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Essays in Revision Games

ABSTRACT

This dissertation consists of three essays related to revision games.

The first essay proposes and analyzes a new model that we call “revision

games,” which captures a situation where players in advance prepare their actions

in a game. After the initial preparation, they have some opportunities to revise

their actions, which arrive stochastically. Prepared actions are assumed to be mu-

tually observable. We show that players can achieve a certain level of cooperation.

The optimal behavior of players can be described by a simple differential equation.

The second essay studies a version of revision games in which revision oppor-

tunities are asynchronous across players. In 2-player “common interest” games

where there exists a best action profile for all players, this best action profile is

the only equilibrium outcome of the revision game. In “opposing interest” games

which are 2 x 2 games with Pareto-unranked strict Nash equilibria, the equilibrium

outcome of the revision game is generically unique and corresponds to one of the

stage-game Nash equilibria. Which equilibrium prevails depends on the payoff

structure and on the relative frequency of the arrivals of revision opportunities for

each of the players.

The third essay studies a multi-agent search problem with a deadline: for in-

stance, the situation that arises when a husband and a wife need to find an apart-

ment by September 1. We provide an understanding of the factors that determine
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the positive search duration in reality. Specifically, we show that the expected

search duration does not shrink to zero even in the limit as the search friction van-

ishes. Additionally, we find that the limit duration increases as more agents are

involved, for two reasons: the ascending acceptability effect and the preference hetero-

geneity effect. The convergence speed is high, suggesting that the mere existence

of some search friction is the main driving force of the positive duration in reality.

Welfare implications and a number of discussions are provided. Results and proof

techniques developed in the first two essays are useful in proving and understand-

ing the results in the third essay.
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1. INTRODUCTION

This dissertation consists of three essays related to revision games.

The first essay proposes and analyzes a new model that we call “revision

games,” which captures a situation where players in advance prepare their actions

in a game. After the initial preparation, they have some opportunities to revise

their actions, which arrive stochastically. Prepared actions are assumed to be mu-

tually observable. We show that players can achieve a certain level of cooperation.

The optimal behavior of players can be described by a simple differential equation.

The second essay studies a version of revision games in which revision oppor-

tunities are asynchronous across players. In 2-player “common interest” games

where there exists a best action profile for all players, this best action profile is

the only equilibrium outcome of the revision game. In “opposing interest” games

which are 2 x 2 games with Pareto-unranked strict Nash equilibria, the equilibrium

outcome of the revision game is generically unique and corresponds to one of the

stage-game Nash equilibria. Which equilibrium prevails depends on the payoff

structure and on the relative frequency of the arrivals of revision opportunities for

each of the players.

The third essay studies a multi-agent search problem with a deadline: for in-

stance, the situation that arises when a husband and a wife need to find an apart-

ment by September 1. We provide an understanding of the factors that determine

the positive search duration in reality. Specifically, we show that the expected

1



search duration does not shrink to zero even in the limit as the search friction van-

ishes. Additionally, we find that the limit duration increases as more agents are

involved, for two reasons: the ascending acceptability effect and the preference hetero-

geneity effect. The convergence speed is high, suggesting that the mere existence

of some search friction is the main driving force of the positive duration in reality.

Welfare implications and a number of discussions are provided. Results and proof

techniques developed in the first two essays are useful in proving and understand-

ing the results in the third essay.

These essays enhance our understanding of dynamic incentives in finite hori-

zon, and raises many interesting questions for future research. These open ques-

tions are noted at the conclusion section of each chapter.
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2. REVISION GAMES1

2.1 Introduction

In social or economic problems, agents often prepare their actions in advance

before they interact. Consider researchers who are competing to win research

grants. “Actions” in this context correspond to research proposals to be submit-

ted by a prespecified deadline. Researchers prepare their proposals in advance,

and proposals are usually subject to some revisions before submission. Since they

have other obligation, such as teaching and committee work, a revision can be

made only when an opportunity to work on the proposal arrives. Researchers may

also obtain some information about their rivals’ proposals. Based on such informa-

tion, researchers revise their proposals, and they submit what they have when the

deadline comes.

In the present paper, we introduce a stylized model to capture such a situation,

which we call a revision game. In a revision game, a component game is played only

once, and players must in advance prepare their actions. They have some oppor-

tunities to revise their prepared actions, and the opportunities for revision arrive

stochastically. Prepared actions are assumed to be mutually observable, and the

1 This is a joint work with Michihiro Kandori (Faculty of Economics, University of Tokyo). We
thank Drew Fudenberg, Barton Lipman, Stephen Morris, Satoru Takahashi, and the seminar partic-
ipants at the 2009 Far East and South Asia Meetings of the Econometric Society, 2009 Evolution of
Cooperation Conference at IIASA, Boston University, University College London, Harvard Univer-
sity, and Oxford University.
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final action in the last revision opportunity is played in the component game. We

show that, under some regulatory conditions, players can achieve a certain level of

cooperation.

Let us contrast our model with the well-known fact that players can cooperate

in a repeated game. If players expect a sufficient future reward, they can sustain

costly cooperation. It must be the players’ best interest to carry out the future

reward, which is guaranteed by reward in the further future, and so forth till in-

definitely. In this paper we argue that players can sometimes cooperate even though

the game is played only once. Cooperation can be sustained by revision process of

players’ actions.

The basic mechanism to sustain cooperation in a revision game is similar to that

in a repeated game, although the mechanism operates in somewhat disguised way.

This is best seen when the revision process is stationary. Suppose players prepare

their action in each period, and the prepared actions are played in the component

game with a (small) constant probability. Once a component game is played, the

game is over and there is no further interaction. In Section 2.2 we present a simple

observation that such a model is actually isomorphic to an infinitely repeated game

with a (high) discount factor.

The heart of the paper analyzes a more realistic case, where the component

game is played at a predetermined deadline. Players obtain revision opportunities

according to a Poisson process, and the finally-prepared actions are played at the

deadline. In the class of component games that we focus on, we will show that an

optimal symmetric trigger-strategy equilibrium exists and it is essentially unique.

The equilibrium is characterized by a simple differential equation, which we apply

to a variety of economic examples. In particular, the revision game of a Cournot

4



duopoly game can achieve, in expectation, more than 96% of the full collusive pay-

off.

The key difficulty in sustaining cooperation comes with the fact that the prepa-

ration phase ends at a predetermined deadline: As time approaches the deadline,

the probability of being rewarded in the future shrinks to zero. This means that the

instantaneous cost of cooperation (the gain from deviation) must shrink to zero as

well for incentive compatibility to be met at each moment of time.2 We construct a

trigger strategy equilibrium with such a property. On the equilibrium path of play,

players prepare action x(t) if they obtain a revision opportunity at time t; upon

deviation players revert to the (unique) Nash action. x(t) is a full collusive action

when time t is sufficiently far away from the deadline, and it (continuously in t)

approaches the Nash action towards the deadline. At the deadline, no more op-

portunity for reward is expected, so the only sustainable action profile is the static

Nash action profile. For a 2-player good exchange game, we depict in Figure 2.1

the path x(t) of the optimal equilibrium among all the trigger strategy equilibria,

and a sample equilibrium path of play given x(t).3

As the action approaches the Nash equilibrium, the instantaneous cost of co-

operation shrinks to zero. However, it turns out that this is not enough to sustain

cooperation. We further need that the instantaneous cost shrinks sufficiently fast. To

see this point, note that as the action approaches the Nash action, the magnitude of

the benefit from the opponent’s future cooperation (conditional on there being an

opportunity) shrinks to zero as well.4 Since these benefits realize with a vanishing

2 Under certain regularity assumptions.

3 The formal analysis can be found in Section 2.5.1.

4 Under a continuity assumption.
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Figure 2.1: The optimal path and a sample path for a good exchange game.

probability, the cost must be negligible relative to the benefit when the action is close to

Nash. We show that under an assumption on payoff structure that many economic

applications satisfy,5 the cost indeed shrinks fast enough.

2.1.1 Related literature

Although in revision games the component game is played only once, features

of the model and the dynamic of the equilibrium that they imply are closely related

to those in finitely repeated games. A striking fact that the repetition of defections

is the only subgame perfect equilibrium in a repeated prisoner’s dilemma is over-

come by a variety of “twists” in the literature, such as multiple Nash payoffs.6,

5 This is expressed in Assumption A4 that we state in Section 2.4.

6 Harrington (1987), Benoit and Krishna (1985, 1993).
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bounded rationality7, reputational effects8, non-common knowledge of the timing

of the deadline9, social preferences10, and so forth. Among others, the model of

fu Chou and Geanakoplos (1988) is the most related to ours. They consider finite

horizon repeated games in which a player can commit to a (contingent) action at the

final period, and show that in “smooth games” a folk theorem obtains. The trigger-

strategy equilibrium that we construct is reminiscent of theirs in that the action on

the equilibrium path converges to the static Nash action, and the idea is related in

the sense that in both models a small amount of cooperation at periods close to the

deadline builds up a basis for a large cooperation in the entire game. The key dif-

ference, besides the fact that the component game is played only once in revision

games, is that we do not use commitment to achieve cooperation—our players are

fully rational. In our model rational players can cooperate even when the deadline

is very close because there is no pre-determined “final period” at which players

take actions with a positive probability.

Bernheim and Dasgupta (1995) consider infinite horizon repeated games in

which the discount factor falls over time to approximate zero, and show that coop-

eration can be sustained if the speed at which the discount factor falls is sufficiently

slow. They obtain a sufficient condition for the sustainability of cooperation but

did not explore characterization of optimal equilibria. Although the mechanism to

sustain cooperation in their model is similar to ours, in Section 2.6.2 we show some

crucial differences and demonstrate that our model cannot be mapped into their

7 Fudenberg and Levine (1983), Kalai and Neme (1992), Neyman (1985, 1998).

8 Sobel (1985), Kreps, Milgrom, Roberts, and Wilson (1982), and Fudenberg and Maskin (1986).

9 Neyman (1999).

10 Ambrus and Pathak (2011).
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model.

Pitchford and Snyder (2004) and Kamada and Rao (2009) consider situations

in which two parties dynamically transfer a fixed amount of divisible goods that

benefit the other party.11 In the equilibria they construct, a failure to transfer the

specified amount of goods at the specified date causes the opponent to stop trans-

ferring in the future. The remaining amount of the good in hand converges to zero

as the transactions occur a number of times, so the relevant stake of the game gets

smaller and smaller over time, reminiscent of our equilibrium form in which x(t)

approaches 0 as the deadline comes close. Also, as in our model, there cannot be a

final transaction period, since if there can, then the parties do not have an incentive

to make a transfer: the transactions need to occur indefinitely. The key difference

is that in their models the transaction amount is specified in the way that the game

becomes “isomorphic” from one period to the other in an appropriate sense (this is

possible since the horizon is infinite), while in our equilibrium the balance of cost

and reward for cooperation changes over time, as we have already discussed.

At a technical level, our model is related to that of Ambrus and Lu (2010a)

who analyze a multilateral bargaining problem in a continuous-time finite-horizon

setting where opportunities of proposal arrive via Poisson processes. If an agree-

ment is reached at any time, the game ends then. If no offer is accepted until the

deadline, players receive the payoff 0. They show that there is a unique Markov

perfect equilibrium in which the first proposal is accepted, so the proposals that

different players make converge to the same limit as the horizon length becomes

large. Although their basic framework is similar to ours, there are two main differ-

ences. First, in their model the game can end before the deadline, if an agreement

11 See related papers on gradualism, e.g. Admati and Perry (1991), Marx and Matthews (2000), and
Compte and Jehiel (2003) and monotone games, e.g. Gale (1995, 2001).
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is reached. Second, they focus on Markov perfect equilibrium, which in our model

corresponds to the repetition of the component game Nash equilibrium.

The rest of the paper is organized as follows: The next section presents a class

of revision games without a deadline to help the readers build up some intuition.

The main model with a deadline is presented in Section 2.3. The results on a gen-

eral setting with one-dimensional continuous strategies are given in Section 2.4..

Section 2.5 provides a number of applications. Section 2.6 discusses the robustness

of our results to fine changes of the specification of the model, identifies the con-

dition for the sustainability of cooperation, and compares our model to an infinite

horizon model with a decreasing discount factor. Section 2.7 concludes.

2.2 An Example (Two Samurai): Stationary Revision Games

The purpose of this paper is to analyze a class of games where (i) a component

game is played only once, (ii) players must prepare their actions in advance, (iii)

prepared actions are observable, and (iv) the probability that the prepared actions

are actually played is strictly positive but not one. We refer those games as revision

games. In this section, we start with a simple case, where the problem is stationary

in the sense that in each period t = 0, 1, 2, ... there is a fixed, positive probability

p with which the component game is played. We refer to this class of revision

games as stationary revision games. This class will turn out to be isomorphic to a

familiar class of games, and it helps to build some intuition on how revision games

in general work. The point we make is a simple one, so we just present an example

of stationary revision games.

Suppose that a rural village faces an attack of bandits. In each period t =

0, 1, 2, ... the bandits attack the village with probability p ∈ (0, 1) around midnight.

9



Table 2.1: The Samurai example.

Defend Hide
Defend 2, 2 -1, 3
Hide 3, -1 0, 0

They attack only once. The villagers hired two samurai, i = 1, 2, and they must

prepare to defend the village (to show up at the village gate around midnight)

or not (to hide away and watch the gate from a distance). Hence in each period

they observe each other’s prepared actions. The acts of preparation themselves

(showing up and hiding away) have negligible effects on the samurai’s payoffs.

When the bandits attack, however, their prepared actions have huge impacts on

their payoffs. Payoffs are summarized in Table 2.1. This is a Prisoner’s Dilemma

game. Now consider player i’s expected payoff. We denote player i’s payoff by

πi(t), when the bandits’ attack occurs at time t. We also assume that players have

a common discount factor δ ∈ (0, 1). Player i’s expected payoff is

pπi(0) + δ(1 − p)pπi(1) + δ2(1 − p)2 pπi(2) + · · ·

= p
∞

∑
t=0

δ
t
πi(t),

where δ := δ(1 − p). Hence, stationary revision games are isomorphic to infinitely re-

peated games, and cooperation can be sustained in a subgame perfect equilibrium

if p is small. Even though the component game is played only once, when (i) a

component game is played only once, (ii) players must prepare for their actions

in advance, (iii) prepared actions are observable, and (iv) the probability that the

prepared actions are actually played is strictly positive but not one (and the prob-
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ability with which the game is played is sufficiently low as well as the discount

factor is sufficiently high), then players manage to cooperate. The mechanism to

sustain cooperation works, for example, as follows. As long as the samurai have

been showing up at the gate, they continue to do so (to prepare to defend the vil-

lage). If anyone hides away, however, they stop preparing to defend.

The next section deals with our main model, where there is a fixed deadline

to prepare action in the component game. We will show that some cooperation

can be sustained in such games (revision games with a deadline), and the basic

mechanism to sustain cooperation is essentially the same as in this bandits story.

2.3 Revision Games with a Deadline - The Main Model

Consider a normal form game with players i = 1, ..., N. Player i’s action and

payoff are denoted by ai ∈ Ai and πi(a1, ..., aN), respectively. This game is played

at time 0, but players have to prepare their actions in advance, and they also have

some stochastic opportunities to revise their prepared actions. Hence, technically

the game under consideration is a dynamic game with preparation and revisions of

actions, where the normal-form game π is played at the end of the dynamic game

(time 0). To distinguish the entire dynamic game and its component π, the former

is referred to as a revision game and π is referred to as the component game.

Specifically, we consider two specifications. In both cases, time is continuous,

−t ∈ [−T, 0] with T > 0. At time −T, each player i chooses an action from Ai si-

multaneously. In time interval (−T, 0], revision opportunities arrive stochastically,

according to a process defined shortly. There is no cost of revision. At period 0,

the payoffs π(a′) = (π1(a′1), . . . , πN(a′N)) materialize, where a′i is i’s finally-revised

action.

11



1. Synchronous revision game: There is a Poisson process with arrival rate λ > 0

defined over the time interval (−T, 0]. At each arrival, each player i chooses

an action from Ai simultaneously. We analyze this case in the present paper.

2. Asynchronous revision game: For each player i, there is a Poisson process with

arrival rate λi > 0 defined over the time interval (−T, 0]. At each arrival,

i chooses an action from Ai. We analyze this case in Kamada and Kandori

(2011a).

We assume that players observe all the past events in the revision game, and

analyze subgame perfect equilibria. In synchronous revision games, if the com-

ponent game has a unique pure Nash equilibrium, one obvious subgame perfect

equilibrium is the strategy profile in which players choose a static Nash action at

time −T, and they do not revise their actions until time 0. In what follows, we

show that, under some regulatory conditions, revision games have other subgame

perfect equilibria, where players are better off than in the static Nash equilibrium.

2.4 Characterization of Optimal Trigger Strategy Equilibrium

In this section, we consider the case of synchronous moves. We restrict our-

selves to two players with one-dimensional continuous action space. This case

subsumes, for example, good exchange games, Cournot duopolies, Bertrand com-

petitions, and so forth. These applications are discussed in Section 2.5. We assume

two players, but this is just to simplify the exposition: Our results easily extend to

the case of N players. The assumption of continuous actions is discussed in a great

depth in Section 2.6.

Consider a general two-person symmetric component game with action ai ∈ Ai
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and payoff function πi. Two players are denoted i = 1, 2, and a player’s action

space Ai is a convex subset (an interval) in R: Examples include Ai = [ai, ai] or

[0, ∞). Symmetry means A1 = A2 =: A and π1(a, a′) = π2(a, a′) for all a, a′ ∈ A.12

We assume that the component game has a unique symmetric pure Nash equilib-

rium (aN , aN), whose payoff is πN := πi(aN , aN). Here we confine our attention to

symmetric revision game equilibrium x(t) that uses the “trigger strategy.” The ac-

tion path x(t) means that, when a revision opportunity arrives at time −t, players

are supposed to choose action x(t), given that there has been no deviations in the

past. If any player deviates and does not choose the prescribed action x(t), then

in the future players prepare the Nash equilibrium action of the component game

aN , whenever a revision opportunity arrives. This is what we mean by the trigger

strategy in revision games. Below we identify the optimal symmetric equilibrium

in the class of trigger strategy equilibria. By the “optimal equilibrium” in a given

class of equilibria, we mean that the strategy profile achieves (ex ante) the highest

payoffs in that class. Let the symmetric payoff function be

π(a) := π1(a, a) = π2(a, a),

and define the best symmetric action a∗ := arg maxa∈A π(a) and let π∗: = π(a∗)

denote the highest symmetric payoff.13 We assume the following regularity condi-

tions. Unless otherwise noted, these assumptions are imposed only in this section.

1. A1: A pure symmetric Nash equilibrium (aN , aN) exists, and it is different

from the best symmetric action profile (a∗, a∗).

12 When we write πi(x, x′), x is player i’s action and x′ is player −i’s action.

13 Assumption A2 that we state shortly ensures that all these pieces of notation are well-defined.
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2. A2: The payoff function πi for each i = 1, 2 is twice continuously differen-

tiable.14

3. A3: There is a unique best reply BR(a) for all a ∈ A.

4. A4: At the best reply, the first and second order conditions are satisfied: For

each i = 1, 2,
∂πi(BR(a), a)

∂ai
= 0,

∂2πi(BR(a), a)
∂2ai

< 0.

5. A5: π(a) is strictly increasing if a < a∗ and strictly decreasing if a∗ < a.

6. A6: The gain from deviation

d(a) := πi(BR(a), a) − πi(a, a) (2.1)

is strictly decreasing if a < aN and strictly increasing if aN < a.

A trigger strategy equilibrium is characterized by its equilibrium path (revision

plan) x : [0, T] → A (recall that x(t) denotes the equilibrium action to be taken

when a revision opportunity arrives at time −t). The expected payoff at the begin-

ning of the game (i.e., at time −T) associated with x is defined by

V(x) := π(x(T))e−λT +
∫ T

0
π(x(t))λe−λtdt. (2.2)

We say that a path x is feasible if the expected payoff (2.2) is well-defined. Since

(2.2) represents an expected payoff, the second term in (2.2) should be regarded as

14 When A is not an open set, we assume that there exists an open interval Ã such that A ⊂ Ã
and πi can be extended to a function π̃i over Ã × Ã that is twice continuously differentiable, i.e.
π̃i(a, a′) = πi(a, a′) if (a, a′) ∈ A × A.
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Lebesgue integral. Consequently the set of feasible paths is formally defined by

X := {x : [0, T] → A | π ◦ x is measurable} .

Given a feasible path x ∈ X, the incentive constraint at time t is

(IC(t)): d(x(t))e−λt ≤
∫ t

0

(
π(x(s)) − πN

)
λe−λsds, (2.3)

where d(x(t)) represents the gain from deviation (see (2.1)). The set of trigger

strategy equilibrium paths is formally defined as

X∗ := {x ∈ X | IC(t) holds for all t ∈ [0, T]} .

Thus, by optimal path we mean the path that achieves (ex ante) the highest payoff

with in X∗.

First, we show formally that an optimal trigger strategy equilibrium path exists

and it is differentiable (Proposition 1). Based on this, we then derive a differential

equation to characterize the optimal path (Theorem 1).

Proposition 1. There exists an optimal trigger strategy equilibrium x(t) (V(x) =

maxx∈X∗ V(x)) which is (i) continuous for all t, (ii) differentiable in t when x(t) 6= aN , a∗.

Furthermore, x(t) satisfies the following binding incentive constraint if x(t) 6= a∗:

d(x(t))e−λt =
∫ t

0

(
π(x(s)) − πN

)
λe−λsds. (2.4)

(Sketch of the proof): This proposition is proved by a series of propositions in

Appendix A.1. First, we show that the optimal trigger strategy equilibrium exists

and it is continuous in t. Then we use the continuity to show that it is differentiable.
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The proofs rely on the following three elementary technical facts:

1. For a collection of countably many measurable functions πn(t), n = 1, 2, ..., supn πn

is measurable. We use this fact to construct a candidate optimal payoff π(t)

that is measurable (as the supremum of a sequence π(xn(t)), where xn is a se-

quence in X∗ whose payoffs approach supx∈X∗ V(x): Proposition 33). Then,

pretending that this is the optimal payoff, we construct the candidate optimal

path x(t) by the binding “pseudo incentive constraint”

d(x(t))e−λt =
∫ t

0

(
π(s) − πN

)
λe−λsds. (2.5)

Note that we have yet to show that this implies the true incentive constraint.

2. Lebesgue integral
∫ t

0 f (s)ds is continuous in t for any measurable function f . This

fact shows that the right-hand side of the above equation (2.5), whose in-

tegrand is measurable by Step 1, is continuous in t, leading to the conti-

nuity of x(t) (Proposition 33). We also show that π(t) ≤ π(x(t)) so that

the pseudo incentive constraint (2.5) implies the true incentive constraint

d(x(t))e−λt ≤
∫ t

0

(
π(x(s)) − πN)

λe−λsds. We go on to show that this weak

inequality is actually satisfied with equality (Proposition 34), so that we have

the binding incentive constraint (2.4).

3. Lebesgue integral
∫ t

0 f (s)ds is differentiable in t if f is continuous.15 This fact

shows that the right-hand side of the binding incentive constraint (2.4),

whose integrand is continuous by Step 2, is differentiable in t, and this leads

to the differentiability of x (Proposition 34). Q.E.D.

15 When f is continuous,
∫ t

0 f (s)ds is equal to Riemann integral and this is just the well-known
fundamental theorem of calculus: d

dt
∫ t

0 f (s)ds exists and equal to f (t).
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Next we show that there is essentially a unique optimal path. Note first that there

are in fact multiple optimal paths which attain the same expected payoff. Let

x(t) be the optimal trigger strategy equilibrium path identified by the previous

proposition. Then,

x(t) :=


aN if t is in a measure zero set

x(t) otherwise

.

is also a trigger strategy equilibrium path that achieves the same expected payoff

as x(t) does. However, it is easy to show that the following is true.

Proposition 2. The optimal path is essentially unique: If y(t)is an optimal trigger strategy

equilibrium path, then y(t) = x(t) almost everywhere, where x(t) is the optimal path that

satisfies the binding incentive constraint (2.4).

The proof is given in Appendix A.2. Hereafter, the continuous and differen-

tiable optimal path x(t) identified in Proposition 1 is referred to as the essentially

unique optimal path, or simply as the optimal path. Now we are ready to state our

main result in this section: The optimal path is characterized by a differential equa-

tion.

Theorem 1. The optimal path x(t) is the unique path with the following properties: (i) it

is continuous in t and departs aN at t = 0 (i.e., x(t) = aN if and only if t = 0), (ii) for

t > 0, it solves differential equation

dx
dt

=
λ

(
d(x) + π(x) − πN)

d′(x)
=: f (x) (2.6)

until x(t) hits the optimal action a∗, and (iii) if x(t) hits the optimal action a∗, it satays
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there (x̄(t) = a∗ implies x̄(t′) = a∗ if t′ > t). Furthermore, if T is large enough, x(t)

always hits the optimal action a∗ at a fixed finite time,

t(a∗) := lim
a→aN

∫ a∗

a

1
f (x)

dx (2.7)

which is independent of T.

(Sketch of the proof): Technical details can be found in Appendices. Let us

now confine our attention to the case aN < a∗ (a symmetric proof applies to the case

a∗ < aN). Lemma 2 in Appendix refapppaper1a implies that the essentially unique

optimal path lies between the Nash and optimal actions (x(t) ∈ [aN , a∗] for all t).

By differentiating the binding incentive constraint (2.4), we obtain a differential

equation (2.6) when d′(x) 6= 0. Under Assumption A6, we have d′(aN) = 0 and

d′(x) > 0 if x 6= aN (d′ can be shown to exist (Lemma 3)). (Recall that d′(aN) = 0 is

the first order condition that the gain from deviation d(x) is minimized at the Nash

action x = aN .) Thus we have obtained a differential equation on an open domain

(x, t) ∈ (aN , a∗ + ε) × (−∞, ∞), for some ε > 0.16 Note well that the domain

excludes the Nash action aN , where f (aN) is not defined because d′(aN) = 0.

The optimal path x(t) satisfies the following conditions:

• (i) it lies in [aN , a∗] for all t,

• (ii) it is continuous in t,

• (iii) it follows the differential equation when x ∈ (aN , a∗), and

• (iv) it starts with Nash action aN at t = 0.

16 If a∗ is a boundary point of A, extend f (x) to (aN , a∗ + ε) by any continuously differentiable
function and apply the same proof in what follows. This is possible under A2 and footnote 2.
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It turns out that there are multiple paths which satisfy conditions (i)-(iv). For

example, trivial constant path x(t) ≡ aN satisfies those conditions. In what follows,

we identify all paths that satisfy conditions (i)-(iv) and find the optimal one among

them.

The crucial step is to show that there is a non-trivial path to satisfy (i)-(iv). Is

there any solution to dx/dt = f (x) which departs from aN and reach some action

a0 ∈ (aN , a∗] at some finite time? The answer is positive if and only if the following

finite time condition

t(a0) := lim
a→aN

∫ a0

a

1
f (x)

dx < ∞ (2.8)

is satisfied. As we will show, t(a0) represents the time for a solution to the dif-

ferential equation dx
dt = f (x) to travel from aN to a0. The reason is the following.

Under Assumptions A5 and A6, f (x) =
λ(d(x)+π(x)−πN)

d′(x) > 0 when x ∈ (aN , a∗].

Hence any solution x(t) to dx
dt = f (x) is strictly increasing in t. Therefore, x(t)

has inverse function t(x), and its derivative is given by dt
dx = 1

f (x) . This implies

that t(a0) = lima→aN

∫ a0

a
dt
dx dx represents the time for a solution to the differential

equation dx
dt = f (x) to travel from aN to a0.

It is straightforward to check that this finite time condition (2.8) is satisfied for

any x0 ∈ (aN , a∗], under our assumptions (Lemma 6 in Appendix A.3). Given

those observations, all paths that satisfy (i)-(iv) can be written as follows:

xτ(t) :=



aN if t ∈ [0, τ]

x∗(t − τ) if t ∈ (τ, τ + t(a∗))

a∗ if t ∈ [τ + t(a∗), ∞)

,
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where x∗(t) is the solution to dx/dt = f (x) with boundary condition x∗(t(a∗)) =

a∗. This path xτ(t) departs from aN at time τ, follows the differential equation, and

then hits the optimal action a∗ and stays there. (More precisely, we must consider

the restriction of xτ(t) on [0, T].)

Those paths obviously satisfy (i)-(iv). Next we show the converse: any path

satisfying (i)-(iv) is equal to xτ(t) for some τ ∈ [0, ∞]. This comes from the standard

result in differential equation: dx/dt = f (x) defined on an open domain (x, t) ∈

(aN , a∗ + ε)× (−∞, ∞) has a unique solution given any boundary condition, if f (x)

is continuously differentiable. Under our assumptions, it is easy to check that f (x)

is indeed continuously differentiable on (aN , a∗) (Lemma 4 in Appendix A.3). The

uniqueness of the solution then implies that any path satisfying (i)-(iv) is equal to

xτ(t) for some τ ∈ [0, ∞] .17

Among the paths xτ(t), τ ∈ [0, ∞] the one that departs from aN immediately

(i.e., x0(t)) obviously has the highest payoff. Therefore the optimal path is given

by the restriction of x0(t) on [0, T], which has the stated properties in Theorem 1.

Q.E.D.

In the optimal trigger strategy equilibrium identified in the previous theorem,

players act as follows. Recall that x(t) is the action to be taken at time −t. If the

time horizon is long enough, (i.e., if T ≥ t(a∗)), players start with the best action

17 Formal proof goes as follows. The trivial path, which satisfy (i)-(iv), is equal to xτ with τ = ∞.
Consider any non-trivial path x0(t) that satisfy (i)-(iv), where x0(t0) =: a0 ∈ (aN , a∗) for some t0.

Define t′ := t0 − lima→aN

∫ a0

a
1

f (x) dx, so that x∗(t − t′) hits a0 at time t0. The uniqueness of the

solution to the differential equation (for boundary condition x(t0) = a0) implies x0(t) = x∗(t − t′).
If t′ ≥ 0, we obtain the desired result x0(t) = xτ(t) for τ = t′. If t′ < 0, x0(0) = x∗(−t′) > aN

and x0(0) cannot satisfy (iv). (We have x∗(−t′) > aN because we are considering the case aN < a∗,
where the solution x∗(t) is strictly increasing).
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a∗, and even if a revision opportunity arrives, they do not revise their actions until

time −t(a∗) is reached. After that, if a revision opportunity arrives, they choose

an action x(t), which is closer to the Nash action. The closer the timing of the

revision opportunity is to the end of the game, the closer the revised action x(t)

is to the Nash equilibrium. At the end of the game, the actions chosen at the last

revision opportunity are implemented. Hence the best symmetric trigger strategy

equilibrium induces a probability distribution of actions in between the best and

Nash actions. The nature of this equilibrium distribution will be examined in the

following propositions (Propositions 3 and 4).

One might expect that the outcome of the component game, and hence the pay-

offs, may depend on the arrival rate λ. The next proposition, which is actually

nothing but a simple observation, shows that this is not the case. To state the

proposition, we need to introduce the following notation. We denoted the first

time to hit the optimal action by t(a∗) in Theorem 1 (see (2.7)), but to explicitly

show its dependence on arrival rate λ, let us now denote it by tλ(a∗).

Proposition 3. (Arrival Rate Invariance) Under the best symmetric trigger strategy

equilibrium, the probability distribution of action profile at period 0 is independent of the

Poisson arrival rate λ, provided that the time horizon T is long enough. Specifically, Let

tλ(a∗) be the (first) time to reach the optimal symmetric action, stated in Theorem 1. Then,

as long as tλ(a∗) ≤ T, the probability distribution of the action profile at period 0 is inde-

pendent of λ.

Proof. Consider λ such that tλ(a∗) ≤ T and call it Model 1. Rewrite this model by

changing the time scale in such a way that one unit of time in Model 1 corresponds

to λ units in the new model. Under the new time scale, the model is identical to

the revision game with arrival rate 1 and time horizon λT. Call it Model 2. The
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best symmetric trigger strategy equilibrium path in Model 1 should be transformed

into the best symmetric trigger strategy equilibrium path in Model 2. In particular,

it must be the case that t1(a∗), the first time the optimal path hits a∗ in Model 2, is

equal to λtλ(a∗), and this is smaller than the time horizon of Model 2 (λT). Hence

in Model 2, there is no revision of action in the best symmetric trigger strategy

equilibrium for t ∈ [−λT,−t1(a∗)], and therefore the probability distribution of

action profile at t = 0 is unchanged if the game starts at −t1(a∗) (instead of −λT).

Hence, the probability distribution of action profile at t = 0 under any arrival rate

λ such that tλ(a∗) ≤ T is equal to the probability distribution under arrival rate 1

and time horizon t1(a∗).

Note that the fact that payoffs realize only at the deadline t = 0 played a crucial

role in this proposition (otherwise, the expected payoffs would be affected by the

arrival rate and the discount factor). Proposition 3 shows the following attractive

feature of revision games: we can obtain a unique prediction that does not depend

on the fine detail, namely the arrival rate λ of the revision opportunities. In partic-

ular, even if λ is sufficiently high (so that there are many chances to revise actions

right before the component game), the expected outcome in the component game

is the same as in the case of low λ.

The proof also shows how to calculate the cumulative distribution function of

symmetric action a, denoted by F(a). Again we consider the case with aN < a∗

(a symmetric argument applies to the other case). Let x1(t) be the optimal trigger

strategy equilibrium path under λ = 1, and denote the time for x1(t) to hit a ∈
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[aN , a∗] by t1(a). The latter is given by equation (2.8) for λ = 1:

t1(a) := lim
a′→aN

∫ a

a′

d′(x)
d(x) + π(x) − πN dx. (2.9)

For a ∈ (aN , a∗), F(a) =
∫
{t|x1(t)≤a} e−tdt =

∫ t1(a)
0 e−tdt = 1 − e−t1(a). The first

equality follows from the fact that the density of action x1(t) ≤ a is the product of

• 1 (the density of revision at time t) and

• e−t (the probability that the revised action at time t, x(t), will never be revised

again).

At a∗, the distribution function F(a) jumps by e−t1(a∗) and F(a) = 1 for a ≥ a∗.

This means that the optimal action a∗ is played with probability e−t1(a∗). This is the

probability that no revision opportunity arises under λ = 1. Below we summarize

our arguments.

Proposition 4. Suppose that the time horizon is long enough so that the efficient action a∗

is chosen at the beginning of the revision game, under the best symmetric trigger strategy

equilibrium. When aN < a∗, the cumulative distribution function of the symmetric action

realized at t = 0 is given by

F(a) =


0 if a < aN

1 − e−t1(a) if aN ≤ a < a∗

1 if a∗ ≤ a

,

where t1(a) is given by (2.9) and represents the time for the best symmetric trigger strategy

action path to reach a ∈ [aN , x∗], when the arrival rate is λ = 1. When a∗ < aN , it is
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given by

F(a) =


0 if a < a∗

e−t1(a) if a∗ ≤ a ≤ aN

1 if aN < a

.

2.5 Applications

In this section, we use the general framework given in the previous section to

analyze various games of interest. Specifically, we use the differential equation

provided in Theorem 1 to analyze good exchange games (prisoner’s dilemma),

Cournot duopolies, Bertrand competition with product differentiation, and elec-

tion campaign. Unless otherwise noted, the component games in these examples

satisfy Assumptions A1-A6.

We will be considering two measures of the degree of cooperation. Let the ex-

pected payoff from the optimal trigger strategy equilibrium when T is sufficiently

large be π̃. The two measures are:

R :=
π̃

π(a∗)
and R̃ :=

π̃ − πN

π(a∗) − πN .

The first one simply takes the ratio of the equilibrium payoff to the fully collu-

sive payoff. The second is a conservative one, which compares the improvement

of the payoff relative to the Nash payoff (the static equilibrium payoff) with the

maximum possible payoff improvement.

2.5.1 Good Exchange Game

For each player i = 1, 2, let the payoff function be πi(ai, a−i) = ak
−i − c · a2

i ,

where c > 0, k ∈ (0, 2), and the action space is ai ∈ [0, ∞). This game represents
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the following situation. Two players i = 1, 2 exchange goods they produce. That

is, player 1 produces one unit of good and gives it to player 2 (and vice versa). The

quality of the good player i produces is equal to ak
i , and i incurs a convex cost c · a2

i

to provide a good with quality ai. Alternatively, one can interpret ak
i as the quantity

of goods i provides given effort level ai and assume that c · a2
i is the cost to exert the

effort level ai. Note that ai = 0 is the dominant strategy, while the best symmetric

action a∗ =
(

k
2c

) 1
2−k is strictly positive. Hence this can be regarded as a version of

the prisoner’s dilemma game with continuous actions. Notice that the larger k is,

the smaller is the gain from a very small amount of action (i.e., ak < ak′ if k > k′

and a is small).

The differential equation in Theorem 1 for this example is

dx
dt

=
λ

(
d(x) + π(x) − πN)

d′(x)

=
λ(cx2 + (xk − cx2) + 0)

(cx2)′
=

λxk

2cx
.

Note that, since 0 is a dominant action, the Nash payoff πN is zero, and the best

reply to any action is zero: BR(a−i) = 0. The latter implies d(x) = cx2. The

above differential equation has a solution x(t) =
(

2−k
2c λt

) 1
2−k which departs from

0 (the Nash action) at time t = 0. The time at which x(t) reaches the best action,

denoted t(a∗), can be calculated by (2.7), but it is equivalently obtained by solving

a∗ = x(t(a∗)) =
(

2−k
2c λt(a∗)

) 1
2−k . We summarize our findings as follows.

Proposition 5. In the good exchange game, the optimal trigger strategy equilibrium, x(t),
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Figure 2.2: The optimal path for the good exchange game: λ = 1.

is characterized by

x(t) =


(

2−k
2c λt

) 1
2−k if t < t(a∗)

a∗ =
(

k
2c

) 1
2−k if t(a∗) ≤ t

,

where t(a∗) = k
λ(2−k) .

The path characterized in Proposition 5 is depicted in Figure 2.2.

In Figure 2.2, as k increases, the time that the path departs from the optimal

action (t(a∗)) becomes larger, and the path approaches 0 more quickly. These ob-

servations suggest that it is more difficult to cooperate when parameter k is large.

This is in line with our earlier observation that a larger k implies a smaller gain

from cooperation around the Nash equilibrium (0, 0) (hence it is more difficult to

sustain cooperation).

Corollary 1. In the good exchange game, R (= R̃) is decreasing in k. It approaches 1 as

k ↘ 0, and approaches 0 as k ↗ 2.
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The proof is straightforward calculation and therefore omitted. We can also

explicitly calculate the expected payoff when the parameter k is just in the middle

of (0, 2). That is, when k = 1, the expected payoff is 1
2ec2 , which implies R = R̃ =

2
e
∼= 0.74 (this is independent of the value of c). The revision game attains 74% of

the fully cooperative payoff in this case.

Although there cannot be any cooperation in the Nash equilibrium of the com-

ponent game, in revision games players can achieve around three fourths of the

fully cooperative payoff. The degree of cooperation decreases as the gain from

small cooperation decreases. Thus, a higher degree of overall cooperation is more

difficult to achieve the less gain there is given a small amount of cooperation.

2.5.2 Cournot Duopoly: Collusion Through Output Adjustment Achieves 97% of The

Monopoly Profit

In this subsection, we consider a Cournot duopoly game with a linear demand

curve P = a − b(qi + qj) (qi denotes agent i’s quantity) and constant (and identical)

marginal cost c. Hence the (component game) payoff function for player i is πi =(
a − b(qi + qj) − c

)
qi. We suppose a > c > 0 and b > 0. The differential equation

is

dq
dt

=
λ

(
d(q) + π(q) − πN)

d′(q)

=
λ

18
(q − 5

a − c
3b

).

