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Abstract

The debate between �structural� and �reduced-form�approaches has generated sub-
stantial controversy in applied economics. This article reviews a recent literature in
public economics that combines the advantages of reduced-form strategies �transpar-
ent and credible identi�cation �with an important advantage of structural models �
the ability to make predictions about counterfactual outcomes and welfare. This lit-
erature has developed formulas for the welfare consequences of various policies that
are functions of reduced-form elasticities rather than structural primitives. I present
a general framework that shows how many policy questions can be answered by es-
timating a small set of su¢ cient statistics using program evaluation methods. I use
this framework to synthesize the modern literature on taxation, social insurance, and
behavioral welfare economics. Finally, I discuss problems in macroeconomics, labor,
development, and industrial organization that could be tackled using the su¢ cient
statistic approach.
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There are two competing paradigms for policy evaluation and welfare analysis in eco-

nomics: the �structural� approach and the �reduced-form� approach (also known as the

�program evaluation� or �treatment e¤ect� approach). The division between structural

and reduced-form methods has split the economics profession into two camps whose research

programs have evolved almost independently despite focusing on similar questions. The

structural approach speci�es complete models of economic behavior and estimates or cali-

brates the primitives of such models. Armed with the fully estimated model, these studies

then simulate the e¤ects of changes in policies and the economic environment on behavior

and welfare. This powerful methodology has been applied to an array of topics, ranging

from the design of tax and transfer policies in public �nance to the sources of inequality in

labor economics and antitrust policy in industrial organization.

Critics of the structural approach argue that it is di¢ cult to identify all primitive para-

meters in an empirically compelling manner because of selection e¤ects, simultaneity bias,

and omitted variables. These researchers instead advocate �reduced-form�strategies that

estimate statistical relationships, placing priority on identi�cation of causal e¤ects using

research designs that exploit quasi-experimental variation.1 Reduced-form studies have

identi�ed a variety of important empirical regularities, especially in labor, public, and de-

velopment economics. Advocates of the structural paradigm criticize the reduced-form

approach for estimating statistics that are not policy invariant parameters of economic mod-

els, and therefore have limited relevance for policy and welfare analysis (Rosenzweig and

Wolpin 2000, Heckman and Vytlacil 2005, Deaton 2009).2

This paper argues that a set of papers in public economics written over the past decade

(see Table 1) provide a middle ground between the two methods. These papers develop

�su¢ cient statistic�formulas that combine the advantages of reduced-form empirics �trans-

parent and credible identi�cation �with an important advantage of structural models �the

ability to make precise statements about welfare. The central concept of the su¢ cient sta-

1The term �reduced-form�is a misnomer: the relationships that are estimated are generally not reduced-
forms of economic models. I use �reduced form� here simply for consistency with standard terminology
used to describe design-based studies that identify treatment e¤ects.

2See Section 1 of Rosenzweig and Wolpin (2000) and Table V of Heckman and Vytlacil (2005) for a more
detailed comparison of the structural and treatment e¤ect approaches.
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tistic approach (illustrated in Figure 1) is to derive formulas for the welfare consequences

of policies that are functions of high-level elasticities rather than deep primitives. Even

though there are multiple combinations of primitives that are consistent with the inputs

to the formulas, all such combinations have the same welfare implications.3 For example,

Feldstein (1999) shows that the marginal welfare gain from raising the income tax rate can

be expressed purely as a function of the elasticity of taxable income even though taxable

income may be a complex function of choices such as hours, training, and e¤ort. Saez

(2001) shows that labor supply elasticity estimates can be used to make inferences about

the optimal progressive income tax schedule in the Mirrlees (1971) model. Chetty (2008a)

shows that the welfare gains from social insurance can be expressed purely in terms of the

liquidity and moral hazard e¤ects of the program in a broad class of dynamic, stochastic

models. Each of these papers answers a policy question using program evaluation estimates,

providing economic meaning to what might otherwise be viewed as �atheoretical�statistical

estimates.

