & Gillett, 2010). Furthermore, random-effects models “allow inferences that generalize beyond the studies included in the meta-analysis (unconditional inferences)” (Field & Gillett, 2010, p. 673; see also Hedges & Vevea, 1998). Finally, the homogeneity test (Q statistic) of effect sizes was taken into consideration: When significant, it indicates that the variability across effect sizes exceeds what would be expected based on sampling error.
References

Table 1.

Stereotypic traits correlations, social-structure stereotype correlations, Gini coefficients, all samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Warmth – Competence</th>
<th>Status – Competence</th>
<th>Competition – Warmth</th>
<th>Competition – Competence</th>
<th>Status – Warmth</th>
<th>GINI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>R</td>
<td>r</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>-.19</td>
<td>Unavailable</td>
<td>Unavailable</td>
<td>Unavailable</td>
<td>Unavailable</td>
<td>48.2</td>
</tr>
<tr>
<td>US (non student)</td>
<td>-.09</td>
<td>.97 ***</td>
<td>-.53 **</td>
<td>.55 **</td>
<td>-.10</td>
<td>45.0</td>
</tr>
<tr>
<td>South Korea</td>
<td>-.07</td>
<td>.91 ***</td>
<td>-.42 *</td>
<td>.83 ***</td>
<td>-.30</td>
<td>31.4</td>
</tr>
<tr>
<td>Canada</td>
<td>-.03</td>
<td>.91 ***</td>
<td>-.56 **</td>
<td>.19</td>
<td>-.18</td>
<td>32.1</td>
</tr>
<tr>
<td>US (student)</td>
<td>-.03</td>
<td>.98 ***</td>
<td>-.67 ***</td>
<td>.33</td>
<td>.01</td>
<td>45.0</td>
</tr>
<tr>
<td>Peru</td>
<td>-.01</td>
<td>.97 ***</td>
<td>-.10</td>
<td>.97 ***</td>
<td>.10</td>
<td>49.6</td>
</tr>
<tr>
<td>Japan</td>
<td>.03</td>
<td>.88 ***</td>
<td>-.39</td>
<td>.06</td>
<td>.03</td>
<td>37.6</td>
</tr>
<tr>
<td>Israel (Jews)</td>
<td>.08</td>
<td>.99 ***</td>
<td>-.59 **</td>
<td>.48 *</td>
<td>.07</td>
<td>39.2</td>
</tr>
<tr>
<td>South Africa</td>
<td>.11</td>
<td>.78 ***</td>
<td>-.18</td>
<td>.19</td>
<td>-.25</td>
<td>65.0</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>.12</td>
<td>.99 ***</td>
<td>-.37 †</td>
<td>.26</td>
<td>.12</td>
<td>53.3</td>
</tr>
<tr>
<td>Italy (student)</td>
<td>.23</td>
<td>.79 ***</td>
<td>-.70 ***</td>
<td>.15</td>
<td>-.14</td>
<td>32.0</td>
</tr>
<tr>
<td>Chile</td>
<td>.24</td>
<td>.97 ***</td>
<td>-.14</td>
<td>.75 **</td>
<td>.11</td>
<td>52.4</td>
</tr>
<tr>
<td>Bolivia (UMSA)</td>
<td>.26</td>
<td>.90 ***</td>
<td>.03</td>
<td>.76 ***</td>
<td>.02</td>
<td>58.2</td>
</tr>
<tr>
<td>Switzerland (German)</td>
<td>.28</td>
<td>.93 ***</td>
<td>-.67 ***</td>
<td>-.10</td>
<td>.03</td>
<td>33.7</td>
</tr>
<tr>
<td>Italy (non-student)</td>
<td>.31</td>
<td>.75 ***</td>
<td>-.68 ***</td>
<td>.14</td>
<td>-.10</td>
<td>32.0</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>.36</td>
<td>.89 ***</td>
<td>-.36 ††</td>
<td>.66 ***</td>
<td>.05</td>
<td>48.0</td>
</tr>
<tr>
<td>Bolivia (UCB)</td>
<td>.39 *</td>
<td>.94 ***</td>