This comes from d(q) = (a−c−3bq)2

4b , π(q) = (a − c − 2bq)q, and πN = (a−c)2

9b . The

differential equation admits a simple solution q(t) = a−c
3b (5 − 4e

λ
18 t) which departs

from the Cournot Nash output qN = a−c
3b at t = 0, and this path hits the optimal
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Figure 2.3: The optimal path for Cournot duopoly: λ = 1.

output q∗ = a−c
4b at t(q∗) = 18

λ ln
( 17

16

)
. Therefore, we have obtained the following.

Proposition 6. In the Cournot duopoly game, the optimal trigger strategy equilibrium,

q(t), is characterized by

q(t) =


a−c
3b · r(t) if t < t(q∗)

q∗ = a−c
4b if t(q∗) ≤ t

,

where we let t(q∗) = 18
λ ln

( 17
16

)
and r(t) = 5 − 4e

λ
18 t.

Note that r(t) is the ratio of the equilibrium quantity at time −t to the static

equilibrium quantity, a−c
3b .

When the firms collude, they produce less than the Nash quantity, and therefore

the optimal trigger equilibrium path that we characterize is deceasing in t. That is,

the ratio r starts from 1 (due to the initial condition), and decreases monotonically

to 3
4 . The path of r with respect to t is depicted in Figure 2.3.

Next, we consider the welfare implication of the revision game of the Cournot
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duopoly game. One can compute the equilibrium expected payoff, and it turns out

that a surprisingly high degree of collusion can be achieved in this game. The next

corollary implies that, when two firms gradually adjust their outputs before the

market is open (and if they closely monitor each other’s output adjustment pro-

cesses), then they can achieve almost 97% of the fully collusive profit (this amounts

to 72% of the gain relative to the Nash profit). We emphasize that those numbers

are independent of the position and the slope of the demand curve (a and b) and

the marginal cost c (and also independent of the arrival rate λ of revision opportu-

nities, as Proposition 3 shows).

Corollary 2. In the Cournot duopoly game, R ∼= 0.968 and R̃ ∼= 0.714, independent of

the values of parameters a, b, and c.

The following story might fit the Cournot revision game. Two fishing boats

depart from a harbor early in the morning, and they must return when the fish

market at the harbor opens at 6:00 am. They would like to restrict their catch so

as to increase the price at the fish market. They first catch a small amount of fish

(the collusive quantity). They are operating side by side, closely monitoring each

other’s behavior. Fish schools occasionally visit them, by Poisson process.18 The

arrival rate is λ = 0.1 (and the time unit is a minute), so that a fish school comes

every ten minutes on average. Since t(q∗) = 18
λ ln

( 17
16

)
= 10. 912 minutes, they

do not catch any additional fish until eleven minutes before the market opens. In

the last eleven minutes, whenever a fish school visit them, they catch additional

fish. If no fish school visits, they deliver the collusive amount to the market. If

a fish school comes right before 6:00am, they catch Nash amount. If the last visit

of a fish school is somewhat before, they catch a smaller amount. On average,

18 Pun not intended.
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they encounter only one revision opportunity in the last eleven minutes (because

λ · t(q∗) ' 1), and they can achieve 97% of fully collusive profit.

2.5.3 Bertrand Competition with Product Differentiation

In this subsection we consider a Bertrand competition with product differen-

tiation. We would like to examine how the degree of product differentiation af-

fects the possibility of collusion in the revision game. To this end, we employ the

Hotelling model of spatial competition with price setting firms. This model has

an advantage of incorporating the case with no product differentiation as a special

case.

A continuum of buyers are distributed uniformly over [0, 1]. Two firms i =

1, 2 are located at positions 0 and 1, respectively. A buyer at x receives payoff

a − d|x − y| − p if she buys from the firm at y with price p, where d ∈ [0, 2
3 a).

Notice that d is the cost of transportation for the buyers, and it measures the degree

of product differentiation. In particular, d = 0 corresponds to the case in which

there is no product differentiation, and a high d means a high degree of product

differentiation. If the buyer does not buy anything, the payoff is 0. No buyer would

want to buy two or more products. Each firm’s marginal cost is normalized at 0,

and the firm’s payoff is the average revenue from a buyer.19

For relatively high product differentiation, namely for d ∈ ( 2
7 a, 2

3 a), the differ-

19 Firm i’s payoff function has a kink for example when pi = p−i − d, so A2 is violated. However,
A2 can be shown to be satisfied at relevant regions ((p, p) and (BR(p), p) for all p weakly between the
Nash price and the fully collusive price) when d ∈ ( 2

7 a, 2
3 a). When d ∈ (0, 2

7 a), A2 is not satisfied at
(BR(p), p) for one p on the equilibrium path, but one can show that the optimal path is characterized
by solving two differential equations, one for prices below such p and the other for prices above such
p.
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ential equation is
dp
dt

= λ
p + 3d

2
.

This comes from πN = d
2 , π(p) = p

2 , and d(p) = (p−d)2

8d .

When d ∈ (0, 2
7 a], however, the degree of differentiation is so small that when

the opponent sets a price close to the best collusive price, the best reply is to set a

price just enough to take all the buyers, that is, BR(p) = p − d and hence d(p) =
p
2 − d. πN and π(p) are the same as before. Using these formulas, the differential

equation in this case can be written as

dp
dt

= λ(2p − 3d).

Overall, we obtain the following:

Proposition 7. In the Bertrand competition game, the optimal trigger strategy equilibrium

path, p(t), is characterized as follows:

1. If d ∈ ( 2
7 a, 2

3 a),

p(t) =

 d
(

4eλ t
2 − 3

)
if t < t(p∗)

p∗ = a − d
2 if t(p∗) ≤ t

,

where t(p∗) = 2
λ ln

( a
4d + 5

8

)
.

2. If d ∈ (0, 2
7 a],

p(t) =


d

(
4eλ t

2 − 3
)

if t < t1

d
( 8

27 e2λt + 3
2

)
if t1 ≤ t < t2

p∗ = a − d
2 if t2 ≤ t

,
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where t1 = 2
λ ln

( 3
2

)
and t2 = 2

λ ln
( a

d − 2
)
.

3. If d = 0, p(t) = 0 for all t.

The proposition claims that there is a cooperative path if and only if there is a

product differentiation. This highlights the importance of Assumption A4. When

d = 0, the first order condition does not hold at the static Nash equilibrium, so

there cannot be a collusive path. The intuition is as follows: If there is no product

differentiation, an infinitesimal price cut can increase the profit discontinuously

almost to the double whenever the current price is strictly higher than the marginal

cost (which is 0 in this example). This is because all buyers switch to the deviating

firm. Hence, if the current price is not equal to the Nash equilibrium, the gain from

deviation is not of a smaller order in magnitude than the gain from cooperation.

This makes cooperation impossible. If there is a product differentiation, however,

only a small fraction of buyers switch to the deviating firm, and this makes the

cooperation sustainable.

Note also that p is increasing in d. Hence, the more differentiated the products

are, the more collusion there is. This makes sense: When the degree of product dif-

ferentiation is large, the instantaneous gain from deviation when firms set prices

close to the Nash price is small relative to the loss from the punishment because

firms need to decrease the price a lot to steal the opponent’s share. The path char-

acterized in Proposition 7 when d > 0 is depicted in Figure 2.4. In the figure, we

fix a = 10 and draw the optimal paths for d = 1, d = 2, d = 3, and d = 5. As

expected, the collusive path is close to the best collusive price when the degree of

product differentiation is high.

The expected payoff under the optimal trigger strategy path can be computed

as follows:
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Figure 2.4: The optimal path for Bertrand competition: λ = 1, a = 10.

Corollary 3. Let h := d
a be the degree of product differentiation. Then, the level of

collusion achieved in the revision game, measured by R and R̃, is expressed as follows.

1. If h ∈ ( 2
7 , 2

3 ), R = 2h(10−7h)
(2−h)(2+5h) and R̃ = 8h

5h+2 .

2. If h ∈ (0, 2
7 ], R = 2h(3−7h)

(2−h)(1−2h) and R̃ = 2h(2−5h)
(1−2h)(2−3h) .

3. If h = 0, R = R̃ = 0.

4. Both R and R̃ are strictly increasing in h.

The ratios stated in the corollary The ratio of expected payoff relative to the

fully collusive payoff is calculated in Table 2.2 for several values of h. The table

shows that in the revision game, firms can achieve quite a bit of cooperation to

obtain high expected payoffs. For example, if h = .5 then, on average, a buyer’s

willingness to pay to the worse good is 71.4% of that of the preferred good. In

such a circumstance, the table shows that 96% (89% even under the conservative
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Table 2.2: Degrees of product differentiation and cooperation.

Degree of product differentiation (r = d
a ) 0 .1 .2 .3 .5 .66̇

Expected payoff
Collusive payoff (R) 0 .30 .59 .80 .96 1

Expected payoff - Nash payoff
Collusive payoff - Nash payoff (R̃) 0 .22 .48 .69 .89 1

measure of the degree of cooperation) of payoffs can be achieved by the revision

game.

2.5.4 Election Campaign: Policy Platforms Gradually Converge

In this subsection we consider a simple election model with policy-motivated

candidates. The policy space is an interval [0, 1]. As in the standard model of

policy-motivated candidates, the position of the median voter is unknown, but its

distribution is known as the uniform distribution over the policy space, [0, 1]. There

are two candidates, i = 1, 2, where candidate 1 chooses policy y1 and candidate 2

chooses policy y2.

Given a policy profile (y1, y2), let a random variable w(y1, y2) represent the

“winner” of the election. Let candidate i’s realized payoff be

gi(yi, y−i) = a · I{i=w(y1,y2)} + b(|yw(yi ,y−i) − yi|)

where a ∈ ( 1
2 , 1) is a positive constant representing the utility of winning per se,

and b(·) is a “policy preference term,” which depends on the distance between the

winner’s policy (the policy actually implemented) and candidate i’s “bliss point,”

denoted yi. We assume that y1 = 0 and y2 = 1. That is, candidate 1 is “left wing”

and candidate 2 is “right wing.”
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There are two key assumptions that we impose on this standard election model

with policy-motivated candidates: First, we assume that the payoff function cor-

responding to the policy preference term is convex. As Kamada and Kojima (2012)

discuss, such policy preferences are especially relevant for issues that contain reli-

gious content (e.g. same-sex marriage, abortion, gun control, and so forth), as in

these policy issues it is natural to assume that a player’s utility sharply decreases as

the implemented policy departs from her bliss point.20 Convex utility function im-

plies that a profile (0, 1) Pareto-dominates the Nash profile, so there is a potential

room for cooperation in a revision game. For simplicity, we assume the follow-

ing functional form: b(z) = max{ 1
2 − z, 0}.21 Second, we assume that candidate

1 chooses policy y1 from [0, 1
2 ] and candidate 2 chooses policy y2 from [ 1

2 , 1]. The

motivation behind this assumption is that candidate 1 (resp. candidate 2) faces a

reputational concern, so that she never wants to set a policy to the right (resp. left)

of the middle (Remember that candidate 1 (resp. candidate 2) is “left wing” (resp.

“right wing)). Without this assumption, the best response is always to set a policy

as close as possible to the other candidate, and thus there is a huge gain by de-

viating from the profile close to the Nash equilibrium, which makes cooperation

impossible in a revision game (by the violation of A4).

The payoff functions are not symmetric as they are, but by redefining actions

by

x1 = y1 and x2 = 1 − y2

20 See Osborne (1995) for a criticism on the use of concave utility function for preferences over
electoral policies.

21 This functional form does not satisfy Assumption A2, but it is straightforward to check that A2 is
satisfied over the relevant domain. The assumption that the candidate is exactly indifferent between
two policies that are both further away from her bliss point is made only for the purpose of simplicity,
and does not play any crucial role in our argument.
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we can retain the symmetry. Notice that the probability of i’s winning the election

can be calculated as 1+xi+x−i
2 .

Now, let us explain what the revision game of this election game corresponds

to. We interpret the revision phase as the time period for “election campaign.”

In the revision phase, candidates obtain opportunities to express their policy posi-

tions, for example at an open broadcast on radio or television. At each opportunity,

candidates can choose their policy announcement that is possibly different from

what they have said before (as is often the case). At “time 0” of the revision game,

the election takes place, and candidates are committed to implementing her finally

announced policy, given that she is elected.22

The differential equation for candidate 1’s policy platform y1(t) = x(t) is

dx
dt

= λ
2x − 2a − 7

4
.

This follows from π(x) = 1
2

(
a + 1

2 − x
)
, πN = 1

2 , and d(x) = 1
8(a − 1

2 − x)2. This

has a solution x(t) = 7+2a−8·e
λ
2 t

2 which departs from Nash action xN = 2a−1
2 at t = 0.

Proposition 8. In the election campaign game, the optimal trigger strategy equilibrium,

(y1(t), y2(t)), is characterized by

y1(t) =


7+2a−8·e

λ
2 t

2 if t < t∗

0 if t∗ ≤ t
,

where t∗ = 2
3λ ln

( 7
2 + a

)
and y2(t) = 1 − y1(t).

The above proposition shows that in the election campaign game, each candi-

22 This “policy announcement game” is proposed and analyzed in Kamada and Sugaya (2011), in
which they analyze the case where candidates cannot announce inconsistent policies while they have
an option to announce an “ambiguous policy.”
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Figure 2.5: The optimal path for election campaign (the path of x1): λ = 1.

date starts from announcing their most preferred policies until the time of elec-

tion becomes close, and then begin catering to the middle in the end. Thus the

model captures the well-observed phenomena of candidates changing their policy

announcements, moving to the middle when the election is close. The path charac-

terized in Proposition 8 is depicted in Figure 2.5.

We note that this result does not hold if the policy preference term b is concave,

as usually assumed in the political science literature. If candidates’ policy prefer-

ences are convex, they prefer a diverging policy profile (0, 1) to a converging one

( 1
2 , 1

2). This is because, for example, candidate 1 does not care about the difference

between policies 1
2 and 1 while she perceives a huge difference between policies 0

and 1
2 . This is why there can be a nontrivial equilibrium path.
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2.6 Discussion

2.6.1 Robustness of Cooperation

As should be clear at this point, the key to the sustainability of cooperation in

revision games is the fact that as the deadline comes close, the gain from defec-

tion becomes arbitrarily smaller than the payoff from cooperation. This was made

possible because we assume continuous action space and continuous time. First,

note that if each player has a dominant action and time is discrete, then by back-

wards induction it is obvious that the only equilibrium is for each player to play the

dominant action at any revision opportunity. Again, drop A1-A6 in this section.

Proposition 9. Consider a component game with an action set Ai with a strictly dominant

action aN
i for each player i, and consider either of the following two cases:

1. Ai is finite.

2. There exists ε > 0 such that all players are restricted to use strategies that, at any

time −t, do not condition on what has happened in time (−t + ε,−t).

Then, whether in synchronous or asynchronous revision games (with homogeneous or

heterogeneous arrival rates), there exists a unique subgame perfect equilibrium. In this

equilibrium, each player i plays action aN
i conditional on any history.

For part 1, the proof for the result is straightforward. First observe that if Ai

is finite then there exists ε > 0 such that given any action of the opponent, aN
i

gives i a payoff at least ε greater than any other actions in Ai. This means that,

if it is true that each player j prepares an action aN
j whenever j gets a revision

opportunity strictly after time −t, then by assumption i’s payoff from preparing aN
i

is at least ε′ greater than preparing any other action for some ε′ > 0. By continuity
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of payoffs with respect to probability, this means that there exists ε′′ > 0 such that

i strictly prefers preparing aN
i to any other action in the time interval (−t − ε′′,−t],

hence whenever i gets a revision opportunity in (−t − ε′′,−t] she prepares aN
i .

This establishes the result.23 The intuition is that if the time left until the deadline

is very little, it is a dominant strategy for players to follow the dominant actions,

irrespective of the opponents’ strategies.24 Notice that the above proof is invalid in

our main model because there does not exist such ε > 0 that we took above.

The restriction on the strategy stated in part 2 describe the situation where there

exists a fixed positive “response time,” so that any player cannot respond to a de-

fection that has happened in a very close past. The proof is again straightforward.

In time (−ε, 0], there is no reason for any player to play an action other than the

strictly dominant action, as the preparation in that time interval does not affect the

opponents’ future behavior at all. Then, no action prepared in (−2ε,−ε] affects the

opponent’s future behaviors, so players prepare aN
i in this time interval as well.

Going backwards, we get the desired result.

The proposition shows that both the continuity of action space and time are

needed to obtain cooperation in revision games. In this particular sense, coop-

eration is not a robust result. However it is not clear why this is the robustness

that we should consider with the first-order importance. On the other hand, re-

cent experimental results show that economic agents have altruism motives. In

our model, cooperation is retained by a very slight addition of such a behavioral

23 Whether or not ε′′ depends on t does not matter for the result (In our case, we can actually take ε′′

independent of t). For a formal proof of this, see Lemma 1 in Calcagno, Kamada, Lovo, and Sugaya
(2012).

24 Calcagno and Lovo (2010) obtained a similar result when the component game is a two-player
prisoner’s dilemma.
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element to the model. To illuminate this issue, we focus on the continuity of time

and the situation where players are indifferent between very small cooperation and

no cooperation, which is interpreted as an existence of incentives to “give away”

a very small amount.25 Consider a very simple example with the following payoff

function:

πi(ai, aj) = 2aj − max{ai − ε, 0}, ε ≥ 0, ai, aj ≥ 0.

This is a version of the good exchange game in Subsection 2.5.1, where the cost of

cooperation takes a different form. We call this game as a modified good exchange

game.

The cost term is constant at zero near action 0 if ε > 0 but it increases linearly

otherwise. Notice that when ε = 0, there is only one Nash equilibrium in which

each player i plays action 0. On the other hand, when ε > 0, there are multiple

equilibria. In particular, both (0, 0) and (ε, ε) are Nash equilibria, where the former

gives each player the payoff of 0 but the latter gives 2ε > 0. Also notice that this

payoff function does not satisfy Assumption A4 when ε = 0.26

Now we consider a discrete time version of synchronous revision game (this

specification applies only in this subsection). Time is −t = . . . ,−2,−1, 0, and at

each period, both players have a revision opportunity with probability p > 0. The

component game is played at time 0 (assume that the revision opportunity may

come also at time 0 (with probability p) before the game is played). We construct the

optimal symmetric trigger strategy equilibrium path (analogously defined as was

done so far) that converges to (ε, ε) as t → 0 but triggers to (0, 0) upon deviation.

25 An analogous discussion for continuity of actions can be easily done.

26 Also, this does not satisfy Assumption A2 when ε > 0 (as there is a “kink” at a = ε).
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A straightforward calculation shows that the path is characterized by27:

x(t) = ε ·
(

1 + p
1 − p

)t

.

Notice that when ε = 0, the path is a trivial one, i.e. x(t) = 0 for all t. How-

ever, if ε > 0, there exists a cooperative path. The nonexistence of cooperative

path when ε = 0 is straightforward from backwards induction. The existence of

cooperative path when ε > 0 is that the cost of cooperation does not grow near the

Nash action so that players can use the worse equilibria as a threat, and they can

use this tiny threat as a foothold for long-run cooperation. This intuition is analo-

gous to the logic of the sustainability of cooperation in Benoit and Krishna (1985),

who consider a model of finitely repeated games, and show that an approximate

“folk theorem” holds as the horizon becomes infinitely long when each player has

multiple Nash payoffs.28

Now we turn to our setting with continuous time and smooth payoff func-

tion. Specifically, consider a payoff function from the exchange of goods game,

πi(ai, aj) = 2aj − a2
i with ai, aj ≥ 0. There is only one equilibrium at (0, 0), so in

the above discrete time setting, there is only one equilibrium in the revision game,

by part 2 of Proposition 9. However, recall that there exists a cooperative path

when ε > 0 in the modified good exchange game, and the sustainability of the

path hinges on the fact that the cost of cooperation does not grow near the Nash

action so that players can use the worse equilibria as a threat, and they can use this

tiny threat as a foothold for long-run cooperation. In the above payoff function, the

27 Letting p = λ∆τ, τ = (∆τ) · t and taking the limit as ∆τ → 0, this converges to the optimal path
of x(τ) = ε · e2λτ in continuous time, which can also be obtained by a direct computation.

28 Strictly speaking, Benoit and Krishna (1985) consider the case of flow payoffs (players receive
payoffs each period) thus the two settings are slightly different from each other.
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cost of cooperation, a2
i , has approximately zero growth near the Nash equilibrium.

In the discrete time setting we needed exactly zero growth, but with continuous

time, since at no time except at time 0 players are sure that there exists no more

revision opportunities, the “growth of approximate zero” (which corresponds to

Assumption A4) works as a foothold for long-run cooperation. This is of course

not a rigorous proof for why there exists a cooperative path in our model, but this

is one of the key parts of the intuition behind our result.

Notice that what is important in the above argument is not the first order con-

dition (A4) per se, but the fact that the gain from defection is smaller than the loss

associated with it by a positive order. To make this point clear, consider the follow-

ing example.

Consider πi(ai, aj) = √aj − ai, with ai, aj ∈ [0, ∞). Note the Nash equilibrium

action ai = 0 is a corner solution and the first order condition is not satisfied (the

slope is −1). Nevertheless,

x(t) =
λ2

4
t2

constitutes a symmetric trigger strategy path because it satisfies the differential

equation (2.6) in Theorem 1 with x(0) = 0 = aN (therefore x(t) satisfies the bind-

ing incentive constraint d(x(t))e−λt =
∫ t

0

(
π(x(s)) − πN)

λe−λsds).29 This example

shows that the first order condition at the Nash equilibrium is not necessary for

a nontrivial path to be sustained. What is important in this example is the fact

that the gain from deviation, a, is one order smaller than the value of cooperation,
√

a − a

(which can be lost after a deviation) near the Nash action of aN = 0. In what follows we

29 Note that (unlike in our model in Section 2.4) the differential equation dx
dt = f (x) ≡

λ(d(x)+π(x)−πN)
d′(x) is well-defined at x = aN , because d′(aN) does not vanish (d′ ≡ 1). In particular,

f (aN) = 0. In this case, the differential equation dx/dt = f with boundary condition x(0) = aN = 0
has two solutions. One is x(t) = λ2

4 t2, and the other is the constant path x(0) ≡ aN = 0.
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formulate this observation in a precise way.

First let us generalize the Assumptions A1-A6 imposed in Section 2.4. In par-

ticular we consider a general component game with symmetric action space A and

payoff function π.

Proposition 10. Suppose that there is a symmetric isolated Nash equilibrium (aN , aN)

and that there exists ε > 0 such that [aN , aN + ε) ⊆ A ⊆ R for each player i. Suppose

also that there exists ε′ > 0, r > s > 0 and k, k′ > 0 such that for all a ∈ (aN , aN + ε′),

d(a) ≤ k(a − aN)r and (2.10)

k′(a − aN)s ≤ π(a) − πN . (2.11)

Then, in a synchronous revision game, there exists a subgame perfect equilibrium such that

non-Nash profiles are prepared at all time t > 0 on the path of play.

Proof. Take an ε̂ > 0 such that [aN , aN + ε̂] ⊆ A, conditions (2.10) and (2.11) hold

for all [aN , aN , aN + ε̂] with constants k, k′, r, and s, and k′λe−λt(r−s)
s+r t

s+r
r−s > kt

2r
r−s . Such

ε̂ > 0 exists if the premise of the proposition holds. We are going to show that a

trigger strategy path

x(t) =


t

2
r−s + aN if t < ε̂

r−s
2

ε̂ + aN if t ≥ ε̂
r−s

2

. (2.12)

satisfies the incentive constraint

∫ t

0

(
π(x(τ)) − πN

)
λe−λτdτ ≥ d(x(t))e−λt (2.13)
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for all t ∈ [0, T]. To see this, first consider the case t < ε̂. We have

∫ t

0

(
π(x(τ)) − πN

)
λe−λτdτ ≥

∫ t

0
k′

(
x(τ) − aN

)s
λe−λτdτ =

∫ t

0
k′τ

2s
r−s λe−λτdτ

≥ k′λe−λt 1
2s

r−s + 1
t

2s
r−s +1 =

k′λe−λt(r − s)
s + r

t
s+r
r−s .

= kt
2r

r−s = k(x(t) − aN)r ≥ d(x(t))e−λt.

Next, consider the case t ≥ ε̂. We have

∫ t

0

(
π(x(τ)) − πN

)
λe−λτdτ

≥ e−λε̂
(

π(x(ε̂)) − πN
)

+
∫ ε̂

0

(
π(x(τ)) − πN

)
λe−λτdτ

≥ d(x(ε̂))e−λε̂ = d(x(t))e−λε̂ ≥ d(x(t))e−λt.

Hence, the non-trivial path (2.12) satisfies the incentive constraint (2.13) for all

t ∈ [0, T]. By definition, on the path of play of the subgame perfect equilibrium

characterized by this path, non-Nash profiles are prepared for all t > 0. This com-

pletes the proof.

The proposition says that a nontrivial path exists when the gain from deviation

d(x) converges to zero faster than the value of cooperation π(x) − πN does, as x → aN .

If these conditions are met, we can construct a trigger strategy path. Note that

those conditions are satisfied in our example (with d(a) = a, aN = πN = 0, and

π(a) − πN =
√

a − a).

A couple of remarks are in order:

• The intuition behind the above proposition can be expressed as follows. As

the deadline comes closer and closer, the probability of punishment upon de-
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viation converges to zero. Hence, to maintain the incentive to follow a non-

trivial path, the instantaneous gain from deviation need to be infinitesimal

relative to the future gain from cooperation, which roughly corresponds to

the static loss from reverting to the Nash equilibrium.

• Remember that this condition fails in Bertrand competition without product

differentiation and the aforementioned modified good exchange game with

ε = 0. Thus nonexistence of cooperative path in those examples are consis-

tent with this proposition.

• The above proposition provides a sufficient condition for the existence of a

non-trivial path. A necessary and sufficient condition is the finite time con-

dition presented in Section 2.4 (see the discussion following condition (2.8)).

Now let us consider a partial converse of this result. Assume that the payoff for

each player i has an upper bound π̄.

Proposition 11. Suppose that there exists a unique Nash equilibrium aN and its payoff

π(aN) = πN . Suppose that infa∈A
d(a)

π(a)−πN > 0. Then, there exists a unique trigger

strategy equilibrium. In this equilibrium, each player prepares aN given any history.

Proof. Let infa∈A
d(a)

π(a)−πN =: m > 0. We will show that there exists ε > 0 such that

for any t ∈ [0, T], if for all time strictly after −t each player prepares aN given any

history then for all time in (−t − ε,−t], each player prepares aN given any history

in any subgame perfect equilibrium. This gives us the desired result.

So take some t ∈ [0, T] and suppose that for all time strictly after −t each player

prepares aN given any history. Suppose further that at time −t − ε with ε > 0, an

action profile a is played on the path of play. Then, by the incentive compatibility
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constraint, it is necessary that

d(a)e−λ(t+ε) ≤ e−λt
∫ ε

0
(π̄ − πN)λe−λτdτ.

This implies

d(a)e−λε ≤ λ(π̄ − πN)ε ⇐⇒ d(a) ≤ λ(π̄ − πN)εeλε

⇐⇒ π(a) − πN ≤ λ(π̄ − πN)εeλε

m

Hence, again by the incentive compatibility constraint it is necessary that

d(a)e−λ(t+ε) ≤ e−λt
∫ ε

0

λ(π̄ − πN)εeλε

m
λe−λτdτ.

This in turn implies that d(a) ≤ λ2(π̄−πN)(εeλε)2

m . Iterating, we have that

d(a) ≤ λn

mn−1 (π̄ − πN)(εeλε)n for all n = 1, 2, . . . .

Since the right hand side of this inequality goes to zero as n goes to infinity if

ε < λeλε

m , d(a) must be zero if ε < λeλε

m . But this means that a must be a Nash

equilibrium aN . Hence in time interval (−t − ε,−t], each player prepares aN given

any history. This completes the proof.

The proof is based on the idea that the right hand side of the incentive com-

patibility condition is at most some constant times the time left to the deadline.

That is, if the time left to the deadline is very short, the instantaneous gain from

deviation must be very small relative to the payoff from cooperation (See the first

remark after Proposition 10). If the ratio of the gain from deviation to the benefit
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of cooperation has a strictly positive lower bound then this is impossible when the

remaining time is sufficiently small.

2.6.2 Comparison with Infinite Repeated Games with Decreasing Discount Factors

To compare a revision game with a repeated game, let us employ the standard

way to measure time: a revision game is played over [0, T] where 0 is the start of

the problem and T is the end. The payoff in the revision game at time t is:

e−λ(T−t)u(at) +
∫ T

t
e−λ(T−s)u(as)λds = e−λ(T−t)

[
u(at) +

∫ T

t
eλ(s−t)u(as)λds

]
.

Igroring the constant e−λ(T−t), we can regard that a player’s objective function at

time t (i.e., when a revision opportunity arrives at time t) is equal to

u(at) +
∫ T

t
eλ(s−t)u(as)λds. (2.14)

This highlights the similarity and difference between a revision game and repeated

game with shrinking discount factor (Bernheim and Dasgupta, 1995). The objective

function in their model at time t is given by

u(at) +
∞

∑
s=t+1

u(as)
s

∏
τ=t+1

δ(τ),

where the time dependent discount factor δ(τ) shrinks over time (δ(τ) → 0, as

τ → ∞). One obvious (but minor) difference is that their model is in discrete time

while ours is in continuous time. Our continuous time formulation enables us

to characterize the optimal path by means of a simple differential equation. To

compare their model with ours more closely, let us consider a continuous time
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version of their model, where the stage game is played according to Poisson arrival

time. A continuous time version of their objective function would be

u(at) +
∫ ∞

t
e−

∫ τ
t ρ(τ)dτu(as)λds. (2.15)

where instantaneous discount rate diverges (ρ(τ) → ∞, as τ → ∞). This is sim-

ilar to our model in the sense that as time passes by (when t is large), the impact

of future payoffs shrinks. However, note the crucial difference that the weight

attached to future payoff u(as) in our objective function (2.14), namely eλ(s−t), is

increasing in s. That is, a larger weight is attached to future payoff in a revision game.

This is an essential feature - as the deadline comes closer, the probability that the

prepared action today is implemented becomes larger. One important implication

of this fact is that full cooperation cannot be sustained in a revision game. There

is always a positive probability that something very close to the Nash equilibrium

(an action prepared near the deadline) is played. In contrast, in a repeated game

with shrinking discount factor, payoffs in the distant future do not much affect the

average payoff, and the full efficiency can be approximately achieved.

The fact that a larger weight is attached to future payoff in a revision game

implies that there is no natural way to map our objective function to theirs. For

example, one may ”stretch” the time in our model to map our time domain [0, T]

to [0, ∞) by some increasing function t′ = F(t), but such a transformation does not

alter the property of our model that the weight attached to u(as) is increasing in s.

48



2.7 Concluding Remarks

We analyzed a new class of games that we call “revision games,” a situation

where players in advance prepare their actions in a game. After the initial prepa-

ration, they have some opportunities to revise their actions, which arrive stochas-

tically. Prepared actions are assumed to be mutually observable. We showed that

players can achieve a certain level of cooperation in such a class of games. Specif-

ically, in the class of component games that we focused on, we showed that an

optimal symmetric trigger-strategy equilibrium exists and it is essentially unique.

We characterized the equilibrium by a simple differential equation and applied it

to analyze a variety of economic examples.

While we are circulating the earlier versions of the present paper, several

follow-up papers have been written. Calcagno and Lovo (2010) and Kamada and

Sugaya (2010) consider revision games with finite action space and assume that re-

vision opportunities arrive independently across players (asynchronous revision).

In contrast to the present paper, they show that the addition of revision phase

sometimes narrows down the set of equilibria when the component game has mul-

tiple equilibria. They show that when the component game has a strictly Pareto-

dominant Nash equilibrium, it is the only profile that can realize in a correspond-

ing revision game when some regulatory conditions are met.30 They also show

that in battle of the sexes games one of the pure Nash equilibrium is played gener-

ically. Kamada and Sugaya (2011) introduce the first model of dynamic election

campaigns into the literature on election by using a variant of the revision games

framework. In their model, the revision phase corresponds to an election cam-

30 Ishii and Kamada (2011) identify the condition under which this result is generalized to the case
of a hybrid version of synchronous and asynchronous revisions. Romm (2011) examines the effect of
reputation in a variant of revision games proposed by Kamada and Sugaya (2010).
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paign phase where candidates announce their policies, and the component game

corresponds to the standard Hotelling-Downs election game.31 The rich dynamic

structure of revision games enables them to endogenize the order of policy an-

nouncements, which are exogenously specified in the literature.32

We suggest several possible directions for future research. First, we investigate

the case of asynchronous revision in a companion paper (Kamada and Kandori,

2011a) and show that cooperation is still possible in such a setting. Second, we

used trigger strategy equilibrium to sustain cooperation, in which players revert

to Nash actions upon deviation. Although this class of strategies is a natural one

worth investigation, a severer punishment might be possible. In our continuation

work, we consider severer punishment schemes than Nash reversion.

31 In their model a policy announcement at each opportunity is restricted by previous announce-
ments in a particular manner, while in our analysis in Section 2.5.4 no restriction is imposed.

32 Other recent papers on variants of revision games include Ambrus and Burns (2010) and Kamada
and Muto (2011b).

50



3. ASYNCHRONICITY AND COORDINATION IN COMMON AND

OPPOSING INTEREST GAMES 2

3.1 Introduction

It has been broadly argued that the addition of a pre-play phase to a game has a

nontrivial effect on the outcome of the game. Cheap talk models à la Farrell (1987),

Rabin (1994) and Aumann and Hart (2003) describe such a situation, where any

action in the pre-play phase has no binding force. They show that the set of achiev-

able outcomes widens with the addition of a pre-play phase. This paper analyzes

an opposite situation, where any action in the pre-play phase has effects on the

outcome of the game with strictly positive probability. During the pre-play phase,

players prepare the actions that will be played at a predetermined deadline. The

2 This is a joint work with Riccardo Calcagno (Department of Economics, Finance and Control,
EMLYON Business School), Stefano Lovo (Finance Department, HEC, Paris and GREGHEC), and
Takuo Sugaya (Department of Economics, Princeton University), and is the result of a merger be-
tween two independent projects: Calcagno and Lovo’s “Preopening and Equilibrium Selection” and
Kamada and Sugaya’s “ Asynchronous Revision Games with Deadline: Unique Equilibrium in Coor-
dination Games.” We thank Dilip Abreu, Gabriel Caroll, Sylvain Chassang, Drew Fudenberg, Michi-
hiro Kandori, Fuhito Kojima, Barton Lipman, Thomas Mariotti, Sebastien Pouget, Stephen Morris,
Assaf Romm, Satoru Takahashi, Tristan Tomala, Nicolas Vieille, and, particularly, Johannes Hörner
and Yuhta Ishii for useful comments and suggestions on either project. We also thank seminar par-
ticipant at the GDR Conference in Luminy 2009, SAET Conference in Ischia 2009, Toulouse School
of Economics, Bocconi University, Research in Behavior in Games seminar at Harvard University,
Student Lunch Seminar in Economic Theory at Princeton University, and at The 21st Stony Brook In-
ternational Conference on Game Theory for helpful comments. We are grateful to three anonymous
referees and the co-editor of Theoretical Economics for insightful comments and suggestions that sub-
stantially improved this paper. Stefano Lovo gratefully acknowledges financial support from the
HEC Foundation and from the ANR Grant ANR-10-BLAN 0112.
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action taken at the deadline solely determines players’ payoffs. Prepared actions

can be revised at stochastic (Poisson) opportunities in continuous time before the

deadline. In this framework, Kamada and Kandori (2011b) show that the addition

of pre-play phase can widen the set of achievable payoffs. This paper uncovers an-

other role that the pre-play phase can play. We show that it can narrow down the

set of achievable payoffs. The key assumptions that drive this difference will be

discussed shortly.

We study this problem in two classes of games where coordination is an issue.

The first is “common interest” games, in which there is an action profile that all

players strictly prefer to all other profiles. For this class of games, we show that, in

2-player games, this “best profile” is the unique outcome of the revision game. The

second class of games is the “opposing interest” games, which are two-player 2 x

2 games with two Pareto-unranked strict Nash equilibria. In this class of games,

we show that generically there is a unique outcome of the revision game, which

corresponds to one of the strict Nash equilibria. Which equilibrium prevails in

the revision game depends on the payoff structure and the relative frequency of

arrivals of revision opportunities for each player.

Besides the importance of assuming that revision opportunities are stochastic,

there are other three key assumptions that are crucial to our results. The first one

is observability. If a player is unable to observe what the other player has prepared,

then the revision phase has no binding force, and so the outcome of revision games

would be identical to that of static games. The second is asynchronicity. If revision

opportunities are synchronous all the time, then any repetition of static Nash equi-

libria is subgame perfect. Hence, uniqueness would not hold if there are multiple

static Nash equilibria. However, if opportunities are asynchronous, each player’s
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action must be contingent on the opponent’s current action (by observability). Thus

a player can induce the opponent to play some particular action, by using as a

threat the possibility that she may not be able to revise her own action before the

deadline. The third key ingredient is finite actions and strict incentives. As we will ar-

gue, uniqueness is due to a backward induction argument. If there are only finitely

many actions and the static game best replies to pure actions are strict, then each

player has a single best reply near the deadline (by asynchronicity) in the revision

game, and this constitutes the starting point of our backward induction argument.

These assumptions seem natural in many real-life and economic contexts where

coordination is crucial. For example, such a situation arises in the daily prac-

tice of some financial markets, such as Nasdaq or Euronext for example, where

half an hour before the opening of the market, participants are allowed to submit

orders which can be withdrawn and changed until opening time. These orders

and the resulting (virtual) equilibrium trading price are publicly posted during

the whole “pre-opening” period. Only orders that are still posted at the opening

time are binding and hence executed. In this framework, it is natural to assume

asynchronicity and that traders do not always manage to withdraw old orders or

submit new orders instantaneously because it takes a certain random time to fill in

the new order faultlessly. Observability holds as the posted orders are displayed

on the screen, and the number of payoff-relevant orders is practically finite.3,4

Another example is the case where two firms are contemplating the possibility

3 Given this application, Calcagno and Lovo (2010) call the revision game a “preopening game”.

4 Biais, Cristophe, and Sebastien (2008) present an experiment simulating preopening in a financial
market where the actual play is preceded by (only) one round of pre-play communication, which is
either completely binding or completely non-binding. In both specifications players choose their
actions simultaneously and there are multiple SPE equilibria. Consistently, they find both Pareto
superior and Pareto inferior outcomes are observed in the experiment.
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of investment at some fixed date and need to prepare for it (e.g. negotiating with

banks to have enough liquidity, allocating agents working for the project and so

forth). There are two actions (invest or not) and the investment is profitable only if

the other firm invests as well. Revision opportunities are naturally asynchronous

and firms may face several constraints such as administrative procedures or obli-

gations to other projects. Since the firms cannot change their decisions every time

they want, their opportunities would well be stochastic. Finally, if two firms are

large, then it is natural to assume that they observe each other’s preparation.

The rest of the paper is organized as follows. Section 3.2 reviews the related

literature. Section 3.3 introduces the model. In Section 3.4, we present a simple

but a useful lemma that allows us to implement a backward induction argument

in continuous time. Section 3.5 considers 2-player common interest games and

Section 3.6 studies 2-player opposing interest games. Section 3.7 discusses further

results. Section 3.8 concludes. Some of the proofs are relegated to the Appendix.

