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Outcome-Driven Clustering of Microarray Data

Abstract

The rapid technological development of high-throughput genomics has given rise

to complex high-dimensional microarray datasets. One strategy for reducing the di-

mensionality of microarray experiments is to carry out a cluster analysis to find groups

of genes with similar expression patterns. Though cluster analysis has been studied

extensively, the clinical context in which the analysis is performed is usually consid-

ered separately if at all. However, allowing clinical outcomes to inform the clustering

of microarray data has the potential to identify gene clusters that are more useful for

describing the clinical course of disease.

The aim of this dissertation is to utilize outcome information to drive the cluster-

ing of gene expression data. In Chapter 1, we propose a joint clustering model that

assumes a relationship between gene clusters and a continuous patient outcome. Gene

expression is modeled using cluster specific random effects such that genes in the same

cluster are correlated. A linear combination of these random effects is then used to de-

scribe the continuous clinical outcome. We implement a Markov chain Monte Carlo

algorithm to iteratively sample the unknown parameters and determine the cluster

pattern. Chapter 2 extends this model to binary and failure time outcomes. Our strat-

egy is to augment the data with a latent continuous representation of the outcome and

specify that the risk of the event depends on the latent variable. Once the latent vari-

able is sampled, we relate it to gene expression via cluster specific random effects and

apply the methods developed in Chapter 1. The setting of clustering longitudinal mi-

croarrays using binary and survival outcomes is considered in Chapter 3. We propose

a model that incorporates a random intercept and slope to describe the gene expression
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time trajectory. As before, a continuous latent variable that is linearly related to the ran-

dom effects is introduced into the model and a Markov chain Monte Carlo algorithm

is used for sampling. These methods are applied to microarray data from trauma pa-

tients in the Inflammation and Host Response to Injury research project. The resulting

partitions are visualized using heat maps that depict the frequency with which genes

cluster together.
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1.1 Introduction

In the past decade, new technologies for high-throughput genomics and proteomics

have developed with the potential of revolutionizing medicine. Gene expression mi-

croarrays are one such technology that measure the levels of RNA expression in a cell.

These expression levels are constantly changing, producing a rich influx of informa-

tion. Due to the wealth of potential knowledge encoded in the human genome that is

captured in microarray experiments, there is substantial interest in identifying differ-

ential gene expression patterns and relating gene activity to phenotypic information.

Our goal is to reduce a microarray dataset into clusters of genes that are biologically

meaningful and to use those clusters to predict patient outcome. We would like to find

clusters of genes that are both correlated with each other as well as associated with pa-

tient outcome, and we hypothesize that using outcome information to drive the pattern

discovery can potentially result in gene clusters that are more coherent and biologically

meaningful. We are motivated by the Inflammation and Host Response to Injury re-

search program, also known as the Glue Grant (http://www.gluegrant.org). The Glue

Grant is a large-scale interdisciplinary study of inflammation following severe trauma

or burn injury. The immune system reacts to injury by activating the inflammation

response in an attempt to prevent further damage to the body, and presumably the

chain of events that takes place as the body tries to stabilize and recover is reflected

in differential gene expression. The general aims of the Glue Grant are to uncover the

biological reasons why patients have such varying responses following their injury, to

understand the genomic and proteomic markers that predict clinical outcomes, and to

determine the relationship between changes in gene expression and clinical features.

For this paper, we focus on the association between patterns in differential gene ex-

pression and metabolic recovery in patients with severe trauma.

Many methods have been developed for relating gene expression to clinical outcomes,

most of which involve reducing the dimensionality of the gene expression data. One
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way to go about this is to identify a subset of genes that are predictive markers of out-

come. The simplest method for subset selection is univariate variable selection, where

each gene is individually tested for significance and the top ranked ones are included

in a multivariate model. Stepwise selection procedures achieve the same end but can

be unstable for high-dimensional datasets. Increased stability and reduced prediction

error can be obtained by penalized regression methods which operate by imposing

a constraint on the parameters, leading to coefficient shrinkage (Tibshirani, 1996). In

particular, lasso simultaneously obtains parameter estimates and achieves variable se-

lection because the absolute value constraint causes some coefficients to be estimated at

exactly zero. Dimension reduction can also be accomplished by principal components

regression (Hastie et al., 2001a). This is an unsupervised procedure that reduces the

gene expression values down to their principal components and incorporates the first

few components that explain the majority of the predictor variation into a regression

model. A supervised version of this approach is partial least squares regression (PLSR)

(Park et al., 2002). Here, both the predictors and outcome are decomposed such that

the latent vectors used in the decomposition maximize their covariance. Given that our

goal of using outcome information to drive the data reduction is partially addressed

by PLSR, we will use it for comparison to our method.

Clustering is another widely used form of microarray dimension reduction that is

based on the assumption that groups of genes are more similar to each other than oth-

ers for reasons such as related functionality, shared biological pathways, or a similar

effect on outcome. One approach, though computationally burdensome, is to perform

a stochastic search across the entire space of possible partitions and select the true

clustering to be the one with the highest likelihood. Another approach is to cluster

the genes across patient samples via a technique such as K-means and then to use the

cluster expression averages in a regression model (Eisen et al., 1998). K-means cluster-

ing is a classic clustering algorithm that finds the partition of K sets that minimizes the

distance of each observation to its center, where each cluster center is the mean of the
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observations in that cluster (Hartigan, 1975). Achieving the optimal clustering using

K-means with a Euclidean distance metric is equivalent to maximizing the likelihood

that corresponds to modeling gene expression as a normally distributed cluster spe-

cific fixed effect. The maximum likelihood occurs when each gene is assigned to its

nearest cluster center such that the within cluster sum of squares is minimized. This

approach operates under the assumption that all the genes to be clustered are inde-

pendent. This is appropriate for clustering independent individuals but is flawed for

clustering features that have a correlation structure. Rather, it is more reasonable to

state that genes in the same cluster are correlated while genes across different clusters

are independent. Furthermore, K-means assumes that there is only one correct cluster-

ing pattern and does not provide a measure of uncertainty associated with the cluster

assignments.

A related formulation of the clustering problem is the normal mixture model, where

each observation is viewed as arising from a mixture of distributions. Fraley and

Raftery (1998) and Ghosh and Chinnaiyan (2002) discussed model-based clustering

where the gene expression data is modeled as a normal mixture and clusters are de-

termined by the Expectation-Maximization (EM) algorithm. A Bayesian approach can

also be used to fit the mixture model (Vogl et al., 2005). In these approaches, the prob-

ability distribution of each gene is modeled as the sum of K weighted underlying dis-

tributions, each representing the distribution of a gene conditional on membership in

each cluster. The entire data likelihood is then a product across all the genes. Once

again, this approach fails to specify any sort of correlation between genes in the same

cluster. These types of mixture models are valid for clustering patients, but do not

reasonably extend to the setting of clustering features measured on each patient.

The statistically sound approach for model-based clustering is to include a random

effect such that highly correlated genes fall in the same cluster. Ng et al. (2006) imple-

mented an EM algorithm to fit the random effects model for clustering. Alternatively,

the Bayesian paradigm provides a unified framework for fitting complex hierarchical
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models. For example, Booth et al. (2008) proposed a random effects clustering model

and performed a stochastic search for clusters using the posterior distribution of the

unknown partition as the objective function. Tadesse et al. (2005) presented a Markov

chain Monte Carlo (MCMC) sampling scheme for simultaneously selecting discrimi-

nating genes and clustering patients. The advantage of the Bayesian approach is that

it accounts for uncertainty in all of the parameters, including variation about cluster

membership. It can incorporate prior information and naturally allows outcome to

drive the clustering of the genes when fitting the joint model.

The notion of outcome-informed clustering has been studied less extensively. Hastie

et al. (2001b) touched upon the idea of informative clustering in his proposal of a su-

pervised approach called ‘tree-harvesting’ where clusters of genes are explored in a

stepwise fashion and related to outcome using the intermediate results of hierarchical

clustering. Dettling and Bühlmann (2002) discussed a strategy that directly incorpo-

rates the response variable into the clustering process by using a rank-based test statis-

tic for finding groups of genes that discriminate a categorical response. Ideally, one

would like to simultaneously find clusters and model the outcome such that each part

is influenced by the other.

In this chapter, we propose a joint model for simultaneously clustering correlated gene

expression data and predicting a continuous patient outcome. We use a random effects

model for describing gene expression cluster membership and relate the latent cluster

effects to a continuous patient outcome via a linear model. We develop a MCMC clus-

tering algorithm for model fitting and parameter inference based on a marginalized

likelihood. By simultaneously modeling patient outcome with gene expression and

developing a clustering algorithm that makes use of clinical data, we will generate

clusters that are more useful for describing the clinical course of injury.

Our methodology is described in Section 1.2. The results of simulation studies are pre-

sented in Section 1.3, and an analysis of the Glue Grant data is presented in Section 1.4.
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We conclude with a discussion in Section 1.5.

1.2 Methods

1.2.1 Model Specification

We propose a joint model for clustering correlated gene expression data that is driven

by a continuous patient outcome. Consider representing the microarray dataset as a

N×J matrix consisting of gene expression values for J genes measured on N patients.

Let Yij be the gene expression value for patient i and gene j belonging in cluster k.

Conditional on membership of gene j in the kth cluster, the random effects model for

describing gene expression is

Yij = cik(j) + εij (1.1)

where i = 1, ..., N, j = 1, . . . , J, and k = 1, . . . , K. Here, cik(j) are patient-cluster spe-

cific random effects that represent the cluster centers and induce correlation between

genes in the same cluster. We assume cik(j) ∼ N(0, τ 2) after the data have been log-

transformed and centered to have mean zero. We also assume that cik and cik′ are

independent for k 6= k′. Thus, for a given patient, the covariance between genes in the

same cluster is τ 2 while genes in different clusters and across different patients remain

independent. The εij are measurement errors, assumed to be distributed N(0, σ2). To

link the gene clusters to patient outcome, we specify a linear relationship between the

clusters and Zi, a continuous outcome for patient i,

Zi =
K∑
k=1

βkcik(j) + ξi. (1.2)

The cluster effects relate gene expression and patient outcome to each other by acting

as covariates in the regression model. The βk are the respective regression coefficients

for each cluster, and the error terms are assumed to be ξi ∼ N(0, γ2).

