Atomic Layer Deposition (ALD) and Chemical Vapor Deposition (CVD) of Copper-based Metallization for Microelectronic Fabrication

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:9639958

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
ALD and CVD of Copper-Based Metallization for Microelectronic Fabrication

Yeung Au, Youbo Lin, Hoon Kim, Zhengwen Li, and Roy G. Gordon
Department of Chemistry and Chemical Biology
Harvard University
Introduction

- Periodic improvements in performance of microelectronic devices have been achieved through device-scaling

Copper was selected because of its (1) abundance, (2) low resistivity, and (3) better electromigration reliability

- Damascene process (EP and CMP) is commonly adopted for patterning copper
Outline

In today’s presentation:

- ALD and CVD of Cu films from a Cu(I) amidinate precursor
- Formation of Cu seed layer by ALD of Cu and by CVD of CuON
- Bottom-up filling of CVD-Cu and CuMn alloy in nanoscale features
- Summary
Copper Precursors

- Requirements for good ALD Cu precursors: (1) thermally stable, (2) volatile, and (3) minimal contaminations

Advantages of metal amidinates precursors:
- Bidentate chealting effect enhances thermal stability
- Tunable reactivity and volatility
- Minimal carbon and oxygen contamination

ALD of Copper

- Copper films could be deposited by ALD using molecular hydrogen as reducing agent

ALD System

- Copper deposited on ALD-Al₂O₃ substrate at low temperatures (150-190 C):

![Graphs showing Cu thickness, growth rate, and growth per cycle vs. Cu precursor exposure, H₂ exposure, and distance from the front inlet.]

ALD of Copper

- Growth behavior can be affected by many factors: surface chemistry, precursor exposure, deposition temperature, etc.

ALD-Al$_2$O$_3$, ALD-HfO$_2$, Thermal SiO$_2$
Initially ~2Å/cycle, ~0.5Å/cycle when surface is fully covered by Cu

Ru Substrates
0.11Å/cycle

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Growth per cycle (Å/cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$/SiO$_2$</td>
<td>1.90 (based on 100 cycles)</td>
</tr>
<tr>
<td>Si$_3$N$_4$</td>
<td>1.50 (based on 60 cycles)</td>
</tr>
<tr>
<td>WN</td>
<td>0.54 (based on 30 cycles)</td>
</tr>
<tr>
<td>Ru</td>
<td>0.11 (based on 100 cycles)</td>
</tr>
<tr>
<td>Co</td>
<td>0.40 (based on 30 cycles)</td>
</tr>
<tr>
<td>Cu</td>
<td>~0.5 (from Al$_2$O$_3$ curve)</td>
</tr>
</tbody>
</table>
Copper Seed Layer Using ALD

- ALD has the ability to grow films conformally and uniformly over high aspect ratio holes and trenches

- Four-point bend experiment showed high adhesion energies for Cu/Co/WN/SiO₂

<table>
<thead>
<tr>
<th>Structure</th>
<th>Scotch tape test</th>
<th>Adhesion energy (J/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/SiO₂</td>
<td>Failed</td>
<td></td>
</tr>
<tr>
<td>Cu/SiO₂</td>
<td>Failed</td>
<td>2^a</td>
</tr>
<tr>
<td>Cu/WN/SiO₂</td>
<td>Failed</td>
<td>6^a</td>
</tr>
<tr>
<td>TaN/SiO₂</td>
<td>Passed</td>
<td>>31</td>
</tr>
<tr>
<td>WN/SiO₂</td>
<td>Passed</td>
<td>>31</td>
</tr>
<tr>
<td>Co/WN/SiO₂</td>
<td>Passed</td>
<td>>31</td>
</tr>
<tr>
<td>Cu/Co/WN/SiO₂</td>
<td>Passed</td>
<td>>31</td>
</tr>
</tbody>
</table>

In-situ Resistance Measurement
ALD Cu on Glass (185°C)

Cu Seed Layer Using CVD-CuON and Plasma Reduction

- Copper seed layers must have conformal step coverage, strong adhesion and smooth surface morphology

- Island growth of CVD-Cu on Ta underlayer
- Cu has fairly high wettability on Ru, but requires >20nm to form a continuous film due to island growth

- New approach:

 - Cu precursor + H₂O → Cu₂O
 - Cu precursor + NH₃ → Cu₃N
 - Cu precursor + H₂O + NH₃ → CuON

Low Surface Energy (22-26 mJ/m² for Cu₂O and Cu₃N, compared to 1700-1900 mJ/m² for Cu)

Remote Hydrogen Plasma Reduction near RT

Thin (<10 nm), Smooth (RMS ~1 nm), High Density (95%) CVD Cu Seed Layer

Cu Seed Layer Using CVD-CuON and Plasma Reduction

CVD System
- Temperature: 140-220°C
- Pressure: 8 Torr
- H$_2$, NH$_3$, N$_2$, Cu(I) amd
- Oven
- H$_2$O
- Pump