3.2 Literature Review

Cheap talk. It is important to make a distinction between our model and cheap-

talk models such as those in Farrell (1987), Rabin (1994) and Aumann and Hart

(2003). In these models, players are allowed to be involved in preplay non-binding

communication. Quite to the opposite, in our model, at each moment of time, the

prepared action will become the final payoff-relevant action with a strictly positive

probability. For this precise reason, the outcome can be affected by the addition of

a revision phase in our model.

Equilibrium selection. It is instructive to compare our selected outcome with

those in that literature. In many works on equilibrium selection, risk-dominant
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equilibria of John and Selten (1988) are selected in 2× 2 games. In our model, how-

ever, a different answer is obtained: a strictly Pareto-dominant Nash equilibrium is

played even when it is risk-dominated. Roughly speaking, since we assume perfect

and complete information with non-anonymous players, there is only a very small

“risk”of mis-coordination when the deadline is far. There are three lines of the

literature in which risk-dominant equilibria are selected: models of global games,

stochastic learning models with myopia and models of perfect foresight dynam-

ics.5,6 Since the model of perfect foresight dynamics seems closely related to ours,

let us discuss it here.

Perfect foresight dynamics and repeated games. Perfect foresight dynamics,

proposed by Matsui and Matsuyama (1995), are evolutionary models in which

players are assumed to be patient and “foresighted” that is, they value the fu-

ture payoffs and take best responses given (correct) beliefs about the future path

of play.7 There is a continuum of agents who are randomly and anonymously

matched over infinite horizon according to a Poisson process. In this setup, they se-

lect the risk-dominant action profile in 2 x 2 games with two Pareto-ranked (static)

5 The literature on global games was pioneered by Rubinstein (1989), and analyzed extensively in
Carlsson and van Damme (1993), Morris and Shin (1998), and Sugaya and Takahashi (2011). They
show that the lack of almost common knowledge due to incomplete information can select an equi-
librium. The type of incomplete information they assume is absent in our model. Stochastic learning
models with myopia are analyzed in Kandori, Mailath, and Rob (1993) and Young (1993). They
consider a situation in which players interact repeatedly, and each player’s action at each period
is stochastically perturbed. The key difference between their assumptions and ours is that in their
model players are myopic, while we assume that players take actions anticipating the opponents’
future moves. In addition, the game is repeated infinitely in their models, while the game is played
once and for all in our model.

6 As an exception, Young (1998) shows that in the context of contracting, his evolutionary model
does not necessarily lead to risk-dominant equilibrium (p-dominant equilibrium in Morris, Rob, and
Shin (1995)). But he considers a large anonymous population of players and repeated interaction, so
the context he focuses on is very different from the one of this paper.

7 See also Oyama, Takahashi, and Hofbauer (2008).
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Nash equilibria. The key difference is that they assume anonymous agents while

we assume non-anonymous agents. For the “best action profile” to be selected in

our model, it is important for each player to expect that if she prepares an action

corresponding to the best profile, then that preparation can affect the other player’s

future preparation. This consideration is absent with anonymous players.

Common interest games and asynchronous moves. Farrell and Saloner (1985)

and Lagunoff and Matsui (1997) are early works on the topic of obtaining the

unique outcome in common interest games.8 Dutta (2003) shows convergence to

the unique outcome and Takahashi (2005) proves uniqueness of subgame perfect

equilibria when players move asynchronously. One difference is that we assume

the stochastic order of moves while they consider the fixed order. Also, we obtain a

uniqueness result in a wider environment than in Lagunoff and Matsui (1997) due

to the finite horizon.

War of attrition. The intuition behind the result for the opposing interest games

is similar to the one for the “war of attrition”. 9 Although the structure of the

equilibria in war of attrition is similar to the equilibria in our model, the reasoning

is different: in our model, players use the probability of not having future revision

opportunities as a “commitment power” while the literature in the war of attrition

assumes the existence of “commitment types” a priori.

Switching cost. Our model assumes there is no cost associated with revision.

8 According to Dutta (1995), this result in Lagunoff and Matsui (1997) is due to the lack of full
dimensionality of the feasible and individually rational payoff set. See also Lagunoff and Matsui
(2001), Yoon (2001), and Wen (2002). Rubinstein and Wolinsky (1995) show that, even when the
discount factor is arbitrarily close to one, the set of SPE payoff vectors of the repeated games resulting
from the repetition of the extensive form game may not coincide with the one resulting from the
normal form game, if the individually rational payoffs are different or full dimensionality is not
satisfied.

9 For example, among others, see Abreu and Gul (2000) and Abreu and Pearce (2007).
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Several papers consider a finite-horizon model with switching cost and show that

a unique outcome prevails in their respective games. Typically, the existence of

switching cost results in different implications on the equilibrium behavior. See,

for example, Lipman and Wang (2000) and Caruana and Einav (2008) for details.

Revision games. Kamada and Kandori (2011b) introduce the model of revi-

sion games. They show that, among other things, non-Nash “cooperative” action

profiles can be played at the deadline when a certain set of regularity conditions

is satisfied. Hence their focus is on expanding the set of equilibria when the static

Nash equilibrium is inefficient relative to non-Nash profiles.10 We ask a very differ-

ent question in this paper: we consider games with multiple efficient static Nash

equilibria and ask which of these equilibria is selected.11 What derives this dif-

ference is that the action space is finite in our paper, whereas it is not in Kamada

and Kandori (2011b). Kamada and Sugaya (2011) consider a revision game model

with finite action set in the context of election campaign. The main difference is that

they assume once a player changes her action, she cannot revise it further. Thus the

characterization of the equilibrium is essentially different from the analysis in the

present paper because in our model, when another opportunity arrives, a player

can always change her preparation to the previously-prepared action.12

Further results. Finally, further results beyond what we have in this paper can

be found in either or both of Calcagno and Lovo (2010) and Kamada and Sugaya

(2010). We refer to these papers whenever appropriate.

10 The possibility of cooperation in finite horizon in Kamada and Kandori (2011b) is closely related
to that of finitely repeated games with multiple Nash equilibria (Benoit and Krishna, 1985).

11 See also Ambrus and Lu (2010a) for a variant of revision games model of bargaining in which
the game ends when an offer is accepted.

12 van Damme and Hurkens (1996) analyze a related model of “timing games,” in which players
can choose the timing of their move out of two periods and they cannot switch back.
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3.3 The Model

We consider a two-player normal-form finite game
(
(Xi)i=1,2 , (ui)i=1,2

)
(re-

ferred to as the “component game” in the following) where Xi is the finite set of

player i’s actions with |Xi| ≥ 2, X = X1 × X2 is the set of action profiles, and

ui : X → R is player i’s utility function. Let u = (u1, u2). We use a female (resp.

male) pronoun for player 1 (resp. player 2).

Before players actually take actions, they need to “prepare” their actions. We

model this situation similarly to Kamada and Kandori (2011b): time is continuous,

t ∈ [−T, 0], and the component game is played once and for all at time 0. The

game, “revision game” henceforth, proceeds as follows. First, at time −T, the ini-

tial action profile is exogenously given.13 In the time interval (−T, 0], each player

independently obtains opportunities to revise their prepared action according to

two random Poisson processes p1 and p2 with arrival rates λ1 and λ2 respectively,

where λi > 0, i = 1, 2. As Poisson processes p1 and p2 are independent, the proba-

bility that the two players revise their actions simultaneously is nil. In other words,

only asynchronous revision opportunities arise.14 At t = 0, the action profile that

has been prepared most recently is actually taken and each player receives the pay-

off that corresponds to the payoff specification of the component game.

In order to define the strategy space of the revision game, consider the game

has reached time t. We assume here that each player i at any time t has perfect

information about all past events including whether i has a revision opportunity

13 As we will see, the uniqueness results in Sections 5 and 6 become even sharper if players simul-
taneously choose actions at time −T.

14 We refer to Section 3.7 for the discussion of the role played by this assumption. See Calcagno
and Lovo (2010) and Ishii and Kamada (2011) for more general processes underlying the arrival of
revision opportunities.
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at t but excluding whether the opponent gets an opportunity at t.15 Formally, let

ti,k ≤ t be the time when player i has received the k-th revision opportunity until t

and xi,k be the action prepared by player i at ti,k.16 A history for player i at t is

hi(t) = X ×
{(

{ti,k}k, ti,k≤t , {xi,k}k, ti,k<t

)
,
({

tj,k
}

k, tj,k<t ,
{

xj,k
}

k, tj,k<t

)
, t

}
,

where j 6= i, and an element in X denotes the exogenous choice of the action pro-

file at time −T. Let Hi(t) denote the set of all possible histories for player i at

t.17 A strategy for player i is a mapping σi : ∪0
t=−T Hi(t) → {∅} ∪ ∆(Xi) where

σi(hi(t)) ⊆ ∆(Xi) if there exists k such that ti,k = t (i.e. at t, player i receives a

revision opportunity) and σi(hi(t)) = ∅ otherwise (i.e. at t, player i does not re-

ceive a revision opportunity). For any given history hi(t), let xi(t) := xi,k∗, ∈ Xi

with k∗ := arg max
k

{ti,k < t} be player i’s prepared action resulting from his last

revision opportunity (strictly) before t. We shall denote x(t) := {xi(t)}i=1,2 the last

prepared action profile before time t (time t “PAP” henceforth). Note that xi(t) will be

player i’s payoff-relevant action in t = 0 in the event where i receives no further

revision opportunities from time t included, until time 0.

A strategy profile σ∗ forms a subgame perfect equilibrium (SPE) of the revision

15 This assumption is expressed in the definition of history hi(t), where we use a strict inequality
for a profile of tj,k’s. Since simultaneous revision opportunities occur with zero probability, our result
does not depend on this assumption.

16 Notice that −T = ti,1 < · · · < ti,k ≤ t, that is, we count the revision opportunities from the first
one k = 1 after the beginning of the revision game.

17 Note that Hi(−T) is defined to be X.
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game if for all t, hi(t), i and j 6= i,18

σ∗
i ∈ arg max

σi
E

[
ui(x(0))|hi(t), σi, σ∗

j

]
.

Our main results will concern the case when T is large. However, we note that

the model with arrival rate (λ1, λ2) and horizon length T is essentially equivalent

to the model with arrival rates (aλ1, aλ2) and horizon length T
a , for any positive

constant a.19 Hence all our results obtained for T large enough and fixed revision

frequencies (λ1, λ2) can be obtained by keeping fixed the horizon T and having

revisions frequent enough.

To avoid ambiguity, in the rest of the paper, we will use terminology “revi-

sion equilibrium” for a SPE of the whole revision game and “Nash equilibrium” for a

(strict) Nash equilibrium of the component game.

3.4 Backward Induction in Continuous Time

The proofs of our main results will rely on the idea of backward induction.

The standard backward induction argument starts from proving a statement for

“the last period” and then given the statement is true there, it proves the statement

for the “second-last period” and so forth. However, this argument is not immedi-

ately applicable to our continuous-time setting, as there is no obvious definition of

“second-last period”. In this section we present a lemma that allows us to imple-

ment a backward-induction-type argument in continuous time. The proof is in the

18 Strictly speaking, x(0) is the last action profile prepared before time 0, thus in this formulation
players do not maximize the expected payoff prepared exactly at 0. However, since the probability
that any player obtains a revision opportunity exactly at time 0 is nil, this issue does not affect the
solution of the maximization problem.

19 See the “arrival rate invariance” result discussed in Kamada and Kandori (2011b).
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Appendix.

Lemma 1. Suppose that for any t, there exists ε > 0 such that statement At′ is true for

all t′ ∈ (t − ε, t] if statement At′′ is true for any t′′ > t.20 Then, for any t, statement At is

true.

It is noteworthy that the ε in the statement of the lemma can depend on t.

Hence, in particular, the lemma goes through even though the required ε shrinks to

zero as t approaches some finite constant, and then jumps discontinuously there.21

3.5 Common Interest Games

In this section, we consider a component game with an action profile that

strictly Pareto-dominates all other action profiles. Formally, we say that an action

profile x∗ is strictly Pareto-dominant if ui(x∗) > ui(x) for all i and all x ∈ X with

x 6= x∗. We say that a game is a common interest game if it has a strictly Pareto-

dominant action profile. Notice that if x∗ is strictly Pareto-dominant, then it is a

Nash equilibrium.

For example, games in Table 3.1 are common interest games where (U, L) in

each game is strictly Pareto-dominant, but those in Table 3.2 are not.

The first main result of this paper is the following:

20 Note that if t = 0 then it is vacuously true that statement At′′ is true for any t′′ > t. Thus the
premise of the lemma holds if and only if there exists ε > 0 such that At′ is true for all t′ ∈ (−ε, 0].

21 A version of the lemma that switches the order of quantifiers (so that ε cannot depend on t)
appears in Chao (1919).
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Table 3.1: Common interest games.

L R
U 2, 2 −10, 1
D 1,−10 1, 1

L C R
U 2, 2 1, 0 −4, 3
M 1, 1.5 1, 1 −3, 1
D 1, 0 0, 1 0, 0

Table 3.2: Non-common interest games.

L R
U 2, 2 3, 0
D 0, 3 1, 1

L R
U 2, 2 0, 0
D 2, 0 1, 1

Theorem 2. Consider a common interest component game and let x∗be the strictly Pareto-

dominant action profile. Then for any ε > 0, there exists T′ such that for all T > T′, in all

revision equilibria, x(0) = x∗ with probability higher than 1 − ε.

3.5.1 Intuition

The proof consists of two steps. First, we show that x∗ is absorbing in the revi-

sion game: since the action space is finite, the difference between ui(x∗) and i’s sec-

ond best payoff is strictly positive. Therefore, when the PAP is x∗, no player wants

to prepare another action and to create a possibility that she cannot have further

revision opportunities and will be forced to take a second best or even worse action

profile.

Second, given the first step, each player i “knows” that if the opponent −i has

a revision opportunity while player i prepares x∗i , then the opponent will prepare

x∗−i. Hence, the lower bound of the equilibrium payoff for each player is given by
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always preparing x∗i whenver she receives the revision opportunity. If T is suf-

ficiently large, then this strategy gives her a payoff very close to ui(x∗), which

means x∗ should be taken with high probability at the deadline in any revision

equilibrium.

3.5.2 Proof of Theorem 1

Now we offer the formal proof. Steps 1 and 2 in the formal proof correspond to

those in the intuitive explanation above.

Step 1:

Let m := mini,x 6=x∗(ui(x∗) − ui(x)) be the minimum payoff difference between

the best payoff and the second best payoff. Since X is finite and x∗ is strictly Pareto-

dominant, the minimum is well defined and m > 0.

Fix t ≤ 0 arbitrarily. Suppose that for all time after time t < 0, each player i has

a strict incentive to prepare x∗i if the opponent −i prepared action is x∗−i.
22 Suppose

also that player i obtains a revision opportunity at time t− ε and −i prepared action

is x∗−i. Then, the payoff from preparing x∗i is at least

ui(x∗) − (1 − e−(λi+λ−i)ε)M (3.1)

where M := maxi,x 6=x∗(ui(x∗) − ui(x)) < ∞, because with probability at least

e−(λi+λ−i)ε, no further revision opportunities arrive between t − ε and t and the

PAP at time t is x∗. In such a case, action x∗ will be played at the deadline by as-

sumption. On the other hand, the payoff from preparing an action xi 6= x∗i is at

22 For t = 0, this is vacuously true.
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most

ui(x∗) − e−λi(−t+ε)m, (3.2)

because with probability e−λi(−t+ε), player i never has a revision opportunity again

and in such a case, the action profile at the deadline cannot be x∗.

Notice that expression (3.1) is strictly greater than expression (3.2) for ε = 0.

Also by continuity of (3.1) and (3.2) with respect to ε, there exists ε′ > 0 such that

for all ε ∈ (0, ε′), expression (3.1) is strictly greater than expression (3.2).23 Hence,

by Lemma 1, we have that for any t < 0, each player i has a strict incentive to

prepare x∗i if the opponent −i prepares x∗−i.

Step 2: Since in any subgame perfect equilibrium, players can guarantee at least

the payoff that can be obtained by always playing the action x∗i , it suffices to show

that the payoff of always preparing x∗i converges to the strictly Pareto-dominant

payoff as T goes to infinity. This will imply that the probability of action being x∗

at the deadline converges to 1, as desired.

By Step 1, the action profile x∗ is the absorbing state: each player has a strict

incentive to prepare x∗i if the opponent −i prepares x∗−i. In 2-player games, since

player i is the unique opponent of player −i, player −i prepares x∗−i if player i pre-

pares x∗i . Therefore, the payoff of always preparing x∗i guarantees a payoff which

converges to ui(x∗).

3.5.3 Remarks

Four remarks are in order at this stage.

First, if players choose their actions at −T, then we can pin down the behavior

23 Note that here we again use the assumption that the action space is finite, so that the maximum
payoff difference is bounded.
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of players on the equilibrium path. In fact, in the appendix, we show that in a com-

mon interest game defined as above, players prepare the strictly Pareto-dominant

profile x∗ at all times t ∈ [−T, 0] on the (unique) path of play in any revision equi-

librium.

Second, notice that if there exist two strict Pareto-ranked Nash equilibria in a

2 × 2 component game, then the game is a common interest game. Hence in such a

case, the Pareto-superior Nash equilibrium is the outcome of the revision game.24

Third, the outcome of the revision game is the strictly Pareto-dominant profile

even if it is risk-dominated by another Nash equilibrium. For example, in the left

payoff matrix in Table 3.1, the action profile (U, L) is risk-dominated while it is

the outcome of the revision game. The key is that, whenever a player prepares

x∗i (the action that corresponds to the Pareto-dominant profile), the opponent will

move to the Pareto-dominant profile whenever she can revise and they stay at this

profile until the deadline (Step 1 of the proof in the previous subsection). Therefore,

if the remaining time is sufficiently long, then the “risk of mis-coordination” by

preparing x∗i can be arbitrarily small (Step 2).25

Fourth, notice that we allow for the component game to be different from a pure

coordination game (i.e. a game in which two players have identical payoff func-

tions). This result is in a stark difference from Lagunoff and Matsui (1997), whose

result only applies to pure coordination games (see Yoon, 2001). This difference

comes from the different assumptions on the horizon: since their models have an

24 Note that Kamada and Kandori (2011b) prove that if each player has a strictly dominant action
when the action space is finite, then it is played in asynchronous revision games.

25 With more than two players, if all the players are preparing actions different from the Pareto
dominant one, no player can create a situation where it is enough for only one player to change her
preparation in order to go to the Pareto dominant action profile. Hence, the same proof does not
work. See Kamada and Sugaya (2010) for the details.
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Table 3.3: Opposing interest games.

L R
U 3, 3 0, 1
D 0, 5 1, 6

L C
U 2, 1 0, 0
M 0, 0 1, 2

Table 3.4: The general opposing interest game.

L R
U u1(U, L), u2(U, L) u1(U, R), u2(U, R)
D u1(U, D), u2(U, D) u1(D, R), u2(D, R)

infinite horizon, there can be an infinite sequence of punishments. On the other

hand, in our model, there is a deadline so the incentives near the deadline can be

perfectly pinned down as x∗ is strictly Pareto-dominant. Hence, we can implement

backward induction starting from the deadline.

3.6 Opposing Interest Games

In the previous section, we analyzed games in which there is the “best” action

profile for both players. Now we turn to the class of games in which different

players have different “best” action profiles. Examples of games that we consider

in this section are given in Table 3.3.

Generally, we consider 2-player component games with the payoff matrix as in

Table 3.4 with two strict Nash equilibria (U, L) and (D, R) such that

u1(U, L) > u1(D, R) and u2(U, L) < u2(D, R). (3.3)

66



The first inequality implies that player 1 strictly prefers (U, L) to (D, R) among

pure Nash equilibria while the second implies that player 2’s preference is oppo-

site. Note that, since (U, L) and (D, R) are strict Nash equilibria of this component

game, these conditions imply (U, L) (resp. (D, R)) gives player 1 (resp. player 2) a

strictly better payoff than any other action profile.

Let

t∗1 = − 1
λ1 + λ2

ln
(

λ1

λ2

u1 (D, R) − u1 (U, R)
u1 (U, L) − u1 (D, R)

+
u1 (U, L) − u1 (U, R)
u1 (U, L) − u1 (D, R)

)
, (3.4)

and

t∗2 = − 1
λ1 + λ2

ln
(

λ2

λ1

u2 (U, L) − u2 (U, R)
u2 (D, R) − u2 (U, L)

+
u2 (D, R) − u2 (U, R)
u2 (D, R) − u2 (U, L)

)
. (3.5)

Theorem 3. Suppose that a component game of a revision game satisfies condition (3.3).

If t∗1 6= t∗2 , then there exists a unique revision equilibrium for all T. As T converges to

infinity,

1. if t∗1 > t∗2 , then the equilibrium payoffs converge to ui(U, L).

2. if t∗1 < t∗2 , then the equilibrium payoffs converge to ui(D, R).

Notice that t∗1 = t∗2 happens only in a knife-edge set of parameter. In this non-

generic case, the revision game has multiple equilibria.26

Theorem 2 proves that for almost all parameter values, there is a unique revi-

sion equilibrium payoff and the outcome at the deadline will form one of the un-

derlying game Nash equilibria with probability that converges to 1 as T increases.

26 See Kamada and Sugaya (2010) for a characterization of the set of revision equilibrium payoffs
for the case t∗1 = t∗2 .
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Which Nash equilibrium is prepared depends on a joint condition on the payoff

function (u) and the ratio of arrival rates ( λ1
λ2

), as t∗1 and t∗2 depend on these param-

eters. In Table 3.3, if λ1 = λ2, then t∗1 > t∗2 in the left game and t∗1 = t∗2 in the right

game. Hence if λ1 = λ2, then (U, L) is the (limit) outcome in the left game, while

the theorem does not cover the case in the right game. However, if λ1 < λ2 (resp.

λ1 > λ2) then the theorem implies that in the right game, the (limit) outcome is

(U, L) (resp. (D, R)).

In the proof, we actually completely pin down the behavior at any time t in this

unique revision equilibrium. In particular, players prepare the action correspond-

ing to the limit payoff profile for sufficiently long time on the path of play. This

implies that if they were to choose actions simultaneously at −T, then they choose

these actions and they never revise them on the path of play.

In Subsection 3.6.1, we provide an interpretation of this result. Subsection 3.6.2

provides the proof, and Subsection 3.6.3 fully describes the equilibrium dynamics,

including off-path plays.

3.6.1 Interpretation of Theorem 3

The first step of the proof of Theorem 2 shows that when t is close to zero, each

player strictly prefers to prepare the component game best response to the last pre-

pared action of his opponent. Hence, in the game of Figure 3, when getting closer

to time zero, players will move away from PAP (U, R), to reach either (U, L) or

(D, R) and then stay there until the deadline.27 If t becomes increasingly far from

0, player i’s expected continuation payoff from PAP (U, R) gets closer to a convex

combination of ui(U, L) and ui(D, R) since the probability that no players revise

27 Note that the incentive is strict at the deadline t = 0.
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their actions between t and 0 gets smaller. Hence, there is a finite time t∗ such that,

when the PAP is (U, R), one player, whom we will call the strong player, becomes

indifferent at time t∗ between (a) preparing the component game best response to

his/her opponent’s prepared action and (b) preparing the action necessary to form

his/her preferred component game Nash equilibrium. Strictly before t∗, the strong

player strictly prefers choice (b) in all PAPs. As the proof in the next subsection

clarifies, t∗ = min{t∗1 , t∗2} is the time such that the strong player is indifferent be-

tween these two actions. The condition t∗1 > t∗2 implies the player 1 is the strong

player. In other words, player 1 can stick to non-Nash profiles longer than player

2 to induce player 2 to coordinate on her own preferred Nash equilibrium. The

condition t∗1 > t∗2 thus means that the strength with which player 1 can stick to a

non-Nash profile is greater than that of player 2.

To see how this “strength” is affected by the parameters of the model, we con-

sider two special cases. First, suppose that λ1 = λ2. In this case, t∗1 > t∗2 is equiva-

lent to
u2 (D, R) − u2 (U, R)
u2 (D, R) − u2 (U, L)

>
u1 (U, L) − u1 (U, R)
u1 (U, L) − u1 (D, R)

.

The formula compares how strongly each player likes (U, R) relative to the other

two Nash equilibria. If player 1 likes it more, then she suffers less from mis-

coordination at (U, R), so as a consequence it is more likely that the inequality is

satisfied. If player 1 likes (D, R) less, then she expects less from moving away from

(U, R) to (D, R), and so the inequality is more likely to be satisfied if we decrease

u1(D, R).28

Second, consider the case with symmetric payoff functions: u1(U, L) =

u2(D, R), u1(D, R) = u2(U, L), and u1(U, R) = u2(U, R). In this case, t∗1 > t∗2 is

28 Note that a risk-dominated Nash equilibrium in the component game may be the (limit) outcome
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equivalent to λ1 < λ2. This means that λ1 < λ2 (resp. λ1 > λ2) implies that (U, L)

(resp. (D, R)) is the outcome of the revision game. More generally, |t∗1 |
|t∗2 |

is increas-

ing in λ1
λ2

: if player 1’s relative frequency of the arrival of revision opportunities

compared to player 2’s frequency decreases, then player 1’s commitment power

becomes stronger, so (U, L) is more likely to be selected.

These results are reminiscent of the findings in the bargaining literature. Player

i’s bargaining power increases in the disagreement payoff ui (U, R), decreases with

the steepness of preference over the two “agreement outcomes” ( |u1 (U, L)−

u1 (D, R) | for player 1 and |u2 (D, R) − u2 (U, L)| for player 2) and increases in the

ability to commit 1/λi on a proposal.

3.6.2 Proof of Theorem 3

In this subsection, we provide the proof of the convergence of the equilibrium

payoff in Theorem 3.29 The proof consists of the following three steps.

Step 1:

First, for each player i, we define t∗i as the infimum of time t such that given that

both players prepare the component game best responses against the opponent’s

action at any t′ > t, i strictly prefers to prepare a component game best response to

any other action. Since the incentive to take a static best response in the component

of the revision equilibrium: Consider the payoff matrix

L R
U 2 + ε, 1 0, 0
D 2ε, 0 1, 2

with ε > 0. (U, L) is risk-dominated by (D, R), while it is the (limit) outcome of the revision equilib-
rium when λ1 = λ2.

29 The intuition behind this proof idea is analogous to the one provided in Kamada and Sugaya
(2010)’s “three-state example.” We thank an anonymous referee for suggesting the way to extend it.
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game is strict at the deadline, this is true for t close enough to 0. By this definition

and continuity of expected payoffs (with respect to probabilities and so to time),

player i must be indifferent between the two actions at t∗i given that (i) the PAP at

t∗i is (U, R) and that (ii) both players prepare best responses against the opponent’s

action at time t > t∗i . Then, from a straightforward calculation contained in the

Appendix, we show that for each i = 1, 2, t∗i defined in this way coincides with t∗i

defined in (3.4) and (3.5).

Step 2:

Suppose w.l.o.g. that t∗1 > t∗2 and fix t ∈ (−∞, 0]. Suppose that the following

statements are true for any t′ > t:

1. t∗1 ≤ t′ or player 1 strictly prefers preparing U at t′ whatever the opponent’s

current prepared action is;

2. t∗1 ≤ t′ or player 2 strictly prefers preparing L at t′ when player 1’s current

prepared action is U.

These two statements are trivially true for t′ close enough to 0. We will show

that there exists ε > 0 such that these two statements are true also for all t′ ∈

(t − ε, t], which proves that the statements are true for any t, by Lemma 1.

Step 2-1: First, consider player 1’s incentive when she obtains an opportunity

at time t < t∗1 (In the other case (i.e. t ≥ t∗1), the conclusion trivially holds). Suppose

first that player 2 is currently preparing L, or he has a chance to revise strictly after

time t but strictly before time t∗1 . If player 1 prepares action U, then statements (1)

and (2) and Step 1 imply that the action profile at the deadline is (U, L), which gives

player 1 the largest possible payoff that she can obtain in this revision game. On

the other hand, if she prepares D, then there is a positive probability that she will
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obtain no other chances to revise. In such a case, the action profile at the deadline

is not (U, L). Hence, player 1 receives a payoff strictly less than the best possible

payoff u1(U, L).

Suppose next that the current action of player 2 is R, and he will not have any

chance to revise strictly after time t but strictly before time t∗1 . In this case player 1’s

expected payoff is the same as the continuation payoff when player 2’s prepared

action is R at time t∗1 .30 Hence, player 1 must be indifferent between U and D at t∗1

by Step 1.

Overall, player 1 is strictly better off by preparing U at time t. Hence statement

(1) is true at time t.

Step 2-2: Now consider player 2’s incentive when he obtains an opportunity at

time t < t∗1 (Again, the other case is trivial). Suppose that player 1’s current action

is U (Note that statement (2) concerns only such a case). If player 2 prepares L,

then statements (1) and (2) and Step 1 imply that both players never change their

actions in the future. Hence, the action profile at the deadline is (U, L), which leads

to the payoff of u2(U, L). On the other hand, suppose that he prepares R. Player

2 prepares L if he obtains a revision opportunity strictly after time t but strictly

before time t∗1 , which results in the payoff of u2(U, L). If he does not obtain any

revision chance within that interval, then the expected payoff is the same as the

continuation payoff given action profile (U, R) at time t∗1 . The latter is strictly less

than u2(U, L), since, by the assumption that t∗2 < t∗1 , player 2 has a strict incentive

to prepare L given that player 1 is preparing U at all t > t∗1 .

Overall, player 2 is strictly better off by preparing L when player 1 prepares U

at time t. Hence statement (2) is true at time t.

30 Note that the probability of player 2 getting a revision opportunity at t∗1 is zero.
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Step 2-3: By continuity (of expected payoffs with respect to time), Steps 2-1 and

2-2 imply that there exists ε > 0 such that for all t′ ∈ (t − ε, t], both statements (1)

and (2) hold. Thus by Lemma 1, we have the desired result.

Step 3:

Statement (1) in Step 2 shows that at any t < t∗1 , player 1 prepares U. Hence for

any finite t′ < t∗1 , the probability that player 1 prepared action is U at t′ converges

to 1 as T increases. If player 1 prepared action is U at t′, then between t′ and t∗, by

statement (2), player 2 must prepare L and by statement (1) player 1 keep preparing

U. Hence the probability that the PAP at t∗1 is (U, L) can be made arbitrarily close

to 1 by setting T large enough. Considering that the probability of revision at time

t∗1 is zero, Step 1 implies that, if the PAP at t∗1 is (U, L), then players keep preparing

(U, L) until the deadline.

3.6.3 Equilibrium Dynamics

The proof in the previous subsection characterizes the strong player’s equilib-

rium strategy fully but the weak player’s equilibrium strategy only after the strong

player prepares the action corresponding to the strong player’s preferred Nash

equilibrium.31 Here we provide the full characterization of the equilibrium dy-

namics, which will imply that the equilibrium strategy is unique. The proof of

the result stated in this subsection is provided in Calcagno and Lovo (2010) and

Kamada and Sugaya (2010).

The equilibrium dynamics are summarized in Figure 3.1 for the case t∗1 > t∗2 .

The dynamics consists of three phases. In each phase, the arrow that originates

31 If players choose their actions simultaneously at −T, then it is common knowledge that the
strong player prepares the action corresponding to the strong player’s preferred Nash equilibrium at
−T. Hence, the proof is sufficient to fully characterize the path of play in the revision equilibrium.
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from a PAP x represents what players will prepare if they are given an opportunity

to revise during that phase when the PAP is x. More specifically, an arrow from PAP

(xi, x−i) to PAP (x′i , x−i) means that if player i is given an opportunity to revise at

that phase when the PAP is x ∈ {(xi, x−i), (x′i , x−i)}, then player i would prepare

x′i . If a player does not switch her action, then there is no arrow corresponding to

that strategy. Hence, in particular, if there are no arrows originating from x, then

that means that no player would change actions if given a revision opportunity.

When the deadline is close, each player prepares a component game best re-

sponse to the PAP (each player “equilibrates”). This phase is (t∗1 , 0] shown in the

far-right panel of Figure 3.1 where t∗1 is given in Step 1 of the proof of Theorem 3.

Since t∗1 is the time at which player 1 is indifferent between U and D, given that

player 2 is preparing R, in the next phase the direction of the arrow that connects

(U, R) and (D, R) is flipped. This is shown in the middle panel.

The proof shows that the directions of arrows in this figure stay unchanged for

all t further back from t∗1 , except the one that connects (D, L) and (D, R). Direct

calculation in Calcagno and Lovo (2010) and Kamada and Sugaya (2010) show that

the direction of the arrow does change at some finite t∗∗ and then stays unchanged

for all further t’s back.

In summary, for large T, the dynamics start from the phase where both players

try to go to the (U, L) profile irrespective of the current PAP. When the deadline

comes closer, there comes the second phase where player 2 would choose R given

that 1 chooses D. Finally, when the deadline is close, both players prepare the

component-game best-reply to the PAP.

The above observation implies that if players choose their actions at −T, then

they will immediately select (U, L) and on the equilibrium path, no player will
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(U,L) (U,R)

(D,R)(D,L)

(U,L) (U,R)

(D,R)(D,L)

(U,L) (U,R)

(D,R)(D,L)

t* 
= t1

* > t2
*

0-T t** 

Figure 3.1: On and off equilibrium dynamics.

change actions.

3.7 Homogeneity and Asynchronicity

In the main section, we assumed that the Poisson processes are homogeneous

across time (the arrival rate λi is time-independent) and perfectly asynchronous.

In this section, we discuss the role of these assumptions.

First, consider the following non-homogeneous Poisson processes: the arrival

rate for player i at time s, λi(s), is a measurable function of s and so the expected

number of revision opportunities between t and t′ is

Li(t, t′) =
∫ t′

t
λi(s)ds.

We maintain the assumption that the Poisson processes are perfectly asynchronous.
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Since the proofs of Theorems 2 and 3 do not use the fact that λi(s) is constant

over time, Theorems 2 and 3 hold for non-homogeneous Poisson processes. The

only difference is in the expression of t∗i , which is given in the Appendix.

Second, consider the effect of different degrees of asynchronicity. For this pur-

pose, in addition to the two independent processes specified in Section 3.3, consider

another independent Poisson process p12 with arrival rate λ12 > 0, at which both

players revise simultaneously. For simplicity, we assume the Poisson process is ho-

mogeneous. At the time of decision corresponding to each revision opportunity,

player i does not know whether such an opportunity is driven by the process pi or

by p12. If λ1 = λ2 = 0 and λ12 > 0, then all revision opportunities are synchronous

and it is straightforward to show that any repetition of a Nash equilibrium is an

equilibrium of the revision game. The following result shows that it is not enough

to have only a slightest degree of asynchronicity to rule out the multiplicity of equi-

libria.

Theorem 4. Suppose that x ∈ X is a strict Nash equilibrium of the component game.

Then, there exist strictly positive λ1, λ2, λ12 such that it is a SPE for each player i to

always prepare action xi all the time.

The proof and a detailed discussion can be found in Calcagno and Lovo (2010).

Note that λ1 and λ2 in the theorem are required to be strictly positive. This means

that the only slight degree of asynchronicity is not enough to eliminate multiple

equilibria. This raises the question of how much of asynchronicity is needed to

obtain equilibrium uniqueness in a revision equilibrium. Ishii and Kamada (2011)

characterize the parameter regions such that multiplicity persists in common in-

terest games; in particular, their results imply that the complete asynchronicity as-

sumed in the present paper is not a knife-edge case.
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3.8 Concluding Remarks

We analyzed revision games where the component game is a coordination

game. Two players prepare their actions before they play a normal-form coordina-

tion game at a predetermined date where in the preparation stage, players obtain

opportunities to revise their actions according to independent Poisson processes,

and the finally-revised action is played at the deadline. In common interest games,

the strictly Pareto-dominant profile is the only outcome of the revision game. In op-

posing interest games, generically there is a unique outcome of the revision game,

which corresponds to one of the strict Nash equilibria. Which equilibrium prevails

in the revision game depends on the payoff structure and the relative frequency

with which revision opportunities arrive at each player.

Let us conclude this paper by coming back to the three key assumptions dis-

cussed in the Introduction and suggesting possible directions of future research.

First, we assumed perfect observability of the opponent’s play. In general, one

could think of a model in which a player may only imperfectly observe the oppo-

nent’s revision. It is an open question how unobservability affects the outcome of

revision games.

Second, we assumed perfect asynchronicity. To understand the exact effect of

asynchronicity, it is desirable to characterize the outcome in a model with both

synchronous and asynchronous revision opportunities. Calcagno and Lovo (2010)

formulate such processes. Section 3.7 of this paper and Ishii and Kamada (2011)

analyze such a model and partially characterize the condition such that uniqueness

obtains. A thorough investigation would be desirable to better understand the

exact role of asynchronicity.

Third, we assume finite actions and strict incentives. Our proof hinges on these
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assumptions and we do not know whether these assumptions are necessary in all

cases.32 Although these assumptions hold in many applications and many coordi-

nation games discussed in the literature, it is of theoretical interest to investigate

how it affects the outcome of revision games.

Finally, we focused on 2-player component games while the model can be easily

extended to more-than-two-player games. At this point, we do not know which

results of the 2-player set-up are robust. For example, Kamada and Sugaya (2010)

provide a sufficient condition for an n-player asynchronous revision game to have

a unique revision equilibrium and they give an example in which uniqueness does

not hold when the condition is violated. A general characterization of revision

equilibria is an important topic for future research.

32 Note that Kamada and Kandori (2011b) show that with a continuous action space, it is possible
that the set of equilibrium payoffs widens.
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4. MULTI-AGENT SEARCH WITH DEADLINE1

4.1 Introduction

This paper studies a search problem with two features that arise in many real-

life situations: The decision to stop searching is made by multiple individuals, and

there is a predetermined deadline by which a decision has to be made. Our primary

goal is to provide an understanding of the factors that determine the positive search

duration in reality.

To fix ideas, imagine a couple who must find an apartment in a new city by

September 1, as the contract with their current landlord terminates at the end of

1 This is a joint work with Nozomu Muto (Departament d’Economia i d’Història Econòmica, Uni-
versitat Autònoma de Barcelona, and MOVE). We thank David Ahn, Attila Ambrus, Pol Antràs,
Katie Baldiga, Alessandro Bonatti, Georgy Egorov, Drew Fudenberg, Chiaki Hara, Johannes Hörner,
Chong Huang, Haruo Imai, Yuhta Ishii, Atsushi Kajii, Fuhito Kojima, David Laibson, Bart Lip-
man, Mihai Manea, Jordi Massó, Akihiko Matsui, Sho Miyamoto, Akira Okada, Wojciech Olszewski,
Daisuke Oyama, Debraj Ray, Al Roth, Yuval Salant, Larry Samuelson, Bruno Strulovici, Tomasz
Strzalecki, Takuo Sugaya, Satrou Takahashi, Kentaro Tomoeda, Takahiro Watanabe, Alex Wolitzky,
Yuichi Yamamoto, Yosuke Yasuda, and seminar/conference participants at Universitat Autònoma
de Barcelona, Brown University, Columbia University, Harvard University, Hitotsubashi University,
Kyoto University, University of Tokyo, Yale University, the 22nd Summer Festival on Game Theory
(International Conference on Game Theory) at Stony Brook, SWET 2011 at Hokkaido University, and
GDRI Workshop Marseille for helpful comments. In addition, Morgan McClellon read through the
previous version of this paper and gave us very detailed comments, which significantly improved
the presentation of the paper. A portion of this research was conducted while Kamada was visiting
Institut d’Anàlisi Econòmia at Universitat Autònoma de Barcelona; he thanks the university and es-
pecially Joan Esteban for the hospitality during the stay. Kamada thanks his advisors, Attila Ambrus,
Al Roth, Tomasz Strzalecki, and especially Drew Fudenberg for extensive discussions and comments
as well as continual guidance and support. Muto gratefully acknowledges support from the Span-
ish Ministry of Science and Innovation through grant “Consolidated Group-C” ECO2008-04756 and
FEDER.
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August. Since they are not familiar with the city, they ask a broker to identify new

apartments as they become available. The availability of new apartments depends

on many factors; there is no guarantee that a new apartment will become available

every day. Whenever the broker finds an apartment, the husband and wife both

express whether they are willing to rent it or not. If they cannot agree, they forfeit

the offered apartment—since the market is seller’s market, there is no option to

“hold” an offer while searching for a better one. Although the couple agree on

the need to rent some apartment, their preferences over specific apartments are

not necessarily aligned. The search ends once an agreement is made; if the couple

cannot agree on an apartment by September 1, they will be homeless.