Latent variables φ = (φ11, ..., φ1K , φ21, ..., φJK) are introduced into the model, where
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φjk is an indicator denoting membership of gene j in cluster k. Additionally, let ω =

(ω1, . . . , ωK) be the cluster weights with ωk > 0 for all k and
∑
k

ωk = 1. These weights

represent the probability of belonging in each cluster.

1.2.2 Joint Likelihood

We will work with the marginal likelihood where the random effects c are integrated

out:

f(Y, Z|σ, τ, β, γ, φ, ω) =

∫
f(Y, Z|c, σ, τ, β, γ, φ, ω)f(c|τ)dc. (1.3)

This is for ease of computation, since the random effects are nuisance parameters and

our model fitting procedure is facilitated by not having to estimate all of them. A

closed form expression for (1.3) is readily achieved, as described next, because the

random effects are normally distributed.

Let Xi = (Yi, Zi), the vector of observations associated with patient i, where Yi =

(Yi1, ..., YiJ). Let Θ denote the set of parameters {σ, τ, β, γ, φ, ω}. The resulting complete

data likelihood for (Y, Z) is given by a multivariate normal distribution,

f(Y, Z|Θ) =
N∏
i=1

exp{−1
2
X ′iΣ

−1Xi}
(2π)(J+1)/2|Σ|1/2

.

The covariance matrix Σ is a symmetric (J + 1)× (J + 1) matrix that is block diagonal

in all but the last row and column. It is represented by

Σu,v = σ2I(u = v) + τ 2
K∑
k=1

I(u, v ∈ Sk)

Σu,J+1 = τ 2
K∑
k=1

I(u ∈ Sk)βk

ΣJ+1,J+1 = τ 2
K∑
k=1

β2
k + γ2

(1.4)

where the subscripts index the matrix elements. Here, u = (1, . . . , J), v = (1, . . . , J),

and Sk denotes the kth cluster set.

7



A closed form expression exists for both the inverse and determinant of Σ. Therefore,

the expression for the multivariate normal distribution simplifies substantially, speed-

ing up computation of the Metropolis-Hastings algorithm.

1.2.3 Prior Distributions for Model Parameters

We specify a non-informative prior distribution for every parameter. The prior for σ

is set to be uniform on a wide range. We also specify a uniform prior on a wide range

for the hierarchical parameter τ , as recommended by Gelman (2006). The standard

non-informative prior is used for the regression parameters (β, γ2) ∝ 1/γ2.

Non-informative conjugate priors are specified for ω and φ. A symmetric Dirichlet

prior is set for the weights, P (ω1, . . . , ωK) ∝ Dirichlet(α, . . . , α). Larger values of α

reflect the presence of more clusters, while smaller values of α reflect fewer clusters.

Lastly, the cluster membership variable φ has a multinomial prior that depends on the

weights, P (φjk = 1) = ωk.

1.2.4 MCMC Clustering Algorithm

We fit the model by implementing a MCMC algorithm that consecutively samples ev-

ery parameter until a sufficient representation of the posterior distribution is achieved.

The MCMC sampling procedure consists of repeating the following six steps until con-

vergence:

1. Sample σ2.

2. Sample τ 2.

3. Sample φ.

4. Sample ω.
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5. Sample β.

6. Sample γ2.

Gibbs sampling is used for sampling the parameters that have an available full condi-

tional posterior distribution. The set of samples obtained through multiple iterations

estimates the posterior distribution of that parameter. When the full conditional dis-

tribution cannot be directly sampled from, we use the Metropolis-Hastings algorithm.

Candidate values are drawn from a proposal distribution and accepted with probabil-

ity proportional to the ratio of the posterior density evaluated at the current value to

the posterior density evaluated at the new value. That is, samples are accepted with

probability

min(1,
P (θ∗|Y, Z)/Q(θ∗|θ′)
P (θ′|Y, Z)/Q(θ′|θ∗)

)

where Q is the proposal density, P is the posterior likelihood, θ′ is the current parame-

ter value, and θ∗ is the candidate parameter value.

Update of variance parameters

The Metropolis-Hastings algorithm is used to sample σ2, τ 2, and γ2. We use an in-

verse gamma proposal distribution with shape parameter s and scale parameter s/θ.

These tuning parameters are determined experimentally during initial runs to accept

proposed samples at the recommended rate of 40%− 45% (Gelman et al., 2004).

Update of cluster membership and weights

Cluster membership φ is sampled from a multinomial distribution with probabilities

proportional to the likelihood given the current parameter values. For every gene,

we calculate the likelihood of belonging in each of the K clusters. The value of the

likelihood weighted by the current value of ω then becomes the updated multinomial
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sampling probabilities. We sample directly from the full conditional distribution, given

by

f(φj|Y, Z, σ, τ, β, γ, ω) ∝
K∏
k=1

(f(Y, Z|σ, τ, β, γ, ω) ∗ ωk)φjk .

After sampling the cluster memberships of all the genes, ω is sampled via a Gibbs step.

The full conditional distribution of ω is Dirichlet(α + n1, ..., α + nK), where nk is the

current number of genes in the kth cluster.

Update of regression coefficients

The regression coefficients β are sampled as a block by a Metropolis-Hastings algo-

rithm. We specify a multivariate normal proposal distribution with an independent

mean that is continuously updated whenever φj is updated in step 3. When a gene

is assigned to a different cluster, the average of the coefficients of the original cluster

and the new cluster become the new coefficients for the respective clusters. The re-

sulting value after updating all the φj is then used as the proposal mean. As for the

proposal covariance, we found through initial experimental runs that a covariance of

0.2*I, where I is the identity matrix, produces an acceptance rate near the recommended

rate of 20%− 25%.

1.2.5 Model Without Outcome

The random effects clustering model in (1.1) can stand alone as a special case of the full

joint model. In this simple case, f(Y |σ, τ, φ, ω) is a multivariate normal density with

covariance matrix equal to (1.4) with the last row and column removed. Simplifying

the likelihood expression leads to

f(Y |σ, τ, φ, ω) =

exp{−1
2

N∑
i=1

[σ−2
K∑
k=1

(
∑
j∈Sk

(Y 2
ij)− τ2

σ2+nkτ2
(
∑
j∈Sk

Yij)
2)]}

[(2π)J(σ2)J−K
K∏
k=1

(σ2 + nkτ 2)]N/2
.
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Estimates of the unknown parameters are obtained by Metropolis-Hastings sampling

in the same manner as previously described. We found that the random effects model

does in fact cluster genes differently from the fixed effects model. To illustrate ana-

lytically, we make the simplifying assumption that there is an equal number of genes

in every cluster and derive an expression for the log-likelihood that has the variance

components profiled out. As expected, the profile log-likelihood for the fixed effects

model is maximized when each gene is as close as possible to its cluster center,

L ∝
∑
i

∑
k

∑
j∈Sk

(Yij − Y ik)
2.

Interestingly, for the random effects model,

L ∝
∑
i

∑
k

∑
j∈Sk

(Yij − Y ik)
2 ∗ n

∑
i

∑
k

(Y ik)
2.

This result implies that genes are clustered in a way that not only minimizes the dis-

tance to the cluster centers, but also shrinks the cluster means towards zero.

1.2.6 Determining the Number of Clusters

Though the true number of non-empty clusters is unknown, it does not need to be

sampled separately in our algorithm because an estimate of K is obtained at every

iteration as an immediate result from the samples of cluster membership. Recall that

P (φjk = 1) is proportional to the weighted likelihood of belonging in cluster k. These

multinomial probabilities are always non-zero because ωk is positive for all k regardless

of cluster size. Due to the probabilistic nature of the allocation, there is always a chance

that a cluster will end up with no genes, or that an empty cluster will become filled at

any given iteration. Therefore, the only value that needs to be specified in advance

is Kmax, the maximum number of clusters. Kmax can also be thought of as the total

number of both empty and non-empty clusters, where 0 ≤ K ≤ Kmax.
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1.2.7 Posterior Inference

Posterior Distributions

The MCMC algorithm outputs samples from the posterior distribution of each of the

parameters and can be characterized by its posterior mean and posterior credible in-

terval. We make an exception for φ and instead summarize its posterior distribution

by the concordance between every pair of genes, where concordance is measured as

the percentage of iterations that a pair of genes falls into the same cluster. Displaying

cluster membership as a heat map allows the relationship between genes to be cap-

tured and circumvents the issue of label switching which can cause the appearance

of non-identifiability. The other cluster-dependent parameters, β and ω, can also ap-

pear non-identifiable as a consequence of label switching. A remedy is to index these

parameters by genes rather than by clusters.

Prediction

Given microarray data for a new patient, the predictive density of that patient’s out-

come can be obtained. Since Zi and Yi are both normally distributed, f(Zi|Yi) is also

normally distributed. Its expected value and variance are given by

E(Zi|Yi) = τ 2

K∑
k=1

βk
σ2 + nkτ 2

(
∑
j∈Sk

Yij)

V ar(Zi|Yi) = τ 2σ2

K∑
k=1

β2
k

σ2 + nkτ 2
+ γ2.

This distribution allows us to estimate the expected value of a future patient’s outcome

based on their expression values.

12



1.3 Simulations

Simulations were conducted to evaluate the performance of our algorithm and to study

the effect of outcome inclusion and different parameter values on the resulting clusters.

In the first simulation study, we generated 100 datasets under the model without out-

come and 100 datasets under the model with outcome. Each set of data consisted of

80 patients and 50 genes arising from 5 clusters. We considered various values of τ 2

to assess the ability of our method to detect the correct cluster structure when cluster

variation is low and when cluster variation is high compared to the variation in the

residual error. This ratio, τ 2/σ2, is what we will refer to as the variance ratio. The re-

maining parameter values were set to σ = 1, γ = 1, β1 = −3, β2 = −1, β3 = 2, β4 = 3,

and β5 = 5. We set α = 1 for the Dirichlet prior and Kmax = 10. For every dataset, we

ran 10,000 iterations and discarded 5,000 as burn-in.

A visual representation of the simulation results is presented in Figure 1.1. Cluster

membership is depicted as a heat map that shows the proportion of iterations that

every pair of genes is assigned to the same cluster. In the event of label switching,

summarizing the output as a heat map aids in visualizing the groups, but even in

the absence of label switching, the heat map has the advantage of providing informa-

tion about the uncertainty surrounding the allocations. We do not assume that φ is a

fixed value, but rather a parameter with a distribution where some groupings are more

likely than others. Heat maps for the models with and without outcome are shown for

τ 2/σ2 = 4 and τ 2/σ2 = 0.2 . The genes are listed along both axes in the same order,

grouped together by their true cluster membership. Concordance is represented as a

gradient from white (0%) to red (100%) with 16 discrete shades of color.