The goal of this paper is to elucidate the key concepts of the su¢ cient statistic method-

ology and encourage its use as a bridge between structural and reduced-form methods. I

�rst provide a general framework for the derivation of su¢ cient statistic formulas for welfare

analysis. This framework shows how envelope conditions from optimization can be used to

reduce the set of parameters that need to be identi�ed. I then illustrate the approach by

reviewing several recent papers on tax policy, social insurance, and behavioral public �nance.

The idea that it is adequate to estimate certain su¢ cient statistics rather than the full

primitive structure to answer certain questions is not new; it was well understood by the pio-

neers of structural estimation in the Cowles Commission (Marschak 1953, Koopmans 1953).

Indeed, Heckman and Vytlacil (2007) label this idea �Marschak�s maxim,�arguing that �for

many decisions (policy problems), only combinations of explicit economic parameters are

required � no single economic parameter need be identi�ed.� In early microeconometric

work, structural methods were preferred because the parameters of the simple models that

3The term �su¢ cient statistic�is borrowed from the statistics literature: conditional on the statistics that
appear in the formula, other statistics that can be calculated from the same sample provide no additional
information about the welfare consequences of the policy.
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were being studied could in principle be easily identi�ed.4 In the 1980s, it became clear

that identi�cation of primitives was di¢ cult once one permitted dynamics, heterogeneity,

and selection e¤ects. Concerns about the identi�cation of parameters in these richer models

led a large group of empirical researchers to abandon structural methods in favor of more

transparent quasi-experimental research designs (e.g., Lalonde 1986, Card 1990, Angrist and

Krueger 1991).5 A large library of treatment e¤ect estimates was developed in the 1980s

and 1990s. The recent su¢ cient statistic literature maps these treatment e¤ect estimates

into statements about welfare in structural models that incorporate dynamics, heterogeneity,

and general equilibrium e¤ects.

The structural and su¢ cient statistic approaches to welfare analysis should be viewed as

complements rather than substitutes because each approach has certain advantages. The

su¢ cient statistic method has three bene�ts. First, it is simpler to implement empirically

because less data and variation are needed to identify marginal treatment e¤ects than to

fully identify a structural model. Indeed, because of the estimation challenges, structural

primitives are often calibrated to match reduced-form moments rather than formally esti-

mated using microdata (Dawkins, Srinivasan, and Whalley 2001). The su¢ cient statistic

approach obviates the need to fully calibrate the structural model. This is especially ben-

e�cial in models with heterogeneity and discrete choice, where the set of primitives is very

large but the set of marginal treatment e¤ects needed for welfare evaluation remains small.

By estimating the relevant marginal treatment e¤ects as a function of the policy instrument,

one can integrate the formula for the marginal welfare gain between any two observed values

to evaluate policy changes.

Second, identi�cation of structural models often requires strong assumptions given avail-

able data and variation. Since it is unnecessary to identify all primitives, su¢ cient statistic

formulas can be implemented under weaker assumptions using design-based empirical meth-

ods. The results are therefore more transparent and empirically credible. Third, the

4An exception is the work of Harberger (1964), who advocated the use of elasticities as su¢ cient statistics
for tax policy analysis in equilibrium models. As I discuss in section 2, Harberger�s work can be viewed as
a predecessor to the modern su¢ cient statistic literature.

5Imbens and Wooldridge (2008) review program evaluation methods. Imbens (2009) discusses the advan-
tages of such methods from a statistical perspective.
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su¢ cient statistic approach can be applied even when one is uncertain about the positive

model that generates observed behavior �as in recent studies in the behavioral economics

literature which document deviations from perfect rationality. In such cases, welfare analy-

sis based on a structural model may be impossible, whereas the more agnostic su¢ cient

statistic approach permits some progress. For instance, Chetty, Looney, and Kroft (2008)

derive formulas for the deadweight cost of taxation in terms of price and tax elasticities in a

model where agents make arbitrary optimization errors with respect to taxes.