To analyze these situations, we consider an n-player search problem with a

deadline. Time is continuous and “opporunties” arrive according to a Poisson pro-

cess. Opportunties are i.i.d. realizations of payoffs for each player. After viewing

an opportunity, the players respond with “yes” or “no.” The search ends if and

only if all players say “yes.” If the search does not end by the deadline, players ob-

tain an a priori specified fixed payoff. Notice that the arrival rate of Poisson process

captures “friction” inherent in the search process: larger arrival rates correspond

to smaller friction. Since there is a trivial subgame perfect equilibrium in which

all players always reject, we analyze an (appropriately defined) trembling-hand

equilibrium of this game.

Our analysis consists of three steps. In the first step, we show that for any num-

ber of players and under very weak distributional assumptions, the expected du-

ration of search does not shrink to zero even in the limit as the friction of search

vanishes. Hence the mere existence of some search friction has a nonvanishing
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impact on the search duration. This result is intuitive but by no means obvious.2

The incentives are complicated. Waiting for a future opportunity to arrive offers an

incremental gain in payoffs, but an increased possibility of reaching the deadline.

Both the rewards and the costs go to zero as the search friction vanishes; the opti-

mal balance is difficult to quantify because agents need to make decision of before

observing all future realizations of offers. For this reason, we employ an indirect

proof that bounds the acceptance probability at each moment.

In the second step, we show that in the limit, expected duration increases with the

number of agents involved in the search. This happens for two reasons, which we

call the “ascending acceptability effect” and the “preference heterogeneity effect.”

Roughly put, the ascending acceptability effect refers to the fact that a player faces

a larger incentive to wait if there are more opponents, as in equilibrium the oppo-

nents become increasingly willing to accept offers as time goes on. The preference

heterogeneity effect refers to the fact that such these future opportunities include

increasingly favorable offers for the player due to heterogeneity of preferences.

In the third step, we show that the speed of convergence for the expected search

duration is fast. Moreover, we use numerical examples to show that as the friction

disappears, the limit duration of search is actually close to durations with non-

negligible search friction. This provides evidence that our limit analysis contains

economically-meaningful content, and the mere existence of some friction is actu-

ally the main driving force of the positive duration in reality—so the effects that

we identify in the first and second steps are the keys to understand the positive

duration in reality.

In Figures 4.1 and 4.2, we depict how the duration can be decomposed into

2 Indeed, we offer examples where our assumptions do not hold and the result fails.
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the effects mentioned above when there are two players, the offer distribution is

uniform over a feasible payoff set that has all nonnegative payoff profiles with the

sum of coordinates being no more than 1 (Figure 4.3), the arrival rate is 10, and

the horizon length is 1. This corresponds to the case where there are ten weeks to

search an apartment, and the information of a new apartment comes once every

week on average—quite a high friction. Even in this case, it is clear in the figure

that the finiteness of arrival rates has a very little effect on the duration, while

other effects are significant. The limit expected duration is directly computed from

a key variable r determined by the details of the model (X, µ). The larger the r

is, the longer the duration is. The increase in r from the one-player model to the

two-player model is accounted for by the ascending acceptability effect and the

preference heterogeneity effect. In this example, the former effect is larger than the

latter.3

The two key features in our model, deadline and multiple agents, give rise to new

theoretical challenges. In particular, these two things interact with each other. First,

the existence of a deadline implies that the problem is nonstationary: the problems

faced by the agents at different moments of time are different. Nonstationarity of-

ten results in intractability, but we partially overcome this by taking an indirect

approach: we first analyze the limit expected duration (the first and the second

steps) which is easier to characterize, and then argue that the limit case approx-

imates the case with finite arrival rates reasonably well (the third step). Second,

one may argue that since each player’s decision at any given opportunity is essen-

tially conditional on the situation where all other agents say “yes,” the problem

essentially boils down to a single-player search problem. This argument misses an

3 At the end of the main section (Section 4.4), we will be explicit about how we conducted this
decomposition.
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Duration with

one player: 0.333 Search friction effect: 0.0370

Duration with λ = 10: 0.608

Limit Duration with

two players: 0.571
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Figure 4.1: Decomposition of search durations: The case with uniform distribution over
the space depicted in Figure 4.3 and the horizon length of 1. The one player
duration is computed by assuming uniform distribution over the unit interval.
r1 and r2 are illustrated in Figure 4.2.

r1 = 1/2
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r2 = 4/3

Figure 4.2: Decomposition of r2 − r1.
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Figure 4.3: An example of the
domain of feasible
payoff profiles.

important key property of our model. It is indeed true that at each given oppor-

tunity the decisions by the opponents do not affect a player’s decision. However,

the player’s expectation about the opponents’ future decisions affects her decision

today, and such future decisions by opponents are in turn affected by other agents’
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decisions even further in the future. The two “futures” discussed in the previous

sentence are different precisely due to the nonstationarity—hence the two features

interact. It will become clear in our analysis that it is this interaction that is crucial

to our argument in the three steps.

Besides the results on duration, we provide a number of additional results.

Most prominently, we study welfare implications our model. In order to isolate

the effects of multiple agents and a finite horizon as cleanly as possible, the de-

parture from the standard model is kept minimal. This enables us to modify our

model in a wide variety of directions and also to conduct comparative statics. To

give some examples, we study the case when payoffs realize upon agreement (cor-

responding to the situation where the couple can rent an apartment as soon as they

sign a contract); the robustness of our results to different arrival processes; the case

with the presence of fixed time costs; offer distributions varying over time; changes

in bargaining power over time; the optimal choice of horizon length (in a market-

design context); the case of majority rule rather than unanimity; the possibility of

negotiation. All these and many other things can be and will be discussed in our

framework.

4.1.1 Literature Review

Finite vs. infinite horizon with multiple agents.

First, although there is a large body of literature on search problems with a sin-

gle agent and an infinite horizon, there are only few papers that diverge from these

two assumptions.4 Some recent papers in game theory discuss infinite-horizon

search models in which a group of decision-makers determine when to stop. Wil-

4 See Rogerson, Shimer, and Wright (2005) for a survey.
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son (2001), Compte and Jehiel (2010), and Cho and Matsui (2011) consider search

models in which a unanimous agreement is required to accept an alternative, and

show that the equilibrium outcome is close to the Nash bargaining solution when

players are patient. Despite the absence of a deadline, these convergence results to

the Nash bargaining solution have a similar flavor to our result in Section 4.6 where

payoffs realize as soon as an agreement is reached. In Section 4.7.3, we will discuss

a common logic behind these convergence results. Compte and Jehiel (2010) also

analyze general majority rules to discuss the power of each individual to affect

outcomes of search, and the size of the set of limit equilibrium outcomes. Albrecht,

Anderson, and Vroman (2010) consider general majority rules, and show that the

decision-makers are less picky than the agent in the corresponding single-person

search model, and the expected duration of search is shorter if they are sufficiently

patient. Alpern and Gal (2009), and Alpern, Gal, and Solan (2010) analyze a search

model in which a realized object is chosen when one of two decision-makers ac-

cepts it, unless one of them casts a veto which can be exercised only a finite number

of times in the entire search process. Moldovanu and Shi (2010) analyze an infinite-

horizon two-agent search problem with interdependent preferences with respect

to private signals of the payoffs realized in every period. They also show that the

duration becomes longer if the number of decision-makers increases from one to

two while retaining the information structure.5 Bergemann and Välimäki (2011)

provide an efficient dynamic mechanism with a presence of monetary transfer in

an n-agent model with private signals of agents’ private values. Importantly, in

all of these papers the search duration converges to zero as the frequency of offer

5 Moldovanu and Shi (2010) show that agents are pickier when there is a larger conflict in prefer-
ences, whereas if the signals are public, they are less picky and the duration is shorter with a larger
conflict.
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arrivals tends to infinity. The key distinction is that discounting is assumed and

payoffs realize upon agreement in these papers, while in our model payoffs realize

at the deadline, the assumption that fits to our motivating example of apartment

search.

Multiple vs. single agent search with deadline.

A single-agent search problem with deadline is explored in much detail in the

operations research literature on the so-called “secretary problem.” There is an

important difference between this literature and our model. In secretary problems,

there are n potential candidates (secretaries) who arrive each date, and the decision

maker makes acceptance decisions. The key difference from our analysis is that in

secretary problems the decision maker does not have cardinal preferences but or-

dinal preferences, and attempts to maximize the probability that the best candidate

is chosen. Since the number of candidates is finite, this is technically a search prob-

lem with finite horizon. The optimal policy as the number of candidates grows to

infinity is to disregard all candidates for some time before choosing, so this model

also has a positive limit search duration. The reason for positive duration is, how-

ever, different from ours. In secretary problems, the decision maker must gather

information about available alternatives to make sure what she chooses is reason-

ably well-ranked. In our setting with cardinal preferences and known distribution

of payoffs, there is no information gathering. Rather, what underlies the positive

duration is the tradeoff between the potential gain from waiting for a better allo-

cation in the future and the loss from reaching the deadline. This tradeoff is not

an issue in secretary problems as the decision maker benefits only from the best

candidate. See Ferguson (1989) for an extensive survey of the literature.
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Single-agent search with infinite horizon.

The so-called “search theory” literature has focused mainly on a single-agent

search problem with infinite horizon and extended such a model to the context of

large population. Seminal papers by McCall (1970) and Mortensen (1970) explore

models in which a single agent faces an iid draw of payoffs over an infinite hori-

zon. These models are extended in many directions.6 A common feature in these

papers is that the model has some form of “waiting costs” either as a discounting

or as a search cost, irrespective of the length of the horizon (finite or infinite). This

assumption would be a reasonable one in their context as their main application

was job search, where the overall horizon length (in finite horizon models) is sev-

eral decades, and one period corresponds to a year or a month. On the other hand,

our interest is in the case where the horizon length is rather short, as in the apart-

ment search example we provided in the introduction. This naturally gives rise to

the assumption that payoffs realize at the deadline—which would not have made

sense in the job search application. Because of this difference, the limit search du-

ration as the friction goes away in models of this line of the literature is zero, so

they could not implement the exercise that we do in this paper. Later work ex-

tended the model to a large population model in which the search friction is given

endogenously through a “matching function.” Again, in a nutshell, these analyses

are more or less extensions of the single-agent search model with infinite horizon,

and thus there has been no question on the “limit duration” as the friction vanishes.

6 An extensive survey of the literature can be found in Lippman and McCall (1976).
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Multi-agent search with finite horizon.

A few papers consider multi-person decision problems (See Ferguson (2005)

and Abdelaziz and Krichen (2007) for surveys), but none has looked at the search

duration. Sakaguchi (1973) was the first to study a multi-agent search model with

finite horizon. Sakaguchi (1978) proposed a two-agent continuous-time finite-

horizon stopping game in which opportunities arrive according to a Poisson pro-

cess as in our model. He derived the same ordinary differential equations (ODE)

as ours and provided several characterizations,7 and then computed equilibrium

strategies in several specific examples.8 However, no analysis on duration ap-

peared in his papers. Note that obtaining the ODE constitutes only a preliminary

part of our contribution; our focus is on the search duration implied by this equa-

tion.

Ferguson (2005)’s main interest is in existence and uniqueness of the stationary

cutoff subgame perfect equilibrium with discrete time, general voting rules, vary-

ing distributions over time, and presence of fixed costs of search.9,10 The sufficient

condition for uniqueness that he obtains is different from ours.11

7 Specifically, he showed that (a) the cutoffs are nondecreasing and concave in the time variable,
and (b) in the independent environment, players are less picky than in the single player case.

8 Examples he examined are (1) the Bernoulli distribution on a binary domain, (2) h(x, y) =
f (x)g(y)(1 + γ(1 − 2F(x))(1 − 2G(x))) for f , g being arbitrary density functions, and γ being a pa-
rameter that measures correlation, (3) an exponential distribution, and (4) a direct product of expo-
nential and uniform distributions. Apart from case (1) in which the limit search duration is trivially
zero, our results imply that all cases have positive limit durations.

9 He mentions the idea of trembling-hand equilibrium only verbally, and does not provide a formal
definition. Instead, there is an assumption that agreement probability is always positive.

10 He also analyzes an exponential case and does a comparative statics in terms of individual search
costs.

11 The condition states that the distribution of offers is independent across agents and the distance
to the conditional expectation above value vi is decreasing in vi for all player i.
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Multi-agent search vs. bargaining.

The multi-agent search problems are similar to bargaining problems in that

both predict what outcome in a prespecified domain is chosen as a consequence

of strategic interaction between agents. However, as discussed by Compte and Je-

hiel (2004, 2010), the search models are different from bargaining models in that in

the former, players just make an acceptance decision on what is exogenously pro-

vided to them, while in the latter, players have full control over what to propose.

Our model is a search model, and thus in our model players are “passively” assess

exogenous opportunities. This assumption captures the feature of situations that

we would like to analyze. For example many potential tenants do not design their

houses for themselves, but they simply wait for a broker to pass them information

regarding new apartments. The distinction between these “passive” and “active”

players is important when we consider the difference between our work and the

standard bargaining literature.12

Another important issue in relation with the bargaining literature is the distinc-

tion between positive search duration and so-called “bargaining delay.” Bargain-

ing delay is particularly important because it is often associated with inefficiency

caused by discounting. In our model payoffs realize at the deadline (so in essence

agents do not discount the future), so the positive-duration result does not nec-

essary imply inefficiency. Actually, we prove that generically the expected payoff

profile cannot be Pareto inefficient in the limit as the search friction vanishes. We

do not view this as necessarily detrimental to our contribution, as our primary aim

12 Cho and Matsui (2011) present another view: A drawn payoff profile in the search process can
be considered as an outcome of a (unique) equilibrium in a bargaining game which is not explicitly
described in the model and does not depend on the future equilibrium strategy profile. According to
this interpretation, every player is “active” although the “activeness” is embedded in the model.

89



is to provide a deeper understanding of the positive duration in reality.13

Multi-agent search vs. bargaining with finite horizon.

Ambrus and Lu (2010a), Gomes, Hart, and Mas-Colell (1999) and Imai and Salo-

nen (2011) consider a bargaining model with finite horizon, in which players obtain

an opportunity to propose a share distribution of the surplus at asynchronous tim-

ings, having full control over proposals, and analyze the equilibrium payoffs.14 The

important distinction from our search model is that without any further assump-

tions (such as private information) that can be resolved over time or an “option to

wait” as assumed in Ma and Manove (1993), the first player who obtains the op-

portunity makes an offer that all players would accept in equilibrium. This is in

line with the intuition of Rubinstein (1982)’s canonical model of alternating-offer

bargaining, and implies that as the timing of proposals becomes frequent the du-

ration until the agreement can become arbitrarily small.15 In our model, however,

there is a trade-off as the search friction decreases between more arrivals today and

more arrivals in the future. Our main objective of this paper is to discuss the effects

driven (at least in part) by this trade-off, while bargaining models do not have such

a trade-off (thus a question on duration is trivial).

A part of results by Gomes, Hart, and Mas-Colell (1999) and Imai and Salonen

(2011) shows that in some cases the limit equilibrium is the Nash bargaining solu-

tion. Although these results about equilibrium payoff profiles is reminiscent of our

13 In our framework, we can also ask a normative question: In Section 4.7.9, we examine a market
designer’s problem to tune parameters of the model (the horizon length and the distribution of offers)
when the search friction is finite so the Pareto-efficiency result does not have bite.

14 See Ambrus and Lu (2010b) for an application of their model to legislative processes.

15 A finite horizon version of Rubinstein (1982)’s model with Poisson opportunities is a special case
of Ambrus and Lu (2010a)’s model, so the limit duration is zero in such a model.
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result in Section 4.6, the results are different in the conditions that determine the

limit profiles.16

Revision games.

Broadly, this paper is part of a rapidly growing literature on “revision games,”

which explores implications of adding a revision phase before a predetermined

deadline at which actions are implemented and players receive payoffs. The first

papers on revision games by Kamada and Kandori (2011b,a) show the possibility of

cooperation in such a setting,17 and Calcagno and Lovo (2010), Kamada and Sug-

aya (2010), and Ishii and Kamada (2011) examine the effect of asynchronous tim-

ings of revisions on the equilibrium outcome in revision games. Kamada and Sug-

aya (2011) apply the revision games setting to election campaigns. Romm (2011)

analyzes the implication of introducing a “reputational type” in a variant of a revi-

sion game introduced by Kamada and Sugaya (2010). General insights from these

works are that when the action space is finite (as in our case) the set of equilibria is

typically small and the solution can be obtained by (appropriately implemented)

backwards induction, and that a differential equation is useful when characterizing

the equilibrium. In our paper we follow and extend these methods to characterize

equilibria and apply the framework to the context of search situations that often

arise in reality. Some examples we provide in this paper are reminiscent of those

provided in Kamada and Sugaya (2010).

16 See Remark 2 in the previous version of this paper (Kamada and Muto (2011b)) for a more com-
prehensive comparison between our work and these papers. There we argue that under different
conditions the limit equilibrium payoff profile is the Nash bargaining solution in each model when
the discount rate and the frequency of opportunities converge simultaneously.

17 See Ambrus and Burns (2010) for a related work on an analysis of eBay-like auctions.
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The paper is organized as follows. Section 4.2 provides a model. In Section 4.3

we provide some preliminary results. In particular, we show that trembling-hand

equilibria take the form of cutoff strategies, by which we mean each player at each

moment of time has a “cutoff” of payoffs below which they reject offers and oth-

erwise accept. Section 4.4 is the main section of the paper. Subsections 4.4.1, 4.4.2,

and 4.4.3 correspond to Steps 1, 2, and 3 of our argument, respectively. Section 4.5

provides a welfare analysis of our main model. Section 4.6 considers the case in

which payoffs realize upon agreement and there is a discounting—the case anal-

ogous to analyses in the previous work. In Section 4.7, we provide a number of

discussions. Among others, we show that even if agents can negotiate and transfer

utilities after each realization of payoffs, our basic result of positive duration is still

valid. Section 4.8 concludes. Proofs are given in the Appendix unless otherwise

noted.

4.2 Model

The Basic Setup

There are n players searching for an indivisible object. Let N = {1, . . . , n} be

the set of players. A typical player is denoted by i, and the other players are de-

noted by −i. The players search within a finite time interval [−T, 0] with T > 0,

on which opportunities of agreement arrive according to the Poisson process with

arrival rate λ > 0. At each opportunity, nature draws an indivisible object which

is characterized by a payoff profile x = (x1, . . . , xn) following an identical and in-

dependent probability measure µ defined on the Borel sets of Rn. A payoff profile

x ∈ Rn is often referred to as an allocation. After allocation x is realized, each

player simultaneously responds by either accepting or rejecting x without a lapse
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of time. Let B = {accept, reject} be the set of responses in this search process. If all

players accept, the search ends, and at time 0 the players receive the corresponding

payoff profile x. If at least one of the players rejects the offer, then they continue to

search. If players reach no agreement before the deadline at time 0, they obtain the

disagreement payoff profile normalized at xd = (0, . . . , 0) ∈ Rn.18

Support and Pareto Efficiency

Let X = {x ∈ Rn | µ(Y) > 0 for all open Y 3 x} be the support of µ. Note that

X ⊆ Rn is a closed subset on which µ is full support. Without loss of generality,

we assume that X ⊆ Rn
+.19 An allocation x = (x1, . . . , xn) ∈ X is Pareto efficient in

X if there is no allocation y = (y1, . . . , yn) ∈ X such that yi ≥ xi for all i ∈ N and

yj > xj for some j ∈ N. An allocation x ∈ X is weakly Pareto efficient in X if there is

no allocation y ∈ X such that yi > xi for all i ∈ N. The set of all (weakly) Pareto

efficient allocations in X is called the (weak, resp.) Pareto frontier of X. We sometimes

consider weak Pareto efficiency also on X̂ = {v ∈ Rn
+ | x ≥ v for some x ∈ X}

which is the nonnegative region of the comprehensive extension of X.

Assumptions

We make the following weak assumptions throughout the paper.

Assumption 1. (a) The expectation
∫

X xi dµ is finite for all i ∈ N.

18 This is without loss of generality as long as payoffs realize at the deadline. When the payoffs
realize upon agreement as in Section 4.6, this does change some of the analysis (the initial condition
of the differential equation (4.10) changes), but we restrict ourselves to xd = (0, . . . , 0) as the change
is minor.

19 This is without loss of generality as long as there is a positive probability in Rn
+ since the strategic

environment is identical to the case where the arrival rate is adjusted to µ(Rn
+)λ because players

prefer to reject any negative payoffs.
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(b) If n ≥ 2, for all i ∈ N, i’s marginal distribution of µ has a density function that

is locally bounded.20

If condition (a) is violated, a player always wants to wait for better payoffs

before the deadline, so a best response does not exist. Condition (b) rules out a

distribution which has infinitely large density at some point, while it still allows

for a distribution under which there is a positive probability that an allocation falls

on degenerate subsets such as a line segment which is not horizontal or vertical. In

Section 4.7.5, we will provide an example that demonstrates the need for Condi-

tion (b) for our main results to hold.

Histories and Strategies

Let us define strategies in this game. A history at −t ∈ [−T, 0] where players

observed k (≥ 0) offers in [−T,−t) consists of

1. a sequence of times (t1, . . . , tk) when there were Poisson arrivals before −t,

where −T ≤ −t1 < −t2 < · · · < −tk < −t,

2. allocations x1, . . . , xk drawn at opportunities t1, . . . , tk, respectively,

3. acceptance/rejection decision profiles (b1, . . . , bk), where each decision pro-

file bl (l = 1, . . . , k) is contained in Bn \ {(accept, . . . , accept)},

4. allocation x ∈ X ∪ {∅} at −t (x = ∅ if no Poisson opportunity arrives at −t).

20 A function g(y) defined on R is locally bounded if for all y, there exists C > 0 and ε > 0 such
that |g(y′)| ≤ C for all y′ ∈ (y − ε, y + ε).
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We denote a history at time −t by
(
(t1, x1, b1), . . . , (tk, xk, bk), (t, x)

)
. Let H̃k

t be the

set of all such histories at time −t, H̃t =
⋃

k=0,1,2,... H̃k
t and H̃ =

⋃
−t∈[−T,0] H̃t.21 Let

Hk
t =

{(
(t1, x1, b1), . . . , (tk, xk, bk), (t, x)

)
∈ H̃k

t | x 6= ∅
}

be the history at time −t when players have an opportunity and there have been

k opportunities in the past. Let Ht =
⋃

k=0,1,2,... Hk
t and H =

⋃
−t∈[−T,0] Ht. A

(behavioral) strategy σi of player i is a function from H to the set of probability

distributions over the set of responses B. Let Σi be the set of all strategies of i, and

Σ = ×i∈NΣi. For σ ∈ Σ, let ui(σ) be the expected payoff of player i when players

play σ.22

Equilibrium Notions

A strategy profile σ ∈ Σ is a Nash equilibrium if ui(σi, σ−i) ≥ ui(σ′
i , σ−i) for all

σ′
i ∈ Σi and all i ∈ N. Let ui(σ | h) be the expected continuation payoff of player i

given that a history h ∈ H̃ is realized and strategies taken after h is given by σ. A

strategy profile σ ∈ Σ is a subgame perfect equilibrium if ui(σi, σ−i | h) ≥ ui(σ′
i , σ−i | h)

for all σ′
i ∈ Σi, h ∈ H, and all i ∈ N. A strategy σi ∈ Σi of player i is a Markov

strategy if for history h ∈ Ht at −t, σi(h) depends only on the time −t and the drawn

allocation x. A strategy profile σ ∈ Σ is a Markov perfect equilibrium if σ is a subgame

21 Precisely speaking, there are histories in which infinitely many opportunities arrive. We ignore
these possibilities since such histories happen with probability zero.

22 The function u(σ) is well-defined for the following reason: Hk :=
⋃

t Hk
t is seen as a subset

of R(2n+1)k+(n+1), and thus endowed with a Borel sigma-algebra. We assume that H =
⋃

k Hk is
endowed with a sigma-algebra induced by these sigma-algebras on Hk, and a strategy must be mea-
surable with respect to this sigma-algebra. The measurability ensures that a strategy profile generates
a probability measure on the set of terminal nodes. See Stinchcombe (1992) for a detailed treatment
of strategies in general continous-time games.
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perfect equilibrium and σi is a Markov strategy for all i ∈ N. We will later show that

players play a Markov perfect equilibrium (except at histories in a zero-measure

set) if they follow a trembling-hand equilibrium defined below. For ε ∈ (0, 1/2),

let Σε be the set of strategy profiles which prescribe probability at least ε for both

responses in {accept, reject} after all histories in H. A strategy profile σ ∈ Σ is a

trembling-hand equilibrium if there exists a sequence (εm)m=1,2,... and a sequence of

strategy profiles (σm)m=1,2,... such that εm > 0 for all m, limm→∞ εk = 0, σm ∈ Σεm
,

σm is a Nash equilibrium in the game with a restricted set of strategies Σεm
(εm-

constrained game) for all m, and limm→∞ σm(h) = σ(h) for all h ∈ H according to

the pointwise convergence in histories.23

4.3 Preliminary Results

In this section, we present preliminary results which will become useful in

the subsequent sections. We will show that there exists an essentially unique

trembling-hand equilibrium, in which every player plays a “cutoff strategy.” We

will derive an ordinary differential equation that characterizes the cutoff profile in

the equilibrium. In addition, we will observe a basic invariance: The change in

equilibrium continuation payoffs when raising the arrival rate is the same as that

when stretching the duration from the deadline with the same ratio. Finally, by ex-

amining the differential equation, the limit equilibrium payoff as λ → ∞ is shown

to be weakly efficient.

The next proposition shows that trembling-hand equilibrium is essentially

23 This equilibrium concept is an analog of extensive-form trembling-hand equilibrium, as opposed
to its normal-form counterpart. Although our extensive-form game involves uncountably many
nodes and hence the standard definitions of trembling-hand equilibria are not directly applicable,
it is for this reason that we call this notion a trembling-hand equilibrium.
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unique and Markov.

Proposition 12. Suppose that σ and σ′ are two trembling-hand equilibria. Then ui(σ | h)

= ui(σ′ | h′) for almost all histories h, h′ ∈ H̃t \ Ht and all i ∈ N.

That is, regardless of the history, any two trembling-hand equilibria give rise

to the same continuation payoff at time −t. Three remarks are in order: First, we

ruled out histories in Ht, because different realization of payoffs that players accept

clearly give rise to different continuation payoffs on the equilibrium path. Second,

since agents move simultaneously, there exist subgame perfect equilibria in which

all players reject any allocations.24 We introduced the trembling-hand equilibrium

to rule out such trivial equilibria. In an ε-constrained game, a player will optimally

accept a favorable allocation for herself, expecting the others to accept it with a

small probability. Third, and relatedly, there exist sequential equilibria in which

every player has a strict incentive at almost all histories.25 Our trembling-hand

equilibrium rules out such equilibria.

A Markov strategy σi of player i ∈ N is a cutoff strategy with cutoff vi(t) ≥ 0

if player i who is to respond at time −t accepts allocation x ∈ X whenever xi ≥

vi(t), and rejects it otherwise. For a profile v = (v1, . . . , vn) ∈ Rn
+, we define a

set of allocations by A(v) = {x ∈ X | xi ≥ vi for all i ∈ N}. When players play

cutoff strategies with cutoff profile (v1(t), . . . , vn(t)), we sometimes call A(v(t))

an “acceptance set” as they agree with an allocation x at time −t if and only if

x ∈ A(v(t)). We often denote this acceptance set by A(t) with a slight abuse of

24 If players respond sequentially, we can show that any subgame perfect equilibrium consists of
cutoff strategies. Therefore our results are essentially independent of the timing of responses of
players.

25 An example similar to the one in Cho and Matsui (2011, Proposition 4.4) can be used to show this
result.
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notation when the cutoff profile in consideration is not ambiguous. Suppose that

all players play Markov strategies σ, and there is no Poisson arrival at time −t ∈

[−T, 0]. Then player i has an expected payoff ui(σ | h) at −t independent of history

h ∈ H̃t \ Ht played before time −t. We denote the continuation payoff at time

−t by vi(t, σ) = ui(σ | h). For simplicity of notations, we hereafter omit to write a

cutoff strategy profile σ explicitly, and denote by vi(t) the continuation payoff of

player i at time −t.

The following proposition shows that there exists a trembling-hand equilibrium

that consists of cutoff strategies, and characterizes the path of cutoffs.

Proposition 13. There exists a trembling-hand equilibrium that consists of (Markov) cut-

off strategies. Moreover, an equilibrium continuation payoff profile v(t) = (v1(t), . . . ,

vn(t)) at time −t ∈ [−T, 0] is given by a solution of the following ordinary differential

equation (ODE)

v′(t) = λ
∫

A(t)

(
x − v(t)

)
dµ (4.1)

with an initial condition v(0) = (0, . . . , 0).

This proposition is shown by the following argument. An equilibrium contin-

uation payoff vi(t) supported by a cutoff strategy profile is given by the following

recursive expression: For i ∈ N,

vi(t) =
∫ t

0

(∫
X\A(τ)

vi(τ) dµ +
∫

A(τ)
xi dµ

)
λe−λ(t−τ) dτ

=
∫ t

0

(
vi(τ) +

∫
A(τ)

(
xi − vi(τ)

)
dµ

)
λe−λ(t−τ) dτ. (4.2)

After time −t, players receive the first Poisson opportunity at time −τ with proba-
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bility density λe−λ(t−τ). If player i finds that the drawn payoff xi to her is no worse

than her continuation payoff vi(τ), i optimally accepts this allocation x, otherwise,

i rejects it. If all players accept x, i.e., x ∈ A(τ), then they reach an agreement

with x. If some player rejects x, then search continues with continuation payoff

profile v(τ). This discussion shows that a cutoff strategy profile with cutoffs v(t)

characterized by equation (4.2) is a Markov perfect equilibrium.

Bellman equation (4.2) implies that vi(t) is differentiable in t. Multiplying both

sides of (4.2) by eλt and differentiating both sides yield the ordinary differential

equation (4.1) of continuation payoff profile v(t) defined in X̂.

Now, a standard argument of ordinary differential equations shows that ODE

(4.1) has a solution whenever Assumption 1 holds.26 The above argument only

shows that the cutoff strategy profile with a cutoff profile given by this solution of

ODE (4.1) is a Markov perfect equilibrium. In the Appendix, we will show that it

is in fact a trembling-hand equilibrium.

By Proposition 12, the solution of ODE (4.1) is unique. Therefore the game has

essentially a unique trembling-hand equilibrium for any given X and µ satisfying

Assumption 1. Let us denote the unique solution of (4.1) by v∗(t; λ), the continu-

ation payoff profile in the trembling-hand equilibrium. We simply denote this by

v∗(t) as long as there is no room for confusion. The probability that all players

accept a realized allocation at time −t on the equilibrium path conditional on the

event that an opportunity arrives at −t is referred to as the “acceptance probabil-

ity” at time −t.

Let us make a couple of observations about ODE (4.1). Figure 4.4 describes an

illustration of a typical path and the velocity vector that appear in this ODE for

26 This is because Assumption 1 (b) ensures continuity in v of the right hand side of (4.1). See
Coddington and Levinson (1955, Chapter 1) for a general discussion about ODE.
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x1

x2

v(0) = 0

A(t)

X

v(t)

v
∗

v
′(t)

barycenter of A(t)

Figure 4.4: The path and the velocity vector of ODE (4.1).

n = 2. The shaded area shows the acceptance set A(t), whose barycenter with

respect to the probability measure µ is
∫

A(t) xdµ
/

µ(A(t)). Therefore the velocity

vector v∗′(t) is parallel to the vector from v∗(t) to the barycenter of A(t), which

represents the gain upon agreement relative to v∗(t). The absolute value of v∗′(t)

is proportional to the weight µ(A(t)). Note that ODE (4.1) immediately implies

v∗′i (t) ≥ 0 for all t and i ∈ N, and v∗′i (t) = 0 if and only if µ(A(t)) = 0. For each

i ∈ N, the continuation payoff v∗i (t) grows as t increases, and eventually either

converges to a limit payoff v∗i , or diverges to infinity.

Since the right hand side of ODE (4.1) is linear in λ, we have v∗(t; αλ) =

v∗(αt; λ) for all α > 0 and all t such that −t,−αt ∈ [−T, 0]. By considering the

limit as α → ∞, we have the following proposition:

Proposition 14. The two limits of v∗(T; λ) coincide, i.e., limλ→∞ v∗(T; λ) = limT→∞

v∗(T; λ), if one of them exists.
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We henceforth denote this limit by v∗. In the next section, we sometimes deal

with these two limits interchangeably. Note that the equality implies limλ→∞ v∗

(T; λ) does not depend on T > 0.

Finally, we argue weak Pareto efficiency of the limit allocation. Suppose that

v∗ = limλ→∞ v∗(T) = limT→∞ v∗(T) exists but is not weakly Pareto efficient. Then

there exists x ∈ X that strictly Pareto dominates v∗. Since x belongs to the support

of µ, µ(Y) > 0 for any open set Y ⊆ Rn
+ that includes x. For Y sufficiently small,

A(v∗) contains Y, and thus µ(A(v∗)) > 0. This implies that the right hand side of

ODE (4.1) is positive, contradicting the fact that v∗ = limλ→∞ v∗(t) = limt→∞ v∗(t).

Hence we obtain the following proposition:

Proposition 15. Let t > 0 fixed, and suppose that the solution v∗(t; λ) of equation (4.1)

converges to v∗ ∈ X̂ as λ → ∞. Then v∗ is weakly Pareto efficient.27

We will have further discussions about efficiency in Section 4.5, in which we

will show that the limit allocation v∗ is Pareto efficient for almost all distributions

µ satisfying mild assumptions, and Pareto efficient for all convex X.

4.4 Duration of Search

In this section, we will discuss the duration of search in our model. Our argu-

ment consists of three steps: In Section 4.4.1 we will show that even under the quite

weak conditions in Assumption 1, search takes a positive time even in the limit as

the friction vanishes. In Section 4.4.2, we argue that the limit duration becomes

longer as the number of involved agents gets larger. This extra duration is caused

27 Note that this does not necessarily imply weak Pareto efficiency in the convex hull when X is
nonconvex. That is, the convex hull can contain allocations that Pareto-dominate the limit expected
payoff profile, while such allocations cannot be achieved under a trembling-hand equilibrium. See
footnote 38 for a further discussion on this.
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by two effects called the “ascending acceptability effect” and the “preference het-

erogeneity effect.” We will provide a method to decompose the extra duration by

these two effects. In Section 4.4.3, we demonstrate that the limit duration is “close”

to the durations for finite arrival rates. This provides evidence that our limit analy-

sis contains economically-meaningful content, and the mere existence of some fric-

tion is actually the main driving force of positive duration in reality—so the effects

that we identify in Steps 1 and 2 are the keys to understand the positive duration

in reality.

First, let us explain how we compute the expected duration. Given arrival rate

λ > 0, by the differential equation (4.1) we can compute the equilibrium path of the

cutoff profile v∗(t; λ). Given v∗(t; λ), one can compute the acceptance probability

p(t; λ) at each time −t as follows:

p(t; λ) = µ(A(v∗(t; λ))).

Let P(t; λ) be the probability that there is no agreement until time −t:

P(t; λ) = e−
∫ T

t λp(s;λ) ds. (4.3)

Notice that dP(t;λ)
dt = λp(t; λ)P(t; λ). We often omit λ and simply denote p(t) and

P(t) when there is no room for confusion. As an example, Figure 4.5 graphs p(t)

for λ = 1, 10, 100 when n = 2, X = {x ∈ R2
+ | x1 + x2 ≤ 1}, µ is the uniform distri-

bution on X, and T = 1. Figure 4.6 shows a graph of P(t) in the same environment.

Let D(λ) be the expected duration in the equilibrium for given λ when T = 1.

Since we have v∗(T; λ) = v∗(1; λT) as discussed in Section 4.3, the search duration
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time

p(t)

−1 0

1

λ = 1

λ = 10
λ = 100

Figure 4.5: A numerical example of p(t) for the case when n = 2, X = {x ∈ R2
+ | x1 + x2 ≤

1}, µ is the uniform distribution on X, and T = 1.

is proportional to T, and thus the expected duration for general T is written as

D(λ)T. We use these p(t; λ) and P(t; λ) to solve for D(λ), using integration by

parts:

D(λ)T = T · P(0; λ)︸ ︷︷ ︸
The probability of no agreement

until time 0

+
∫ T

0
(T − t)︸ ︷︷ ︸

The duration when the search
ends at time −t

· P(t; λ)︸ ︷︷ ︸
The probability that

the search does not end until −t

· λp(t; λ)︸ ︷︷ ︸
The probability density of

agreement at time −t

dt

= T · P(0; λ) + [(T − t)P(t; λ)]T
0 +

∫ T

0
P(t; λ) dt

=
∫ T

0
P(t; λ) dt. (4.4)

This final expression has a direct interpretation: For each time −t, P(t) is the prob-

ability that the duration is greater than T − t. Since P(t) > P(t′) for t > t′, P(t) is

integrated for the length of T − t (from T to t). Thus the expression measures the

expected duration.
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time

P (t)

−1 0

1

λ = 1

λ = 10λ = 100

Figure 4.6: A numerical example of P(t) for the case when n = 2, X = {x ∈ R2
+ | x1 + x2 ≤

1}, µ is the uniform distribution on X, and T = 1.

Finally, define

D(∞) = lim
λ→∞

D(λ)

whenever the limit is well-defined.

In Steps 1 and 2, we will analyze D(∞). Then in Step 3 we will demonstrate

that D(λ) converges to D(∞) reasonably fast.

4.4.1 Step 1: Positive Duration

The first step of our argument shows the following: For any number of players n

and any probability distribution over feasible allocations µ satisfying fairly weak assump-

tions, the limit expected search duration as the search friction vanishes is strictly positive.

We first show the result for the case with n = 1 (Theorem 5) and detail the

intuition. Then, using this result, we generalize to an arbitrary number of players

(Theorem 6).
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Single Agent

Roughly, there are two effects of having a higher arrival rate. On one hand, for

any (small) given time interval, there will be an increasing number of opportuni-

ties, thus it becomes easier to get a lucky draw. On the other hand, since there will

be more and more opportunities in the future as well, the player becomes pickier.

Our result shows that these two effects balance each other out. The incentives are

complicated. Waiting for a future opportunity to arrive offers an incremental gain

in payoffs, but an increased possibility of reaching the deadline. Both the rewards

and the costs go to zero as the search friction vanishes; the optimal balance is diffi-

cult to quantify because agents need to make decision of before observing all future

options.

To explain the detailed intuition for our result, let us specialize to the case of

X = [0, 1] and µ being the uniform distribution. We first show that if the acceptance

probability at each time −t is O( 1
λt ) then the limit duration is strictly positive.28

Then we show that the acceptance probability must be indeed O( 1
λt ).

Suppose the acceptance probability at each time −t is O( 1
λt ). Then, the proba-

bility that the agreement does not take place by time − T
2 is at least

e−λC 1
λT/2 = e−2 C

T

for some constant C > 0, and this is strictly positive. This means that the limit

expected duration is at least a strict convex combination of 0 and T
2 , and therefore

is strictly positive.