As depicted in the heat maps in Figure 1.1, the clustering is very clear when the vari-

ance ratio is large regardless if outcome information is used. On the other hand, we

observe a weak signal when the variance ratio is small. However, the clusters become

more well-defined when outcome is introduced into the model.
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Figure 1.1: Cluster heat maps for simulated data. Concordance varies from 0% (white)
to 100% (red).
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Table 1.1: Parameter estimates resulting from simulation for the model with and with-
out outcome with N=80 patients, J=50 genes, and 100 replications with 5000 iterations
each.

True value Mean SE Mean of SE

With outcome
σ 1 0.993 0.012 0.012
τ 2 1.768 0.079 0.065
β1 -3 -3.824 2.039 1.499
β2 -1 -1.674 2.623 1.893
β3 2 1.425 3.107 2.286
β4 3 2.483 3.189 2.285
β5 5 4.520 3.389 2.479

Without outcome
σ 1 0.993 0.012 0.012
τ 2 1.780 0.079 0.065

Table 1.1 displays posterior summary statistics of the parameters that result from the

simulation when the variance ratio is large. We see that they are all well estimated

by the MCMC algorithm. Note that estimation of the βk only makes sense when the

algorithm has converged to a stable pattern and is conditional on K = 5 in the current

case. When there is substantial uncertainty in the clustering output, it is not possible

to report averaged values for βk because there are different sets of βk associated with

different values ofK. However, when the majority of the genes cluster in the same way

across iterations, we can restrict ourselves to those iterations that estimated 5 clusters

and expect that the averages are reasonable estimates of the true value.

A second simulation study was conducted to understand the effect of the variance

ratio on cluster uncertainty. Uncertainty is defined as the frequency of pairwise clus-

tering inaccuracies as compared to the true cluster pattern. For this we considered a

small dataset with 15 patients and 6 genes arising from 3 clusters with every two genes

belonging to the same cluster. We varied τ 2 to range from 0.5 to 7, while the other pa-

rameters were fixed at σ = 1, γ = 1, β1 = −2, β2 = 1, and β3 = 3. For every case, 10,000
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iterations were run with half discarded as burn-in. The model was fit both with and

without outcome, and uncertainty was calculated for the range of variance ratios. The

results are plotted in Figure 1.2. Given the described clustering pattern, the maximum

amount of uncertainty that can be attained is 0.33. As τ 2/σ2 increases, the uncertainty

decreases towards zero and we see that clustering with outcome consistently produces

less uncertainty than clustering without outcome.

When the clustering signal is strong, that is when τ 2 is large, the clustering parameter

tends to converge quickly to the correct answer. Though this is advantageous, the

drawback is that the clustering parameter does not mix as well as one would hope. This

is because our algorithm only considers moves of one gene at a time, so the likelihood

tends to not change enough to accept reallocations of a single gene. Nevertheless, there

is no apparent need to over-explore the partition space when there is a strong signal

because we still obtain convergence to the right clustering pattern. On the other hand,

when the clustering signal is weak or nonexistent, mixing is irrelevant because the

algorithm cannot reach convergence anyways due to a weak signal. It is in the case

of a moderate signal that we would most want to see good mixing and hope that the

frequency of genes clustering together is reflective of the probability of belonging in

the same cluster. In the simulation setting, the lack of mixing in any given dataset is

circumvented by averaging across all the simulated datasets. This is effectively the

same as implementing several chains for every run and averaging across the chains,

which is what we proceed to do in the Glue Grant data analysis.

1.4 Application

We applied our methodology to the Inflammation and Host Response to Injury trauma

data, a rich dataset that contains information on numerous factors related to the biol-

ogy of inflammation following severe traumatic injury. There are a total of 167 patients

in the trauma dataset, each of whom has their blood leukocyte expression levels mea-

16



1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

ττ2 σσ2

C
lu

st
er

 U
nc

er
ta

in
ty

●

●

●

●

●

● ●

● ● ●
● ●

●

with outcome
without outcome

Figure 1.2: Plot of cluster uncertainty with and without outcome for different variance
ratios.

17



sured on an Affymetrix microarray chip consisting of 54,674 probe sets (which we will

henceforth call ‘genes’). The full dataset consists of microarrays that have been taken

at seven different time points following the patients’ injury, starting from immediately

after the injury to up to 28 days later. For our analysis however, we restrict ourselves

only to microarray data collected on day four from the 147 patients who are still in the

intensive-care unit at that time.

The gene expression values have been pre-processed using dChip, log-transformed

and centered prior to analysis. We use a subset of 87 genes for our cluster analysis.

These genes were pre-selected by Glue Grant investigators to be those that had signif-

icant differential expression with at least a two-fold difference between patients with

a clinical outcome of complicated versus uncomplicated recovery. Our objective is to

find clusters of genes that are associated with each other as well as associated with a

relevant patient outcome. The outcome that we use in our analysis is maximum multi-

ple organ failure (MOF), a continuous score that describes the severity of the patient’s

multiple organ failure and is predictive of metabolic recovery. MOF is the cumula-

tive sum of individual scores from the respiratory, renal, hepatic, cardiovascular, and

hematologic components, each ranging in value from 0 to 4 for least to most severe.

The resulting groups of genes can then be examined for their functional relationships

and interdependent roles in the inflammation response pathway.

We ran ten MCMC chains, each starting from a different set of randomly chosen over-

dispersed starting values. Non-informative priors were specified for all the parame-

ters; hyper-parameters were chosen to be α = 1 and Kmax = 15. We evaluated mixing

and convergence by assessing the trace plots and observed that convergence occurred

fairly quickly. As mentioned previously, we ran multiple chains to simulate good mix-

ing and averaged across all chains. Thus, for each of the MCMC chains, we ran 10,000

iterations with 5,000 discarded as burn-in.

The heat map for clustering combined across chains for the model with and without
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patient outcome is shown in Figure 1.3. The genes are listed along both axes in the

same order for both plots. When the model is fit with outcome, the genes labeled 1-

58 fall into seven distinct clusters the majority of the time upon convergence. These

seven clusters are clearly distinguished by the red boxes along the diagonal starting

from the bottom-left with the exception of some orange overlap between genes labeled

42 to 58 on the plot. It appears that about 20% of the time, genes 57 and 58 form their

own cluster of size two, while the remainder of the time they are part of the larger

cluster. On the other hand, several breakdown combinations are observed for genes

59-87. They do not group into clear partitions, implying that several partitions have

similar posterior probabilities.

When we fit the model without outcome, we obtain a heat map that appears compa-

rable though there is more pronounced uncertainty. The general partition structure

remains the same, but now there is more orange and yellow in some groups because

the posterior pairwise probabilities are not as high. There are various subsets of genes

that form their own clusters on occasion. The only genes for which there is actually

less uncertainty are genes 85-87, as they now exclusively cluster together.

In both cases, clusters consisting of only one gene are allowed. Normally we may not

wish to have singletons for a dataset that has thousands of genes, but since this is a

fairly small subset of genes that was pre-selected to be important, we do not want to

be too strict in forcing singletons into larger sized clusters.

A summary of the output is shown in Table 1.2. The mean of the variance ratio is

3.22 for the case with outcome and 3.51 for the case without outcome. The uncertainty

surrounding cluster membership is minimal because the estimated variance ratio is

relatively large. The coefficient estimates are conditional on K = 10, where the clusters

are of size 1, 1, 2, 3, 10, 24, 17, 1, 25, and 3 (from left to right in Figure 1.3). Only those

iterations for which the genes in each respective cluster exclusively group together are

used in calculating the coefficient estimate for that cluster.
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Table 1.2: Results of Glue Grant trauma data analysis with and without a continuous
outcome (maximum MOF score).

With outcome Without outcome
Mean 95% credible interval Mean 95% credible interval

σ 0.579 (0.563, 0.592) 0.564 (0.503, 0.587)
τ 1.039 (0.992, 1.085) 1.056 (1.009, 1.142)
β1 0.239 (-0.625, 0.961) – –
β2 0.179 (-0.499, 0.684) – –
β3 -0.514 (-1.606, 0.030) – –
β4 -0.356 (-1.523, 0.387) – –
β5 0.436 (-3.363, 2.321) – –
β6 -0.344 (-8.745, 3.443) – –
β7 -0.653 (-6.512, 3.036) – –
β8 0.629 (-0.363, 1.329) – –
β9 -0.173 (-8.713, 5.110) – –
β10 0.582 (-0.997, 1.273) – –

Figure 1.4 displays a heat map of the gene expression data that has been sorted ac-

cording to the clustering results. Every row is a patient, where the patients are sorted

by increasing MOF, and every column is a gene, where the genes are sorted by the

mean of the regression coefficient of their respective clusters. Gene expression val-

ues have been centered at zero in both directions; red represents under-expression and

green represents over-expression. The cluster groupings are denoted by the brackets

along the bottom of the figure. As expected, different values of MOF are associated

with different gene expression patterns, and genes in the same cluster have similar ex-

pression patterns, Furthermore, clusters with a positive coefficient have an opposite

pattern from clusters with a negative coefficient. Cluster nine is the one exception.

Even though the mean of β9 is negative yet the pattern implies the opposite, its value

is very close to zero and suffers from high variability. Substantial cluster uncertainty

surrounding cluster nine accounts for its high coefficient variability and expected in-

stability.

Lastly, the average prediction error was calculated by 5-fold cross-validation. The

mean-squared error (MSE) for our method is 4.78, while the MSE from partial least
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Figure 1.4: Heat map of sorted gene expression data. Red represents under-expression
and green represents over-expression. The numbers correspond to the cluster labels in
Table 1.2.
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squares regression is 9.61 conditional on K=10. In addition to having a lower MSE, our

method fulfills the additional purpose of providing interpretable gene clusters.

1.5 Discussion

We have proposed Bayesian methodology for the informative clustering of genes. Our

model accounts for correlation between genes in the same cluster and jointly relates

the gene expression values to a continuous patient outcome such that this additional

information helps drive the clustering of the genes.

It would be worthwhile to consider relaxing some of the assumptions of our model.

For example, a heterogeneous covariance structure where a different τk is specified

for every cluster would allow for more flexibility. A non-linear relationship between

the clusters and outcome could also be modeled. We mentioned some solutions to deal

with the mixing problem, but the best way to handle this issue would be to incorporate

global moves such as splitting or combining clusters. Though this would allow the

partition space to be explored more fully, it would add extra computational complexity.