<td>-.17</td>
<td>.48 **</td>
<td>.25</td>
<td>58.2</td>
</tr>
<tr>
<td>Bolivia (UPB)</td>
<td>.41 *</td>
<td>.94 ***</td>
<td>-.11</td>
<td>.49 **</td>
<td>.36</td>
<td>58.2</td>
</tr>
<tr>
<td>England</td>
<td>.46 *</td>
<td>.93 ***</td>
<td>-.53 **</td>
<td>-.35 †</td>
<td>.48 **</td>
<td>34.0</td>
</tr>
<tr>
<td>Belgium</td>
<td>.48 *</td>
<td>.95 ***</td>
<td>-.92 ***</td>
<td>-.45 †</td>
<td>.65 **</td>
<td>28.0</td>
</tr>
<tr>
<td>New Zealand (Maori)</td>
<td>.48 **</td>
<td>.96 ***</td>
<td>-.02</td>
<td>.40 *</td>
<td>.42 *</td>
<td>36.2</td>
</tr>
<tr>
<td>New Zealand (European)</td>
<td>.51 **</td>
<td>.91 ***</td>
<td>-.30</td>
<td>.27</td>
<td>.34</td>
<td>36.2</td>
</tr>
<tr>
<td>Bolivia (UPB-BC)</td>
<td>.54 **</td>
<td>.91 ***</td>
<td>.25</td>
<td>.64 ***</td>
<td>.42 *</td>
<td>58.2</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Warmth – Competence</th>
<th>Status – Competence</th>
<th>Competition – Warmth</th>
<th>Competition – Competence</th>
<th>Status – Warmth</th>
<th>GINI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia (European)</td>
<td>.56 **</td>
<td>.94 ***</td>
<td>-.73 ***</td>
<td>-.34</td>
<td>.45 *</td>
<td>30.5</td>
</tr>
<tr>
<td>Uganda</td>
<td>.57 **</td>
<td>.92 ***</td>
<td>.41</td>
<td>.89 ***</td>
<td>.40</td>
<td>45.7</td>
</tr>
<tr>
<td>Spain</td>
<td>.60 **</td>
<td>.92 ***</td>
<td>-.35 ††</td>
<td>.09</td>
<td>.53 **</td>
<td>32.0</td>
</tr>
<tr>
<td>Greece</td>
<td>.61 **</td>
<td>.81 ***</td>
<td>-.14</td>
<td>.51 **</td>
<td>.37</td>
<td>33.0</td>
</tr>
<tr>
<td>Portugal</td>
<td>.61 **</td>
<td>.67 **</td>
<td>-.58 **</td>
<td>-.14</td>
<td>.25</td>
<td>38.5</td>
</tr>
<tr>
<td>Australia (Asian)</td>
<td>.65 ***</td>
<td>.95 ***</td>
<td>.01</td>
<td>.45 *</td>
<td>.63 ***</td>
<td>30.5</td>
</tr>
<tr>
<td>Switzerland (French student)</td>
<td>.65 **</td>
<td>.87 ***</td>
<td>-.80 ***</td>
<td>-.48 *</td>
<td>.34</td>
<td>33.7</td>
</tr>
<tr>
<td>India</td>
<td>.72 ***</td>
<td>.87 ***</td>
<td>.01</td>
<td>.51 **</td>
<td>.53 ***</td>
<td>36.8</td>
</tr>
<tr>
<td>Malaysia</td>
<td>.74 ***</td>
<td>.93 ***</td>
<td>.04</td>
<td>.49 **</td>
<td>.69 ***</td>
<td>44.1</td>
</tr>
<tr>
<td>Switzerland (Italian)</td>
<td>.76 ***</td>
<td>.76 ***</td>
<td>-.18</td>
<td>.00</td>
<td>.39 *</td>
<td>33.7</td>
</tr>
<tr>
<td>Northern Ireland (Catholic)</td>
<td>.77 ***</td>
<td>.95 ***</td>
<td>-.69 ***</td>
<td>-.33</td>
<td>.70 ***</td>
<td>34.0</td>
</tr>
<tr>
<td>Switzerland (French non-student)</td>
<td>.80 ***</td>
<td>.84 ***</td>
<td>-.66 ***</td>
<td>-.40 †</td>
<td>.46 *</td>
<td>33.7</td>
</tr>
<tr>
<td>Israel (Arabs)</td>
<td>.81 ***</td>
<td>.80 ***</td>
<td>.45 *</td>
<td>.66 ***</td>
<td>.60 **</td>
<td>39.2</td>
</tr>
<tr>
<td>Northern Ireland (Protestant)</td>
<td>.91 ***</td>
<td>.92 ***</td>
<td>-.25</td>
<td>-.07</td>
<td>.78 ***</td>
<td>34.0</td>
</tr>
</tbody>
</table>