Now we explain why we expect such a small acceptance probability. Fix time

28 For functions g(y) and h(y), we say that g(y) = O(h(y)), if there exist C > 0 and ȳ such that
|g(y)| ≤ C · |h(y)| for all y ≥ ȳ.
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−t. Note that the cutoff at −t must be equated with the continuation payoff at −t

by optimality at −t, and the continuation payoff must be at least as good as the

expected payoff by playing some arbitrarily specified strategy from time −t on by

optimality in the future. Also, the cutoff at −t uniquely determines the acceptance

probability at −t. That is, by specifying a future strategy, we can obtain a lower

bound of continuation payoff which must be equal to the cutoff, and this gives us

an upper bound of the acceptance probability:

The acceptance probability

= 1 − the cutoff of the optimal strategy

= 1 − the continuation payoff from the optimal future strategy

≤ 1 − the continuation payoff from an arbitrarily specified future strategy.

To see what type of future strategy will generate an interesting bound, first

consider specifying a constant cutoff from −t on. Suppose that at any time −s after

−t the cutoff is 1 −O( 1
λt ). Then, a lower bound of the probability that there will be

no acceptance in the future can be calculated as

e−λC 1
λt = e−

C
t

for some constant C > 0, and this is strictly greater than 0 irrespective of λ. This

means that even in the limit as λ → ∞, the probability of no agreement at time 0

does not shrink to zero. But then, the continuation payoff from this strategy must

be at most a strict convex combination of a number at most 1 (the best possible

payoff) and 0 irrespective of λ, which means that the acceptance probability is at

least a positive number independent of λ. Hence p(t) cannot be O( 1
λt ).
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Next, consider a future strategy such that at any time −s after −t the cutoff

is such that the player accepts with a higher order than 1
λt (thus she accepts with

a higher probability; e.g., 1√
λt

). Then the probability of acceptance in the future

indeed tends to 1 as λ → ∞, but the payoff conditional on acceptance is smaller

than the best payoff (i.e., 1) by the amount of the order higher than 1
λt . Hence the

cutoff at −t must be smaller than the best payoff by such an amount, which means

that the acceptance probability at −t is of the order higher than 1
λt .

The analysis of the above two scenarios reveals the tradeoff faced by the player:

Setting a high cutoff gives her a high payoff conditional on acceptance, but reduces

the acceptance probability. On the other hand, setting a low cutoff results in a

low payoff conditional on acceptance but raises the acceptance probability. This

suggests thata good strategy must specify a high cutoff for a sufficiently long time

to ensure a high payoff conditional on acceptance, and lower cutoffs towards the

end to ensure a high enough acceptance probability. Specifically, consider the cutoff

1 − 2
λs+2 for each time −s after time −t. This plan has a feature that for any finite

time s > 0, the acceptance probability is

2
λs + 2

=
λt + 2
λs + 2

· 2
λt + 2

= O
( 1

λt

)
,

thus for any positive future time, the player’s payoff conditional on acceptance

is smaller than the best payoff by the amount O( 1
λt ). Yet this gives us the limit

acceptance probability of 1, as the probability for no acceptance can be calculated

as:

e−
∫ t

0 λ 2
λs+2 ds = e−[2 ln(λs+2)]t0 =

( 2
λt + 2

)2
→ 0 as λ → ∞.

A rough intuition for why this can achieve the limit acceptance probability of 1 is
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that, for each time subinterval [− T
2k−1 ,− T

2k ] for k = 1, 2, . . . , this strategy makes an

acceptance with probability at least

1 − e
−λ· 2

λ(T/2k−1)+2
· T

2k = 1 − e−
λT

λT+2k → 1 − 1
e

> 0 as λ → ∞.

Since 1 − 1
e is a positive constant independent of k, the acceptance probability in-

creases with an exponential speed as k increases. We can indeed check that the

future cutoff scheme 2
λs+2 gives the player a continuation payoff of 2

λt+2 = O( 1
λt )

at time −t.

Overall, we have shown that when X = [0, 1] and the distribution µ is uniform,

the limit expected duration is strictly positive. This argument is generalized to the

cases of general distributions satisfying Assumption 1 and the following assump-

tion. Let F(x) be the cumulative distribution function of µ.

Assumption 2. There exists concave function ϕ such that 1 − ϕ(x) is of the same

order as 1 − F(x) in {x ∈ R | F(x) < 1}.29

To see what this assumption implies, consider two separate cases—bounded X

and unbounded X. If X is bounded, besides pathological cases where F is non-

differentiable at infinitely many points, the assumption amounts to say that the

slope of the cdf F cannot diverge to infinity at the maximum payoff. If X is un-

bounded, a simple sufficient condition to guarantee that the assumption holds is to

require there exists x̃ such that F is concave on (x̃, ∞), or equivalently, there exists

a nonincreasing density function f on (x̃, ∞). Concavity of ϕ lets us invoke the

Jensen’s inequality to bound the cumulative acceptance probability.

29 For functions g(y) and h(y), we say that g(y) is of the same order as h(y) in Y ⊆ R if there exist
c, C > 0 and ȳ < sup(Y) such that c|h(y)| ≤ |g(y)| ≤ C|h(y)| for all y ≥ ȳ.
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Recall that D(λ)T is the expected duration in the equilibrium for given arrival

rate λ. Then we obtain the following:

Theorem 5. Suppose n = 1. Under Assumptions 1 and 2, lim infλ→∞ D(λ) > 0.

In the Appendix we also provide a proof that the conclusion of this result holds

when X is bounded with another assumption: for x̄ ∈ X, ln
(
µ
(
{x ∈ X | |x̄ − x| ≤

ε}
))

is of the same order as ln ε when ε > 0 is small. A sufficient condition for this

is that there exists α > 0 such that µ
(
{x ∈ X | |x̄ − x| ≤ ε}

)
is of the same order as

εα when ε > 0 is small.

Multiple Agents

Now we extend our argument to the case of n ≥ 2. The basic argument is

the same as in the case of n = 1: We fix some strategies for players other than

i, and consider bounding i’s continuation payoff. However, it is not the case that

we can implement this proof for any given strategies by the opponents. To see

this point, consider the case of 2 players with X = {x ∈ R2
+ | x1 = x2 ≤ 1} and

the uniform distribution. Suppose that we are given player 2’s strategy to set the

cutoff v2 = 0 for the time interval
[
−t,−

(
t − 1√

λt

)]
, and then the cutoff v2 = 1

for the rest of the time. Then, player 1’s upper bound of acceptance probability

cannot be given by O( 1
λt ) because, to ensure the acceptance of a positive payoff,

player 1 must accept within the time interval
[
−t,−

(
t − 1√

λt

)]
, and to do so she

must set a low enough cutoff.30

What is missing in the above strategy of player 2 is the feature that a player’s

cutoff must be decreasing over time. In the above strategy, the cutoff starts from 0

30 There also exist strategies for player 2 that are independent of λ and still give rise to a low cutoff
for player 1, such as v2(t) = e−(T−t).
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and then jumps up to 1. We use the decreasingness to show our result.

To see how the decreasingness helps, fix t and consider player −i’s equilibrium

cutoffs at time −t, and suppose for the moment that they will keep using these

cutoffs in the future as well. Then, by the result in the case of n = 1, we know that

the acceptance probability at −t by playing optimally in the future against such

strategies is O( 1
λt ) as long as Assumption 2 is met for any cutoff profiles of the other

players (sufficient conditions for this to hold are analogous to what we discussed

after introducing Assumption 2). Let p(s) for s < t be the acceptance probability

given by i’s optimal strategy against −i’s fixed strategies. Now, consider the actual

equilibrium cutoff strategy for −i and consider a new future strategy for player i,

which is to accept at each time −s with probability p(s). Notice that, since each

opponent’s cutoff is decreasing, the expected payoff conditional on acceptance at

each time −s must be greater than the case with fixed cutoffs for −i, while at each

moment the acceptance probability is identical to that case. This means that i’s

continuation payoff at −t must be higher than in the original case, which implies

that the acceptance probability at −t must be O( 1
λt ).

Hence, we obtained the following: Recall that D(λ)T is the expected duration

in the equilibrium for given arrival rate λ. Let Fv−i
i be the marginal cumulative

distribution function of player i’s payoff conditional on cutoff profiles v−i of the

other players with µ(A(0, v−i)) > 0.

Assumption 2′. There is i ∈ N such that for all v−i with µ(A(0, v−i)) > 0, there

exists a concave function ϕ such that 1 − ϕ(xi) is of the same order as 1 − Fv−i
i (xi) in

{xi ∈ R | Fv−i
i (xi) < 1}.31

Theorem 6. Suppose n ≥ 2. Under Assumptions 1 and 2′, lim infλ→∞ D(λ) > 0.

31 This assumption reduces to Assumption 2 when n = 1.
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4.4.2 Step 2: Effects of the Larger Number of Agents

The second step of our argument concerns the effect of having a larger number

of players.

In what follows we demonstrate that there are two reasons that we expect longer

durations when there are more players. The effects that underlie these reasons are

called ascending acceptability effect and preference heterogeneity effect. We explain these

effects in turn.

Ascending Acceptability Effect

In Section 4.4.1 we demonstrated that the decreasingness of the opponents’ cut-

offs can be used to reduce the acceptance probability (through the rise of continu-

ation payoffs). The ascending acceptability effect is also based on the fact that the

opponents’ cutoffs are decreasing.

To isolate such an effect, let us consider the case when we add players whose

preferences are independent of those of the existing players. Specifically, let two

problems (X, µ), (Y, γ) satisfy Assumption 1 where X ⊆ Rn
+, Y ⊆ Rm

+, µ ∈ ∆(X),

γ ∈ ∆(Y), and n, m ≥ 1. Consider three models: (i) n player model (X, µ), (ii) m

player model (Y, γ), and (iii) n + m player model (X × Y, µ × γ).

Theorem 7. Suppose that the limit expected durations exist for models (i) and (ii) with

T = 1, denoted by DX and DY, respectively. Then the limit expected duration DXY also

exists in model (iii) with T = 1, and satisfies

DXY = 1 − (1 − DX)(1 − DY)
1 − DXDY

(4.5)

if DXDY < 1, and DXY = 1 if DXDY = 1.
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The reasoning of this proposition will be given in Section 4.4.2. Theorem 7

implies an immediate corollary:

Corollary 4. Under the assumption in Theorem 7, DXY > max{DX, DY} if DX, DY ∈

(0, 1).

In Section 4.4.2, we provide the explicit formula for the probability distribution

of the expected duration. The formula in particular implies that the distributions

of the durations in models (i) and (ii) are first-order stochastically dominated by

that of model (iii), which implies Corollay 4.

There is a simple reasoning behind Corollay 4. Note first that the locus of the

path in model (iii) projected on X is identical to the one in model (i) because, by

(4.1), the direction of the vector is determined by the position of the barycenter in

the acceptance set. Notice further that if we exogenously specify the strategies of

additional m players to be the ones that accept any payoff profiles, then the time

path of the cutoffs for the original n players should remain unchanged. In equi-

librium, however, these m players’ cutoffs are decreasing, so there will be more

chances for desirable draws to be accepted (“ascending acceptability”). This is why

we expect a longer duration with more players. Another way to put this is that the

increase in the acceptance probability caused by additional m players corresponds

to an increase in arrival rates over time. This means that a larger fraction of oppor-

tunities comes at the late stage of the game, so we expect a longer duration.

To understand the formula (4.5) in Theorem 7, manipulate it to get:

The expected remaining time in model (iii)
The expected remaining time in model (i)

=
1 − DXY

1 − DX
=

1 − DY

1 − DXDY
< 1. (4.6)

Notice that 1 − DX denotes the expected remaining time until the deadline at the
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time of agreement given X, and the same interpretation is valid for 1 − DXY. Thus,

the left hand side of equation (4.6) is the ratio of remaining time with X × Y com-

pared to that of X. This ratio is strictly smaller than 1 whenever DX < 1, by the

expression in the right hand side, and increases as DY grows. This is intuitive:

Higher DY implies a slower speed for the continuation payoffs of the additional

players to move. Thus players in X have more incentives to wait than in the case

with a lower DY.

Preference Heterogeneity Effect

Theorem 7 considers the case where preferences of players in model (i) and

those of players in model (ii) are independent. In many relevant cases, players’

preferences are not independent. Specifically, they are often heterogeneous. We

now analyze how heterogeneity in preferences, captured by the change in X and µ,

affects the duration. In this subsection, we first provide a general duration formula

to understand how preference heterogeneity affects the duration. Then we use this

formula in specific examples to analyze the effect of preference heterogeneity.

Let us define values r, r as follows:

r = lim inf
t→∞ ∑

i∈N
di(v∗(t)) · bi(v∗(t)), r = lim sup

t→∞
∑
i∈N

di(v∗(t)) · bi(v∗(t)) (4.7)
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where

bi(v) = gi(A(v)) − vi, b(v) = (b1(v), . . . , bn(v)),

di(v) =
1

µ(A(v))
·

lim inf
ε→0

µ(A((vj + εbj(v))j<i, (vj)j≥i)) − µ(A((vj + εbj(v))j≤i, (vj)j>i)))
ε|b(v)| ,

di(v) =
1

µ(A(v))
·

lim sup
ε→0

µ(A((vj + εbj(v))j<i, (vj)j≥i)) − µ(A((vj + εbj(v))j≤i, (vj)j>i)))
ε|b(v)| ,

and g(Y) = (g1(Y), . . . , gn(Y)) denotes a barycenter of the set Y ⊆ Rn with respect

to µ. Recall that P(t; λ) is the probability of no agreement until time −t, and D(λ)

is the limit expected duration when T = 0. Now we can show that P(t; ∞) =

limλ→∞ P(t; λ) can be written in the following way:

Theorem 8. Under Assumption 1, for all −t ∈ [−T, 0]

( t
T

)1/r
≤ lim inf

λ→∞
P(t; λ) and lim sup

λ→∞
P(t; λ) ≤

( t
T

)1/r
, and

1
1 + r−1 ≤ lim inf

λ→∞
D(λ) and lim sup

λ→∞
D(λ) ≤ 1

1 + r−1 .

Thus, if r = r =: r, then for all −t ∈ [−T, 0]

P(t; ∞) =
( t

T

)1/r
and D(∞) =

1
1 + r−1 .

Proof Sketch. Let us provide a proof when r = r = r, and µ has a density function.

A formal proof in the general case is given in the Appendix. To show the result, we
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first prove

lim
λ→∞

p(t) · λt =
1
r

where p(t) = µ(A(v∗(t))). By the ODE (4.1), v∗′(t) = λ(g(A(v∗(t)))− v∗(t)) · p(t).

Differentiating p(t) = µ(A(v∗(t))),

p′(t) = ∑
i∈N

∂µ(A(v))
∂vi

∣∣∣
v=v∗(t)

v∗′i (t)

= ∑
i∈N

∂µ(A(v))
∂vi

∣∣∣
v=v∗(t)

λ · (gi(A(v∗(t))) − v∗i (t)) · p(t)

= − ∑
i∈N

di(v∗(t))p(t) · λbi(v∗(t)) · p(t).

Therefore

p′(t)
λp(t)2 = − ∑

i∈N
di(v∗(t))bi(v∗(t)).

This implies that r is the limit of −p′(t)
/

λp(t)2 as t → ∞. If the limit exists, for any

ε > 0 there exists t̄ such that t ≥ t̄ implies

r − ε ≤ − p′(t)
λp(t)2 ≤ r + ε. (4.8)

This means that p(t) is approximated by the solution of ODE p′(t) = −rλp(t)2

with an initial condition at t = t̄. Solving this equation, for large t,

p(t) ≈ 1
rλ(t − t̄) + p(t̄)−1 .

Hence we get limλ→∞ p(t) · λt = 1
r . We can compute the approximated probabil-
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Figure 4.7: Density term and barycenter term.

ity of disagreement P by following formula (4.3), showing that P(t; ∞) =
( t

T

) 1
r .32

Applying formula (4.4), one can easily obtain D(∞) = 1
1+r−1 .

Moreover, Theorem 8 immediately implies that if r = r = r, then P(t; ∞) is

increasing in t, and (a) for r < 1, P(t; ∞) is concave and limt→0 P′(t; ∞) = ∞, (b)

for r = 1, P(t; ∞) is linear and P′(t; ∞) = 1
T , and (c) for r > 1, P(t; ∞) is convex and

limt→0 P′(t; ∞) = 0.

The graphical intuition for the formula in Theorem 8 is depicted in Figure 4.7.

The first term di(v∗(t)), which we call the density term, is i’s marginal density at

her continuation payoff conditional on the distribution restricted to the acceptance

set. The second term bi(v∗(t)), which we call the barycenter term, measures the

distance between the barycenter of the acceptance set and the cutoff. Remember

that the speed at which the cutoff moves towards the limit point is determined by

this distance, by equation (4.1). Hence the formula for r in equation (4.7) measures

the speed at which the acceptance set shrinks. This is consistent with the fact that

32 The computation is given in Lemma 7 in the Appendix.
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the duration formula in equation (4.7) is increasing in r > 0 because if the accep-

tance probability shrinks quickly, then players reject with high probability for a

long time, resulting in a long duration.

Theorem 8 also explains the reasoning behind the formula in Theorem 7. Let rX,

rY, and rXY be associated with models (i), (ii), and (iii), respectively. rX and rY are

well-defined as DX and DY exist. Then, by definition, rXY must be equal to rX + rY.

Hence the limit expected duration in model (iii) exists and it is 1
1+r−1

XY
= 1

1+(rX+rY)−1 .

Rearranging terms, we get the formula in Theorem 7.

Now we use the formula given in Theorem 8 to analyze specific classes of games

to understand the preference heterogeneity effect.

Example 1 (Bounded X, smooth boundary, and continuous and strictly positive

density).

Here we impose assumptions employed often in the literature on multi-agent

search (Wilson (2001), Compte and Jehiel (2010), and Cho and Matsui (2011)).

Assumption 3. (a) X is convex and compact subset of Rn
+, and has a smooth

Pareto frontier.

(b) The probability measure µ is absolutely continuous with respect to the

Lebesgue measure on Rn, and admits a probability density function f that is

continuous and bounded away from zero, i.e., infx∈X f (x) > 0.

In this case, when the cutoffs for players are high enough, the acceptance set can

be approximated with an n-dimensional pyramid by the assumption of smooth

boundary, and the distribution over this acceptance can be approximated with a

uniform distribution due to the assumption of continuous and strictly positive den-

sity. This allows us to explicitly compute the limit expected duration, as follows:
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Table 4.1: Limit expected duration of search as opportunities arrive more and more fre-
quently.

Number of agents 1 2 3 5 10 100

Limit expected duration .333 .571 .692 .806 .901 .990

Proposition 16. Under Assumptions 1 and 3, limλ→∞ D(λ) =
n2

n2 + n + 1
.

Corollary 5. Under Assumptions 1 and 3, limλ→∞ D(λ) is increasing in n.

In the proof in the Appendix, we show this result under much more general

assumptions (Assumptions 1, 4, and 7).

The solution of the expected duration provided in Proposition 16 implies that, if

only two players are involved in search, the expected duration is 4
7 T, and it mono-

tonically increases to approach T as n gets larger. Table 4.1 shows the limit expected

duration for several values of n when T = 1.

If Assumption 3 holds, then the limits in di and di coincide. Let us denote

di(v) = di(v) = di(v). When X is bounded, as assumed in Assumption 3, di(v)

grows to infinity as v comes close to the Pareto frontier, while bi(v) decreases to

zero. For this reason we normalize these terms as follows: For Y ⊆ X, let s(Y) =

V(Y)
1
n be the “size” of Y in X. Let us define the normalized terms as

d̃i(v) = di(v)s(A(v))

=
s(A(v))
µ(A(v))

·

lim
ε→0

µ(A((vj + εbj(v))j<i, (vj)j≥i)) − µ(A((vj + εbj(v))j≤i, (vj)j>i)))
ε|b(v)| ,

b̃i(v) =
bi(v)

s(A(v))
=

gi(A(v)) − vi

s(A(v))
.
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Notice that if V(A(v)) = 1, then d̃i(v) = di(v) and b̃i(v) = bi(v).

When the acceptance set is approximated by an n-dimensional pyramid whose

area is normalized to 1, the density term is
(
n

n−1
n

)
× n where “×n” accounts for the

fact that there are n agents, and the barycenter term is n
1
n /(n + 1).

Under Assumption 3, the ascending acceptability effect can be seen in Figure 4.7

by noting that the area that corresponds to the density term has two segments (n

segments in the case of n players), each corresponding to each player. Thus, adding

a player results in an extra region of payoffs that will be accepted in the future. The

probability density in the extra region increases not only because the number of

segments increases, but also because the length of each segment increases. This

happens precisely because players’ preferences are heterogeneous so the density

of the marginal distribution of a player’s payoff increases as her payoff decreases.

This means that the “extra region” that a player’s opponents accept in the future

contains relatively more favorable allocations for the player when there are more

opponents. Although the barycenter term deceases due to this preference hetero-

geneity as well, the overall effect is positive. We call this effect the preference het-

erogeneity effect. Note well that the effect of preference heterogeneity is to (only)

magnify the ascending acceptability effect by lengthening the length of each seg-

ment.

The argument so far suggests that, under Assumption 3, we can make the fol-

lowing decomposition:

The limit duration with n agents =
1

1 +
(
n · n

n+1

)−1
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=
1

1 +

 n · n
n−1

n︸ ︷︷ ︸
density term

· n
1
n

n + 1︸ ︷︷ ︸
barycenter term


−1 .

We next use the formula (4.7) to conduct several comparative statics with re-

spect to preference heterogeneity, holding fixed the number of players.

Example 2 (Change in the shape of X around the limit payoff profile).

First, consider the two-player case, under Assumptions 1 and 3 but dropping

the assumption that the Pareto frontier is smooth (assumed in Assumption 3 (b)).

In this environment, generally X has a kink at the limit expected payoff, so that the

acceptance set when t is large can be approximated by a quadrilateral similar to

co{(0, 0)(1, 0)(0, 1)(q, q)} after rescaling each axis. In this case the limit duration is

computed as

The limit duration =
1

1 +
(

2 · 2q+1
6q

)−1 =
1

1 +

 2 · 1
√

q︸ ︷︷ ︸
density term

· 2q + 1
6
√

q︸ ︷︷ ︸
barycenter term


−1 . (4.9)

Notice that the term corresponding to the preference heterogeneity effect, 2q+1
6q ,

is decreasing in q. This is consistent with how the shape of acceptance set changes

with respect to q. As q grows, the kink of the boundary at the limit payoff becomes

sharper, so the preferences among the players become less heterogeneous. This

means that the “extra region” that a player’s opponent accepts in the future does
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not contain relatively favorable allocations for the player. As a result, the limit

duration can be calculated as D(∞) = 2q+1
5q+1 , and this is decreasing in q.

Example 3 (Change in the shape of X under Assumptions 1 and 3).

Next, consider n-player symmetric X and µ. Consider a transformation of this

problem in the following sense: let Xq and X̄a defined by

Xq = {x ∈ X | max
i∈N

xi − min
j∈N

xj ≤ q} and X̄a = {ya(x) | x ∈ X}

where ya(x) = ax + (1 − a)xe, a ∈ (0, 1], with xe =
( x1+···+xn

n , . . . , x1+···+xn
n

)
. Define

µq by µq(C) = 1
µ(Xq) · µ(C ∩ Xq) and µ̄a by µ̄a({ya(x) | x ∈ C}

)
= µ(C) for any

C ⊆ X.

Both µq and µ̄a shrink the distribution to the middle: µq takes out the offers that

give agents “too asymmetric” payoffs, while µ̄a moves each point by the amount

proportional to the original distance to the equi-payoff line. See Figure 4.8 for a

graphical description in the case of two players. Proposition 16 shows that as long

as Assumptions 1 and 3 are met, expected duration is unaffected by the specificality

of distribution µ. That is,

Proposition 17. If (X, µ) satisfies Assumptions 1 and 3, then the limit expected durations

with (Xq, µq) and (X̄a, µ̄a) are the same as in the case with (X, µ) for any a ∈ [0, 1).

The intuition is simple. In both cases, the distribution is still uniform around

the limit point and the boundary is smooth even under µ̄a, so exactly the same

calculation as in the case with µ suggests that the limit duration is n2

n2+n+1 . In

this case, however, durations with finite arrival rates are affected by the change

in preferences. Table 4.2 shows that the duration becomes shorter as we make the

preferences less heterogeneous, in the case X = {x ∈ R2
+ | x1 + x2 ≤ 1}.
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Figure 4.8: Transfer of allocations in the negotiation for µq (left) and µ̄a (right).

Example 4 (Change in the distribution over unbounded X).

Consider 2-player symmetric X = R2
+ and µ which is associated with a density

function fσ parameterized by σ as follows:

fσ(x1, x2) ∝


e−(x1+x2) · 1√

2πσ2 e−
(x1−x2)2

2σ2 if (x1, x2) ∈ R2
+.

0 otherwise,

That is, we consider an exponential distribution in the direction of 45 degree line,

and a normal distribution with variance σ2 in the direction of 135 degree line. The

parameter σ measures the heterogeneity of preferences. Notice that the limit dis-

tribution as σ → 0 is the (degenerate) exponential distribution over 45 degree line,

and the limit distribution as σ → ∞ is the product measure in which each player’s

marginal distribution is an exponential distribution with parameter
√

2. We can

solve for the limit duration in these two cases analytically using the duration for-

mula in Theorem 8. In the former case the problem is isomorphic to that of one-
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Table 4.2: Preference heterogeneity effect under Assumptions 1 and 3. q and a measure
heterogeneity of preferences.

µq λ

10 20 30 100 ∞

q = 1 0.608 0.591 0.585 0.576 0.571
q = 0.8 0.607 0.590 0.584 0.575 0.571
q = 0.6 0.600 0.586 0.581 0.575 0.571
q = 0.4 0.579 0.574 0.573 0.572 0.571
q = 0.2 0.515 0.534 0.544 0.562 0.571
q = 0 0.398 0.366 0.355 0.340 0.333

µ̄a λ

10 20 30 100 ∞

a = 1 0.608 0.591 0.585 0.576 0.571
a = 0.8 0.625 0.601 0.591 0.578 0.571
a = 0.6 0.604 0.588 0.583 0.575 0.571
a = 0.4 0.567 0.566 0.567 0.570 0.571
a = 0.2 0.489 0.512 0.528 0.557 0.571
a = 0 0.398 0.366 0.355 0.340 0.333

player case and the limit expected duration as λ → ∞ is 1
2 , and in the latter case

it is 2
3 . We use the duration formula to numerically compute the limit duration in

the intermediate values of σ, and the result is given in the graph of Figure 4.9. For

any σ > 0, the density term is a constant 1√
2
. It is the barycenter term that varies

with σ. Specifically, the barycenter term rises with σ from 1√
2

(when λ → 0) to
√

2

(when λ → ∞). This is because, the more heterogeneous the preferences are, the

more realizations of payoffs are scattered outside of the acceptance set.33 Since it

33 The effect that the total probability on the acceptance set decreases for a given value of v does
not matter, as we take the limit as λ → ∞.

123



Figure 4.9: Preference heterogeneity (measured by σ) and the limit search duration.

is more difficult for a realization to stay in the acceptance set if the sum of payoffs

are smaller, heterogeneity implies that, conditional on acceptance, payoffs are high

on average. Thus, if preferences are more heterogeneous (σ is larger), the oppo-

nent’s gain relative to the continuation payoff conditional on acceptance is higher.

This means that the loss from a unit time passing is larger, so the opponent will de-

crease the cutoff faster. This makes the incentive to wait larger, implying a longer

expected duration.

4.4.3 Step 3: Finite Arrival Rate

Our results on the expected duration so far suggest that there are reasons to ex-

pect a positive duration of search even in the limit as the friction of search vanishes.

To evaluate the significance of these reasons, we now consider cases with finite ar-

rival rates. We will show that the expected duration converges to the limit duration very

fast, provides evidence that our limit analysis contains economically-meaningful

content—so the effects that we identify in the previous discussion are the keys to

understand the positive duration in reality.

First, we show that the convergence speed of the duration is high. Recall that
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D(λ) and D(∞) are the expected durations under arrival rate λ and the limit ex-

pected duration for T = 1, respectively. Theorem 8 ensures the existence of D(∞)

if r = r.

Theorem 9. Under Assumption 1, if r = r, then |D(λ) − D(∞)| = O( 1
λ ).

This is a fast rate of convergence; for example, when payoffs realize upon

agreement and there is a positive discount rate (with a finite or infinite horizon),

|D(λ) − D(∞)| is of the same order as 1

λ
1

n+1
under Assumptions 1 and 3.

We further support our claim numerically through a number of examples. We

find that the limit duration of Proposition 16 is not far away from those with finite λ

in many cases. The differential equation (4.1) does not have a closed-form solution

in general, and even if it does, D(λ) may not have a closed-form solution as it

involves further integration. For this reason, we solve the differential equation

and integration numerically to obtain the values of D(λ) for specific values of λ.

We considered the following distributions standard in the literature with T = 1.

Note that, in the apartment search example, if the couple has ten weeks before

the deadline and a broker provides information of an apartment once per week on

average (very infrequent case), the situation corresponds to λ = 10.

Case 1: µ is the uniform distribution over X = {x ∈ Rn
+ | ∑i∈N xi ≤ 1} for n =

1, 2, 3 and λ = 10, 20, 30, 100.

Case 2: µ is the uniform distribution over X = {x ∈ Rn
+ | ∑i∈N x2

i ≤ 1} for n = 1, 2

and λ = 10, 20, 30, 100, 1000.

Case 3: µ is the uniform distribution over X = {x ∈ Rn
+ | maxi∈N xi ≤ 1} for

n = 1, 2, 3 and λ = 10, 20, 30, 100.
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Figure 4.10: A numerical example of the cumulative probability of agreement.

Case 4: µ is the product measure over X = Rn
+ where each marginal corresponds

to an exponential distribution with parameter ai > 0 for n = 1, 2, 3, 10 and

λ = 10, 20, 30, 100.

Case 5: µ is the product measure over X = Rn
+ where each marginal corresponds

to a log-normal distribution with mean 0 and standard deviation σ = 1
4 , 1, 4

for n = 1 and λ = 10, 20, 30, 100.

Figure 4.10 shows a graph of the cumulative probability of agreement for λ =

10 (i.e., 1 − P(t; 10)) and for λ → ∞ (i.e., 1 − limλ→∞ P(t; λ)) of Case 1 with n = 2.

Also, Figure 4.11 shows the probability density function of the duration of search

in such a case (i.e., P(t; λ) · p(t; λ)).

In Table 4.3, we provide the computed values for selected choices of parameter

values and cases. We provide the complete description of all the computed values

in the Appendix.34

According to our calculation, D(λ) is within 10% difference from D(∞) except

34 Some values are computed analytically: The results for Case 1 for n = 1, 2, Case 2 for n = 1,
Case 4 for n = 1, 2, 3, 10 are analytical.

126



time

density

−1 0

λ = 10

λ = 100
λ = 1000

Figure 4.11: The probability density of the duration of search.

for a single case where the difference is 19.4%, which happens in Case 1 with n = 1.

Generally the percentage falls as the number of agents becomes larger and the ar-

rival rate goes up.35 For example if we add another player in Case 1, the difference

falls down dramatically to 6.5%, and if we increase the arrival rate to 20 (fixing the

number of players at n = 1), the difference becomes 9.9%. In all other cases the

difference is much smaller and often less than 5%.36 Notice that we predict “over-

shooting” of the expected duration in Case 2 than in 1. This is because when the

continuation value is far away from the boundary, the shape of the acceptance set

is close to a square with which we expect a shorter duration, and gradually the

shape approaches a triangle (precisely, the density effect would be smaller than the

case of a triangle if the limit shape of the acceptance set were the same as that of

X). This suggests that convexity of the set of available allocations, which is often

assumed in the literature, facilitates a faster convergence. When X is unbounded,

35 The monotonicity with respect to arrival rates can be analytically proven for Case 1 with n = 2.
However, the monotonicity fails in general. To see this, consider the case in which D(∞) = 1. By
optimality it must be the case that D(λ) < 1 for any finite λ, so in this case the duration cannot be
decreasing in λ. Note also that in Case 2, after the “overshooting” the duration comes back to the
limit duration, thus D(λ) is nonmonotonic.

36 We are planning to extend the analysis to more cases beyond the setting provided here.
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Table 4.3: Expected durations for finite arrival rates.

Case 1

λ

10 20 30 100 ∞

n = 1
Expected duration 0.398 0.366 0.355 0.340 0.333

Percentage (%) 19.4 9.92 6.64 2.00 0

n = 2
Expected duration 0.608 0.591 0.585 0.576 0.571

Percentage (%) 6.48 3.44 2.35 0.731 0

Case 2

λ

10 20 30 100 1000 ∞

n = 1
Expected duration 0.398 0.366 0.355 0.340 0.334 0.333

Percentage (%) 19.4 9.92 6.64 2.00 0.200 0

n = 2
Expected duration 0.582 0.568 0.565 0.562 0.567 0.571

Percentage (%) 1.90 −0.541 −1.21 −1.61 −0.798 0

Case 4

λ

10 20 30 100 ∞

n = 1
Expected duration 0.545 0.524 0.516 0.505 0.5

Percentage (%) 9.09 4.76 3.23 0.990 0

n = 2
Expected duration 0.693 0.681 0.676 0.670 0.667

Percentage (%) 3.91 2.11 1.45 0.465 0

the computed difference was much smaller (Cases 4 and 5).

The discussion so far enables us to perform the decomposition mentioned in the

Introduction. The expected duration in the 2-player model with the uniform dis-

tribution over X = {x ∈ R2
+ | x1 + x2 ≤ 1} and λ = 10 is 0.608. The limit expected
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duration as λ → ∞ in this case is 4
7 , so the difference is 0.037. This limit duration

4
7 is calculated from the number r that we denote by r2 := 4

3 . When there is only

one player and the distribution is uniform over [0, 1], the limit duration is 1
3 , and

the number r is r1 := 1
3 . The difference between r2 and r1—the difference caused

by adding one more player—is determined by two effects, the ascending accept-

ability effect and the preference heterogeneity effect. To calculate the ascending

acceptability effect, we compute r that we would obtain if this additional agent’s

distribution over feasible payoffs is independent of the original player’s, and the

distribution corresponds to the uniform distribution over [0, 1]. The duration and r

in this case are 1
2 and rop := 1, respectively, and the difference in terms of r is given

by rop − r1 = 1 − 1
2 = 1

2 . Now the preference heterogeneity effect is the change

in r caused by the change in distribution from this product measure to X. This is

given by r2 − rop = 4
3 − 1 = 1

3 . In general, fixing an n-player model (X, µ) and an

(n + m)-player model (Y, γ), we can solve for the ascending acceptability effect by

computing the difference between the r in the model (X, µ) and the r in the model

(X × [0, 1]m, µ × (U[0, 1])m). Then the preference heterogeneity effect can be com-

puted by solving for the difference in the latter r and the r in the model (Y, γ).37

This decomposition is well-defined in the sense that the ascending acceptability ef-

fect (resp. preference heterogeneity effect) of changing the models from an n-player

model (X, µ) to an (n + m)-player model (Y, γ) is identical to the sum of ascending

acceptability effect (resp. preference heterogeneity effect) of changing the models

from an n-player model (X, µ) to an (n + l)-player model (Z, δ) and the ascending

acceptability effect (resp. preference heterogeneity effect) of changing models from

an (n + l)-player model (Z, δ) to an (n + m)-player model (Y, γ) where l < m, since

37 The uniform distribution over [0, 1] can be replaced with any distribution with a positive contin-
uous density over a compact interval without changing the computation.
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r is additive.

4.5 Welfare Implications

In Section 4.3, we showed that the limit expected payoff must be weakly Pareto

efficient if the limit exists. In this section we seek further welfare implications. Let

us impose the following assumption to rule out uninteresting cases:

Assumption 4. (a) X is a compact subset of Rn.

(b) X coincides with the closure of its interior (with respect to the standard topol-

ogy of Rn).

(c) The probability measure µ is absolutely continuous with respect to the

Lebesgue measure on Rn, and admits a probability density function f .

(d) The probability density f is bounded above and away from zero, i.e., supx∈X

f (x) < ∞ and infx∈X f (x) > 0.

Condition (a) in Assumption 4 is a standard assumption when we consider

welfare implications. Note that we do not assume convexity here. Condition (b)

rules out irregularities involving lower dimensional subsets. For example, if X

has an isolated point this condition is violated, because the interior of X does not

contain any isolated points. Condition (c) implies that µ(Y) = 0 for any Y ⊆ X

that has (n-dimensional) Lebesgue measure zero. Condition (d) is a condition that

makes our analysis tractable.

In general, v∗ is not necessarily (strictly) Pareto efficient in X even if v∗ exists.

There is an example of a distribution µ satisfying Assumptions 1 and 4 in which

v∗(t) converges to an allocation that is not Pareto efficient.
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Figure 4.12: A path that converges to a weakly Pareto efficient allocation.

Example 5. Let n = 2, X =
(
[0, 1/2]× [3/4, 1]

)
∪

(
[3/4, 1] × [0, 1/2]

)
, and f be the

uniform density function on X, which is shown in Figure 4.12. By the symmetry

with respect to the 45 degree line, we must have v∗1(t) = v∗2(t) for all t. Therefore

v∗ = (1/2, 1/2), which is not Pareto efficient in X.38

Note that v∗ is weakly Pareto efficient, and that X is a non-convex set in this

example. In fact, we can show that v∗ is strictly Pareto efficient if X is convex. Fur-

thermore, even if X is not convex, we can show v∗ is “generically” Pareto efficient,

that is, v∗ is Pareto efficient in X for any generic f that satisfies Assumptions 1 and

4.

38 There are (non-trembling-hand) subgame perfect equilibria in which players obtain a more effi-
cient payoff profile than (1/2, 1/2). For example, consider a strategy profile in which players agree
with allocations close to (1, 1/2) or (1/2, 1), and if one of the players rejects such allocations, both
players reject all allocations after the deviation. This is a subgame perfect equilibrium and gives play-
ers expected payoffs close to (3/4, 3/4) in the limit. Similar constructions show that any allocations
in the convex hull of general nonconvex X can be an expected payoff profile supported by a subgame
perfect equilibrium. However, we rule out such subgame perfect equilibria in a view that rejecting
anything after deviation is not a credible threat if a player expects the others to accept with a small
probability.
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Formally, let F be the set of density functions that satisfy Assumptions 1 and 4.

We consider a topology on F defined by the following distance in F : For f , f̃ ∈ F ,

∣∣ f − f̃
∣∣ = sup

x∈X

∣∣ f (x) − f̃ (x)
∣∣.

Proposition 18. Under Assumptions 1 and 4, the set { f ∈ F | v∗ is Pareto efficient in X}

is open and dense in F .

This proposition shows that v∗ is efficient only for generic f . However, if X is

convex, then v∗ is efficient for all f .

Proposition 19. Suppose that X is a convex set. Under Assumptions 1 and 4, v∗ is Pareto

efficient in X.

Pareto efficiency implies that players reach an agreement almost surely if t is

very large. To see this, let π(t) be the probability that players reach an agree-

ment in equilibrium before the deadline given that no agreement has been reached

until time −t. Then the expected continuation payoffs v∗(t) must fall in the set

{π(t)v | v ∈ co(X̂)} where co(X̂) is the convex hull of X̂. This implies v∗(t)/π(t) ∈

co(X̂). We have v∗i (t) > 0 for all t > 0 and i ∈ N since v∗i (t) is nondecreas-

ing and v∗′i (0) > 0 by equation (4.1). Since there is a positive probability that

no opportunity arrives before the deadline, π(t) is smaller than one. Therefore

v∗(t)/π(t) ∈ co(X̂) Pareto dominates v∗(t). Since co(X̂) ∩ A(v∗(t)) converges to a

singleton as v∗(t) goes to v∗ if v∗ is Pareto efficient, this implies limt→∞ π(t) = 1.