Our model can be extended to accommodate categorical outcomes using a probit or

logistic model, or time to event outcomes using semi-parametric models. Additionally,

the model can be extended to the longitudinal microarray setting where it is assumed

that groups of genes cluster together in their patterns over time.
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2.1 Introduction

The relationship between microarray data and binary patient outcomes is generally

framed as a classification problem (Ring and Ross, 2002; Quackenbush, 2006). Gene

expression data can be highly predictive of clinical outcomes such as disease type, as

demonstrated in Golub et al. (1999). Microarrays can also be used to distinguish be-

tween different diseases. For example, Dudoit et al. (2002) compares nearest-neighbor

classifiers, linear discriminant analysis, and classification trees for discriminating ma-

lignant versus normal tissue based on gene expression data in cancer patients. On the

other hand, modeling the relationship between gene expression and binary outcomes

using logistic regression can also lead to models that are highly descriptive of outcome.

The association between microarray data and survival outcomes can be studied in a

similar manner. Typically, the objective of these studies is to determine the hazard of

experiencing the event that is associated with the observed expression measurements.

Jung et al. (2005) and Gui and Li (2005) developed methods for identifying a subset

of genes that are biologically important and predictive markers of survival. In an ap-

proach suggested by Bair and Tibshirani (2004), each gene is given a Cox score based

on the proportional hazards partial likelihood and the top ranked ones are included in

a multivariate Cox model. A comprehensive overview of predicting patient survival

from microarray data is presented in Bøvelstad et al. (2007) and Wieringen et al. (2009).

Due to the high-dimensionality of microarray experiments, dimension reduction is of-

ten a necessary step in data analysis. Common methods for dimension reduction in-

clude principal component analysis and partial least squares, both of which reduce the

expression values to fewer dimensions based on correlation. If outcome information is

available, a supervised approach is generally preferred. Though these methods have

been extended to both binary and survival settings (Nguyen and Rocke, 2002; Park

et al., 2002), the drawback is they do not give interpretable components.
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We use clustering as a form of dimension reduction and as a way to gain insight into

underlying gene expression patterns. A standard cluster analysis involves a two-step

process where clustering is performed by a method such as K-means and the cluster

averages are used as covariates to model outcome. However, ideally we would like to

find clusters and simultaneously predict outcome such that each part is influenced by

the other. To this end, the Bayesian approach for model fitting is a natural way to allow

for outcome-driven clustering of gene expression data due to its iterative approach.

Previous Bayesian contributions in the realm of clustering multivariate data include

Booth et al. (2008) and Tadesse et al. (2005), both of whom use Markov chain Monte

Carlo (MCMC) methods for clustering data. For our contribution, we seek to use pa-

tient outcome to inform the discovery of gene clusters with the hope that the resulting

clusters provide a more coherent depiction of the underlying biological mechanism.

We propose a joint model that relates clusters of gene expression measurements to bi-

nary and event time outcomes. Our model for gene expression adds complexity to

standard mixture models (McLachlan et al., 2002) by incorporating cluster and subject

specific random effects. These random effects account for correlation between genes in

the same cluster and allow us to extend the mixture-model construction to the setting

where non-independent patient features are being clustered. For a binary outcome, the

probability of experiencing the event is related to the clusters via the introduction of la-

tent continuous variables into the model. The latent variables are then linearly related

to the cluster random effects which transforms the model into the standard linear re-

gression formulation. Conditional on the continuous latent response, the methodology

for estimating the posterior distribution of the parameters is equivalent to clustering

using a continuous outcome as described in Chapter 1. Obtaining these latent parame-

ters is readily achieved by adding an extra step into the MCMC sampling scheme (Al-

bert and Chib, 1993). An example of this type of Bayesian latent variable approach is

described in Sha et al. (2004). In their paper, they augment a probit model with contin-

uous latent variables to accommodate multinomial response variables for the purpose
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of high-dimensional variable selection. We extend our binary model to accommodate

survival data by treating time-to-recovery as a series of binary observations at a fixed

number of discrete time points where the outcome at every time point is evaluated as a

binary response. Again, we augment the data by assuming that the hazard of the event

at any given time depends on a latent continuous variable. Then, a negative binomial

model with a constant hazard of recovery is assumed for describing the amount of time

that a patient is at risk.

Our method is applied to trauma data from the Inflammation and Host Response to

Injury Program. Also known as the Glue Grant, this research project is an interdisci-

plinary study of the biological changes that a patient goes through after experiencing

severe trauma injury. The data consists of expression values measured on thousands of

genes, as well as various clinical measurements and recovery endpoints for every pa-

tient. Utilizing patient recovery to drive the process of clustering genes can potentially

result in groups that more thoroughly capture the relationship between genes.

We proceed with a detailed description of the methodology in Section 2.2. The results

of simulations are shown in Section 2.3. An analysis of microarray data from the Glue

Grant is presented in Section 2.4, and we end with a discussion in Section 2.5.

2.2 Methods

2.2.1 Clustering Genes Using a Binary Outcome

For every subject i, i = 1, . . . , N , we observe (Yi, Xi), where Yi is a vector of gene ex-

pression values and Xi is a single binary outcome. Our goal is to group the genes into

several clusters based on similarities in their expression values and their association to

the binary response. The genes should cluster in such a way that genes in the same

cluster are highly correlated with each other, while genes in different clusters are mu-

tually independent. Genes in the same cluster should also share a similar relationship
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to the response variable. In order to obtain clusters with these properties, we will fit a

joint model that relates the gene expression values to the binary outcome.

The first part of the joint model describes the observed gene expression data. We as-

sume that the dependence among genes in the same cluster is induced by subject and

cluster specific random effects. Thus, for gene j belonging in cluster k, the model for

gene expression is formulated as follows:

Yij = cik(j) + εij, cik(j) ∼ N(0, τ 2), εij ∼ N(0, σ2) (2.1)

It can be shown that the presence of patient-cluster specific random effects in the

model, represented by cik(j), results in a covariance of τ 2 between genes in the same

cluster and a covariance of zero between genes in different clusters. We assume that cik

and cik′ are independent for k 6= k′. We also note that the reason that both the random

effects and the error terms have mean zero is because we assume the data have been

centered at zero for every patient and gene prior to analysis.

Though the random effects provide information about the relationship between genes

in different clusters, they provide no indication of the clustering pattern itself. It is

therefore necessary to introduce additional parameters into the model to represent the

unknown cluster membership. We use indicator variables φjk to denote the member-

ship of gene j in cluster k. We assume the vector of indicators associated with each

gene has a multinomial distribution with probabilities ωk, k = 1, . . . , K, where ωk > 0

∀k and
∑
k

ωk = 1. The entire clustering pattern can then be obtained directly from the

matrix of cluster indicators.

The second part of the joint model describes the observed binary response. For every

patient i, Xi is a Bernoulli(p) distributed random variable that equals one if the patient

experienced the event. However, fitting a model that has a Bernoulli distributed ran-

dom variable greatly increases the difficulty of implementing a MCMC because none

of the posterior distributions are tractable. Therefore we facilitate the Bayesian model

fitting procedure by introducing a normally distributed latent variable Zi that will be
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simulated by MCMC and assume that the probability associated with Xi depends on

Zi. Known as the data augmentation approach (Tanner and Wong, 1987), Zi can be

thought of as an unmeasured underlying process that directly determines the value of

the observed binary response Xi. Augmenting the data to include Zi requires the spec-

ification of a function that links the relationship between Xi and Zi (Albert and Chib,

1993). In the context of data augmentation, the probit link is most commonly used:

P (Xi = 1) = Φ(Zi) (2.2)

where Φ is the cumulative density function of the standard normal distribution. The

dependence ofXi on Zi is straightforward; a smaller value of Zi implies thatXi is more

likely to be zero and a larger value of Zi implies that Xi is more likely to be one.

Up to this point, we have proposed separate models for the clusters of gene expres-

sion data and for the binary outcome. The final layer of the model is to connect these

two components together. The gene clusters are related to the binary outcome by a

linear relationship between the cluster random effects and Zi, the continuous latent

representation of the binary response:

Zi = µ+
K∑
k=1

βkcik(j). (2.3)

This is essentially a linear regression model where the βk act as coefficients that de-

scribe the effect of the cluster centers on the continuous latent outcome.

We noticed that when β was unconstrained, it tended to increase without bound. The

reason this model may not converge is because we only observe Xi and have fewer

degrees of freedom than provided by the normal model. We found that convergence

occurs when β is constrained to lie on the unit sphere such that βTβ = 1. A convenient

distribution for points on a sphere is the von Mises-Fisher distribution, which we detail

in Section 2.2.2.
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Prior Distributions

Non-informative prior distributions are specified for every parameter. The priors for

the hierarchical standard deviation components σ and τ are uniform densities on a

wide range. This is approximately equivalent to specifying an Inverse-χ2 prior distri-

bution on σ2 and τ 2. For the vector of cluster probabilities ω, we specify a conjugate

symmetric Dirichlet(α, . . . , α) prior. Smaller values of α reflect a prior belief that there

should be fewer clusters and larger values drive the clustering towards more clusters.

The cluster membership variable has a conjugate multinomial prior that depends on

the weights, P (φjk = 1) = ωk. The intercept term µ is given a non-informative uniform

prior, and a von Mises-Fisher prior distribution with concentration parameter λ = 0 is

specified for the vector β. This parameter setting is non-informative and is equivalent

to uniformity on a K-dimensional unit sphere.

2.2.2 MCMC Clustering Algorithm

The MCMC algorithm iterates between draws from the full conditional posterior distri-

butions f(Zi|Yi, Xi,Θ) for every patient i and f(Θ|Y,X,Z), where Θ denotes the entire

set of parameters {σ, τ, µ, β, φ, ω}. We exclude the random effects c from the parameter

set because we will only be working with distributions that have the random effects

integrated out so that they no longer appear in the likelihood. Carrying out this math-

ematical detail greatly reduces the dimension of the parameter space and increases the

stability of the algorithm.