Plasma System
- Remote Plasma Generator
- Temperature: RT - 50°C
- Reduction Time: 30-180s
- Ar, H$_2$
- Pump

Composition of CVD-CuON Films
(H$_2$O:NH$_3$=30:10)
Cu Seed Layer Using CVD-CuON and Plasma Reduction

Surface Morphology of 20nm of CVD-CuON Films (H$_2$O:NH$_3$=30:10)

- 140°C, RMS: 0.64 nm
- 160°C, RMS: 0.54 nm
- 180°C, RMS: 0.72 nm
- 220°C, RMS: 1.04 nm

Step Coverage in High AR Holes (H$_2$O:NH$_3$=30:10, 140°C)

100 nm
Filling Narrow Features with CVD of Copper

- Conventional techniques lead to formation of voids and seams in very narrow features
- Iodine is a catalytic surfactant that promotes smoother morphology and higher deposit rate
- Bottom-up filling of sub-micrometer features could be achieved by CVD

This process requires a conformal Cu seed layer on top of the diffusion barrier and adhesion layer

Surfactant Catalyzed CVD Cu and CuMn in Narrow Trenches

Key Points

- Conformally deposited manganese nitride serves as a barrier/adhesion layer
- Iodine acts as a surfactant catalyst to promote Cu and Mn growth
- Void-free, bottom-up filling of Cu or Cu-Mn alloy in narrow trenches with AR up to at least 5:1
- Mn diffuses out from Cu during post-annealing to further improve adhesion and barrier properties at Cu/insulator interface

Motivation

Chemical Vapor Deposition of Copper

Precursors

- Bis (N,N'-diisopropylpentylamidinato)manganese(II)
 - Melting Point: ~60°C
 - Bubbler Temperature: 90°C
 - Vapor Pressure: ~0.1 mbar at 90°C

- Copper (I) N,N'-di-sec-butylacetamidinate
 - Melting Point: ~75°C
 - Bubbler Temperature: 130°C
 - Vapor Pressure: ~0.25 mbar at 95°C

CVD System

- Temperature: 130°C for Mn₄N, 180°C for Cu and CuMn
- Pressure: 5 Torr
CVD-Mn₄N Barrier/Adhesion Layer

- CVD-Mn₄N (ε phase, FCC structure) can be prepared by reacting manganese amidinate precursors with NH₃

![CVD-Mn₄N](image)

- Mn₄N layer as thin as 2.5 nm (1) shows barrier properties against Cu diffusion, (2) significantly improve adhesion (debonding energy = 6.5 J/m²) between Cu and SiO₂

- Release of iodine and catalytic effects are observed on Mn₄N underlayer

- Excellent step coverage → holes with AR = 52:1

- RMS roughness = 0.97 nm for a 13.5 nm film
Surfactant Catalyzed Bottom-up Filling of CVD-Cu

With CVD-Mn$_4$N liner layer and iodine catalyst, trenches with width \(\leq 20 \) nm and aspect ratio over 5:1 can be completely filled with CVD-Cu.
Surfactant Catalyzed Bottom-up Filling of CVD-CuMn Alloy

- Cu-Mn alloy can be formed by (1) alternating CVD-Cu and Mn or (2) co-depositing Cu and Mn

- Trenches with width ≤ 30 nm can be completely filled with CuMn alloy
 Manganese concentration: 0.5-2.0 atomic %
Enhancement by Diffusion of Mn from Cu to Interface

- Insulators encourages diffusion of Mn through Cu grain boundaries to interface
- Mn improves both adhesion and barrier properties at the interface

Cu Diffusion Barrier Test

(a) Reference
Cu: 250nm
Thermal SiO₂: 300nm
n-Si

(b) With MnSiₓOᵧ
Cu: 250nm
MnSiₓOᵧ: 8nm
Thermal SiO₂: 300nm
n-Si

Summary

✓ Copper can be deposited by ALD or CVD using a Cu(I) amidinate precursor

✓ Conformal and uniform seed layers can be prepared by ALD-Cu or by CVD-CuON followed by remote hydrogen plasma reduction

✓ Nanoscale trenches can be superconformally filled by CVD-Cu and CVD-CuMn alloy with an iodine surfactant on Mn₄N liner layer

✓ Manganese in Cu-Mn alloy diffuses out to strengthen the interface between Cu and insulators without increasing the resistivity of Cu

✓ Manganese silicate (MnSiₓOᵧ) interfacial layer shows excellent barrier properties against Cu diffusion and protects Cu from corrosion by H₂O and O₂
Acknowledgements

- Facilities at Harvard’s Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), supported by the National Science Foundation

- Precursors: Dow Chemical Company
 Substrates and Analyses: Applied Materials, IMEC and IBM

- Members of Gordon Group