That is, we have the following proposition:

Proposition 20. Suppose that v∗ is Pareto efficient. Then the probability of agreement

before the deadline converges to one as λ → ∞.
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We note that this proposition fails if v∗ is only weakly Pareto efficient. In Ex-

ample 5, it is evident that players reach no agreement before the deadline with a

positive probability, since the limit allocation is (1/2, 1/2) while players should

find a good allocations close to (1, 1/2) or (1/2, 1) in the limit as T → ∞.

In Propositions 18 and 19, we showed that v∗(t) almost always converges to the

Pareto frontier of X. Now, we consider an inverse problem: For any Pareto efficient

allocation w in X which is not at the edge of the Pareto frontier,39 we show that one

can find a density f that satisfies Assumptions 1 and 4 such that the limit of the

solution v∗(t) of equation (4.1) is w.

Proposition 21. Suppose that X ⊆ Rn
+ satisfies Assumption 4 (a), (b). Suppose that w ∈

Rn
++ is a Pareto efficient allocation in X, and is not located at the edge of the Pareto frontier

of X. Then there exists a probability measure µ with support X such that Assumptions 1

and 4 hold, and limλ→∞ v∗(t) = w for all t ∈ (0, T].

In the proof, we construct a probability density function f to have a large weight

near w ∈ X, and show that the limit continuation payoff profile is w if there is a

sufficiently large weight near w. Note that this claim is not so obvious as it seems.

Indeed, we will see in Section 4.6 that the limit is independent of density f if there

is a positive discount rate ρ > 0, as long as Assumptions 1 and 4 hold.

4.6 The Payoffs Realizing upon Agreement

In this section, we consider the case where the payoffs realize as soon as an

agreement is reached, as opposed to the assumption in the previous sections that

the payoffs realize only at the deadline. We suppose that if a payoff profile x =

39 We formally define this property in the proof given in the Appendix.
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(x1, . . . , xn) is accepted by all players at time −t ∈ [−T, 0] then player i obtains a

payoff xie−ρ(T−t) where ρ ≥ 0 is a discount rate. If no agreement has been reached

until time 0, each player obtains the payoff 0.40 First, we note that if ρ = 0, exactly

the same analyses as in the previous sections apply. This is because with ρ = 0,

player i’s payoff when an agreement occurs at time −t is xie−ρ(T−t) = xie−0·(T−t) =

xi, which is independent of t. In this section, we focus on the case where ρ > 0. Un-

der Assumption 1, an easy computation shows that the differential equation (4.1)

is modified in the following way:

v′(t) = −ρv(t) + λ
∫

A(t)

(
x − v(t)

)
dµ (4.10)

with an initial condition v(0) = (0, . . . , 0) ∈ Rn.

Suppose Assumptions 1 and 4 hold. Let v∗(t; ρ, λ) be the (unique) solution of

ODE (4.10).41 If λ is large, the right hand side of equation (4.10) is approximated

by the right hand side of equation (4.1) when the value of the integral is not too

small. Therefore, v∗(t; ρ, λ) is close to the solution of equation (4.1) in the case

of ρ = 0, for λ large relative to ρ. This resemblance of trajectories holds until

v∗(t; ρ, λ) approaches the boundary of X̂. In particular, we can show that the path

of v∗(t; ρ, λ) approaches v∗(t; 0, ∞) = limλ→∞ v∗(t; ρ, λ) arbitrarily closely as λ →

∞, where v∗(t; 0, ∞) is the limit of the solution of equation (4.1).

40 This is with loss of generality but setting a nonzero threat point payoff leads only to minor mod-
ifications of the statements of our results.

41 Essential uniqueness of trembling-hand equilibrium is obtained by a proof analogous to that for
Proposition 12. The unique solution of equation (4.10) gives the cutoff profile that characterizes a
trembling-hand equilibrium.
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Figure 4.13: Vectors when t → ∞.

Proposition 22. For all ε > 0, there exists λ̄ > 0 such that for all λ ≥ λ̄,

|v∗(t; 0, ∞) − v∗(t; ρ, λ)| ≤ ε for some t.

Remark 1. Before analyzing v∗ = limλ→∞ v∗(t; ρ, λ), let us consider another limit

v∗(∞) = limt→∞ v∗(t; ρ, λ). Since the right hand side of equation (4.10) is not pro-

portional to λ, these two limits do not coincide for positive ρ > 0. If the limit v∗(∞)

exists, this must satisfy

ρv∗(∞) = λ
∫

A(v∗(∞))

(
x − v∗(∞)

)
dµ. (4.11)

For ρ > 0, equality (4.11) shows µ(A(v∗(∞))) > 0, which implies that v∗(∞) is

Pareto inefficient in X. This will contrast with efficiency of v∗ = limλ→∞ v∗(t; ρ, λ)

that we will show in Proposition 23.

Equality (4.11) also implies that v∗(∞) is parallel to the vector from v∗(∞) to

the barycenter of A(v∗(∞)), as shown in Figure 4.13 in the two-dimensional case.
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To avoid complications, we impose the following assumption in addition to

Assumptions 1 and 4:

Assumption 5. (a) The weak Pareto frontier of X̂ is smooth.

(b) Every component of the normal vector at any Pareto efficient allocation in X is

strictly positive.

(c) There exists ε > 0 such that X contains a set {x ∈ Rn
+ |w ≥ x, and |w − x| ≤

ε for some weakly Pareto efficient w ∈ X}.

(d) The density function f is continuous.

Now suppose that λ is very large. Then µ(A(v∗(∞))) must be very small, which

means that v∗(∞) is very close to the Pareto frontier of X, where v∗(∞) is defined

as in Remark 1. By Assumptions 1 and 4, the density f is approximately uniform

in A(v∗(∞)) if A(v∗(∞)) is a set with a very small area. To obtain an intuition,

suppose that A(v∗(∞)) is a small n-dimensional pyramid. The vector in the right

hand side of equality (4.11) is parallel to the vector from v∗(∞) to the barycenter

of A(v∗(∞)). We use this property to show that the boundary of A(v∗(∞)) at its

barycenter is tangent to the hypersurface defined by ∏i∈N xi = a for some constant

a. We refer to such a Pareto efficient allocation as a Nash point, and the set of all

Nash points as the Nash set of (X̂, 0) (Maschler, Owen, and Peleg (1988), Herrero

(1989)). The Nash set contains all local maximizers and all local minimizers of the

Nash product. If X is convex, there exists a unique Nash point, called the Nash

bargaining solution.

The above observation leads to the next proposition.

Proposition 23. Suppose that Assumptions 1, 4, and 5 hold, and that any Nash point

is isolated in X. Then the limit v∗ = limλ→∞ v∗(t; ρ, λ) exists and belongs to the Nash
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set of the problem (X̂, 0) for all t > 0. If X is convex, this limit coincides with the Nash

bargaining solution of (X, 0).

Therefore, the trajectory of v∗(t) for very large λ starts at v∗(t) = 0, approaches

v∗(t; 0, ∞), and moves along the Pareto frontier until reaching a point close to a

Nash point.

Finally we consider the duration of search in the equilibrium. In contrast to

Theorems 5 and 6 in the case when payoffs realize at the deadline (or ρ = 0), we

show that an agreement is reached almost immediately if λ is very large.

Proposition 24. Suppose that Assumptions 1, 4, and 5 hold. If ρ > 0, then D(∞) = 0.

4.7 Discussions

4.7.1 Non-Poisson Arrival Processes

In the main sections we considered Poisson processes to make the presentation

of the results easier. The Poisson process assumes that the probability of oppor-

tunity arrival is zero at any moment, so in particular the probability of receiving

one more opportunity shrinks continuously to zero as the deadline approaches.

However in some circumstances it would be more realistic to assume there is a

well-defined “final period” that can be reached with a positive probability. In this

section we generalize our model to encompass such cases and show that our results

are unaffected.

Specifically, consider dividing the time horizon of length T into small subin-

tervals each with length ∆t (so there are T
∆t periods in total). At the end of each

subinterval, players obtain an opportunity with probability π(∆t). Notice that

the Poisson process corresponds to the case when π(∆t) = λ∆t for some λ > 0
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and we let ∆t → 0. Here we allow for general π function, such as π(∆t) = a or

π(∆t) = a
√

∆t for some constant a > 0. Let vi(n) be the continuation payoff at

time n∆t. Then,

vi

( t
∆t

+ 1
)

=
(
1 − π(∆t)

)
vi

( t
∆t

)
+ π(∆t)

(∫
X\A(v( t

∆t ))
vi

( t
∆t

)
dµ +

∫
A(v( t

∆t ))
xi dµ

)
= vi

( t
∆t

)
+ π(∆t)

∫
A(v( t

∆t ))

(
xi − vi

( t
∆t

))
dµ.

Hence,

vi

( t
∆t

+ 1
)
− vi

( t
∆t

)
= π(∆t)

∫
A(v( t

∆t ))

(
xi − vi

( t
∆t

))
dµ. (4.12)

Notice that if we set π(∆t) = λ∆t and take the limit as ∆t → 0, the left hand

side divided by ∆t converges to v′i(t) in the Poisson model and the right hand side

divided by ∆t converges to λ
∫

A(v(t))(xi − vi(t))dµ, consistent with equation (4.1).

Proposition 25. If lim∆t→0
π(∆t)

∆t = ∞, under Assumptions 1 and 3, the limit expected

duration is n2

n2+n+1 T.

Note that this result is consistent with Proposition 16 where we consider the

Poisson process and take a limit of λ → ∞. Thus our limit result is robust to the

move structure.

4.7.2 Relative Importance of Discounting and Search Friction

In the main sections, we have shown that if ρ = 0, the limit expected duration

as λ → ∞ is positive under certain assumptions, and the limit equilibrium payoff

profiles are efficient but depend on the distribution µ. In Section 4.6, in contrast,

the limit duration is zero, and the limit payoffs are the Nash bargaining solution
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if ρ > 0 is fixed. In this section, we show that the limit duration and the limit

equilibrium payoffs as λ → ∞ and ρ → 0 simultaneously depend on the limit of

λρn.

Proposition 26. Suppose that Assumptions 1, 3, and 5 hold. The limit expected duration

D(∞) and the limit allocation v∗ = limλ→∞,ρ→0 v∗(t; ρ, λ) satisfy the following claims:

(i) If λρn → 0, then D(∞) > 0, and v∗ = limλ→∞ v∗(t; 0, λ), which is the limit analyzed

in Sections 4.4 and 4.5. (ii) If λρn → ∞, then D(∞) = 0, and v∗ = limλ→∞ v∗(t; ρ, λ)

for ρ > 0, which is the limit shown in Section 4.6.

An insight behind this result is as follows: The limit of the expected payoffs

depend on whether the first term in ODE (4.10) is negligible or not when compared

to the second term. Let z(t; ρ, λ) be the Hausdorff distance from v∗(t; ρ, λ) to the

Pareto frontier of X. If ρ is very small and λ is not very large, Proposition 22 shows

that v∗(t; ρ, λ) is close to limλ→∞ v∗(t; 0, λ) which is on the Pareto frontier. Then we

can apply an analogous argument to the one provided in the discussion in the proof

sketch of Theorem 8 to show that z(t; ρ, λ) is approximately proportional to λ−1/n.

Since µ(A(t)) approximates z(t; ρ, λ)n (times some constant), and the length of the

vector from v∗(t; ρ, λ) to the barycenter of A(t) is linear in z(t; ρ, λ), the second

term is of order λ · λ−1/n · λ−1 = λ−1/n. Therefore if λρn → 0 the first term, which

approximates ρv∗, is negligible because ρ vanishes more rapidly than λ−1/n. Thus

the limits in this case are the same as in Sections 4.4 and 4.5. If λρn → ∞, the

first term is significant because ρ does not vanish rapidly compared to λ−1/n. This

corresponds to Section 4.6. An analogous argument can be made for the limit of

durations.
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4.7.3 Infinite-Horizon and Static Games

Although we consider a finite-horizon model, our convergence result in Propo-

sition 23 is suggestive of that in infinite-horizon models such as Wilson (2001),

Compte and Jehiel (2010), and Cho and Matsui (2011), all of whom consider the

limit of stationary equilibrium outcomes as the discount factor goes to one in

discrete-time infinite-horizon models. This is because the threatening power of

disagreement at the deadline is quite weak if the horizon is very far away, and

thus the infinite-horizon model is similar to a finite-horizon model with T → ∞

if ρ > 0. In fact, we can show that the iterated limit as T → ∞ and then ρ → 0

is the Nash bargaining solution in our model if X is convex. By Proposition 26,

limρ→0 v∗(T; αρ, αλ) with α = ρ−a is the Nash bargaining solution for all a >

n/(n + 1). As a → ∞, we see that the iterated limit limρ→0 limα→∞ v∗(T; αρ, αλ) is

also the Nash bargaining solution. Since enlarging T is equivalent to raising both

λ and ρ in the same ratio by the form of ODE (4.10), the iterated limit as T → ∞

first and then ρ → 0 must be the Nash bargaining solution. For the same reason,

the expected duration in the limit as the discount factor goes to one in the infinite-

horizon model is zero, being analogous to our Proposition 24 in which we send λ

to ∞ while ρ > 0 is fixed. Therefore we obtained the following proposition:

Proposition 27. In the infinite-horizon search model, the expected duration in a stationary

equilibrium converges to zero as the discount factor goes to one.

Propositions 12 and 13 imply that the limit continuation payoff of a player is es-

sentially equal to the cutoff, which is expressed by a single variable. In this sense,

there is some connection between our model and a static game considered by Nash

(1953) himself, who provided a characterization of the Nash bargaining solution by
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introducing a static demand game with perturbation described as follows.42 Sup-

pose that X is convex. The basic demand game is a one-shot strategic-form game

in which each player i calls a demand xi ∈ R+. Players obtain x = (x1, . . . , xn)

if x ∈ X, or 0 otherwise. In the perturbed demand game, players fail to obtain

x ∈ X with a positive probability if x is close to the Pareto frontier. Under certain

conditions, he showed that the Nash equilibrium of the perturbed demand game

converges to the Nash bargaining solution as the perturbation vanishes.

Let us compare the perturbed Nash demand game with our multi-agent search

model with a positive discount rate. Let p(x) = µ
(

A(x)
)

be the probability that

players come across an allocation which Pareto dominates or equals x ∈ X at an

opportunity. If T is very large and t is close to T, players at time −t choose almost

the same cutoff profile, say x, contained in the interior of X. The average duration

that players wait for an allocation falling into A(x) is almost 1/λp(x). During this

time interval, payoffs are discounted at rate ρ. Since xi must be equal to her con-

tinuation payoff in an equilibrium, i would lose nearly (1− e−ρ/λp(x))yi on average

by insisting on cutoff xi where y is the expected allocation conditional on y ∈ A(x).

Note that this loss vanishes as ρ → 0 for every x in the interior of X. Let probability

P(y) satisfy P(y) = e−ρ/λp(x). Player i loses the same expected payoff when y ∈ X

is demanded in the perturbed demand game where the probability of successful

agreement is P(y).

The key tradeoff in this game, the attraction to larger demands or the fear of

failure of agreement, is parallel to that in the multi-agent search, to be pickier or to

avoid loss from discounting.

42 We here follow a slightly modified game considered by Osborne and Rubinstein (1990, Sec-
tion 4.3). Despite the difference, the model conveys the same insight as the original.
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4.7.4 Time Costs

In the model of the main sections, whether or not players discount the future

does not affect the outcome of the game, as payoffs are received at the deadline.

However, there may still be a time cost associated with search. In this subsection we

analyze a model with time costs, and show numerically that the search durations

with “reasonable parameter values” are close to the limit duration with zero time

cost that we solved for in the main sections.

Consider a model in which each player incurs a flow cost c > 0 until the search

ends. In this model, it is straightforward to see that the differential equation (4.1)

is modified in the following way:

v′i(t) = −c + λ
∫

A(t)

(
xi − vi(t)

)
dµ (4.13)

for each i ∈ N, with an initial condition v(0) = (0, . . . , 0) ∈ Rn.

The analysis of this differential equation is similar to the one in Section 4.6,

with an exception that under Assumptions 1, 3, and 5, the limit expected payoff

profile as λ → ∞ for a fixed cost c > 0 is now a point that maximizes the sum

of the payoffs, denoted vS. Let v∗(t; c, λ) be the expected payoff at time −t when

parameters c and λ are given. A proof similar to the one for Proposition 26 shows

the following:

Proposition 28. Suppose that Assumptions 1, 3, and 5 hold. The limit expected duration

D(∞) and the limit allocation v∗ = limλ→∞,c→0 v∗(t; c, λ) satisfy the following claims:

(i) If λcn → 0, then D(∞) > 0, and v∗ = limλ→∞ v∗(t; 0, λ), which is the limit analyzed

in Sections 4.4 and 4.5. (ii) If λcn → ∞, then D(∞) = 0, and v∗ = vS for c > 0.

The proposition suggests that for a high arrival rate λ, the expected duration
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Figure 4.14: Time costs and arrival rates. The shaded region describes the set of pairs (c, λ)
with which the expected search duration is within 5% difference from the limit
duration.

does not change so much when we increase the cost from zero to a small but posi-

tive number. Combined with our argument in Step 3, this suggests that whenever

the cost is sufficiently small, our limit arguments in Steps 1 and 2 are economically

meaningful. Now we numerically show that the degree to which the cost should

be small is not too extreme. Specifically, we consider the case when n = 2 and µ is

a uniform distribution over X = {x ∈ R2
+ | x1 + x2 ≤ 1}, and solve for the range of

pairs of costs and arrival rates such that the expected search duration is within 5%

difference from the limit duration. As shown in Figure 4.14, such a range contains a

wide variety of pairs of parameter values (note that the expected limit payoff is 0.5

in this game, so the cost of 0.05 corresponds to the setting with a fairly high cost).

When n = 2 and µ is an independent distribution such that each player’s marginal

is an exponential distribution, whenever the cost c is less than 10% of the expected

payoff given with c = 0 and λ = 100, we find that λ for which the expected dura-

tion is of 95% of the limit duration is more than 100, and that of 105% is less than
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10.43 These results suggest that the limit argument that we conducted in Steps 1

and 2 of the main sections is economically reasonable.44

4.7.5 Counterexamples of Positive Duration of Search

In Theorems 5 and 6, we showed that the limit expected duration of search

is positive if certain assumptions hold. In this section, we present examples of

distributions under which assumptions are not satisfied and the expected duration

may not be positive as λ → ∞.

First, note that it is straightforward to see that if µ assigns a point mass to a

point that Pareto-dominates all other points in the support of µ, the limit expected

duration is zero. Less obvious is the situation where µ allows for point masses

while no point Pareto-dominates all the other points. Even in this case, Kamada

and Sugaya (2010)’s “three-state example” shows that trembling-hand equilibrium

may not be unique, and the duration can be zero in a trembling-hand equilibrium.45

Our Assumption 1 (b) requires a more stringent condition that the marginal distri-

bution must have a locally bounded density function, and thus does not have a

point mass. Here we present an example in which µ does not have a point mass

while its marginal has a point mass, and there are multiple equilibria and some of

them have zero limit duration.

Example 6. Consider X = co{(2, 1), (1, 1)}∪ co{(1, 2), (1, 1)} and let µ be a uniform

distribution over this X. First, consider a strategy profile in which agents accept

43 In this case, we can show that the expected duration is positive even in the limit as λ → ∞,
exhibiting a stark contrast to Proposition 24. See Kamada and Muto (2011a) for details.

44 We are planning to extend this argument to more cases beyond the setting provided here.

45 Consider µ that assigns equal probabilities to (2, 1) and (1, 2).
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a payoff strictly above 1 until time −t∗ and accept all offers after −t∗, where t∗

satisfies the indifference condition at −t∗:

1 =
1 − e−λt∗

2
(1 + 1.5) + e−λt∗ · 0,

or t∗ = 1
λ ln(5). Since given this strategy profile the continuation payoff for both

players is 1 if −t ≤ −t∗ and it is strictly less than 1 otherwise, this indeed consti-

tutes a trembling-hand equilibrium.

However, there exist other equilibria. For example, consider a strategy pro-

file which is exactly the same as the above one except that both agents accept the

first offer regardless of its realization. Since the continuation payoff at the time

of the first arrival is 1 for both players as we have argued, this also constitutes

an trembling-hand equilibrium. Thus there are multiple trembling-hand equilib-

ria. Also the limit expected duration under the second equilibrium is trivially zero,

suggesting the need for Assumption 1 (b) for Theorem 6 to hold.

The key to multiplicity and zero duration is the fact that payoff profiles at

which players are indifferent arrive with positive probability due to the atom on

marginals. Assumption 1 rules out such a situation.

Next, we show that even if µ has no point mass, the limit expected duration

may be zero when µ does not satisfy Assumption 2 (nor Assumption 6 in Ap-

pendix C.2.4).

Example 7. For n = 1, let F be a cumulative distribution function defined by

F(x) = 1 +
1

ln(1 − x)
for x ∈ [1 − e−1, 1), and F(1) = 1. The density is f (x) =
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1
(1−x)(ln(1−x))2 . Recalling formula (4.7), the density term is

d(v) =
f (v)

1 − F(v)
= − 1

(1 − v) ln(1 − v)
,

and the barycenter term b1(v) is clearly smaller than 1− v. Since limλ→∞ v∗(t) = 1,

r = lim
v→1

d1(v)b1(v)

≤ lim
v→1

−1
ln(1 − v)

= 0.

By Theorem 8, the limit duration is zero.

In this example, it is easy to show that for all α > 0, there exists ε > 0 such

that 1 − (1 − x)α ≥ F(x) for all x ∈ [1 − ε, 1]. Distribution F is very close to a

discrete distribution, in that F(x) converges to 1 as x → 1 at a speed slower than

any polynomial functions. In such a case, the above computation shows that the

limit duration can be zero, which is the same as the case with discrete distributions.

4.7.6 The Effect of a Slight Change in the Distribution

The limit result in Proposition 16 depends crucially on the assumption of

smooth boundary and continuous positive density. Although this is the assump-

tion that is often invoked in the literature, it is desirable to know how robust this

result is. To this end, consider X = Rn
+ and a distribution over X, µ, which may or

may not be full-support. Introduce a notion of distance between two distributions,

d(µ, γ) = supA⊆X |µ(A) − γ(A)|.

A standard argument on ordinary differential equations shows the following:
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Proposition 29. For any λ, the limit duration is continuous in distribution almost every-

where.

That is, for any finite arrival rate, the limit duration is not substantially affected

by a slight change in distribution. Combined with the result that our limit result

approximates the situation with a finite but high arrival rate, this suggests that our

limit duration is relevant even for the distributions that are not very different from

a distribution that satisfies our assumptions (Assumptions 1 and 4).

4.7.7 Time Varying Distributions

In the main model we considered the case in which the distribution µ is time-

independent. This benchmark analysis is useful in understanding the basic incen-

tive problems that agents face, but in some situations it might be more realistic that

the distribution changes over time. In this section, we examine whether the pos-

itive duration result in Theorem 5 (the case with a single agent) is robust to this

independence assumption. An analogous argument can be made for the multiple-

agent case. Let Ft be the cumulative distribution function of the payoff at time −t.

First, consider the case in which the distribution becomes better over time in

the sense of first order stochastic dominance. In this case, it is easy to see that the

expected duration is still positive and it becomes longer at least in certain cases:

For each t, consider the cutoff at each time −s ∈ (−t, 0] that equates the acceptance

probability with the one that the agent would get at −s if the distribution in the

future were fixed at Ft. This gives a higher continuation payoff at −t as the distri-

bution becomes better over time. Thus the cutoff at −t must be greater than the

continuation payoff at −t that the agent would obtain by fixing the distribution at

Ft ever after. This means that at any −t, the acceptance probability is smaller than
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the one obtained by fixing the distribution at Ft ever after. Hence the acceptance

probability at −t is O( 1
λt ), so we have a positive duration. If (Ft)t∈[0,T] is such that

the acceptance probability at time −s, p(s), when the payoff is drawn by the fixed

Ft independently over time does not depend on t, then the above argument also

implies that the duration becomes longer.

Now consider the case when the distribution may become worse off. First,

if the support of the distribution becomes worse off, then there is no guarantee

of positive duration. For example, if the upper bound of the support decreases

exponentially then the analysis of the duration becomes equivalent to that for the

case with discounting, in which Proposition 24 has already shown that the limit

expected duration is zero.

If the support does not change, then the positive duration result holds quite

generally: In the proof of Theorem 5 provided in the Appendix, we did not use

the fact that F does not depend on t. The following modification of Assumption 2

guarantees the positive duration.

Assumption 2′′. There exists a concave function ϕ such that 1− ϕ(x) is of the same order

as 1 − Ft(x) in {x ∈ R | Ft(x) < 1} for all t.

Notice that we require the existence of x̄ and ϕ that are applicable to all Ft.

Proposition 30. Suppose n = 1. Under Assumptions 1 and 2′′, lim infλ→∞ D(λ) > 0.

4.7.8 Dynamics of the Bargaining Powers

Consider the case where X = {x ∈ R2
+ | x1 + x2 ≤ 1} and a density f such that

f (x) > f (x′) if x2 − x1 > x′2 − x′1. Suppose that the payoff realizes upon agree-

ment as in Section 4.6, and the discount rate ρ > 0 is very small. In this case, the
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Figure 4.15: Paths of continuation payoffs. The probability density is low near (1, 0), and
high near (0, 1).

limit of the solution of ODE (4.1) with ρ = 0, denoted v∗(T; 0, ∞), locates at the

boundary of X by Proposition 19, and it is to the north-west of ( 1
2 , 1

2), which is the

Nash bargaining solution and is the limit of the solution of ODE (4.10). Hence,

by Proposition 22, the continuation payoff when the players receive payoffs upon

the agreement starts at a point close to ( 1
2 , 1

2 ), and goes up along the boundary of

X and reaches a point close to v∗(T; 0, ∞), and then goes down to (0, 0). On this

path of play, player 1’s expected payoff is monotonically decreasing over time. On

the other hand, player 2’s expected payoff changes non-monotonically. Specifi-

cally, it rises up until it reaches close to v∗2(T; 0, ∞), and then decreases over time.

Figure 4.15 illustrates this path.

Underlying this non-monotonicity is the change in the bargaining powers be-

tween the players. When the deadline is far away, there will be a lot of opportu-

nities left until the deadline, so it is unlikely that players will accept allocations

that are far from the Pareto efficient allocations, so the probability distribution over

such allocations matters less. Since X is convex and symmetric, two players ex-
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pect roughly the same payoffs. However, as the time passes, the deadline comes

closer, so players expect more possibility that Pareto-inefficient allocations will be

accepted. Since player 2 expects more realizations favorable to her than player 1

does, player 2’s expected payoff rises while player 1’s goes down. Finally, as the

deadline comes even closer, player 2 starts fearing the possibility of reaching no

agreement, so she becomes less pickier and the cutoff goes down accordingly.

4.7.9 Market Designer’s Problem

In this section we consider problems faced by a market designer who has a

control over some parameters of the model.

First, consider the case when the payoffs realize at the deadline, and the de-

signer can tune the horizon length T. In this case there is no point in making the

horizon shorter, as the continuation payoff v(t) is increasing in t.

Second, still in the case with payoffs realizing at the deadline, suppose that the

designer can instead affect the probability distribution over potential payoff pro-

files, by “holding off” some offers. Formally, given µ, let the designer choose a

distribution µ′ such that µ′(C) ≤ µ(C) for all C ⊆ X.46 In this case the designer

faces a tradeoff: On one hand, tuning the distribution can affect the path of contin-

uation payoffs and the ex ante expected payoff at time −T (an analogous argument

to Proposition 21). On the other hand, however, changing the distribution will de-

crease the expected number of offer arrivals in the finite horizon, so v(T) is lower

than the case when the distribution is instead given by µ′′ such that µ′′(C) = µ′(C)
µ(X′)

for all C ⊆ X. The explicit form of an optimal design would depend on the specifi-

calities of the problem at hand and the objective function of the designer, but basi-

46 Note that µ′ may not be a probability measure because it might be the case that µ′(X) < 1.
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cally if the horizon length T is high then reducing probabilities would not lead to

too much loss.

Next, consider the case with payoffs realizing upon agreement. In this case

there can be a benefit from reducing T. As in the case with payoffs realizing at the

deadline, lower T means that the expected payoff at time −T is less close to the

Pareto boundary. However, if the solution when payoffs realizing at the deadline,

v∗(T; 0, ∞), is socially desirable than the Nash bargaining solution, then by reduc-

ing T appropriately the expected payoff profile will come closer to v∗(T; 0, ∞) (pro-

vided that the expected payoffs are in between these two payoffs before shortening

T; remember that by Proposition 22 the expected payoffs for intermediate values

of time t is close to v∗(T; 0, ∞)).

On the other hand, tuning the distribution has a smaller effect than the case

with payoffs realizing at the deadline, as we know that the payoffs eventually con-

verge to the Nash bargaining solution. However, since v∗(T; 0, ∞) depends on the

distribution, Proposition 22 implies that the direction from which the payoff con-

verges varies as the designer varies the distribution.

4.7.10 Majority Rule

In the main sections we considered the case when players use unanimous rule for

their decision making. This is a reasonable assumption in many applications such

as the apartment search, but there are certain other applications in which majority

rule fits the reality better. This section is devoted to the analysis of such a case.

Precisely speaking, by majority rule we mean the decision rule such that the

object of search is accepted if and only if k < n players say “accept” upon its arrival.

First of all, it is straightforward to check that Propositions 12 and 13 (the
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trembling-hand equilibrium is essentially unique and players use cutoff strategies)

carry over to this case. If X is convex, and satisfies Assumption 4, the limit expected

payoff cannot be weakly Pareto efficient. To see this, suppose that the limit payoff

is weakly Pareto efficient. Then, as shown in Figure 4.16, there is a region with a

positive measure such that the acceptance takes place. However the barycenter of

these regions is in the interior of X by convexity, and hence the limit payoff profile

must be an interior point as well. This contradicts the assumption that the limit

payoff profile is weakly Pareto efficient. Now, let the true limit point be ṽ. Since

any payoffs that strictly Pareto dominate ṽ must be accepted by all players, and

the measure of this region is strictly positive, the limit duration must be zero.47 We

summarize our finding as follows:

Proposition 31. Under the majority rule with k < n, if X is convex and satisfies Assump-

tion 4, then the limit expected payoff profile is not weakly efficient, and the limit expected

duration of search is zero.

We note that the conclusion of this proposition still holds even if the smooth-

ness assumption in Assumption 4 is replaced by the following assumption, which

essentially says that the Pareto frontier is downward-sloping with respect to other

players’ payoffs: For all i ∈ N, xi(x−i) = sup{xi | (xi, x−i) ∈ X} is decreasing in xj

for all j 6= i.

4.7.11 Negotiation

Our model assumes that players cannot transfer utility after agreeing on an

allocation. We believe our model keeps the deviation from the standard single-

47 This discussion is parallel to Compte and Jehiel (2010, Proposition 7) who consider majority rules
in a discrete-time infinite-horizon search model.
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Figure 4.16: Equilibrium continuation payoffs under a majority rule: If the point v∗ were the
limit payoff profile, then all payoffs in the shaded region are in the acceptance
set, and the barycenter of the shade region, ṽ, is in the interior of X as X is
convex.

agent infinite-horizon search model minimal so that the analysis purifies the effect

of modifying the number of agents and the length of the horizon. Also, our primary

interest is in the case where such negotiation is impossible or the case where the

stake of the object is very high so even if players could negotiate, the impact on the

outcome is negligible. However, in some cases negotiation may not be negligible.

Here we discuss such cases. We will show that the duration continuously changes

with respect to the degree of impact of negotiation, hence our results are robust

with respect to the introduction of negotiation. Our extension also lets us obtain

intuitive comparative statics results.

Suppose that players can negotiate after they observe a payoff profile x ∈ X

at each opportunity at time −t. Players can shift their payoff profile by making a

transfer, and may agree with the resulting allocation. We assume that the allocation

they agree with is the Nash bargaining solution where a disagreement point is the

continuation payoff profile at the time −t in the equilibrium defined for this mod-
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ified game.48 When making a transfer, we suppose that a linear cost is incurred: If

player i gives player j a transfer z, j obtains only az for a ∈ [0, 1). This cost may

be interpreted as a misspecification of resource allocation among agents, or a pro-

portional tax assessed on the monetary transfer. Note that a measures the degree

of impact of negotiation. Our model in the main sections corresponds to the case

of a = 0.

To simplify our argument we restrict attention to a specific model with two

players.49 Specifically, we consider the case with costly transferable utility: Sup-

pose that X = {x ∈ R2
+ | x1 + x2 ≤ 1} with the uniform distribution µ on X. For

each arrival of payoff profile x, players can negotiate among the set of feasible al-

locations defined by

S(x) =

x′ ∈ X

∣∣∣∣∣∣∣
a(x1 − x′1) ≥ x′2 − x2 if x1 ≥ x′1,

x′1 − x1 ≥ a(x2 − x′2) if x1 < x′1

 .

We suppose that each player says either “accept” or “reject” to the Nash bargain-

ing solution obtained from the feasible payoff set S(x) and the disagreement point

given by the continuation payoff profile v(t).

By looking at geometric properties of the Nash bargaining solution, we can

compute the limit expected duration in this environment.

Proposition 32. Under Assumptions 1, 4, and 7, the limit expected duration in the game

with negotiation is D(∞) =
4 + 4a2

7 + 6a + 7a2 for a ∈ [0, 1).

48 This use of Nash bargaining solution is not critical to our result. Similar implications are obtained
from other bargaining solutions such as the one given by take-it-or-leave-it offers by a randomly
selected player.

49 We expect that nothing substantial would change even if we extended the argument to the cases
of three or more players.
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Since D(∞) is decreasing in a, the limit expected duration becomes shorter in

the presence of negotiation. This is intuitive, as negotiation essentially precludes

extreme heterogeneity in the offer realization, thus the agreement can be reached

soon. Notice also that the proposition claims that the duration must be strictly

positive even with negotiation, and D(∞) converges to 4/7 as a → 0, which is the

same duration as we claimed in Proposition 16. That is, our main result is robust

to the introduction of negotiation.

Note that the proposition does not apply to the case in which utilities are per-

fectly transferable, i.e., a = 1. However, this is due to the fact that the analysis

above is in a knife-edge case because the Pareto frontier consists of a straight line:

If X is strictly convex, then even if a = 1, the acceptance set shrinks with a faster

speed than the case that we analyzed above, and the resulting duration is longer in

such case.50

4.8 Conclusion

This paper analyzed a modification of the standard search problem by intro-

ducing multiplicity of players and a finite horizon. Together, these extensions sig-

nificantly complicate the usual analysis. Our main results identified the reasons

behind the widely-observed phenomenon that such searches often take a long (or

at least some) time. We first showed that the search duration in the limit as the

search friction vanishes is still positive, hence the mere existence of some search

friction has a nonvanishing impact on the search duration. This limit duration is

increasing in the number of players as a result of two effects: the ascending ac-

50 This suggests that with negotiation, preference heterogeneity may help shortening the search
duration. We plan to explore this issue in our continuation work.
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ceptability effect and the preference heterogeneity effect. In short, the ascending

acceptability effect states that a player has an extra incentive to wait as the op-

ponents accept more offers in the future, and the preference heterogeneity effect

states that such “extra offers” include increasingly favorable offers for a player due

to heterogeneity of preferences. Then we showed that the convergence speed of

the duration as the friction vanishes is high, and numerically demonstrated that

durations with positive frictions are reasonably close to the limit duration in our

examples. This provides evidence that our limit analysis contains economically-

meaningful content, and the mere existence of some friction is actually the main

driving force of the positive duration in reality—so the effects that we identify in

Steps 1 and 2 are the keys to understand the positive duration in reality.

We also conducted a welfare analysis, and showed that the limit expected pay-

off is generically Pareto efficient, and depends on the distribution of offers. Lastly,

we provided a wealth of discussions to examine the robustness of our main con-

clusions and to analyze a variety of alternative specifications of the model.

Our paper raises many interesting questions for future research. First, it would

be interesting to consider the case where agents can search for another offer even

after they agree on an offer (i.e., search with recall). In this case the search duration

in equilibrium must be always T, but the duration until the first agreement is not

obvious, because players’ preferences are heterogeneous: Player 1 may not want to

agree on the offer that gives player 2 a high payoff, expecting 2’s future reluctance

to accept further offers. In our continuation work Kamada and Muto (2011c) we

analyze this case and find that under some assumptions, the duration until the first

acceptance is positive even in the limit as the friction vanishes. In that paper we

also find that players may no longer use cutoff strategies, and as a result the shape
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of the acceptance set is quite complicated.

Second, it would be interesting to consider a large market model where at each

period a fixed number of agents from a large population are matched and some

payoff profile is realized. If all agents agree on the profile, they leave the mar-

ket. There are at least two possible specifications for such a model. First, we can

consider the situation where an overlapping generation model with agents fac-

ing different deadlines, and there is a constant inflow of agents. In our ongoing

research, we solve for a steady state equilibrium strategy and characterize the ex-

pected search duration of each agent in the population under certain regularity

assumptions. On the other hand, if all agents share the same deadline, the arrival

rate must decrease or the set of feasible payoffs must shrink over time to reflect

the change in the measure of agents who remain in the market, and it is not obvi-

ous whether the positive duration results carry over. Our result on time-varying

distributions in Section 4.7.7 may be useful in such an analysis.

Finally, in order to isolate the effects of multiple agents and a finite horizon

as cleanly as possible, we attempted to minimize the departure from the standard

model. Inevitably, this entailed ruling out some properties that would be relevant

in particular applications. For example, in some cases there may be uncertainty

(perhaps resolving over time) about the distribution over outcomes or the oppo-

nents’ preferences. We conjecture such uncertainty would increase the duration.

Another example would be the possibility of agents using effort to increase the ar-

rival rate or perhaps sacrificing a monetary cost to postpone the deadline. Again

this would increase the search duration, as players could make these decisions con-

ditional on the time left to the deadline. These extensions of our model are left for

future work.
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A. APPENDIX TO CHAPTER 2

A.1 Proof of Proposition 1

We provide the proof of Proposition 1 (the existence and differentiability of

the optimal path). First, we present a simple but useful lemma. Recall that we

are assuming that the optimal action a∗ is different form the Nash action aN (A1).

Then consider

A∗ :=


[aN , a∗] if aN < a∗

[a∗, aN ] if a∗ < aN

The next lemma shows that we can restrict our attention to the trigger strategy

equilibria whose action always lies in A∗.

Lemma 2. For any trigger strategy equilibrium x ∈ X∗, there is a trigger strategy equi-

librium x̂ ∈ X∗ such that ∀t x̂(t) ∈ A∗ and π(x̂(t)) ≥ π(x(t)).

Proof. We show this for the case of A∗ = [aN , a∗]. By assumptions A2 and A5, the

graph of π is continuous and “single peaked”, and therefore if π(aN) < π(x(t))

and x(t) /∈ A∗ then there must be x̂(t) ∈ A∗ such that π(x̂(t)) = π(x(t)) and

x̂(t) < x(t) (see Figure A.1).

Replace such x(t) by x̂(t) ∈ A∗ defined above. If π(aN) ≥ π(x(t)), replace x(t)

by x̂(t) ≡ aN . If x(t) ∈ A∗, let x̂(t) = x(t). Note that π(x̂(t)) = max
{

π(x(t)), πN}
and this is measurable (so that x̂ is feasible). Lastly, we show that x̂ satisfies the
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Figure A.1: The graph of π(·).

incentive constraint (2.3). Since π(x̂(t)) ≥ π(x(t)), the right hand side of (2.3) is

weakly larger under x̂ for all t. Hence we only need to show d(x̂(t)) ≤ d(x(t)) for

all t. This is trivially true when x̂(t) = aN . Otherwise, we have aN < x̂(t) ≤ x(t).