To sample Zi, write

f(Zi|Yi, Xi,Θ)

∝ f(Xi|Zi, Yi,Θ)f(Zi|Yi,Θ)

= [Φ(Zi)I(Xi = 1) + Φ(−Zi)I(Xi = 0)]φ(µZi|Yi,Θ, σ
2
Zi|Yi,Θ). (2.4)

Since both Zi and Yi are normally distributed, f(Zi|Yi,Θ) is readily available as a con-
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ditional normal distribution with mean µZi|Yi,Θ = µ + τ 2
K∑
k=1

(βk/(σ
2 + nkτ

2))(
∑
j∈Sk

Yij)

and σ2
Zi|Yi,Θ = τ 2σ2

K∑
k=1

β2
k/(σ

2 + nkτ
2).

Due to the difficulty of drawing Zi directly from (2.4), we utilize the acceptance-

rejection algorithm for sampling Zi. The acceptance-rejection algorithm for simulating

random variables with density f(·) operates by finding a density g(·) from which it

is easy simulate, along with a constant M such that f(θ)/g(θ) ≤ M ∀θ. The algorithm

proceeds by simulating values θ∗ from f(·) and accepting these values with probability

f(θ∗)/(Mg(θ∗)). As a result, the elements in the set of values that are accepted will be

random variables from f(·).

In our case, f(·) is the expression in (2.4). If we let g(·) = φ(µZi|Yi,Θ, σ
2
Zi|Yi,Θ), thenM = 1

is an upper bound. Since Z1, . . . , ZN are independent random variables, the steps in the

algorithm are as follows:

1. Generate Z∗i ∼ φ(µZi|Yi,Θ, σ
2
Zi|Yi,Θ).

2. Generate U ∼ Uniform(0, 1).

3. If U < [Φ(Zi)I(Xi = 1) + Φ(−Zi)I(Xi = 0)], then accept Z∗i ; otherwise, reject Z∗i .

Next, we need to sample from f(Θ|Y,X,Z). Conditional on Z and Y , it is not neces-

sary to also condition on X because X gives no additional information given Z. To

simulate any single parameter θ from the set Θ, we write the full conditional posterior

distribution for θ:

f(θ|Y, Z,Θ−θ) ∝ f(Y, Z|Θ)f(θ). (2.5)

Note that f(Y, Z|Θ) is a product across independent patients i, where f(Yi, Zi|Θ) is

multivariate normal with mean (0, . . . , 0, µ)′ and covariance Σ, a symmetric (J+1)(J+
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1) matrix that is block diagonal in all but the last row and column:

Σu,v = σ2I(u = v) + τ 2
K∑
k=1

I(u, v ∈ Sk)

Σu,J+1 = τ 2
K∑
k=1

I(u ∈ Sk)βk

ΣJ+1,J+1 = τ 2
K∑
k=1

β2
k

where u = (1, . . . , J) and v = (1, . . . , J) index the matrix elements, and Sk denotes

the kth cluster set. The expression for the multivariate normal distribution simplifies

substantially because a closed form expression exists for both the inverse and the de-

terminant of Σ.

If the distribution represented by (2.5) is available in closed form for any given pa-

rameter, basic Gibbs sampling is used and samples are drawn directly from the closed

form distribution. If the full conditional posterior cannot be sampled from directly,

we utilize the Metropolis-Hastings algorithm, where candidate values are drawn from

a proposal distribution and accepted with probability proportional to the ratio of the

posterior density evaluated at the current value to the posterior density evaluated at

the new value. More explicitly, supposing that θ′ is the current parameter value and θ∗

is the candidate value, samples are accepted with probability

min(1,
P (θ∗|Y, Z)/Q(θ∗|θ′)
P (θ′|Y, Z)/Q(θ′|θ∗)

)

where Q is the proposal density and P is the posterior likelihood.

Using the theory presented above, we continue describing the details of sampling

each parameter in Θ. To simulate the variance parameters σ2 and τ 2, the Metropolis-

Hastings algorithm is used. We draw candidate values from an inverse gamma pro-

posal distribution with shape parameter s and scale parameter s/θ. These tuning pa-

rameters are determined experimentally during initial runs to accept proposed sam-

ples at the recommended rate of 40%− 45% (Gelman, 2006).

The probabilities associated with belonging in each cluster are sampled via a Gibbs

step. The full conditional distribution of ω is Dirichlet(α+n1, ..., α+nK), where nk is the

32



number of genes in the kth cluster at the current iteration. We found that setting α = 1

provides a reasonable result. The cluster membership of each gene, φj , is sampled from

a multinomial distribution with probabilities proportional to the weighted likelihood

given the current parameter values. The clustering space is explored in a stochastic

search where each gene is moved into every cluster and the likelihood of belonging in

each of the K clusters is calculated. The value of the likelihood weighted by the current

value of ω then becomes the updated multinomial sampling probabilities.

The intercept term µ is sampled using Metropolis-Hastings. Candidate values are

drawn from a normal proposal distribution with variance equal to one. The vector

of coefficients, β, is obtained by Metropolis-Hastings sampling as well. As mentioned

earlier, we constrain β to exist on theK-sphere such that the sum of squares equals one.

The von Mises-Fisher (vMF) distribution for a unit vector of dimension K has proba-

bility density function f(x) = CK(λ)exp(λµTx) and is suitable for drawing candidate

values with the desired constraint. Here, C is a constant, λ ≥ 0 is the concentration

parameter, and µ is the mean direction. Following the steps described in Wood (1994)

on how to sample from the vMF distribution, the result is a K-dimensional unit vector

with modal direction (0, . . . , 0, 1)T and concentration parameter λ. Applying QR de-

composition rotates the vector such that the modal direction is located at the proposed

value of β.

2.2.3 Extension to Failure Time Outcome

Our proposed hierarchical model can be extended to time-to-event outcomes in a

straightforward manner. We represent time-to-event as an indicator variable that is

a function of time, Xi(t). If patient i experiences an event at time t, then Xi(t) = 1;

otherwise if the patient has not yet had the event by time t, then Xi(t) = 0. Rather

than observing a single binary endpoint, we now observe a vector of binary responses

for every patient with one response at every time point. The responses are recorded at
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fixed discrete time points until the patient is no longer in the risk set.

As in the case with a binary outcome, we utilize the data augmentation approach and

introduce latent variablesZi into the model, whereZi is normally distributed and mod-

eled as shown in (2.3). Let Li be the number of times that patient i is evaluated for hav-

ing the event. The hazard of the event at any particular time tl, l = 1, . . . , Li, depends

on Zi as follows:

P (Xi(tl) = 1|Xi(tl−1) = 0) = Φ(Zi). (2.6)

For the purposes of illustrating our method, we assume that each patient has a constant

underlying hazard of experiencing the event. However, this assumption can be relaxed

to accommodate non-constant hazards with the inclusion of an additional parameter

per time point. To model the amount of time that a patient is in the risk set, we assume

a negative binomial distribution where the probability of success is simply the hazard

of recovery as shown in (2.6). The probability of recovering at the lth time point then

becomes Φ(−Zi)l−1Φ(Zi).

The MCMC for fitting the survival model follows almost exactly the same steps as

in the case of the binary outcome. The only difference occurs in step three of the

acceptance-rejection algorithm because the full conditional posterior distribution of Zi

is now a product across the time points:

f(Zi|Yi, Xi,Θ)

∝ f(Xi|Zi, Yi,Θ)f(Zi|Yi,Θ)

=

Li∏
l=1

[Φ(Zi)I(Xi(tl) = 1) + Φ(−Zi)I(Xi(tl) = 0)]φ(µZi|Yi,Θ, σ
2
Zi|Yi,Θ). (2.7)

Therefore we have the same function g(·) and the same constant M = 1, but ac-

ceptance of Z∗i is now based on a comparison of the uniform random variable to
Li∏
l=1

[Φ(Zi)I(Xi(tl) = 1) + Φ(−Zi)I(Xi(tl) = 0)].
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2.3 Simulations

We conducted simulations to compare the effect of using an informative outcome

against a non-informative outcome. For both, expression data was generated under

the proposed model with fixed parameter values. In particular, we point out that we

set τ = 0.5 and σ = 1, which represents a fairly small amount of variability between

the clusters compared to the residual variance. Non-related event outcomes were ob-

tained by generating outcomes at random for every patient. We simulated 50 datasets

for both informative and non-informative binary and failure time outcomes. Each set

of data consisted of 80 patients and 50 genes arising from 5 clusters. For every dataset,

we ran 5000 iterations and discarded 2000 as burn-in.

The cluster heat maps for the simulated data are presented in Figures 2.1 and 2.2. In

both figures, having a non-informative outcome produces more uncertainty, where un-

certainty is defined as the frequency of pairwise clustering inaccuracies as compared to

the true cluster pattern. Given the described clustering pattern, random noise produces

an uncertainty of 0.206. The uncertainties for an informative and non-informative bi-

nary outcome are 0.042 and 0.068, respectively. The uncertainties for an informative

and non-informative survival outcome are 0.043 and 0.047, respectively.

2.4 Application

The Glue Grant dataset contains information on numerous factors related to the bi-

ology of inflammation following severe traumatic injury. Data on 147 subjects are

included in the analysis, each of whom has their blood leukocyte expression levels

measured on an Affymetrix microarray chip consisting of 54,674 probe sets (which we

henceforth call ‘genes’). Arrays collected on day 4 following trauma will be used for

the analysis, the reason being that allowing a few days to pass after the event will give

expression levels that are more differentiated and thus more predictive of outcome.
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Figure 2.1: Cluster heat maps for simulated data with a non-informative and informa-
tive binary outcome.
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Figure 2.2: Cluster heat maps for simulated data with a non-informative and informa-
tive survival outcome.
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Table 2.1: Results of Glue Grant trauma data analysis with a binary outcome (compli-
cated vs. uncomplicated recovery) and survival outcome (time to recovery).

Binary outcome Survival outcome
Mean 95% credible interval Mean 95% credible interval

σ 0.372 (0.356, 0.388) 0.381 (0.368, 0.395)
τ 0.687 (0.660, 0.716) 0.690 (0.661, 0.723)
µ 0.929 (0.569, 1.306) -1.382 (-1.583, -1.184)

The gene expression values have been pre-processed using dChip, log-transformed

and centered prior to analysis. We use a subset of 87 genes for our cluster analysis that

have been pre-selected by Glue investigators to be those that had significant differen-

tial expression with at least a two-fold difference between patients with complicated

versus uncomplicated recovery. Complicated recovery implies the patient had a time

to recovery of more than 14 days, and patients with an uncomplicated status recovered

in less than 14 days.