Note. Data are reported according to the warmth and competence correlations: Ascending order.

* $p \leq .05$; ** $p \leq .01$, *** $p \leq .001$, † p between .052 and .058, †† $p = .07$.
Table 2.

Across samples correlations among SCM indices and Gini coefficients.

<table>
<thead>
<tr>
<th>SCM indices</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Warmth-Competence</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Status-Competence</td>
<td>-.38*</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Competition-Warmth</td>
<td>.19</td>
<td>-.08</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Competition-Competence</td>
<td>-.34*</td>
<td>.22</td>
<td>.67***</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Status-Warmth</td>
<td>.87***</td>
<td>-.003</td>
<td>.15</td>
<td>-.29†</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>6. GINI</td>
<td>-.34*</td>
<td>.21</td>
<td>.48**</td>
<td>.49**</td>
<td>-.29†</td>
<td>–</td>
</tr>
</tbody>
</table>

* p ≤ .05; ** p ≤ .01, *** p ≤ .001, † p = .09.

Note. The SCM correlations used to compute this table were Fisher standardized.
Table 3.

Meta-analysis results. Random-effects models

<table>
<thead>
<tr>
<th>SCM correlations</th>
<th>N</th>
<th>K</th>
<th>r₁</th>
<th>95% CI (r₁)</th>
<th>I² (r₁)</th>
<th>r₂</th>
<th>95% CI (r₂)</th>
<th>I² (r₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmth-Competence</td>
<td>3222</td>
<td>37</td>
<td>.44</td>
<td>.33, .55</td>
<td>93%</td>
<td>.51</td>
<td>.38, .65</td>
<td>88.6%</td>
</tr>
<tr>
<td>Status-Competence</td>
<td>3132</td>
<td>36</td>
<td>.92</td>
<td>.90, .94</td>
<td>93.3%</td>
<td>1.09</td>
<td>1.04, 1.13</td>
<td>3.5%</td>
</tr>
<tr>
<td>Competition-Warmth</td>
<td>3132</td>
<td>36</td>
<td>-.37</td>
<td>-.49, -.25</td>
<td>95.6%</td>
<td>-.44</td>
<td>-.58, -.30</td>
<td>87.3%</td>
</tr>
<tr>
<td>Status-Warmth</td>
<td>3132</td>
<td>36</td>
<td>.29</td>
<td>.17, .40</td>
<td>91.4%</td>
<td>.34</td>
<td>.20, .48</td>
<td>94%</td>
</tr>
<tr>
<td>Competition-Competence</td>
<td>3132</td>
<td>36</td>
<td>.34</td>
<td>.18, .48</td>
<td>95.5%</td>
<td>.38</td>
<td>.21, .56</td>
<td>88.9%</td>
</tr>
</tbody>
</table>

Note. N = total sample size for the given meta-analysis; K = number of samples included in the meta-analysis; r₁ = inverse variance weighted mean effect size calculated on Fisher standardized correlations; 95% CI = 95% confidence interval for the inverse variance weighted mean effect size (r₁ and related 95% CI reported in the table were converted back to r); r₂ = inverse variance weighted mean effect size on correlations corrected for unreliability; I² = index of heterogeneity (Higgins & Thompson, 2002): it is based on the Q homogeneity statistic (goodness of fit), P = (Q-(K-1))/Q, multiplied by 100 to express it as percentage. Larger values of P, the more heterogeneity.
Table 4.

Weighted regression results (random-effects model). Moderating role of Gini coefficients on SCM correlations.

<table>
<thead>
<tr>
<th>SCM correlations</th>
<th>Meta-regression on Fisher Standardized r</th>
<th>Meta-regression on r corrected for unreliability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b (95%CI)</td>
<td>β</td>
</tr>
<tr>
<td>Warmth-Competence</td>
<td>-.01 (-.03, -.001)</td>
<td>-.33</td>
</tr>
<tr>
<td>Status-Competence</td>
<td>.009 (-.005, .022)</td>
<td>.20</td>
</tr>
<tr>
<td>Competition-Warmth</td>
<td>.02 (.009, .03)</td>
<td>.47</td>
</tr>
<tr>
<td>Status-Warmth</td>
<td>-.01 (-.02, .001)</td>
<td>-.28</td>
</tr>
<tr>
<td>Competition-Competence</td>
<td>.03 (.01, .04)</td>
<td>.48</td>
</tr>
</tbody>
</table>

Note. Random-effects variance component estimated via Maximum Likelihood.
Figure Captions

Figure 1. Mexican sample, four-cluster solution. Key: Stars indicate cluster centers. H and L, respectively, indicate high, and low; W, warmth; C, competence. The term “fresas” refers to rich, spoiled kids.

Figure 2. European Australian sample, five-cluster solution. Key: Stars indicate cluster centers. H, M and L, respectively, indicate high, medium, and low; W, warmth; C, competence.

Figure 3. Gini coefficients and Warmth-Competence (W-C) Fisher standardized correlations, all samples.
Figure 1

A two-dimensional plot showing the relationships between different social groups based on warmth and competence dimensions. The plot includes categories such as Catholics, Christians, Women, Northerners, Rich people, Intellectuals, Jews, Nerds, Elderly, Disable people, Poor people, Sourthneres, Natives, HIPPIES, Fresas, Politicians, HC-HW, HC-LW, and LW-LC.

The x-axis represents competence, with high and low ends, and the y-axis represents warmth, with high and low ends. The positions of the groups indicate their perceived warmth and competence relative to each other.
Figure 2

The graph represents a correlation between warmth and competence perceptions across different groups. The axes label 'Warmth' and 'Competence' run from low to high. Various categories, such as Aboriginal Australians, Muslims, Refugees, Poor, Immigrants, Teenagers, LC-LW, Elderly, Children, Disabled people, Fat People, Blue Collar, LC-M/HW, Buddhists, LC-M/LW, HC-HW, Middle Class, Australians, Tradies, Students, LC-M/LW, HC-MW, Rich, Middle Class, Australians, Middle Class, Australians, Blue Collar, White, Women, Buddhists, Christians, Catholics, Gay, Asians, Rich, Elderly, Children, Disabled people, Fat People, Immigrants, Teenagers, LC-LW, Elderly, Children, Disabled people, Fat People, Immigrants, Teenagers, LC-LW.
Figure 3