The parsimony of the su¢ cient statistic approach naturally comes with costs. First,

and most important, a new su¢ cient statistic formula must be derived for each question.

For example, Gruber (1997) calculates the optimal level of unemployment bene�ts using a

su¢ cient statistic formula. If one were interested in calculating the optimal duration of

unemployment bene�ts, one would have to derive a new formula and estimate a new set of

elasticities. In contrast, if one had estimated the structural primitives of the job search

model used to derive these formulas, di¤erent policy simulations could be conducted with

ease. Moreover, for some questions, it may be very di¢ cult to derive a su¢ cient statistic

formula and a structural approach may be the only feasible option.

A second potential weakness of su¢ cient statistic formulas is that they are more easily

misapplied than structural methods. This is because one can draw policy conclusions

from a su¢ cient statistic formula without assessing the validity of the model upon which

it is based. For example, Gorodnichenko et al. (2009) show that the assumptions about

the costs of evasion underlying Feldstein�s (1999) formula for the excess burden of income

taxation are inconsistent with the data. In contrast, because structural methods require

full estimation of the model, policy conclusions can only be drawn from models that �t the

data.

A common argument in favor of the structural approach is that it has advantages in

out-of-sample predictions. One can also make out-of-sample predictions using the su¢ cient

statistic approach by estimating marginal treatment e¤ects as a function of the policy in-

strument and making a statistical extrapolation. For example, by estimating the elasticity

of labor supply with respect to the tax rate at various tax rates, one can extrapolate to the

welfare consequences of tax regimes that have not yet been observed. In principle, structural

4



methods do not require such ad hoc extrapolations, since the primitive structure is by de�n-

ition policy invariant. However, in practice, structural models often rely on extrapolations

based on functional form assumptions (such as constant elasticity utilities). Hence, the real

advantage of structural models in out-of-sample predictions comes from the precision of the

extrapolation. Statistical extrapolations may be less reliable than extrapolations guided by

an economic model that imposes restrictions on how behavior changes with policies.6

The structural and su¢ cient statistic methods can be combined to address the short-

comings of each strategy. For instance, a structural model can be calibrated to match the

su¢ cient statistics that matter for local welfare analysis to improve its empirical credibil-

ity. Conversely, when making out-of-sample predictions using a su¢ cient statistic formula,

a structural model can be used to guide the choice of functional forms used to extrapolate

the key elasticities. By combining the two methods in this manner, researchers can pick

a point in the interior of the continuum between reduced-form and structural estimation,

without being pinned to one endpoint or the other. In addition, su¢ cient statistic formulas

provide theoretical guidance for reduced-form empirical work by identifying the parameters

of greatest interest for a given question.

The paper is organized as follows. The next section discusses Harberger�s (1964) for-

mula for the deadweight cost of taxation, a precursor to the modern literature on su¢ cient

statistics. In Section II, I develop a general framework which provides a six-step rubric for

deriving su¢ cient statistic formulas. Sections III to V review applications of the su¢ cient

statistic method to income taxation, social insurance, and behavioral (non-rational) models.

These three sections provide a synthesis of the modern public �nance literature, showing how

a dozen seemingly unrelated papers are essentially variants on the theme of �nding su¢ cient

statistics. The paper concludes in section VI with a discussion of potential applications to

�elds beyond public �nance.

6See Lumsdaine, Stock, and Wise (1992) and Keane and Wolpin (1997) for comparisons of reduced-form
statistical extrapolations and model-based structural extrapolations. They �nd that structural predictions
are more accurate, but statistical extrapolations that include the key variables suggested by the economic
model come quite close.
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I A Precedent: Measuring Deadweight Loss

Harberger (1964) popularized the measurement of the excess burden of a commodity tax

using a simple elasticity-based formula. This result can be viewed as a precedent to the

modern literature on su¢ cient statistics, and provides a starting point from which to build

intuition about the applications discussed below.

