Surface Chemistry of Copper Precursors in Connection with Atomic Layer Deposition (ALD) Processes

The Harvard community has made this article openly available. **Please share** how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:9639953</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Surface Chemistry of Copper Precursors in Connection with Atomic Layer Deposition (ALD) Processes

Qiang Ma, Roy G. Gordon¹, and Francisco Zaera

Dept. Chemistry, University of California, Riverside, CA 92521, USA
Phone: 1 (951) 827-5498
Fax: 1 (951) 827-3962
Email: zaera@ucr.edu
http://research.chem.ucr.edu/groups/zaera/

¹ Dept. Chemistry, Harvard University
Cambridge, MA 02138

ALD International Conference
Boston, June 28, 2011
ALD: Separate chemistry into two self-limiting and complementary reactions for more control.

Copper Acetamidinate: Promising ALD precursor

Cu Amidinate Thermal Chemistry
Stepwise Decomposition, TPD on Ni(110)

Cu Amidinate Thermal Chemistry
Dimer Dissociation upon Adsorption

Cu Amidinate Thermal Chemistry
First C–N Bond Dissociation, T ~ 200 K

Cu Amidinate Thermal Chemistry

N-sec-Butylacetamidine Formation

Cu Amidinate Thermal Chemistry

Cu Reduction

Copper reduction occurs as N-sec-butylacetamide desorbs

Cu Amidinate Thermal Chemistry
High Temperature Conversion, C 1s and N 1s XPS

Francisco Zaera
Department of Chemistry
University of California, Riverside
Cu Amidinate Thermal Chemistry
Butene Formation and Further Dehydrogenation

Cu Amidinate Thermal Chemistry
Proposed Mechanism

Several intermediates form vs. T
Some may desorb molecularly, but by ~ 480 K dehydrogenation is irreversible

N-sec butylacetamidine

Dissociative adsorption

N(110)

Ni(110)

Ni(110)

Copper reduction $\text{Cu(I)} \rightarrow \text{Cu(0)}$

Francisco Zaera
Department of Chemistry
University of California, Riverside
Cu Amidinate Uptake
Effect of Temperature and Hydrogen

Cu-Amidinate/Ni(110)
Uptake at Different Temperatures

150L H₂ Predose

Fast and continuous uptake above 460 K. Possible CVD. Deposition of impurities.

Butene desorption
Extensive dehydrogenation

Uptake past monolayer above 400 K

Acetonitrile formation

N-sec-butylacetamidine desorption

No uptake below 300 K

No appreciable changes seen with hydrogen surface presaturation

Cu Amidinate Uptake
Growth Rate, LEIS

Cu Amidinate Thermal Chemistry
Proposed Mechanism

Several intermediates form vs. T
Some may desorb molecularly, but
by ~ 480 K dehydrogenation is irreversible

N-sec butylacetamidine

Dissociative adsorption

Copper reduction Cu(I) → Cu(0)