Since d(a) is increasing for a > aN (by A6), we have d(x̂(t)) ≤ d(x(t)).

This Lemma shows that the optimal trigger strategy (if any) can be found in the

set X∗∗ of trigger strategy equilibria whose range is A∗(= [aN , a∗] or [a∗, aN ]):

X∗∗ := {x ∈ X∗|∀t x(t) ∈ A∗} .

Proposition 33. There is an optimal trigger strategy equilibrium x(t) (i.e., x ∈ X∗ and

V(x) = maxx∈X∗ V(x), where V denotes the expected payoff associated with x) which is

continuous in t.

Proof. We show that there is a trigger strategy equilibrium in X∗∗ that attains max

x∈X∗∗V(x) (by Lemma 2, it is the true optimal in X∗). We consider the case aN < a∗,

so that x(t) ∈ A∗ = [aN , a∗].
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Since V(x) is bounded above by π(a∗) = maxa π(a), supx∈X∗∗ V(x) is a finite

number. Hence, by Lemma 2, we can find a sequence xn, n = 1, 2, ... in X∗∗ such

that limn→∞ V(xn) = supx∈X∗∗ V(x).

Note that {π(xn(·))}n=1,2,... is a collection of countably many measurable func-

tions. This implies that π(t) := supn π(xn(t))(< ∞) is also measurable. Now let

us define x(t) to be the solution to

Problem P(t): max
x(t)∈[aN ,a∗]

π(x(t))

s.t. d(x(t))e−λt ≤
∫ t

0

(
π(s) − πN

)
λe−λsds. (A.1)

Note that the right hand side of the constraint (A.1) is well-defined, because π(·) is

measurable. Also note that the right hand side is nonnegative by π(s) ≥ πN .1

Under Assumptions A5 and A6, both π(a) and d(a) are increasing on [aN , a∗].

Hence the solution x(t) to Problem P(t) is either a∗ or the action in [aN , a∗) with the

binding constraint (A.1) by continuity of d (which follows from A2). Let us write

down the solution in the following way. Note first that, by Assumptions A2 and

A6, d is continuous and strictly increasing on [aN , a∗], and therefore its continu-

ous inverse d−1 exists (if we regard d as a function from [aN , a∗] to d([aN , a∗]) =

[0, d(a∗)]). Then the optimal solution x(t) can be expressed as

x(t) =

 a∗ if d(a∗) < h(t)

d−1 (h(t)) otherwise
, (A.2)

1 By A5, xn(t) ∈ [aN , a∗] implies π(xn(t)) ≥ πN . Hence π(t) = supn π(xn(t)) ≥ πN .
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where

h(t) := eλt
∫ t

0

(
π(s) − πN

)
λe−λsds.

A crucial step in the proof is to note that h(t) is continuous in t for any measur-

able function π(·).2 Since d−1 is continuous, x(t) is continuous whenever x(t) ∈

[aN , a∗). Moreover, since h(t) is increasing in t, (A.2) means that x(t) = a∗ implies

x(t′) = a∗ for all t′ > t. Hence x̄ is continuous for all t.

Lastly, we show that x is a trigger strategy equilibrium. The continuity of x and

π implies that π(x(·)) is a measurable function. Therefore, x is feasible. We show

that x also satisfies the (trigger strategy) incentive constraint IC(t) for all t. Recall

that xn is a trigger strategy equilibrium for all n = 1, 2, .... Then we have

d(xn(t))e−λt ≤
∫ t

0

(
π(xn(s)) − πN

)
λe−λsds (xn is an equilibrium)

≤
∫ t

0

(
π(s) − πN

)
λe−λsds. (by definition of π)

This means that xn(t) satisfies the constraint of Problem P(t). Since x(t) is the

solution to Problem P(t), we have

∀n ∀t π(x(t)) ≥ π(xn(t)) (A.3)

and therefore

∀t π(x(t)) ≥ π(t) = sup
n

π(xn(t)). (A.4)

2 Note to ourselves (may be omitted): The standard result in measure theory shows that, for any
measurable function f (t), the Lebesgue integral

∫ t
0 f (s)ds is absolutely continuous in t, so it is con-

tinuous in t. (See, for example, S. Ito Thm 19.2).
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Hence, for all t, x(t) satisfies the incentive constraint IC(t):

d(x(t))e−λt ≤
∫ t

0

(
π(s) − πN

)
λe−λsds (x(t) satisfies (A.1))

≤
∫ t

0

(
π(x(t)) − πN

)
λe−λsds.

Thus we have shown that x is a trigger strategy equilibrium (x ∈ X∗), and

V(x) ≥ V(xn) for all n (by (A.3)). By definition limn→∞ V(xn) = supx∈X∗∗ V(x),

and the above inequality implies V(x) ≥ supx∈X∗∗ V(x). Since x ∈ X∗∗, we

must have V(x) = supx∈X∗∗ V(x) = maxx∈X∗∗ V(x)(= maxx∈X∗ V(x) by Lemma

2). Hence we have established that there is an optimal and continuous trigger

strategy equilibrium x.

Next, we show that x(t) satisfies binding incentive constraint and is differen-

tiable. The continuity of x plays a crucial role in the proof.

Proposition 34. The optimal trigger strategy equilibrium x(t) satisfies the binding incen-

tive constraint

d(x(t))e−λt =
∫ t

0

(
π(x(t)) − πN

)
λe−λsds.

if x(t) 6= a∗, and x(t) is differentiable when x(t) 6= a∗, aN .

Proof. The proof of Proposition 33 shows that, if x(t) 6= a∗, then

d(x(t))e−λt =
∫ t

0

(
π(s) − πN

)
λe−λsds

≤
∫ t

0

(
π(x(t)) − πN

)
λe−λsds. (A.5)

We now show that the weak inequality above is actually an equality (and therefore

we have the binding incentive constraint). If the above inequality were strict for
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some t, by (A.4), we would have

e−λTπ(T) +
∫ T

0
π(s)λe−λsds < e−λTπ(x(T)) +

∫ T

0
π(x(s))λe−λsds = V(x).

Since π(s) := supn π(xn(t)), the left hand side is more than or equal to V(xn)

for all n. Since limn→∞ V(xn) = supx∈X∗∗ V(x), the above inequality implies

supx∈X∗∗ V(x) < V(x). This contradicts x ∈ X∗∗. Hence (A.5) should be satis-

fied with an equality (i.e., x satisfies the binding incentive constraint), if x(t) 6= a∗.

Next we show the differentiability. We continue to consider the case aN < a∗,

so that x(t) ∈ A∗ = [aN , a∗]. By Assumptions A2 and A6, d is continuous and

strictly increasing on [aN , a∗] and therefore its inverse d−1 exists. Hence, if x(t) 6=

a∗, the binding incentive constraint implies

x(t) = d−1
(

eλt
∫ t

0

(
π(x(s)) − πN

)
λe−λsds

)
.

The continuity of x implies that
(
π(x(s)) − πN)

λe−λs is continuous, and the fun-

damental theorem of calculus shows that
∫ t

0

(
π(x(s)) − πN)

λe−λsds is differen-

tiable with respect to t (with the derivative
(
π(x(t)) − πN)

λe−λt). Hence the ar-

gument of d−1 is differentiable with respect to t, and therefore x(t) is differentiable

whenever (d−1)′ exists. Note that (d−1)′ = 1/d′(x(t)) indeed exists if x(t) 6= aN ,

because d′ exists (Lemma 3 in Appendix C) and d′(x(t)) > 0 (Assumption A6).
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A.2 Proof of Proposition 2

We provide the proof of Proposition 2 (essential uniqueness of the optimal

path):

Proof. Suppose H := {t|π(y(t)) > π(x(t))} has a positive measure. Then, define

z(t) :=


y(t) if t ∈ H

x(t) otherwise

.

This has a measurable payoff π(z(t)) = max {π(y(t)), π(x(t))} and achieves

strictly higher expected payoff than x(t). Furthermore, z satisfies the incentive

constraints

∀t d(z(t))e−λt ≤
∫ t

0

(
π(z(s)) − πN

)
λe−λsds.

This follows from the incentive constraints for x and y, together with π(z(t)) =

max {π(y(t)), π(x(t))}. Hence, z is a trigger strategy equilibrium path, which

achieves a higher payoff than x(t) does. This contradicts the optimality of x(t),

and therefore H must have measure zero. Hence π(y(t)) ≤ π(x(t)) almost every-

where. If {t|π(y(t)) < π(x(t))} has a positive measure, y attains a strictly smaller

payoff than x(t) does, which contradicts our premise that y is optimal. Therefore

we conclude that π(y(t)) = π(x(t)) almost everywhere.

Finally we show that y(t) = x(t) almost everywhere. Note that π is not mono-

tone and therefore π(y(t)) = π(x(t)) may not imply y(t) = x(t). Since any trig-

ger strategy equilibrium must play aN at t = 0, suppose π(y(t)) = π(x(t)) but

y(t) 6= x(t), for t > 0. This means y(t) 6= a∗, so suppose y(t) 6= a∗. This will lead

to a contradiction.
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Consider the case of aN ≤ a∗. We must have aN < x(t) < a∗ < y(t) (see

the graph of π (Figure A.1)). Since the incentive constraint is binding when aN ≤

x(t) < a∗,

d(x(t))e−λt =
∫ t

0

(
π(x(s)) − πN

)
λe−λsds.

This implies that y does not satisfy the incentive constraint, because (i) Assump-

tion A6 and aN < x(t) < y(t) imply d(x(t)) < d(y(t)), and (ii) π(y(s)) = π(x(s))

almost everywhere. This is a contradiction, and therefore y(t) = x(t) almost ev-

erywhere.

A.3 Auxiliary Lemmas for Theorem 1

We provide auxiliary lemmas to prove Theorem 1. First, we show that d′ and

d′′ exist and are continuous under our assumptions.

Lemma 3. Under A2-A4, both d′(x) and d′′(x) exist and are continuous. In particular,

d′(x) =
∂π1(BR(x), x)

∂x2
− ∂π1(x, x)

∂x1
− ∂π1(x, x)

∂x2
, (A.6)

d
′′
(x) = −

(
∂2π1(BR(x), x)

∂x1∂x2

)2

/
∂2π1(BR(x), x)

∂2x1
+

∂2π1(BR(x), x)
∂2x2

−∂2π1(x, x)
∂2x1

− 2
∂2π1(x, x)

∂x1∂x2
− ∂2π1(x, x)

∂2x2
, and (A.7)

d′′(aN) =
−

(
∂2π1(aN ,aN)

∂2x1
+ ∂2π1(aN ,aN)

∂x1∂x2

)2

∂2π1(aN ,aN)
∂2x1

(A.8)

Proof. We first examine the properties of BR(x). To this end, we apply the implicit
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function theorem to the first order condition ∂π1(BR(x),x)
∂x1

= 0 (A4). The assumptions

of implicit function theorem are satisfied:

• ∂2π1(BR(x),x)
∂2x1

6= 0 (by A4) and

• ∂π1(x1,x2)
∂x1

is continuously differentiable (A2).

Hence BR(x) is a continuously differentiable function (and therefore also con-

tinuous), with

BR′(x) = −∂2π1(BR(x), x)
∂x1∂x2

/
∂2π1(BR(x), x)

∂2x1
,

and it is finite. Given this, differentiating d(x) := π1(BR(x), x) − π1(x, x) and

using the first order condition ∂π1(BR(x),x)
∂x1

= 0 (A4), we obtain (A.6). Differentiating

this once again and using the above formula for BR′(x), we obtain (A.7). By the

twice continuous differentiability of π1 (A2), ∂2π1(BR(x),x)
∂2x1

6= 0 (by A4), and the

continuity of BR(x), both d′ and d′′ are continuous. Lastly, (A.8) is obtained from

(A.7), by noting that BR(x) = x when x is equal to the Nash action aN .

Next we show f (x) :=
λ(d(x)+π(x)−πN)

d′(x) , which defies the differential equation

dx/dt = f , is continuously differentiable.

Lemma 4. Function f (x) :=
λ(d(x)+π(x)−πN)

d′(x) is continuously differentiable for x 6= aN .

Proof. Note that d′(x) 6= 0 if x 6= aN (A6). Then, f ′ =
λ((d′+π′)d′−(d+π−πN)d′′)

(d′)2 is a

continuous function, by Lemma 3.

We now examine the behavior of dx/dt = f (x) when x is close to aN . In

particular, we evaluate f N := limx→aN
λ(d(x)+π(x)−πN)

d′(x) .
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Lemma 5.

f N : = lim
x→aN

λ
(
d(x) + π(x) − πN)

d′(x)

= −λ π′(aN)
/ (

∂2π1(aN ,aN)
∂2x1

+ ∂2π1(aN ,aN)
∂x1∂x2

)2

∂2π1(aN ,aN)
∂2x1

.

Under Assumptions A1-A6, f N is always non-zero, and f N = ∞ or −∞ if and only if
∂2π1(aN ,aN)

∂2x1
+ ∂2π1(aN ,aN)

∂x1∂x2
= 0.

Proof. By de l’Hopital rule,

lim
x→aN

λ
(
d(x) + π(x) − πN)

d′(x)
=

λπ′(aN)
d′′(aN)

where we used d′(aN) = 0 (A6). Then the expression of the lemma directly follows

from (A.8) in Lemma 3. The numerator is non-zero, because π′ = 0 only at the

optimal action a∗ (A5). By the second order condition at the Nash equilibrium

(A4), ∂2π1(aN ,aN)
∂2x1

< 0. Hence, f N 6= 0 in general, and f N = ∞ or −∞ if and only if
∂2π1(aN ,aN)

∂2x1
+ ∂2π1(aN ,aN)

∂x1∂x2
= 0.

Remark 2. The condition for the finiteness of f N , ∂2π1(aN ,aN)
∂2x1

+ ∂2π1(aN ,aN)
∂x1∂x2

6= 0 is equiv-

alent to BR′(aN) 6= 1. This follows from the implicit function theorem BR′ =

− ∂2π1
∂x1∂x2

/ ∂2π1
∂2x1

.

Finally we show that the finite time condition (2.8) is satisfied under our as-

sumptions. Recall that we are looking at the case where aN < a∗.

Lemma 6. For any x0 ∈ (aN , a∗], t(x0) := lima→aN

∫ x0

a
1

f (x) dx < ∞.

Proof. Recall
1
f

=
d′(x)

λ (d(x) + π(x) − πN)
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and it is finite when x ∈ (aN , a∗) because the numerator is finite by Lemma 3 and

the denominator is nonzero by A5 and A6. Note that 1/ f (x) is not defined for

x = aN (both the numerator and denominator of the right hand side is zero at

x = aN). By Lemma 5, we have

lim
a→aN

1
f (a)

=
1
f N =

−
(

∂2π1(aN ,aN)
∂2x1

+ ∂2π1(aN ,aN)
∂x1∂x2

)2

λπ′(aN) ∂2π1(aN ,aN)
∂2x1

,

By Assumption A5 (and aN < a∗), we have π′(aN) > 0, and also ∂2π1(aN ,aN)
∂2x1

< 0 by

A4. Also the numerator is finite by A2. Therefore lima→aN
1

f (a) is a finite number.

Hence, t(x0) := lima→aN

∫ x0

a
1

f (x) dx is a finite number.
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B. APPENDIX TO CHAPTER 3

B.1 Proof of Lemma 1

Proof. Suppose that the premise of the lemma holds. Let t∗ be the supremum of t

such that At is false. If t∗ = −∞, then we are done. Suppose that t∗ > −∞. Then it

must be the case that for any ε > 0, there exists t′ ∈ (t∗ − ε, t∗] such that At′ is false.

But by the definition of t∗, there exists ε′ > 0 such that statement At′ is true for all

t′ ∈ (t∗ − ε′, t∗] because the premise of the lemma is true. Contradiction.

B.2 A Sharper Result for the Case when Players Move at −T

Proposition 35. Suppose that players choose their action at −T and consider a component

game of a revision game with a strictly Pareto-dominant action profile x∗. Then there exists

T′ such that for all T > T′, in all SPE, x(0) = x∗ with probability 1.

Proof. Suppose without loss of generality that λ1 ≤ λ2. Consider first the case of

λ1 < λ2. Fix an SPE strategy profile where player 1 prepares x1 6= x∗1 in T < 0. In

this case, player 1’s expected payoff at time −T is at most

u1(x∗) − e−λ1Tm,

as with probability e−λ1T, player 1 has no further revision opportunities. On the

other hand, one possible deviation is to play x∗i for all [−T, 0], and in that case the
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expected payoff is

u1(x∗) − e−λ2T M,

since by Step 1 in the proof of Theorem 1, it follows that player 2 will switch to x∗2 as

soon as he has a chance to revise, and afterwards the PAP never changes.1 However

the assumption that λ1 < λ2 implies that for sufficiently large T, the latter value

becomes strictly greater than the former, implying that in any SPE, player 1 must

prepare x∗1 when T is sufficiently large. Given this, player 2 has a strict incentive

to prepare x∗2 at −T as that would give him the highest possible expected payoff

in equilibrium, while preparing some other action results in a strictly lower payoff

because there is a strictly positive probability that he has no chance to revise the

action in the future.

Suppose λ1 = λ2 ≡ λ. Fix a revision equilibrium, and let Vt
i (x) be player i’s

value from the revision equilibrium when the PAP is x at time t. Let vt
1(x2) =

maxx1 6=x∗1 Vt
1(x1, x2), that is, player 1’s maximum value at t when player 2 prepares

x2 conditional on that player 1 does not prepare x∗1 . On the other hand, for any t,

the lower bound of always taking x∗1 at t is

u1(x∗) − eλ2t M (B.1)

since player 1 can stick to x∗1 in the continuation game after t. It suffices to show

that for any x2 6= x∗2 , there exists t̄ such that player 1 strictly prefers taking x∗1 at t̄

when PAP by player 2 is x2:

1 Here we use the fact that there are only two players. If there are two or more opponents, Step 1
cannot be used to conclude that all the opponents will switch to actions prescribed by x∗.
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vt̄
1(x2) < u1(x∗) − eλ2 t̄ M. (B.2)

To see this, suppose player 2 prepares x2 at t < t̄. Player 1 wants to prepare

x∗1 from t and t̄. Conditional on that player 2 can move once by t̄, player 1 gets

the highest payoff u1(x∗). Conditional on that player 2 cannot move by t̄, PAP at t̄

is x2 and player 1’s value is highest at x∗1 . Hence, x∗1 becomes a strictly dominant

strategy eventually and player 1 takes x∗1 for sure at the beginning of the game.

Given that, player 2’s unique best response is to take x∗2 .

Take any x2 6= x∗2 and S with eλS < 1. Since both players need to move after-

wards to go to x∗ from (x1, x2),

vS
1(x2) ≤ u1(x∗) − m

(
eλ1S + eλ2S − e(λ1+λ2)S

)
. (B.3)

Below, we will show that, at nS, one of the following two is correct: (i) we have

(B.2) with t̄ = nS or (ii)

vnS
1 (x2) ≤ u1(x∗) −

(
n + 1 − neλS

)
menλS. (B.4)

For n = 1, (B.4) is (B.3) with n = 1. Hence, (ii) is true for n = 1. Suppose (i) or (ii)

holds for n = k. If (i) is the case, we are done. Otherwise, at (k + 1) S, the upper

bound of not taking x∗1 is determined as follows: if player 2 cannot move by −kS,

PAP by player 2 at −kS is x2. Then, since (i) is not the case, the maximum of player

1’s payoff is given by v−kS
1 (x2). Therefore,
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u1(x∗) − eλS︸︷︷︸
Pr of 2 not entering by −kS

×
(

k + 1 − keλS
)

mekλS︸ ︷︷ ︸
from above,

this is the least loss compared to u1(x∗).

−
(

1 − eλS
)

︸ ︷︷ ︸
Pr of 2 entering by −kS

× eλS︸︷︷︸
Pr of 1 not entering by −kS

× meλkS︸ ︷︷ ︸
the least loss for x 6=x∗

= u1(x∗) −
(

k + 2 − (k + 1) eλS
)

meλ(k+1)S,

which is (B.4) with n = k + 1 as desired. Since (ii) implies (B.2) for sufficiently large

n, this completes the proof.

B.3 Proof of Theorem 3: Derivation of t∗i

We provide a derivation of t∗1 . The value of t∗2 can be solved for in a symmetric

manner. By the definition of t∗1 , assuming that both players play best responses to

the PAP at any time strictly after t∗1 , the payoff from playing a best response against

R at t∗1 and playing otherwise must be equal. Thus, it must be the case that

u1(D, R) = e(λ1+λ2)t∗1 u1(U, R)︸ ︷︷ ︸
nobody moves until 0

+ λ1
λ1+λ2

(1 − e(λ1+λ2)t∗1 )u1(D, R)︸ ︷︷ ︸
player 1 moves first

+ λ2
λ1+λ2

(1 − e(λ1+λ2)t∗1 )u1(U, L)︸ ︷︷ ︸
player 2 moves first

.

Solving this equation with respect to t∗1 , we obtain the desired expression.
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B.4 Derivation of t∗i for Non-Homogeneous Poisson Processes

For any non-empty interior time interval [t, t′] ⊆ [−T, 0], let Qi(t, t′) be the

probability that player i has at least one revision opportunity in this interval that

arrives strictly before all revision opportunities of the other player in the same in-

terval. Let Q0(t, t′) denote the probability that no player receives a revision oppor-

tunity in [t, t′]. Namely,

Qi(t, t′) = 1 − Li(t, t′)
L1(t, t′) + L2(t, t′)

exp
(
−

(
L1(t, t′) + L2(t, t′)

))
for all i

and

Q0(t, t′) = exp
(
−

(
L1(t, t′) + L2(t, t′)

))
.

Given this, define t∗∗i as the unique solution for

u1(D, R) = Q0(t∗∗1 , 0)u1(U, R)︸ ︷︷ ︸
nobody moves until 0

+ Q1(t∗∗1 , 0)u1(D, R)︸ ︷︷ ︸
player 1 moves first

+ Q2(t∗∗1 , 0)u1(U, L)︸ ︷︷ ︸
player 2 moves first

,

u2(U, L) = Q0(t∗∗2 , 0)u2(U, R)︸ ︷︷ ︸
nobody moves until 0

+ Q1(t∗∗2 , 0)u2(D, R)︸ ︷︷ ︸
player 1 moves first

+ Q2(t∗∗2 , 0)u2(U, L)︸ ︷︷ ︸
player 2 moves first

.

Under non-homogeneous Poisson processes, Theorem 2 holds by replacing t∗i in its

statement with t∗∗i defined above.
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C. APPENDIX TO CHAPTER 4

C.1 Numerical Results for Finite Arrival Rates

C.1.1 Uniform Distribution over Multi-Dimensional Triangle (Case 1)

Consider the distribution given by the uniform distribution over {x ∈ Rn
+ |

∑i∈N xi ≤ 1}. The result is summarized in C.1.

C.1.2 Uniform Distribution over a Sphere (Case 2)

Consider the uniform distribution over {x ∈ Rn
+ | ∑i∈N x2

i ≤ 1}. We get the

result shown in C.2. Note that the limit duration for n = 1 is the same as in the case

of uniform distribution over {x ∈ Rn
+ | ∑i∈N xi ≤ 1}.

C.1.3 Uniform Distribution over a Cube (Case 3)

Consider the distribution given by the uniform distribution over {x ∈ Rn
+ |

maxi∈N xi ≤ 1}. The result is summarized in C.3.

C.1.4 Exponential Distribution (Case 4)

Consider the exponential distribution with parameter ai for each player i. The

result is summarized in Table C.4.
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Table C.1: The distribution given by the uniform distribution over {x ∈ Rn
+ | ∑i∈N xi ≤ 1}

(Case 1).

λ

10 20 30 100 ∞

n = 1
Expected duration 0.398 0.366 0.355 0.340 0.333

Percentage (%) 19.4 9.92 6.64 2.00 0

n = 2
Expected duration 0.608 0.591 0.585 0.576 0.57143

Percentage (%) 6.48 3.44 2.35 0.731 0

n = 3
Expected duration 0.734 0.716 0.709 0.698 0.692

Percentage (%) 5.97 3.35 2.35 0.780 0

Table C.2: The uniform distribution over {x ∈ Rn
+ | ∑i∈N x2

i ≤ 1} (Case 2).

λ

10 20 30 100 1000 ∞

n = 1
Expected duration 0.398 0.366 0.355 0.340 0.334 0.333

Percentage (%) 19.4 9.92 6.64 2.00 0.200 0

n = 2
Expected duration 0.582 0.568 0.565 0.562 0.567 0.571

Percentage (%) 1.90 −0.541 −1.21 −1.61 −0.798 0

176



Table C.3: The distribution given by the uniform distribution over {x ∈ Rn
+ | maxi∈N xi ≤

1} (Case 3).

λ

10 20 30 100 ∞

n = 1
Expected duration 0.398 0.366 0.355 0.340 0.333

Percentage (%) 19.4 9.92 6.64 2.00 0

n = 2
Expected duration 0.545 0.524 0.516 0.505 0.5

Percentage (%) 9.09 4.76 3.23 0.990 0

n = 3
Expected duration 0.634 0.618 0.612 0.604 0.6

Percentage (%) 5.62 3.00 2.05 0.643 0

Table C.4: The exponential distribution with parameter ai for each player i (Case 4).

λ

10 20 30 100 ∞

n = 1
Expected duration 0.545 0.524 0.516 0.505 0.5

Percentage (%) 9.09 4.76 3.23 0.990 0

n = 2
Expected duration 0.693 0.681 0.676 0.670 0.667

Percentage (%) 3.91 2.11 1.45 0.465 0

n = 3
Expected duration 0.767 0.759 0.756 0.752 0.75

Percentage (%) 2.27 1.24 0.864 0.284 0

n = 10
Expected duration 0.912 0.911 0.910 0.910 0.909

Percentage (%) 0.370 0.206 0.145 0.0499 0
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Table C.5: The log-normal distribution with µ = 0 (Case 5).

λ

10 20 30 100

σ = 1
4 0.449 0.462 0.469 0.484

n = 1 σ = 1 0.612 0.595 0.588 0.575
σ = 4 0.961 0.952 0.946 0.926

C.1.5 Log-Normal Distribution (Case 5)

Consider the log-normal distribution with the following pdf:

f (x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 .

Assume µ = 0. The expected durations can be calculated and summarized in Table

C.5.

C.2 Proofs of the Results

C.2.1 Computation of the Limit Durations

We here prove a lemma that computes the limit cumulative disagreement prob-

ability and the limit expected duration when the agreement probability p(t) at time

−t is of the same order as 1
λt .

Lemma 7. The following three statements hold:

(i) If for all ε > 0, there exist C > 0 and λ̄ such that p(t) ≤ C
λt for all t ≥ ε and all λ ≥

λ̄, then lim infλ→∞ P(t; λ) ≥
( t

T

)C for all t ≥ 0, and lim infλ→∞ D(λ) ≥ 1
1+C .
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(ii) If for all ε > 0, there exist c > 0 and λ̄ such that p(t) ≥ c
λt for all t ≥ ε and all λ ≥

λ̄, then lim supλ→∞ P(t; λ) ≤
( t

T

)c for all t ≥ 0, and lim supλ→∞ D(λ) ≤ 1
1+c .

(iii) If limλ→∞ p(t)λt = a > 0 for all t > 0, then P(t; ∞) =
( t

T

)a for all t ≥ 0, and

D(∞) = 1
1+a .

Proof. First we prove (i). Let us fix 0 < ε < T. By formula (4.3), for all λ ≥ λ̄ and

all t ≥ ε,

e−
∫ T

t (C/s)ds ≤ P(t; λ)( t
T

)C
≤ P(t; λ).

Since the above inequality is satisfied for all ε > 0 and sufficiently large λ, we have

lim infλ→∞ P(t; λ) ≥
( t

T

)C for all t ≥ 0. By formula (4.4), D(λ)T =
∫ T

0 P(t)dt is

bounded as follows:

∫ T

ε

( t
T

)C
dt ≤ D(λ)T

T1+C − ε1+C

(1 + C)TC ≤ D(λ)T.

Since the above inequality is satisfied for all ε > 0 and sufficiently large λ, we have

lim infλ→∞ D(λ) ≥ T1+C

(1+C)TC ·T = 1
1+C .

Next, a parallel argument shows (ii). Finally, (i) and (ii) together imply (iii).

C.2.2 Proof of Proposition 12

Suppose that there exists at least one trembling-hand equilibrium. We show

that the continuation payoff of player i at time −t is unique for almost all histories

in any trembling-hand equilibrium.
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By Assumption 1 (a), the set of player i’s expected payoffs given by any play

of the game within [−T, 0] is bounded by a value xi for each i ∈ N. By Assump-

tion 1 (b), we can find a Lipschitz constant Li for i ∈ N such that µ({x ∈ X | xi ∈

[x′i , x′′i ]}) ≤ Li|x′i − x′′i | for all x′i , x′′i in the above domain of payoffs. Let L = maxi Li.

Let Si(σ, t) ⊆ R be the support of the continuation payoffs ui(σ | h) of player

i after histories h ∈ H̃t \ Ht realized at time −t given a strategy profile σ. For

ε ∈ (0, 1
2 ), let vε

i (t) and vε
i (t) be the supremum and the infimum of

⋃
σ: Nash equilibrium in Σε

Si(σ, t).

(Note that Assumption 1 (a) ensures boundedness of the support for finite t.) Let

wε
i (t) = vε

i (t) − vε
i (t), and w̄ε(t) = maxi∈N wε

i (t). We will show that w̄ε(t) = 0 for

all ε > 0 for any time −t ∈ [−T, 0]. Note that w̄ε(0) = 0 for all ε.

Let us consider the ε-constrained game. If player i accepts an allocation x ∈ X at

time −t, she will obtain xi with probability at least εn−1. Accepting x is a dominant

action of player i if the following inequality holds:

εn−1xi + (1 − εn−1)vε
i (t) > vε

i (t).

Rearranging this, we have

xi > vε
i (t) +

1 − εn−1

εn−1 wε
i (t).

Let ṽε
i (t) = vε

i (t) + 1−εn−1

εn−1 wε
i (t), the right hand side of the above inequality. Then

ṽε
i (t) − vε

i (t) = 1
εn−1 wε

i (t).

Let X1
i (t) = {x ∈ X | xi > ṽε

i (t)}, Xm
i (t) = {x ∈ X | vε

i (t) ≤ xi ≤ ṽε
i (t)}, and
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X0
i (t) = {x ∈ X | xi < vε

i (t)}. Then µ(Xm
i ) ≤ L

εn−1 wε
i (t). Any player i accepts

x ∈ X1
i (t) and rejects x ∈ X0

i (t) with probability 1 − ε after almost all histories

at time −t. Note that X =
(⋃

j∈N Xm
j (t)

)
∪

(⋃
(s1,...,sn)∈{0,1}n

⋂
j∈N X

sj
j (t)

)
(where

Xm
j (t)’s have a nonempty intersection). Then

vε
i (t) ≤

∫ t

0

(
∑
j∈N

∫
Xm

j (τ)
xidµ

+ ∑
(s1,...,sn)∈{0,1}n

∫
⋂

j∈N X
sj
j (τ)

(
(1 − ε)∑j∈N sj ε∑j∈N(1−sj)xi

+ (1 − (1 − ε)∑j∈N sj ε∑j∈N(1−sj))vε
i (τ)

)
dµ

)
λe−λ(t−τ)dτ,

and

vε
i (t) ≥

∫ t

0

(
∑

(s1,...,sn)∈{0,1}n

∫
⋂

j∈N X
sj
j (τ)

(
(1 − ε)∑j∈N sj ε∑j∈N(1−sj)xi

+ (1 − (1 − ε)∑j∈N sj ε∑j∈N(1−sj))vε
i (τ)

)
dµ

)
λe−λ(t−τ)dτ.
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Therefore wε
i (t) = vi(t) − vi(t) is bounded as follows:

wε
i (t) ≤

∫ t

0

(
∑
j∈N

∫
Xm

j (τ)
xidµ

+ ∑
(s1,...,sn)∈{0,1}n

∫
⋂

j∈N X
sj
j (τ)

(
1 − (1 − ε)∑j∈N sj ε∑j∈N(1−sj)

)
wε

i (τ)dµ
)

λe−λ(t−τ)dτ

≤
∫ t

0

(
∑
j∈N

xi
L

εn−1 wε
j(τ)

+ ∑
(s1,...,sn)∈{0,1}n

∫
X

(
1 − (1 − ε)∑j∈N sj ε∑j∈N(1−sj)

)
wε

i (τ)dµ
)

λe−λ(t−τ)dτ

≤
∫ t

0

(
∑
j∈N

max
k∈N

{xk}
L

εn−1

+ ∑
(s1,...,sn)∈{0,1}n

(
1 − (1 − ε)∑j∈N sj ε∑j∈N(1−sj)

))
wε(τ)λe−λ(t−τ)dτ.

Since the above inequality holds for all i ∈ N, there exists a constant M > 0 such

that the following inequality holds:

wε(t) ≤
∫ t

0
Mwε(τ)e−λ(t−τ)dτ.

Let Wε(t) =
∫ t

0 wε(τ)eλτdτ. Then

Wε′(t) = wε(t)eλt

≤ MWε(t).

Therefore we have d
dt

(
Wε(t)e−Mt) =

(
Wε′(t)− MWε(t)

)
e−Mt ≤ 0. Since Wε(0) = 0

by the definition of Wε(t), Wε(t)e−Mt ≤ 0 for all t ≥ 0. This implies that wε(t) ≤

MWε(t)e−λt ≤ 0 for all t ≥ 0. Hence, wε(t) = 0 for all t ≥ 0 and all ε ∈ (0, 1
2 ).

Any trembling-hand equilibria yield the same continuation payoffs after almost all
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histories at time −t ∈ [−T, 0].

C.2.3 Proof of Proposition 13

We show that a solution v∗(t) of ODE (4.1) characterizes a trembling-hand equi-

librium. For si ∈ {+,−}, and vi ∈ [0, ∞) let

Isi
i (vi) =


[0, vi] if si = +,

[vi, ∞) if si = −,

and p+ = 1 − ε, p− = ε. For ε > 0, let us write down a Bellman equation similar to

(4.2) with respect to a continuation payoff profile vε(t) in the ε-constrained game:

vε
i (t) =∫ t

0

(
∑

s∈{+,−}n

∫
(Is1

1 (vε
i (τ))×···×Isn

n (vε
i (τ)))∩X

(
ps1 . . . psn · xi + (1 − ps1 . . . psn)vε

i (τ)
)
dµ

)
· λe−(λ+ρ)(t−τ)dτ

This implies that

vε′
i (t) = − (λ + ρ)vε

i (t) + λ ∑
s∈{+,−}n∫

(Is1
1 (vε

i (t))×···×Isn
n (vε

i (t)))∩X

(
ps1 . . . psn · xi + (1 − ps1 . . . psn)vε

i (t)
)
dµ.

This ODE has a unique solution because the right hand side is Lipschitz continuous

in vε
i . Let vε(t) be this solution, which is a cutoff profile of a Nash equilibrium in the

ε-constrained game by construction. Since A(t) = (I+
1 (vε

i (τ)) × · · · × I+
n (vε

i (τ))) ∩

X, and p+ → 1, p− → 0 as ε → 0, ODE (4.1) is obtained by letting ε → 0. Therefore
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vε(t) converges to v∗(t) as ε → 0 because the above ODE is continuous in ε.1 Hence

the cutoff strategy profile with cutoffs v∗(t) is a trembling-hand equilibrium.

C.2.4 Proof of Theorem 5

By Assumption 2, there exists a nondecreasing and concave function ϕ and

κ ≥ 1 such that

1 − ϕ(x) ≤ 1 − F(x) ≤ κ
(
1 − ϕ(x)

)
for all x ≥ 0. Let us consider a cutoff strategy with the following cutoff w(t):

w(t) = F−1
(

1 − 2
λt + 2

)
,

namely, the strategy with acceptance probability 2
λt+2 at time −t. By Assumption 2,

we have w(t) ≥ ϕ−1
(
1 − 2

λt+2

)
. Let P(t) be the probability that the search stops

before time −t when w(t) is played. Then

P(t) = 1 − exp
(
−

∫ T

t

2
λτ + 2

· λdτ
)

= 1 −
( λt + 2

λT + 2

)2
.

The expected continuation payoff obtained from this strategy is larger than

∫ 0

t
w(τ)dP(τ) ≥

∫ t

0
ϕ−1

(
1 − 2

λτ + 2

)
d
(
1 − P(τ)

)
.

Let W(t) be the payoff on the right hand side, and Q(t) be the probability that

the search stops before time −t when the player plays a cutoff strategy with cutoff

1 See, e.g., Coddington and Levinson (1955, Theorem 7.4 in Chapter 1).
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W(t).

Q(t) = 1 − exp
(
−

∫ T

t

(
1 − F(W(τ))

)
λdτ

)
≤ 1 − exp

(
−

∫ T

t
κ
(
1 − ϕ(W(τ))

)
λdτ

)
.

By concavity of ϕ, ϕ(W(τ)) is bounded as follows:

ϕ(W(t)) = ϕ

(∫ t

0
ϕ−1

(
1 − 2

λτ + 2

)
d
(
1 − P(τ)

))
≥

∫ t

0
ϕ

(
ϕ−1

(
1 − 2

λτ + 2

))
d
(
1 − P(τ)

)
=

∫ t

0

(
1 − 2

λτ + 2

)
d
(( λτ + 2

λT + 2

)2)
= 1 − 4

λT + 2
+

4
(λT + 2)2

≥ 1 − 4
λT + 2

.

Therefore,

Q(t) ≤ 1 − exp
(
−

∫ T

t
κ
( 4

λT + 2

)
λdτ

)
= 1 − exp

(
−4κ ln

(λT + 2
λt + 2

))
= 1 −

( λt + 2
λT + 2

)4κ
,

which is strictly lower than 1 for all λ > 0 and all −t ∈ (−T, 0]. Since W(t) is

the continuation payoff calculated from a strategy that is not necessarily optimal,

an optimal strategy gives the player continuation payoffs larger than or equal to

W(t). Therefore an optimal strategy must possess a cutoff higher than or equal to

W(t). Hence, for all −t ∈ (−T, 0], the search stops with probability strictly lower
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than 1 before time −t. This proves Theorem 5.

Next, we show a proposition under an independent assumption of Assump-

tion 2 when the support is bounded.

Assumption 6. If X is bounded, then for x̄ = sup X, there exists α ≥ β > 0 such that

εα ≤ µ
(
[x̄ − ε, x̄]

)
≤ εβ for all ε ∈ (0, 1).

Proposition 36. Suppose that X is bounded, and Assumptions 1 and 6 hold. Then

lim infλ→∞ D(λ) > 0.

Proof. By ODE (4.1), the equilibrium continuation payoff v∗(t) is the solution of

v′(t) = λ
∫ x̄

v(t)

(
x − v(t)

)
dµ(x).

Let z(t) = x̄ − v∗(t). Since z(t) → 0 as t → ∞, there exists t̄ such that z(t) < 1 for

all t ≥ t̄. For t ≥ t̄, z(t) satisfies

z′(t) = −λ
∫ x̄

x̄−z(t)

(
x̄ − x + z(t)

)
dµ(x)

≤ −λ
∫ x̄

x̄− z(t)
2

z(t)
2

dµ(x)

≤ −λ · z(t)
2

·
( z(t)

2

)α
.

Solving this, z(t) ≤
(
2−(1+α)λ(t − t̄) + z(t̄)−α

)− 1
α . Therefore,

p(t) = µ
(
[x̄ − z(t), x̄]

)
≤ z(t)β

≤
(
2−(1+α)λ(t − t̄) + z(t̄)−α

)− β
α .