Consider a static general equilibrium model in which an individual is endowed with Z

units of the numeraire (y), whose price is normalized to 1. Firms convert the numeraire

good y (which can be interpreted as labor) into J other consumption goods, x = (x1; :::; xJ).

Producing xj units of good j requires an input of cj(xj) units of y, where cj is a weakly

convex function. Let c(x) =
PJ

j=1 cj(xj) denote the total cost of producing a vector x.

Production is perfectly competitive. The government levies a unit tax t on good 1. Let

p = (p1; :::; pJ) the vector of pre-tax prices for the produced goods, which are determined

endogenously in market equilibrium.

To simplify the exposition, ignore income e¤ects by assuming that utility is quasilinear

in y. The consumer takes the price vector as given and solves:

max
x;y

u(x1; :::; xJ) + y (1)

s.t. p � x+ tx1 + y = Z

where u(x) is strictly quasiconcave. The representative �rm takes prices as given and solves

max
x

p � x� c(x) (2)

These two problems de�ne maps from the price vector p to demand and supply of the J goods,

xD(p) and xS(p). The model is closed by the market clearing condition xD(p) = xS(p). Let

p(t) denote the market-clearing price vector as a function of the tax rate t.

Suppose the policy maker wants to measure the e¢ ciency cost of the tax t. The e¢ ciency

(or �deadweight�) cost of a tax increase equals the loss in surplus from the transactions that

fail to occur because of the tax. To calculate the e¢ ciency cost, the conceptual experiment

is to measure the net loss in welfare from raising the tax rate and returning the tax revenue
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to the taxpayer through a lump-sum rebate.7 With quasi-linear utility, the consumer will

always choose to allocate the lump-sum rebate to consumption of the numeraire good y.

Social welfare can therefore be written as the sum of the consumer�s utility (which is a

money metric given quasilinearity), producer pro�ts, and tax revenue:

W (t) =
n
max
x

u(x) + Z � tx1 � p(t) � x
o
+
n
max
x

p(t) � x� c(x)
o
+ tx1

=
n
max
x

u(x) + Z � tx1 � c(x)
o
+ tx1 (3)

where the second equation e¤ectively recasts the decentralized equilibrium as a planner�s

allocation problem. In this expression, the term in curly brackets measures private surplus,

while the tx1 term measures tax revenue. The individual treats tax revenue as �xed when

choosing x, failing to internalize the e¤ects of his behavior on the lump-sum transfer he

ultimately receives. This assumption, which is standard in e¢ ciency cost calculations,

captures the intuition that in an economy populated by a large number of individuals, any

one individual has a negligible impact on the government revenue and therefore treats it as

�xed.

There are two approaches to estimating the e¤ect of an increase in the tax on social welfare

(dW
dt
). The �rst is to estimate (or calibrate) a J good demand and supply system to recover

the utility function u(x) and cost function c(x). Once u and c are known, one can directly

compute W (t), recognizing that the tax t will a¤ect equilibrium prices and quantities in all

J markets. Preferences can be recovered using the parametric demand systems proposed,

for instance, by Stone (1954) or Deaton and Muellbauer (1980). Alternatively, one can �t

a demand system to the data and then integrate to obtain the expenditure function, as in

Hausman (1981) or Hausman and Newey (1995). The econometric challenge in implementing

any of these structural methods is simultaneity: identifying the slope of the supply and

demand curves requires 2J instruments.