For both the binary and survival analyses, we ran eight chains with over-dispersed

starting values. We ran 8000 iterations until convergence and discarded 2000 itera-

tions as burn-in. The maximum number of clusters was set to be 15. For our method,

we only need to specify the maximum number of clusters and not the exact number

because our algorithm allows for empty clusters when the genes are tested for mem-

bership against every cluster. However, since we only make single gene transitions

when sampling cluster membership, there is a tendency to under-explore the parti-

tion space. Therefore, several chains at different starting values were implemented

and subsequently averaged for purposes of inference. Estimates of the parameters are

shown in Table 2.1.

We define the event of interest to be complicated versus uncomplicated recovery class

for the binary outcome. For the survival outcome, the response measurement is time

to recovery from trauma. Patients are followed for 28 days, and time to recovery is

calculated as the maximum time to cardiovascular, hematologic, hepatic, renal, or res-
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piratory recovery. We assume that recovery can only occur once for every patient and

that once recovery has occurred, the patient is no longer at risk. Recovery is the only

absorbing state in the model; once a patient recovers, the patient is considered to have

reached the end of the study. If patients do not recover during the course of the study

or if they die prior to the last observed day, they are censored on day 28 and have an

observed indicator vector that consists of all zeroes. Since only five of the 147 subjects

died from their injuries, mortality was not considered an appropriately sensitive vari-

able for informing distinct clusters. In addition to the five patients who died within

the first 28 days, seven patients did not recover within the first 28 days. Both of these

groups of patients are censored at 28 days since it is evident that none of these patients

will recover by day 28.

A visual representation of clustering with and without outcome is presented in Fig-

ure 2.3. Cluster membership is depicted as a heat map that shows the proportion of

iterations that every pair of genes was assigned to the same cluster. The similarity, or

concordance, between two genes is defined as the percentage of iterations that they are

assigned to the same cluster. Concordance is depicted by a color gradient and ranges

from 0% (white) to 100% (red). By representing the cluster results in a heat map, la-

bel switching is accounted for and the allocation frequencies can be visualized clearly.

In all three heat maps, the genes are aligned in the same order along both axes. The

resulting partitions from using a binary outcome and from using a survival outcome

appear similar to each other. Slightly different groups are found when clustering with-

out outcome.

2.5 Discussion

In this chapter, we have developed methodology for using binary and failure time out-

comes to inform the clustering of gene expression data. The intention is primarily for

exploratory purposes, though the method can also be used for prediction. The clusters
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can act as prognostic markers in predicting recovery among trauma patients, making

it possible to determine the posterior predictive probability that a future patient will

experience the event. By augmenting the data with latent continuous variables, we are

able to utilize the methods developed in Chapter 1. When applied to the Glue Grant

data, we can determine the probability that a pair of genes are in the same cluster and

identify groups of genes that tend to cluster together. Our approach does not require

specification of the exact number of clusters and is also adaptable to situations where

there are more genes than subjects.

A limitation we foresee is that a more comprehensive stochastic search may be neces-

sary to fully explore the partition space. Implementing a reversible-jump MCMC, or

adding steps where sets of genes are combined and removed, may improve the mixing

of cluster membership. Several extensions of our methodology are possible as well.

The latent variable approach can be extended to accommodate multinomial outcomes

by allowing the response to take on more categories. Currently, our survival model

assumes a stationary process where the chance of recovery at every time point is in-

dependent of how long the patient has already been in the hospital. Our model can

be thought of as a discrete analog to the exponential distribution. We can extend our

survival method to have non-constant hazards by specifying a different parameter for

each time. For example, indexing the intercept by time would allow for a different

hazard at every time point and would provide additional flexibility to the model.
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3.1 Introduction

Conducting microarray experiments has become standard procedure in the biological

sciences. Each experiment generates expression data on tens of thousands of genes

and is often repeated several times under different experimental conditions, further

increasing the dimensionality of the data. Reducing the dimension of longitudinal mi-

croarrays through clustering can elucidate underlying disease mechanisms and path-

ways. We will present a way to cluster high-dimensional longitudinal gene expression

data that utilizes clinical outcomes to drive the clustering.

Analyzing the entire time-course gene expression is appealing because gene expression

is naturally a temporal process that is constantly regulated and changing. However,

methods relating to baseline microarrays do not translate directly to longitudinal set-

tings because they do not capture the time course patterns and the ordered nature of

the time index (Bar-Joseph, 2004). The key to analyzing longitudinal genes is to spec-

ify a model for the time-dependent gene expression trajectory. Ramoni et al. (2002)

modeled the correlation between successive measurements of the same gene with au-

toregressive equations. Luan (2003) modeled the trajectory using splines, suggesting

that the flexibility of splines can account for non-linear relationships between genes at

different time points and for data measured at unevenly spaced time intervals. More

recently, methods have been developed for modeling longitudinal gene expression

data using random effects in order to select differentially expressed time-course genes

(Storey et al., 2005; Rajicic et al., 2006).

Clustering longitudinal gene expression is based on the idea that similar temporal

profiles are involved in similar biological processes. Standard distance-based cluster-

ing methods assume observations of each gene are independent and identically dis-

tributed. For example, K-means clustering treats the input as a vector of independent

samples. This is inappropriate for clustering longitudinal data because it does not

account for correlation between successive observations of the same gene nor does
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it account for correlation between genes in the same cluster. Normal mixture mod-

els are also too simplistic for describing time-course dynamics (McLachlan et al., 2002).

Booth et al. (2008) and Ng et al. (2006) presented solutions for clustering correlated gene

expression profiles by proposing models with random effects that are shared among

correlated measurements of expression on the same gene and among gene expressions

from the same cluster.

For our contribution, we seek to use patient outcome to inform the discovery of gene

clusters with the hope that the resulting clusters provide a more coherent depiction of

the underlying biological mechanism. The scenario of clustering with a normally dis-

tributed continuous outcome was considered in Chapter 1. Here, we extend our pre-

vious methodology to the longitudinal microarray setting with binary and failure time

outcomes. To accommodate longitudinal measurements, we build upon the random-

effects model described in Rajicic et al. (2006) and assume a linear gene trajectory by

including a random intercept and a random slope for time. These random effects in-

duce correlation between genes in the same cluster, and the random slope captures the

relationship between repeated observations of the same gene over time.

The other challenge that we will deal with is the issue of specifying the relationship

between the non-continuous outcome and the longitudinal expression data. The rela-

tionship between binary outcomes and baseline gene expression data has been thor-

oughly studied and is usually framed as a classification problem (Ring and Ross, 2002;

Quackenbush, 2006; Hastie et al., 2001a). The association between baseline microarray

data and survival outcomes can be studied in a similar manner and is usually modeled

using a Cox proportional hazards model. Typically, the objective of these studies is to

determine the risk of experiencing the event that is associated with the observed gene

expression measurements (Bøvelstad et al., 2007; Wieringen et al., 2009).

Despite established methods for analyzing binary and survival data, these models be-

come difficult to fit when considered jointly with clustering longitudinal microarrays.
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Sha et al. (2004) considers a similar situation of relating genes to categorical outcome

variables in order to identify differentially expressed genes. They followed the meth-

ods developed in Albert and Chib (1993) and augmented the data with a latent con-

tinuous representation of the outcome. They specified that the probability of having

the outcome depends on the latent variable which is sampled by Markov chain Monte

Carlo (MCMC) methods. We adopt this approach as well because having the latent

variable simplifies the model fitting procedure and allows us to apply the MCMC clus-

tering algorithm presented in Chapter 1.

In Section 3.2, we begin by summarizing the previous chapters. In Sections 3.2.1

and 3.2.2, we present the model for clustering longitudinal microarrays and the binary

response model. All the model parameters are assigned non-informative prior distri-

butions in Sections 3.2.3, and Section 3.2.4 describes how each of the model parameters

is sampled and how the clusters are found by the MCMC algorithm. An important

aspect of this is the number of clusters which is discussed in Section 3.2.5. We expand

our model to accommodate failure time outcomes in Section 3.2.6. In Section 3.3, we

illustrate our clustering method using trauma data from the Inflammation and Host

Response to Injury Program. We end with a discussion in Section 3.4.

3.2 Methods

We aim to cluster longitudinal gene expression data into several groups based on sim-

ilarities in their expression trajectories and their association to binary and failure time

outcomes. We build upon the methods proposed in Chapters 1 and 2. Chapter 1 al-

lowed for a continuous outcome to drive the clustering of baseline microarray data and

modeled gene expression with patient-cluster specific random effects that accounted

for correlation between genes in the same cluster. In Chapter 2, we considered binary

and failure time outcomes to drive the clustering of baseline arrays. A novel aspect of

our previous methodology is that the random effects do not need to be estimated be-
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cause we integrate over them such that they no longer appear in the likelihood. In this

chapter, we continue to work with the marginal likelihood. By not having to sample

all the random effects, the MCMC algorithm performs with increased stability.

For the remainder of this section, we will introduce the joint model for clustering lon-

gitudinal gene expression data. We will describe in detail the data augmentation ap-

proach that relates the gene clusters to binary outcomes and extend the method to

failure time outcomes. Then we will describe the Bayesian MCMC procedure for esti-

mating parameters and finding clusters for both types of outcomes.

3.2.1 Model for Clustering Longitudinal Gene Expression Data

In the longitudinal microarray setting, we assume that groups of genes behave sim-

ilarly in their expression patterns over time. For every subject i, i = 1, . . . , N , we

observe Yi, a matrix of gene expression values measured at various time points t. The

temporal response of the genes is approximated by a random effects model where we

assume a linear change in the gene expressions over time. We allow the dependence

among genes in the same cluster to be induced by subject-cluster specific random in-

tercepts, cik. Correlation between genes at different times is induced by subject-cluster

specific random slopes for the time effect, dik. Therefore, for gene j belonging in cluster

k, the model for gene expression is

Yijt = cik(j) + dik(j)t+ εijt. (3.1)

Supposing that all the data has been centered at zero, we specify that cik ∼ N(0, τ 2),

dik ∼ N(0, ν2), and εijt ∼ N(0, σ2). Also, we assume independence between cik and cik′

and between dik and dik′ for k 6= k′. This implies that genes in different clusters have

covariance equal to zero. We use indicator variables, φjk, to denote the membership of

gene j in cluster k and assume the vector of indicators associated with each gene has

a multinomial distribution with probabilities ωk. While these are latent, we will later

show how they are used to find the clusters.
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For purposes of inference, we will use sufficient statistics for cik and dik instead of all

the expression data. Let h index the times when arrays are collected. Assuming that

patient i has arrays for Ti time points, the sufficient statistics are
Ti∑
h=1

Yijth and
Ti∑
h=1

thYijth .