By formulas (4.3) and (4.4), if p(t) is of the order of 1
λt or less, then by Lemma 7 we
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have that lim infλ→∞ D(λ) > 0. This is the desired result.

C.2.5 Proof of Theorem 8

First, we show that Assumption 1 (b) implies that µ(A(v)) is continuous in

v ∈ Rn.

By ODE (4.1), v′i(t) = λbi(v(t)) · p(t) for each i ∈ N. Since µ(A(v)) is continu-

ous in v,

lim inf
∆t→0

p(t) − p(t + ∆t)
∆t

≤ ∑
i∈N

di(v(t))p(t) · v′i(t)

= ∑
i∈N

di(v(t))p(t) · λbi(v(t))p(t).

By the definition of r, for all ε > 0, there exists t̄ such that for all t ≥ t̄,

lim inf∆t→0
p(t)−p(t+∆t)

∆t
λp(t)2 ≥ r − ε. (C.1)

Integrating the both sides and letting λ → ∞, we have

lim sup
λ→∞

p(t) · λt ≤ r−1. (C.2)

An analogous argument shows that

lim inf
λ→∞

p(t) · λt ≥ r−1. (C.3)
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By Lemma 7, we obtain

( t
T

)1/r
≤ lim inf

λ→∞
P(t; λ) and lim sup

λ→∞
P(t; λ) ≤

( t
T

)1/r
, and

1
1 + r−1 ≤ lim inf

λ→∞
D(λ) and lim sup

λ→∞
D(λ) ≤ 1

1 + r−1 .

C.2.6 Proof of Theorem 9

Let r = r = r. Then we can follow the discussion in the proof sketch of The-

orem 8, and obtain inequality (4.8). Since this inequality holds for any λ, for all

ε > 0, there is a large t̄ such that for all t ≥ t̄

−(r + ε)p(t; 1)2 ≤ p′(t; 1) ≤ −(r − ε)p(t; 1)2.

For any small η > 0, let λ̄ = t̄/η. Since p(t; λ) = p(t/λ; 1) for all t and λ, we have

−(r + ε)p(t; λ)2 ≤ p′(t; λ) ≤ −(r − ε)p(t; λ)2

for all t ≥ η, and all λ ≥ λ̄. Solving this with an initial condition at η, for t ≥ η and

λ ≥ λ̄,

1
(r − ε)λ(t − η) + p(η)−1 ≤ p(t) ≤ 1

(r + ε)λ(t − η) + p(η)−1 .

By formula (4.3), for t ≥ η and λ ≥ λ̄, we have

e
−

∫ T
t

1
(r+ε)(s−η)+p(η)−1/λ

ds ≤ P(t) ≤ e
−

∫ T
t

1
(r−ε)(s−η)+p(η)−1/λ

ds

( rλ(t − η) + p(η)−1

rλ(T − η) + p(η)−1

)(r−ε)−1

≤ P(t) ≤
( rλ(t − η) + p(η)−1

rλ(T − η) + p(η)−1

)(r+ε)−1

.
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By formula (4.4), we have

∫ T

η

( rλ(t − η) + p(η)−1

rλ(T − η) + p(η)−1

)(r−ε)−1

dt

≤ D(λ)T ≤ η +
∫ T

η

( rλ(t − η) + p(η)−1

rλ(T − η) + p(η)−1

)(r+ε)−1

dt

1
1 + (r − ε)−1

(
T − η +

1
rλp(η)

− 1
rλp(η)(T − η) + 1

)
≤ D(λ)T ≤ 1

1 + (r + ε)−1

(
T − η +

1
rλp(η)

− 1
rλp(η)(T − η) + 1

)
.

Since the above inequalities are satisfied for all ε > 0 and η > 0 in the limit as

λ → ∞, and D(∞) = 1
1+r−1 , |D(λ) − D(∞)| = O( 1

λ ).

C.2.7 Proof of Proposition 16

We prove Proposition 16 in an environment more general than Assumption 3.

Assumption 7. (a) The limit v∗ = limλ→∞ v∗(t) is Pareto efficient in X.

(b) The Pareto frontier of X is smooth in a neighborhood of v∗.

(c) For the unit normal vector α ∈ Rn
+ at v∗, αi > 0 for all i ∈ N.2

(d) For all η > 0, there exists ε > 0 such that {x ∈ Rn
+ | |v∗− x| ≤ ε, α · (x− v∗) ≤ −η}

is contained in X, where “·” denotes the inner product in Rn.

(e) µ has a continuous density function.

Proposition 16′. Under Assumptions 1, 4, and 7, limλ→∞ D(λ) =
n2

n2 + n + 1
.

2 We can show basically the same results without this assumption. We avoid complications de-
rived from the indeterminacy of a normal vector on the boundary of X.
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Proof. Let fH(t) = maxx∈A(t) f (x), and fL(t) = minx∈A(t) f (x). Since f is contin-

uous, both fH(t) and fL(t) are continuous and converge to f (v∗) as t → ∞. For

ε > 0, there is t̄ such that |v∗ − v∗(t)| ≤ ε for all t ≥ t̄. For η > 0, let

A(t) = {x ∈ Rn
+ | x ≥ v∗(t), α · (x − v∗) ≤ −η},

A(t) = {x ∈ Rn
+ | x ≥ v∗(t), α · (x − v∗) ≤ η}.

The volume of A(t) (with respect to the Lebesgue measure on Rn) is

V(A(t)) =
1
n ∏

j∈N

(α · (v∗ − v∗(t)) − η

αj

)
, (C.4)

and the volume of A(t) is

V(A(t)) =
1
n ∏

j∈N

(α · (v∗ − v∗(t)) + η

αj

)
. (C.5)

Suppose that ε > 0 is small and t̄ is large. Then by Assumption 7, A(t) ⊂ A(t) ⊂

A(t) holds for all η > 0 and all t ≥ t̄. The rest of the proof consists of two steps.

Step 1: We show that for any two players i, j ∈ N, limt→∞ v∗′j (t)/v∗′i (t) = αi/αj.

The ith coordinate of the right hand side of equation (4.1) is bounded as

fL(t̄)
∫

A(t)

(
xi − v∗i (t)

)
dx

≤
∫

A(t)

(
xi − v∗i (t)

)
f (x)dx ≤ fH(t̄)

∫
A(t)

(
xi − v∗i (t)

)
dx.
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Therefore,

λ fL(t̄)V(A(t))
n + 1

(α · (v∗ − v∗(t)) − η

αi

)
≤ v∗′i (t) ≤ λ fH(t̄)V(A(t))

n + 1

(α · (v∗ − v∗(t)) + η

αi

)

for all t ≥ t̄ and i ∈ N. By substituting (C.4) and (C.5),

λ fL(t̄)
n(n + 1)

(α · (v∗ − v∗(t)) − η

αi

)
∏
j∈N

(α · (v∗ − v∗(t)) − η

αj

)
≤ v∗′i (t) ≤ λ fH(t̄)

n(n + 1)

(α · (v∗ − v∗(t)) + η

αi

)
∏
j∈N

(α · (v∗ − v∗(t)) + η

αj

)
(C.6)

for all t ≥ t̄ and i ∈ N. By letting η → 0, ε → 0, and t → ∞, we have limt→∞

v∗′j (t)/v∗′i (t) = αi/αj.

Step 2: By Step 1, for i and small δ > 0, there exists t̃ ≥ t̄ such that

(1 − δ)
αi

αj
≤

v∗j − v∗j (t)

v∗i − v∗i (t)
≤ (1 + δ)

αi

αj

for all t ≥ t̃ and j ∈ N. Therefore,

n(1 − δ)(v∗i − v∗i (t)) ≤ α · (v∗ − v∗(t))
αi

≤ n(1 + δ)(v∗i − v∗i (t)).
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By inequality (C.6), we have

λ fL(t̄)
n(n + 1)

(
n(1 − δ)(v∗i − v∗i (t)) − η

αi

)
∏
j∈N

(
n(1 − δ)

αi

αj
(v∗i − v∗i (t)) − η

αj

)
≤ v∗′i (t) ≤

λ fH(t̄)
n(n + 1)

(
n(1 + δ)(v∗i − v∗i (t)) +

η

αi

)
∏
j∈N

(
n(1 + δ)

αi

αj
(v∗i − v∗i (t)) +

η

αj

)

for all t ≥ t̃ and j ∈ N. Therefore,

(
n(1 − δ)(v∗i − v∗i (t)) − η

αi

)′
≤

− λ fL(t̄)(1 − δ)
n + 1

(
∏
j 6=i

αi

αj

)(
n(1 − δ)(v∗i − v∗i (t)) − η

αi

)n+1
, and

(
n(1 + δ)(v∗i − v∗i (t)) +

η

αi

)′
≥

− λ fH(t̄)(1 + δ)
n + 1

(
∏
j 6=i

αi

αj

)(
n(1 + δ)(v∗i − v∗i (t)) +

η

αi

)n+1

for all t ≥ t̃ and j ∈ N. By solving differential equations given by the above

inequalities with equality, we have

n(1 − δ)(v∗i − v∗i (t)) − η

αi
≤

(
CL +

λ fL(t̄)(1 − δ)nt
n + 1 ∏

j 6=i

αi

αj

)− 1
n

n(1 + δ)(v∗i − v∗i (t)) +
η

αi
≥

(
CH +

λ fH(t̄)(1 + δ)nt
n + 1 ∏

j 6=i

αi

αj

)− 1
n

where CL, CH are constants determined by the initial condition at t = t̃. Deforming

192



the above inequalities,

1
n(1 + δ)

(CH

λt
+

fH(t̄)(1 + δ)n
n + 1 ∏

j 6=i

αi

αj

)− 1
n − (λt)

1
n η

n(1 + δ)αi

≤ (v∗i − v∗i (t))(λt)
1
n ≤ 1

n(1 − δ)

(CL

λt
+

fL(t̄)(1 − δ)n
n + 1 ∏

j 6=i

αi

αj

)− 1
n
+

(λt)
1
n η

n(1 − δ)αi
.

As η → 0, t̄ → ∞, δ → 0, and t → ∞, we have

lim
t→∞

(v∗i − v∗i (t))(λt)
1
n =

1
n

( f (v∗)n
n + 1 ∏

j 6=i

αi

αj

)− 1
n

lim
t→∞

αi(v∗i − v∗i (t))(λt)
1
n =

( n + 1
f (v∗)nn+1 ∏

j∈N
αj

) 1
n
,

which is a positive constant.

Step 3: By the definition of A(t), A(t),

fL(t)V(A(t)) ≤ p(t) ≤ fH(t)V(A(t)).

Inequalities (C.4), (C.5) implies that by letting η → 0 we have

lim
t→∞

p(t) · λt = lim
t→∞

f (v∗)
n ∏

j∈N

(∑i∈N αi(v∗i − v∗i (t))(λt)
1
n

αj

)
.

By the result of Step 2, this limit exists and computed as follows:

lim
t→∞

p(t) · λt =
f (v∗)

n ∏
j∈N

(
n
αj

( n + 1
f (v∗)nn+1 ∏

k∈N
αk

) 1
n

)

=
n + 1

n2 .
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By Lemma 7, the limit expected duration is

D(∞) =
1

1 + n+1
n2

=
n2

n2 + n + 1
.

C.2.8 Proof of Proposition 18

Let v∗(t; f ) be the solution of ODE (4.1) for density f ∈ F , and v∗( f ) = limλ→∞

v∗(t; f ) = limt→∞ v∗(t; f ).

First we show that the set is open, i.e., for all f ∈ F with v∗( f ) Pareto efficient,

ε > 0, and a sequence fk ∈ F (k = 1, 2, . . . ) with | fk − f | → 0 (k → ∞), there exist

δ > 0 and k̄ such that

|v∗( fk) − v∗( f )| ≤ ε

for all k ≥ k̄.

Since limt→∞ v∗(t; f ) = v∗( f ), for all δ > 0 there exists t̄ > 0 such that |v∗( f ) −

v∗(t; f )| ≤ δ for all t ≥ t̄. By Pareto efficiency of v∗( f ), let δ > 0 be sufficiently small

so that A
(
v∗(t̄; f ) − (δ, δ, . . . , δ)

)
is contained in the ε-ball centered at v∗( f ). Since

the right hand side of ODE (4.1) is continuous in v by Assumption 4, the unique

solution of (4.1) is continuous with respect to parameters in (4.1). Therefore, for a

finite time interval [0, T] including t̄, there exists k̄ such that |v∗(t; fk)− v∗(t; f )| ≤ δ

for all t ∈ [0, T] and all k ≥ k̄. This implies that v∗(t; fk) ∈ A
(
v∗(t̄; f )− (δ, δ, . . . , δ)

)
,

thereby v∗( fk) ∈ A
(
v∗(t̄; f ) − (δ, δ, . . . , δ)

)
. Hence we have |v∗( fk) − v∗( f )| ≤ ε.

Second we show that the set is dense, i.e., for all f ∈ F with v∗( f ) not strictly

Pareto efficient in X and all ε > 0, there exists f̃ ∈ F such that | f − f̃ | ≤ ε and
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v∗( f̃ ) is Pareto efficient. Since v∗( f ) is only weakly Pareto efficient in X̂, there exists

Pareto efficient y ∈ X which Pareto dominates v∗( f ). Let I = {i ∈ N | yi = v∗i ( f )}

and J = N \ I. Since y is Pareto efficient, there is δ > 0 such that if x ∈ X is weakly

Pareto efficient, satisfies |y − x| ≤ δ, and yi = xi for some i ∈ N, then there is no

x̃ ∈ X such that x̃i > yi and |y − x̃| ≤ δ.

By Assumption 4, for any small δ/2 > η > 0, there is a small ball contained

in X centered at ỹ with |y − ỹ| ≤ η. Let g be a continuous density function whose

support is the above small ball, takes zero on the boundary of the ball, and the

expectation of g is exactly ỹ. Let f̃ = (1− ε
| f |+|g| ) f + ε

| f |+|g| g ∈ F . Since f and g are

bounded from above, | f − f̃ | ≤ ε.

Since v∗( f ) is weakly Pareto efficient, if v∗( f ) ∈ A(v), then A(v) ⊆ ⋃
i∈N(

[vi, v∗i ( f )] × ∏j 6=i[0, xj]
)
. If |v∗( f ) − v| ≤ ξ where ξ > 0 is very small,

∫
A(v)

(xi − vi) f (x)dx ≤ fH ∑
j∈N

(v∗j ( f ) − vj) ∏
k∈N

xk

≤ ξn fH ∏
k∈N

xk

If v∗( f ) ∈ A(v), minj∈N(yj − vj) ≥ 2η and |v∗( f ) − v| ≤ ξ, we have

∫
A(v)

(xi − vi) f̃ (x)dx −
∫

A(v)
(xi − vi) f (x)dx =

∫
A(v)

(xi − vi)( f̃ (x) − f (x))dx

=
ε

| f | + |g|

∫
A(v)

(xi − vi)(g(x) − f (x))dx

≥ ε

| f | + |g|

(
(ỹi − vi) −

(
ξn fH ∏

k∈N
xk

))
.

If j ∈ J and |v∗( f ) − v| ≤ ξ where ξ > 0 is very small, then

∫
A(v)

(xj − vj) f̃ (x)dx −
∫

A(v)
(xj − vj) f (x)dx ≥ ε

2(| f | + |g|) (ỹj − v∗j ( f )).
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Let w(t) = v∗(t; f̃ ) − v∗(t; f ). Since ODE (4.1) is continuous in the parameters, for

all ζ > 0, there exists ε > 0 such that |w(t)| ≤ ζ for all t ∈ [0, T]. Suppose that T

and t are very large so that |v∗( f ) − v∗(t; f )| ≤ ξ. For j ∈ J, w′
j(t) is estimated as

follows:

w′
j(t) = λ

∫
A(v∗(t; f̃ ))

(xj − v∗j (t; f̃ )) f̃ (x)dx − λ
∫

A(v∗(t; f ))
(xj − v∗j (t; f )) f (x)dx

= λ
∫

A(v∗(t; f̃ ))
(xj − v∗j (t; f̃ )) f̃ (x)dx − λ

∫
A(v∗j (t; f̃ )))

(xj − v∗j (t; f̃ ))) f (x)dx

+ λ
∫

A(v∗(t; f̃ ))
(xj − v∗j (t; f̃ )) f (x)dx − λ

∫
A(v∗(t; f ))

(xj − v∗j (t; f )) f (x)dx

≥ λε

2(| f | + |g|) (ỹj − v∗j ( f )) − λ
∫

A(v∗(t; f ))∩A(v∗(t; f̃ ))
wj(t) f (x)dx

− λ
∫

A(v∗(t; f ))\(A(v∗(t; f ))∩A(v∗(t; f̃ )))
(xj − v∗j (t; f )) f (x)dx

≥ λε

2(| f | + |g|) (ỹj − v∗j ( f ) − ζ) − λζξ ∑
k∈N

∏
l 6=k

xl − λξn fH ∏
k∈N

xk.

Therefore when ξ > 0 is sufficiently small, w′
j(t) is bounded away from zero:

w′
j(t) ≥ λε

4(| f | + |g|) (ỹj − v∗j ( f ) − ζ).

This implies that for small ε > 0 and large t, v∗j (t; f̃ ) > v∗( f ) for all j ∈ J. Then

the similar method to Step 3 in the proof of Proposition 19 shows that v∗(t; f̃ ) con-

verges to a Pareto efficient allocation in X.

C.2.9 Proof of Proposition 19

Let fL = infx∈X f (x) > 0, fH = supx∈X f (x), and xi = max{xi | x ∈ X} for

i ∈ N. Assumption 4 ensures existence of these values. Let A = {x ∈ X | x ≥ v∗},

I = {i ∈ N | xi = v∗i for all x ∈ A} ⊆ N, and J = N \ I. Suppose that there exists
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x ∈ X which Pareto dominates v∗, thereby J 6= ∅.

Step 1: We show that I is nonempty. If there is no such player, there exist

y(1), . . . , y(n) such that y(j) ∈ A and yj(j) > v∗j for all j ∈ N. This implies that

y = 1
n ∑j∈N y(j) strictly Pareto dominates v∗. Since X is convex, y also belongs to

A. This contradicts the weak Pareto efficiency of v∗ shown in Proposition 15.

Step 2: Next we show that if v∗ is not Pareto efficient in X, and i ∈ I, then

xi ≤ v∗i for all x ∈ X.

Let i be the player in I. Suppose that there exists y ∈ X with yi > v∗i . Since X

is convex, αy + (1 − α)x ∈ X for all 0 ≤ α ≤ 1 and x ∈ X. Since we assumed that

there exists x ∈ X which Pareto dominates v∗, xj > v∗j for j ∈ J. Then there exists

α > 0 such that αy + (1 − α)x ≥ v∗, and αyj + (1 − α)xj > v∗j for some j. By Step 1,

we must have xi = v∗i . Therefore, αyi + (1 − α)xi > v∗i , which contradicts the fact

that i ∈ I.

Step 3: Finally we show that v∗(t) converges to a Pareto efficient allocation in

X as t → ∞.

By convexity of X, one can find yj, ȳj (j ∈ J) such that v∗j < yj < ȳj, and

∏i∈I [v∗i − ε, v∗i ] × ∏j∈J [yj, ȳj] is contained in X for small ε > 0. Let ε ∈ (0, 1/2)

be sufficiently small such that ε ≤
2 fL ∏j∈J(ȳj − yj)

fH ∏j∈J xj
. Since v∗(t) converges to v∗

as t → ∞, there exists t̄ such that maxi∈N{v∗i − v∗i (t)} ≤ ε whenever t ≥ t̄. Let

Y(t) = ∏i∈I [v∗i (t), v∗i ] × ∏j∈J [yj, ȳj] ⊆ A(t).

We have A(t) ⊆ ∏i∈I [v∗i (t), v∗i ] × ∏j∈J [0, xj] since there is no x ∈ A(t) with
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xi > v∗i . By equation (4.1), for i ∈ I,

v∗′i (t) = λ
∫

A(t)

(
xi − v∗i (t)

)
dµ

≤ λ
∫

∏i′∈I [v
∗
i′ (t),v∗i′ ]

(
xi − v∗i (t)

) ∫
∏j∈J [0,xj]

fH ∏
j∈J

dvj ∏
i′∈I

dvi′

≤ 1
2

λ fH(v∗i − v∗i (t̄)) ∏
i′∈I

(v∗i′ − v∗i′(t)) ∏
j∈J

xj

for all t ≥ t̄. On the other hand, for j ∈ J,

v∗′j (t) = λ
∫

A(t)

(
xj − v∗j (t)

)
dµ

≥ λ
∫

Y(t)
(yj − v∗j )dµ

= λ(yj − v∗j )µ(Y(t))

≥ λ fL(yj − v∗j ) ∏
i∈I

(v∗i − v∗i (t)) ∏
j′∈J

(ȳj′ − yj′).

Then for i ∈ I and j ∈ J,

v∗′i (t)
v∗′j (t)

·
v∗j − v∗j (t̄)

v∗i − v∗i (t̄)
≤

fH(v∗i − v∗i (t̄))(v∗j − v∗j (t̄)) ∏j∈J xj

2 fL ∏j′∈J(ȳj′ − yj′)

≤
(v∗i − v∗i (t̄))(v∗j − v∗j (t̄))

ε

≤ ε ≤ 1
2

for all t ≥ t̄. Therefore,
v∗′i (t̄)
v∗′j (t̄)

≤
v∗i − v∗i (t̄)

2
(
v∗j − v∗j (t̄)

)
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holds for all t ≥ t̄. This inequality implies

v∗i (t) − v∗i (t̄) ≤
v∗i − v∗i (t̄)

2
(
v∗j − v∗j (t̄)

)(
v∗j (t) − v∗j (t̄)

)
for all t ≥ t̄. By letting t → ∞ in the above inequality, we have 0 < v∗i − v∗i (t̄) ≤(
v∗i − v∗i (t̄)

)
/2, a contradiction. Hence v∗ is strictly Pareto efficient in X.

C.2.10 Proof of Proposition 21

First, we define the notion of the edge of the Pareto frontier. Suppose that w is

Pareto efficient in X, and wi > 0 for all i ∈ X. Let us denote an (n − 1)-dimensional

subspace orthogonal to w by D = {z ∈ Rn |w · z = 0}. For ξ > 0, let Dξ be an

(n − 1)-dimensional disk defined as

Dξ = {z ∈ D | |z| ≤ ξ},

and let Sξ be its boundary. We say that a Pareto efficient allocation w in X is not

located at the edge of the Pareto frontier of X if there is ξ > 0 such that for all vector

z ∈ Dξ there is a scalar α > 0 such that α(w + z) is Pareto efficient in X. We denote

this Pareto efficient allocation by wz ∈ X.

Let Bε(y) = {x ∈ X | |w − x| ≤ ε} for y ∈ X and ε > 0. We denote the

volume of Bε(y) by Vε(y), and the volume of the n-dimensional ball with radius ε

by Vε. Note that miny∈X Vε(y) > 0 by Assumption 4. Let g be a continuous density

function on an n-dimensional ball centered at 0 ∈ Rn with radius ε, assumed to

take zero on the boundary of the ball. Let f̃ be the uniform density function on X.

For a Pareto efficient allocation y, we define a probability density function fy on X
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by

fy(x) = η f̃ (x) + (1 − η)g(y − x)
Vε

Vε(y)

where η > 0 is small. Note that fy(x) is uniformly bounded above and away from

zero in x and y.

For z ∈ Dξ , let ϕ̃(z) be the limit of the solution of ODE (4.1) with density fwz ,

and define a function ϕ from Dξ to D by ϕ(z) = ϕ̃(z) + δw ∈ D for some δ ∈ R.

By the form of ODE (4.1), the solution of (4.1) with density fwz is continuously

deformed if z changes continuously. Since w is not at the edge of the Pareto frontier,

ϕ̃(z) is also Pareto efficient in X and comes close to w if ξ, ε, and η are small.

Therefore ϕ(z) is a continuous function. The rest of the proof consists of two steps.

Step 1: We show that for any ξ > 0, there exist ε > 0 and η > 0 such that

|ϕ(z) − z| ≤ ξ for all z ∈ Dξ . If a density function has a positive value only in

Bε(y) for some y in the Pareto frontier of X, then the barycenter of A(t) is always

contained in Bε(y). In such a case, the limit allocation with density fy belongs to

Bε(y). As η → 0, fy approaches the above situation. Therefore, for sufficiently

small η > 0, the distance between the limit allocation and y is smaller than 2ε. For

y = wz and letting ε very small, we have |ϕ(z) − z| ≤ ξ. Since Dξ is compact, such

we can take such small ε > 0 and η → 0 uniformly.

Step 2: We show that there is z ∈ Dξ such that ϕ(z) = 0. Let ψ(z) = z − ϕ(z).

By Step 1, ψ(z) belongs to Dξ for all z ∈ Dξ . By Brouwer’s fixed point theorem,

there exists z ∈ Dξ such that ψ(z) = z. Therefore there exists z ∈ Dξ such that

ϕ(z) = 0.

Hence for z ∈ Dξ such that ϕ(z) = 0, the limit allocation with density fwz

coincides with w.
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C.2.11 Proof of Proposition 22

Let v0(t; λ) be the solution of (4.1) for ρ = 0. Fix any t ∈ [0, T]. Recall that

v0(t; αλ) = v0(αt; λ) for all α > 0. Since we defined as limλ→∞ v0(t; λ) = v∗(t; 0, ∞),

there exists λ̄1 > 0 such that

∣∣v∗(t; 0, ∞) − v0(t; λ)
∣∣ =

∣∣v∗(t; 0, ∞) − v0(λt; 1)
∣∣

≤ ε/2 (C.7)

for all λ ≥ λ̄1.

Since the right hand side of ODE (4.10) is continuous in ρ, λ, and uniformly

Lipschitz continuous in v, the unique solution v∗(t; ρ, λ) is continuous in ρ, λ for

all t ∈ [0, T]. Recall that v∗(t; ρ, αλ) = v∗(αt; ρ/α, λ) for all α > 0. Therefore by

continuity in ρ, there exists λ̄2 > 0 such that

∣∣v∗(t; ρ, λ) − v0(t; λ)
∣∣ =

∣∣v∗(λt; ρ/λ, 1) − v0(λt; 1)
∣∣

≤ ε/2 (C.8)

for all λ ≥ λ̄2. By adding (C.7) and (C.8), we obtain the desired inequality for

λ̄ = max{λ̄1, λ̄2}.

C.2.12 Proof of Proposition 23

Let v(t) be the solution of ODE (4.10). The proof consists of five steps.

Step 1: We show that for any t > 0, µ(A(t)) → 0 as λ → ∞. If not, there exist a

positive value ε > 0 and an increasing sequence (λ̄k)k=1,2,... such that µ(A(t)) ≥ ε

for all λ̄k. Since X is compact and f is bounded from above, there exists η > 0 such
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that µ
(

A(v(t) + (η, . . . , η))
)
≥ ε/2. In fact, since

µ
(

A(v(t)) \ A(v(t) + (η, . . . , η))
)
≤ ∑

i∈N
µ
(
[vi(t), vi(t) + η] × ∏

j 6=i
[0, xj]

)
≤ fH ∑

i∈N
η ∏

j 6=i
xj,

we have µ
(

A(v(t) + (η, . . . , η))
)
≥ ε/2 for η =

ε

2 fH ∑i∈N ∏j 6=i xj
. For this η, the

integral in ODE (4.10) is estimated as

∫
A(t)

(
xi − vi(t)

)
dµ ≥

∫
A(v(t)+(η,...,η))

(
xi − vi(t)

)
dµ

≥
∫

A(v(t)+(η,...,η))
ηdµ

≥ ηε/2.

By ODE (4.10),

v′i(t) ≥ −ρxi + λ̄kηε/2,

which obviously grows infinitely as λ̄k becomes large. This contradicts compact-

ness of X.

Step 2: We compute the direction of
∫

A(t)

(
xi − vi(t)

)
dµ in the limit as λ → ∞.

By Step 1, the boundary of X contains all accumulation points of {vi(t) | λ > 0} for

fixed t > 0. Fix an accumulation point v∗(t). There exists an increasing sequence

(λk)k=1,2,... with v∗(t) = limk→∞ v(t). By Assumption 5, there exists a unit normal

vector of X at v∗(t), which we denote by α ∈ R++.

Step 1 implies that v(t) is very close to the boundary of X when λk is very

large. By smoothness of the boundary of X, A(t) looks like a polyhedron defined
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by convex hull of {v(t), v(t) + (z1(t), 0, . . . , 0), v(t) + (0, z2(t), 0, . . . , 0), . . . , v(t) +

(0, . . . , 0, zn(t))} where zi(t)’s are positive length of edges such that the last n ver-

tices are on the boundary of X. This vector z(t) is parallel to (1/α1, . . . , 1/αn).

Let r(t) be the ratio between the length of z(t) and (1/α1, . . . , 1/αn), i.e., r(t) =

z1(t)α1 = · · · = zn(t)αn.

Since density f is bounded from above and away from zero, distribution µ looks

almost uniform on A(t) if λk is large. Then the integral
∫

A(t)

(
xi − vi(t)

)
dµ is al-

most parallel to the vector from v(t) to the barycenter of the polyhedron, namely,

z(t)/(n + 1). Therefore
∫

A(t)

(
xi − vi(t)

)
dµ is approximately parallel to (1/α1, . . . ,

1/αn) when λk is large.

Step 3: We show that ∑i∈N αiv′i(t) ≥ 0 for large λ. Let (λk)k=1,2,... be the se-

quence defined in Step 2. For large λk, A(t) again looks like a polyhedron with the

uniform distribution. By Step 2, the ODE near vi(t) is written as

v′i(t) = −ρvi(t) + λk
zi(t)
n + 1

· µ(A(t)). (C.9)

Note that vi(t) is close to v∗i (t) and µ(A(t)) is order n of the length of z(t). By

replacing the above equation by r(t), ODE (C.9) approximates

r′(t) = ρa − λkbr(t)n+1 (C.10)

for some constants a, b > 0. Since r(t) is large when t is small, the above ODE

shows that r(t) is decreasing in t. Therefore µ(A(t)) is also decreasing in t. For

large λk, this implies that

α · v′(t) = ∑
i∈N

αiv′i(t) ≥ 0.
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Step 4: We show that the Nash product is nondecreasing if λ is large. By

ODE (C.9), we have

αiv′i(t) = −ραivi(t) + β (C.11)

where β = λkµ(A(t))/(n + 1) independent of i. Let us assume without loss of

generality that α1v′1(t) ≥ · · · ≥ αnv′n(t). Then we must have 1/α1v1(t) ≥ · · · ≥

1/αnvn(t).

Let L(t) = ∑i∈N ln vi(t) be a logarithm of the Nash product. Then L′(t) =

∑i∈N v′i(t)/vi(t). By Chebyshev’s sum inequality,

L′(t) = ∑
i∈N

v′i(t)
vi(t)

≥ 1
n

(
∑
i∈N

αiv′i(t)
)(

∑
i∈N

1
αivi(t)

)
≥ 0.

Hence, L(t) is nondecreasing if λk is large. Moreover, equality holds if and only if

α1v′1(t) = · · · = αnv′n(t) or α1v1(t) = · · · = αnvn(t).

Step 5: We show that v(t) converges to a point in the Nash set as λ → ∞. Step 4

shows that L′(t) converges to zero as λ → ∞. Then α1v′1(t) = · · · = αnv′n(t) or

α1v1(t) = · · · = αnvn(t) in the limit of λ → ∞. The former case implies v′i(t) = 0

for all i ∈ N by Step 3. Then ODE (C.11) shows that the latter case holds. Therefore

the latter case always holds in the limit of λ → ∞. This implies that the boundary of

X at v∗(t) is tangent to the hypersurface defined by “Nash product = ∏i∈N v∗i (t).”

Hence any accumulation point v∗(t) belongs to the Nash set.

Since we assumed that the Nash set consists of isolated points, v∗(t) is isolated.

If v(t) does not converge to v∗(t), there is δ > 0 such that for any λ̄ there exists

v(t) with λ ≥ λ̄. Let δ > 0 be small such that there is no point in the Nash set in
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{x ∈ X | |v∗(t)− x| ≤ δ}. Since v(t) is continuous with respect to λ, for any λ̄, there

exists λ > λ̄ such that δ/2 ≤ |v∗(t) − v(t)| ≤ δ. Since {x ∈ X | δ/2 ≤ |v∗(t) − x| ≤

δ} is compact, v(t) must have an accumulation point in this set. This contradicts

the fact that any accumulation point is contained in the Nash set. Furthermore,

v∗(t) does not depend on t since v∗(t) is continuous in t.

C.2.13 Proof of Proposition 24

(Sketch of proof): The ODE (C.10) is approximated by a linear ODE, which has

a solution converging to v∗ with an exponential speed. Therefore for large λ, r(t) is

approximated by r(t) =
( ρa

λb

) 1
n+1

. Since µ(A(t)) is proportional to r(t)n, µ(A(t)) =

cλ− n
n+1 for a constant c > 0. the probability that players reach an agreement before

time −(T − s) is

1 − e−
∫ T

T−s µ(A(t))λdt = 1 − e−scλ
1

n+1 ,

which converges to one as λ → ∞.

C.2.14 Proof of Proposition 25

By equation (4.12), vi( t
∆t ) is a nondecreasing sequence. Since X is bounded and

convex, vi( t
∆t ) converges to a Pareto efficient allocations as ∆t → 0. Let v∗( t

∆t ) be

the solution of equation (4.12), and v∗ = lim∆t→0 v∗( t
∆t ) for t > 0.

The proof proceeds basically on the same route as that in Proposition 16. Let

fh( t
∆t ), fL( t

∆t ), be defined as in the proof of Proposition 16. Then a parallel argu-
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ment to Step 1 shows an inequality analogous to (C.6): For large t̄,

π(∆t) fL( t̄
∆t )

n(n + 1)

(α · (v∗ − v∗( t
∆t )) − η

αi

)
∏
j∈N

(α · (v∗ − v∗( t
∆t )) − η

αj

)
≤ v∗i

( t
∆t

+ 1
)
− v∗i

( t
∆t

)
≤

π(∆t) fH( t̄
∆t )

n(n + 1)

(α · (v∗ − v∗( t
∆t )) + η

αi

)
∏
j∈N

(α · (v∗ − v∗( t
∆t )) + η

αj

)
,

where notations are the same as in the proof of Proposition 16. Therefore we have

lim∆t→0
v∗j (

t
∆t + 1) − v∗j (

t
∆t )

v∗i (
t

∆t + 1) − v∗i (
t

∆t )
=

αi

αj
. Similar computations as in Step 2 show an ap-

proximation for small ∆t

(
v∗i − v∗i

( t
∆t

+ 1
))

−
(

v∗i − v∗i
( t

∆t

))
≈

−
π(∆t) fm( t̄

∆t )
n(n + 1)

(
∏
j 6=i

αi

αj

)(
v∗i − v∗i

( t
∆t

))n+1
,

where fm( t
∆t ) is the average density in A( t

∆t ). Then we can show that

lim
∆t→0

αi

(
v∗i − v∗i

( t
∆t

))
·
(π(∆t)t

∆t

) 1
n

=
( n + 1

f (v∗)nn+1 ∏
j∈N

αj

) 1
n
.

Here we used the fact that ∆t is very small when compared to π(∆t) if ∆t is small,

to ignore the constant derived from an initial condition.

A similar computation to Step 3 shows that

lim
∆t→0

p(t) ·
(π(∆t)t

∆t

)
=

n + 1
n2 ,

and thus the limit expected duration is D(∞) = n2

n2+n+1 .
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C.2.15 Proof of Proposition 26

(Sketch of proof): The approximated ODE (C.10) for large t in the proof of

Proposition 23 is rearranged as follows:

λ
1
n r′(t) = λ

1
n ρa − b ·

(
λ

1
n r(t)

)n+1

If λ
1
n ρ → 0, this ODE is approximated as

λ
1
n r′(t) ≈ −b

(
λ

1
n r(t)

)n+1

which yields r(t) = O
(

1
(λt)

1
n

)
. This is the same case with ρ = 0. On the other hand,

If λ
1
n ρ → ∞, the ODE is approximated as

λ
1
n r′(t) =

(
(λ

1
n ρa)

1
n+1 − b

1
n+1 (λ

1
n r(t))

)
·
(
(λ

1
n ρa)

n
n+1 + (λ

1
n ρa)

n−1
n+1 · b

1
n+1 (λ

1
n r(t)) + · · · + b

n
n+1 (λ

1
n r(t))n)

≈ (λ
1
n ρa) − (λ

1
n ρa)

n
n+1 · b

1
n+1 (λ

1
n r(t))

which implies r(t) =
( ρa

λb

) 1
n+1 − O(e−t). This corresponds to the case with ρ > 0.

C.2.16 Proof of Proposition 32

By symmetry, v∗1(t) = v∗2(t) and v∗ = (1/2, 1/2). Let z(t) = v∗i − v∗i (t). Suppose

that t is large and z(t) is small, so that z(t) ≤ 1−a
2(1+a) . It is straightforward to see

that an agreement is reached after negotiation with a costly transfer if and only if

realized allocation x ∈ X is in the triangle T1 ∪ T2 ∪ T3 shown in Figure C.1, where

the slopes of the line segments are −a, a, 1/a,−1/a, respectively, from southeast to

northwest.
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v
∗(t)

v
∗

b1

b2
b3

T1

T2

T3

Figure C.1: The set of realized allocations that
the players accept

S(x)

v
∗(t)

NBS

x

Figure C.2: The set of feasible alloca-
tions when x ∈ T1 is re-
alized

Suppose that realized allocation x belongs to the triangle T1 in Figure C.1. Then

the set S(x) of feasible allocations is described in Figure C.2. Since the disagree-

ment point is at v∗(t), the Nash bargaining solution (NBS) is located on the bor-

derline between T1 and T3. Therefore the ex post distribution of payoff profiles on

agreement has a mass on the line segment between T1 and T3, and the barycenter b1

of the mass is the intersection point between the line segment and the line drawn

through the barycenter of T1 with slope −a. The symmetric argument applies to

the case of x ∈ T2, and the barycenter b2 of the mass on the borderline between T2

and T3 is computed correspondingly.

If x belongs to T3, the Nash bargaining solution is x itself. The the barycenter

b3 of the set of ex post payoff profiles conditional on the realized allocation x being
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contained in T3 is exactly the barycenter of T3. A computation shows that

b1 = v(t) +
( 2

3(1 + a)
,

2a
3(1 + a)

)
z(t), b2 = v(t) +

( 2a
3(1 + a)

,
2

3(1 + a)

)
z(t),

b3 = v(t) +
(2

3
,

2
3

)
z(t),

µ(T1) = µ(T2) =
8a

1 − a2 z(t)2, µ(T3) =
2(1 − a)

1 + a
z(t)2.

Therefore the barycenter of the entire set of ex post payoff profiles is computed as

a convex combination of b1, b2, b3. By ODE (4.1),

z′(t) = −v′1(t)

= −λ
(
(b1 − v(t))µ(T1) + (b2 − v(t))µ(T2) + (b3 − v(t))µ(T3)

)
= −λ · 8(1 + a2)

3(1 − a2)
z(t)3.

Since p(t) = µ(T1) + µ(T2) + µ(T3) =
4(1 + a)

1 − a
z(t)2,

p′(t) =
8(1 + a)

1 − a
z(t)z′(t)

= λ · 4(1 + a2)
3(1 + a)2 p(t)2.

Therefore the constant r defined in Section 4.4.2 is 4(1+a2)
3(1+a)2 . By Theorem 8, the limit

duration is

D(∞) =
1

1 +
(

4(1+a2)
3(1+a)2

)−1

=
4 + 4a2

7 + 6a + 7a2 .
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