For the remainder of the chapter, let Yi denote the expression data in terms of sufficient

statistics.

3.2.2 Model for Clustering Genes using a Binary Outcome

For every patient i, let Xi be a Bernoulli(p) distributed random variable that indicates

whether or not the patient experienced the event. We assume that p, the probability of

experiencing the event, depends on a normally distributed latent variable Zi. Known

as the data augmentation approach (Tanner and Wong, 1987; Albert and Chib, 1993),

Zi can be thought of as an unmeasured underlying process that is directly related to

the value of the observed binary response. Introducing Zi into the model facilitates

the Bayesian model fitting procedure because once we estimate Zi, we no longer need

Xi and the likelihood becomes a simple multivariate normal distribution. Obtaining

these latent parameters is readily achieved by adding an extra step into the MCMC

sampling scheme, the details of which are presented in Section 3.2.4. Augmenting the

data to include Zi requires the specification of a function that links the relationship

between Xi and Zi. We use the probit link to describe the relationship, where Φ is the

cumulative density function of the standard normal distribution:

P (Xi = 1) = Φ(Zi) (3.2)

The dependence of Xi on Zi is straightforward; a smaller value of Zi implies that Xi is

more likely to be zero and a larger value of Zi implies that Xi is more likely to be one.

So far, separate models have been proposed for the clusters of gene expression data

and for the binary outcome. Now we describe the relationship between the two com-

ponents. The gene clusters are related to the binary outcome by a linear relationship

between the cluster random effects and Zi, the continuous latent representation of the
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binary response:

Zi = µ+
K∑
k=1

βk(cik(j) + dik(j)). (3.3)

This is the standard linear regression formulation where β acts as coefficients that de-

scribe the effect of the cluster centers and the cluster slopes on the continuous latent

outcome. For every cluster, the intercept and slope are combined into an average value

for every cluster and are associated with one β. We note that it would have been possi-

ble to have different values of βk for cik and dik to allow for different effects of intercept

and slope on outcome. Also, we noticed that when β was unconstrained, it tended to

increase without bound. The reason this model may not converge is because the probit

model is much coarser than the normal model and causes the unconstrained coeffi-

cients to be non-identifiable. We found that convergence occurs when β is constrained

to lie on the unit sphere. A convenient distribution for points on a sphere is the von

Mises-Fisher distribution. We will describe how to generate random variables from

this distribution in Section 3.2.4.

Once we have obtained values for Zi, it is not necessary to account for Xi anymore

because Xi gives no additional information about Zi. This is a very useful property

because the joint distribution of Yi and Zi is multivariate normal and is much easier

to work with as compared to the joint distribution of Yi and Xi. We detail the joint

distribution of Yi andZi here because all of the distributions that are used in the MCMC

sampling algorithm are based on this density. Recall that the random effects have been

integrated out and that Yi = (
Ti∑
h=1

Yijth ,
Ti∑
h=1

thYijth) are the sufficient statistics.

The distribution of f(Yi, Zi|σ, τ, ν, φ, ω, µ, β) is multivariate normal with mean

(0, . . . , 0, µ)′ and covariance matrix Σ, where

Σ =

[
ΣY Y ΣY Z

ΣZY ΣZZ

]
.
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Define the following elements for Σ:

ΣY Y =

[
A B
B C

]
Σ′Y Z = ΣZY =

[
D E

]
ΣZZ = (τ 2 + ν2)

K∑
k=1

β2
k

Suppose we let u = (1, . . . , J) and v = (1, . . . , J) index the gene elements in each

submatrix and let Sk denote the kth cluster set. Let Ti denote the number of arrays that

are available for patient i. Then,

Au,v = σ2TiI(u = v) + (τ 2T 2
i + ν2(

Ti∑
h=1

tih)
2)

K∑
k=1

I(u, v ∈ Sk)

Bu,v = σ2(
Ti∑
h=1

tih)I(u = v) + (τ 2Ti(
Ti∑
h=1

tih) + ν2(
Ti∑
h=1

tih)(
Ti∑
h=1

t2ih))
K∑
k=1

I(u, v ∈ Sk)

Cu,v = σ2(
Ti∑
h=1

t2ih)I(u = v) + (τ 2(
Ti∑
h=1

tih)
2 + ν2(

Ti∑
h=1

t2ih)
2)

K∑
k=1

I(u, v ∈ Sk)

D1,u = (τ 2Ti + ν2
Ti∑
h=1

tih)
K∑
k=1

I(u ∈ Sk)βk

E1,u = (τ 2
Ti∑
h=1

tih + ν2
Ti∑
h=1

t2ih)
K∑
k=1

I(u ∈ Sk)βk

3.2.3 Prior Distributions for Model Parameters

Non-informative prior distributions are specified for every parameter. The priors for

the hierarchical standard deviation components σ, τ , and ν are uniform densities on a

wide range. This is approximately equivalent to specifying an Inverse-χ2 prior distri-

bution for σ2, τ 2, and ν2. The vector of cluster probabilities, ω, has a conjugate sym-

metric Dirichlet(α, . . . , α) prior, where smaller values of α reflect a prior belief that

there should be fewer clusters and larger values suggest the opposite. The cluster

membership variable has a conjugate multinomial prior that depends on the weights,

P (φjk = 1) = ωk. The intercept term µ is given a non-informative uniform prior, and a

von Mises-Fisher prior distribution that is uniform on the K-dimensional unit sphere

is specified for the vector β.
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3.2.4 MCMC Algorithm for Clustering Genes using a Binary Out-
come

MCMC methods are iterative procedures that allow one to sample from a variety of

probability distributions. We wish to know the posterior distribution of Z and all the

model parameters. In order to accomplish this, the MCMC algorithm iterates between

draws from the full conditional posterior distributions of Z, σ, τ , ν, φ, ω, µ, and β. As

a result, the collection of samples that are obtained is representative of the posterior

density. The steps are detailed below.

1. Sample the latent variable, Zi.

Write

f(Zi|Yi, Xi, σ, τ, ν, φ, ω, µ, β)

∝ f(Xi|Zi, Yi, σ, τ, ν, φ, ω, µ, β)f(Zi|Yi, σ, τ, ν, φ, ω, µ, β)

= [Φ(Zi)I(Xi = 1) + Φ(−Zi)I(Xi = 0)]f(Zi|Yi, σ, τ, ν, φ, ω, µ, β). (3.4)

Since both Zi and Yi are normally distributed, f(Zi|Yi, σ, τ, φ, ω, µ, β) is also nor-

mally distributed with mean

µ+ ΣY ZΣ−1
ZZ(Yi)

and covariance

ΣZZ − ΣZY Σ−1
Y Y ΣY Z

where ΣY Y ,ΣY Z ,ΣZY , and ΣZZ were previously defined.

Due to the difficulty of drawing Zi directly, we implement an acceptance-

rejection algorithm for sampling Zi. Candidate values of Zi are first drawn

from f(Zi|Yi, σ, τ, ν, φ, ω, µ, β). The candidate values are accepted with probabil-

ity Φ(Zi) if Xi = 1 and with probability Φ(−Zi) if Xi = 0. We demonstrated in

Chapter 2 that this generates values of Zi with the correct distribution conditional

on the outcome Xi and the model parameters.
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2. Sample the variance parameters: σ2, τ 2, ν2.

To simulate the variance parameters, the Metropolis-Hastings algorithm is used.

We draw candidate values from an inverse gamma proposal distribution with

shape parameter s and scale parameter s/θ. This is approximately equivalent

to specifying an Inverse-χ2 prior distribution. These tuning parameters are de-

termined experimentally during initial runs to accept proposed samples at the

recommended rate of 40% − 45% (Gelman et al., 2004). The proposed values are

accepted with probability proportional to the ratio of the posterior density eval-

uated at the current value to the posterior density evaluated at the candidate

value.

3. Sample the cluster weights, ω.

The probability weights associated with belonging in each cluster are sampled

via a Gibbs sampling step. For Gibbs sampling, we draw directly from the full

conditional posterior distribution of ω:

f(ω|σ, τ, ν, φ, µ, β, Y, Z) ∝ f(Y, Z|ω, σ, τ, ν, φ, µ, β)f(ω)

The full conditional distribution of ω is Dirichlet(α + n1, ..., α + nK), where nk

is the number of genes in the kth cluster at the current iteration. We found that

α = 1 provides a reasonable result.

4. Sample the cluster memberships, φ.

The cluster membership parameter is also obtained by Gibbs sampling. The clus-

tering space is explored in a stochastic search where each gene is moved into

every cluster and the likelihood of belonging in each of the K clusters is calcu-

lated. The likelihood of each rearrangement weighted by the current value of ω

then becomes the updated multinomial sampling probabilities. Thus, the cluster

membership of gene j is sampled from a multinomial distribution with probabil-

ities proportional to the weighted likelihood given the current parameter values.
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The full conditional distribution of φ is given by

f(φj|Y, Z, σ, τ, ν, µ, β, ω) ∝
K∏
k=1

(f(Y, Z|σ, τ, ν, µ, β, ω) ∗ ωk)φjk

and we sample directly from this multinomial distribution.

5. Sample the regression intercept, µ.

The intercept term is sampled using Metropolis-Hastings. A candidate value of µ

is drawn from a normal proposal distribution with variance one. Again, the can-

didate value is accepted with probability proportional to the ratio of the posterior

density evaluated at the current value against the posterior density evaluated at

the proposed value.

6. Sample the regression coefficients, β.

The vector of coefficients β is obtained by Metropolis-Hastings sampling as well.

As mentioned earlier, we constrain β to exist on the K-sphere such that the sum

of squares equals one. The von Mises-Fisher distribution for a unit vector of di-

mension K is suitable for drawing candidate values with the desired constraint.

Following the steps described in Wood (1994) on how to sample from this distri-

bution, the result is aK-dimensional unit vector with mean direction (0, . . . , 0, 1)′.

Applying QR decomposition rotates the vector so that the proposed value of β

becomes the mean direction.

3.2.5 Determining the Number of Clusters

We have been using K to denote the numbers of clusters. To be more specific, K is

actually the number of empty and non-empty clusters. For our algorithm, only the

maximum value of K needs to specified in advance. However, the number of non-

empty clusters does not need to be specified nor does it need to be sampled separately

as a parameter in the algorithm because it is allowed to change with every iteration

when cluster membership is sampled. Since ωk is positive for all k regardless of cluster
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size, the multinomial probabilities of belonging in each cluster are always non-zero.

Therefore, there is always a chance that a cluster will end up with no genes or that an

empty cluster will become filled at any given iteration due to the probabilistic nature

of the allocation.

3.2.6 Extension to Clustering Genes using a Failure Time Outcome

In this section, we extend our model to accommodate failure time data by treating time-

to-event as a series of binary observations at a fixed number of discrete time points that

indicate whether or not the event of interest has occurred yet. This vector of indicator

variables is denoted byXi(t). If patient i experiences the event at time t, thenXi(t) = 1;

otherwise if the patient has not yet had the event by time t, then Xi(t) = 0.

As in the case with a binary outcome, we augment the data by assuming that the haz-

ard of recovery at any given time depends on a latent continuous variable, Zi(t). The

difference here is that there is a value of Zi(t) for every time point that the event is

evaluated. The values of t do not necessarily need to correspond to the times that the

longitudinal genes are measured. Zi(t) is modeled as

Zi(t) = µ+
K∑
k=1

βk(cik(j) + dik(j)t) + ξit. (3.5)

We assume ξit ∼ N(0, 1). Here, we use the actual value of t in the model. Again,

more complex models are possible. We could have specified separate effects for cik

and dikt with a different βk for each. Let l = 1, . . . , Li index the times that the event is

evaluated. We assume a proportional hazards model where the hazard of the event at

any particular time depends on Zi(tl) as follows:

P (Xi(tl) = 1|Xi(tl−1) = 0) = Φ(Zi(tl)). (3.6)

The hazard of experiencing the event is different at every time tl, and asZi(tl) increases,

the hazard of the event increases. To model the amount of time it takes for a subject to
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have an event, we assume a negative binomial distribution where the probability of the

event is the hazard of recovery as shown in (3.6). Assuming that patient i is evaluated

for the event at Li time points, the probability of recovering at the lth time point then

becomes
Li−1∏
l=1

Φ(−Zi(tl))Φ(Zi(tLi
)).

The MCMC for fitting the survival model follows almost exactly the same steps as

before, except that here the full conditional posterior distribution of the vector Zi is a

product across all the time points:

f(Zi|Yi, Xi, σ, τ, ν, φ, ω, µ, β)

=

Li∏
l=1

[Φ(Zi(tl))I(Xi(tl) = 1) + Φ(−Zi(tl))I(Xi(tl) = 0)]f(Zi|Yi, σ, τ, ν, φ, ω, µ, β). (3.7)

The conditional distribution f(Zi|Yi, σ, τ, ν, φ, ω, µ, β) is normal with mean

µ+ ΣY ZΣ−1
ZZ(Yi)

and covariance

ΣZZ − ΣZY Σ−1
Y Y ΣY Z

where we redefine
Σ′Y Z = ΣZY =

[
D∗ E∗

]
ΣZZ = F

Again, let u = (1, . . . , J) and v = (1, . . . , J) index the gene elements in each submatrix

and let l = (1, . . . , Li) index the event time. Then,

D∗l,u = (τ 2Ti + ν2tl
Ti∑
h=1

tih)
K∑
k=1

I(u ∈ Sk)βk

E∗l,u = (τ 2
Ti∑
h=1

tih + ν2tl
Ti∑
h=1

t2ih)
K∑
k=1

I(u ∈ Sk)βk

Fl,l′ = (τ 2 + ν2tltl′)
K∑
k=1

β2
k

Candidate values of Zi are drawn from f(Zi|Yi, σ, τ, ν, φ, ω, µ, β) and are accepted with

probability
Ll∏
l=1

[Φ(Zi(tl))I(Xi(tl) = 1) + Φ(−Zi(tl))I(Xi(tl) = 0)].
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3.3 Application

The Inflammation and Host Response to Injury research program, also known as the

Glue Grant, is an interdisciplinary study of the genomic changes that occur after a

patient experiences a traumatic injury. The data consists of longitudinal expression

values measured on thousands of genes as well as various clinical measurements and

recovery endpoints for every patient. Patients are followed for 28 days and microar-

rays are available for up to seven time points that are taken at scheduled study visits

following injury. The number of arrays that are available at each time point is pre-

sented in Table 3.1. For our analysis, we use arrays collected starting on day 4. This is

because our model assumes linearity in the time effect and the expression trajectories

appear highly non-linear for the first few days after injury.

Table 3.1: Glue Grant array count on various days following injury.

Day 0 1 4 7 14 21 28
Arrays 167 159 147 135 86 53 30

The gene expression values are measured from blood leukocyte cells and have been

pre-processed using dChip, log-transformed and centered prior to analysis. We use a

subset of 87 genes for our cluster analysis that have been pre-selected by Glue Grant

investigators to be those that had significant differential expression with at least a two-

fold difference between patients with a clinical outcome of complicated versus uncom-

plicated recovery. Complicated recovery implies the patient had a time to recovery of

more than 14 days, and uncomplicated patients recovered in less than 14 days. We

define the event of interest to be complicated versus uncomplicated recovery class for

the binary outcome.

For the survival outcome, the response measurement is time to recovery. Time to recov-

ery is calculated as the maximum time of cardiovascular, hematologic, hepatic, renal,

or respiratory recovery. The median time to recovery was 7 days. We observe a vector
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of binary responses for every patient with one response at every time point. The re-

sponses are recorded at fixed discrete time points that are the same for every patient.

For the Glue Grant analysis, we use a recovery indicator that is recorded every four

days from day 0 to day 28. We assume that recovery can only occur once for every pa-

tient and that once recovery has occurred, the patient is no longer at risk. Recovery is

the only absorbing state in the model; once a patient recovers, the patient is considered

to have reached the end of the study. If patients do not recover during the course of

the study or if they die prior to the last observed day, they are censored on day 28 and

have an observed indicator vector that consists of all zeroes. Since very few subjects

died from their injuries, mortality was not considered an appropriately sensitive vari-

able for informing distinct clusters. In addition to the five patients who died within

the first 28 days, seven patients did not recover within the first 28 days. Both of these

groups of patients are censored at 28 days, since obviously none of these patients will

recover by the end of the study.

For both the binary and survival analyses, we ran eight chains with over-dispersed

starting values. The maximum number of clusters K was set to be 10. We ran 2000

iterations until convergence and discarded 500 iterations as burn-in. Since we only

make single gene transitions when sampling cluster membership, there is a tendency to

under-explore the partition space. Therefore, several chains at different starting values

were implemented and subsequently averaged for purposes of inference. Estimates of

the parameters are shown in Table 3.2.

A visual representation of the clustering is presented in Figure 3.1. Cluster member-

ship is depicted as a heat map that shows the proportion of iterations that every pair

of genes is assigned to the same cluster. In the event of label switching, summarizing

the output as a heat map aids in visualizing the groups and prevents us from having

to follow the movement of the genes at every iteration. Furthermore, heat map visual-

ization has the advantage of providing information about the uncertainty surrounding

the allocations. The Bayesian approach does not assume there is only one correct parti-
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Table 3.2: Results of longitudinal Glue Grant trauma data analysis with a binary out-
come (complicated vs. uncomplicated recovery) and survival outcome (time to recov-
ery).

Binary outcome Survival outcome
Mean 95% credible interval Mean 95% credible interval

σ 2.247 (1.575, 2.878) 1.887 (0.923, 2.667)
τ 2.127 ( 0.924, 2.813) 1.823 (0.826, 2.655)
ν 1.839 (0.582, 2.531) 1.437 (0.428, 3.009)
µ 0.731 ( -3.523, 3.057) -0.240 (-0.764, 0.010)

tion, but rather that there is a distribution of partitions where some are more likely than

others. The similarity, or concordance, between two genes is measured by the percent-

age of iterations that they are assigned to the same cluster. Concordance is represented

by a color gradient and ranges from 0% (white) to 100% (red). In all three cases, there

are two large non-overlapping groups. When outcome is included however, genes 42-

87 have several breakdown combinations, implying that several partitions have similar

posterior probabilities. On the other hand, when outcome is not used, genes 42-87 clus-

ter together all the times and do not break down into smaller groups. It is possible that

including outcome can produce more clusters if the relationship to gene expression is

strong.

A plot of the expression trajectories of four representative genes is shown in Figure 3.2.

The gene numbers correspond to the axes labels in the heat map. According to the heat

maps, genes 1 and 20 cluster together about half the time, and genes 45 and 80 cluster

together about half the time. However, the pairs never cluster together. One can see in

the plot that there are differences in their trajectories that correspond to the way they

cluster. Though not entirely linear, genes 1 and 20 have a general downward trend,

and genes 45 and 80 have a general upward trend.
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Figure 3.2: Gene expression trajectories of representative genes from different clusters.
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3.4 Discussion

In this chapter, we have provided a Bayesian approach for clustering longitudinal mi-

croarray data that uses patient outcome to inform the partitions. Our method is pri-

marily intended for exploratory purposes and pattern discovery. However, the cluster-

ing model can also be used for prediction where the clusters act as prognostic markers

in predicting the outcome.

An advantage of the Bayesian framework is that all the parameters, including those

for cluster membership, are associated with a probability distribution. This implies

that genes do not necessarily interact with the same group of genes all the time, but

may in fact interact with several different networks, a perspective that seems quite

reasonable. Our model allows for correlation between genes in the same cluster and

between repeated measurements of the same gene. We do not need to specify the

exact number of clusters but only need to specify the maximum number of clusters.

Additionally, the longitudinal arrays do not need to be measured at the same time as

the evaluation of recovery status.

Our model can be extended to more complex settings with the inclusion of additional

parameters. Though this would lead to fewer assumptions, the additional parameters

would need to be sampled in extra MCMC steps. For example, there can be separate

coefficients for the intercept and slope effects in the model for outcome. Furthermore,

a non-linear relationship with time can be specified for the gene trajectory. Splines

can also be used to model the time-course expression to provide the most amount of

flexibility.

The information encoded in microarray data has the potential to contain new insights

about the human genome that could eventually lead to new developments in medicine.

Uncovering the underlying cluster structure of gene expression data and determining

the functional properties of the gene clusters will help us understand the biological
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basis of events following traumatic injury. Developing a reliable method of predicting

patient recovery can save valuable resources that are required for careful monitoring

of every patient. If we can successfully accomplish these objectives, we can develop

intervention strategies that have the potential of putting more patients on the road to

recovery.
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