7Formally, excess burden is de�ned using equivalent or compensating variation measures (see e.g., Auer-
bach 1985). The social welfare calculation here is equivalent to these measures because we are considering
a speci�cation without income e¤ects. With income e¤ects, the Harberger formula discussed below applies
with the Hicksian elasticity in place of the Marshallian elasticity.
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Harberger (1964) proposed an alternative, simpler solution to the problem.8 Di¤eren-

tiating (3) and exploiting the �rst-order conditions from consumer and �rm maximization

yields
dW (t)

dt
= �x1 + x1 + t

dx1
dt

= t
dx1(t)

dt
(4)

This formula shows that the e¤ect of the tax on equilibrium quantity in the taxed market

(dx1(t)
dt
) is a �su¢ cient statistic� for analyzing the e¢ ciency costs of tax changes. By esti-

mating dx1
dt
(t) for di¤erent values of t, one can calculate the welfare consequences of any tax

change that lies within the observed support of t by integrating (4): �W = W (t2)�W (t1) =R t2
t1
tdx1
dt
(t)dt. The key point is that the full system of supply and demand curves does not

have to be identi�ed to calculate �W .

Harberger�s formula rests upon two conceptual insights that form the basis for modern

su¢ cient statistic applications. First, the behavioral responses (dx
dt
) in the curly brackets

of (3) can be ignored when calculating dW
dt
because of envelope conditions from consumer

and �rm optimization. Intuitively, social welfare has already been optimized by individuals

and �rms (subject to constraints imposed by the government). Although the tax induces

changes in behavior, these behavioral responses cannot have a �rst-order e¤ect on private

welfare; if they did, consumers or �rms would not be optimizing. Second, the changes in

equilibrium prices (dp
dt
) can also be ignored when calculating dW

dt
. This is because prices

cancel out of the expression for social welfare in (3). Changes in prices simply redistribute

income from producers to consumers without changing aggregate surplus.

These two observations imply that the loss in social surplus from the tax is determined

purely by the di¤erence between the agent�s willingness to pay for good x1 and the cost of

producing good x1. The di¤erence can be measured by the area between the supply and

demand curves and the initial and post-tax quantities (i.e., the �Harberger triangle�), which

is proportional to dx1
dt
. The total derivative dx1

dt
= @x1

@p1

@p1
@t
+ @x1

@p2

@p2
@t
+ ::: + @x1

@pJ

@pJ
@t
measures

the e¤ect of an increase in the tax rate on x1, allowing all prices and equilibrium demands

to change endogenously. The simplicity of Harberger�s approach stems from estimating
dx1
dt
directly rather than estimating its various components, which is e¤ectively what the

8Hines (1999) colorfully recounts the intellectual history of the deadweight loss triangle.
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structural approach requires.

The tradeo¤s between the su¢ cient statistic and structural approaches are apparent in

the debate that followed Harberger�s work. One limitation of (4) is that it does not permit

pre-existing distortions in the other markets; otherwise the spillover e¤ects would have �rst-

order e¤ects on welfare. This limitation can be addressed by an extension of the formula that

includes cross-price elasticities, as shown in Harberger�s original analysis. Under empirically

plausible approximations about the structure of the distortions, the formula can be expressed

purely in terms of own-price elasticities (Goulder and Williams 2003). Hence, a di¤erent

su¢ cient statistic formula is required to handle cases with pre-existing distortions.9

A second limitation of (4) is that it cannot be directly used to evaluate counterfactual

policy changes such as the imposition of a large new tax on good x1. This limitation can

be addressed by estimating dx1
dt
(t) for various values of t and making functional-form as-

sumptions to extrapolate out-of-sample. In practice, the Harberger formula is typically

implemented under a linear or log-linear approximation to demand (e.g. dx1
dt
constant) be-

cause data limitations preclude estimation of higher-order properties of the demand curve.

Simulations of calibrated models suggest that implementations of Harberger�s formula us-

ing linear approximations are generally quite accurate (Shoven 1976, Ballard, Shoven, and

Whalley 1985). Thus, despite its limitations, the simple Harberger �triangle� formula has

become central to applied welfare analysis and has inspired a vast literature estimating tax

elasticities.

The bene�ts of Harberger�s approach are especially evident in modern structural models

that permit heterogeneity across individuals and discrete choice. I now incorporate these

features into the preceding analysis, following Small and Rosen�s (1981) analysis for the

discrete choice case.

Extension 1: Heterogeneity. Now suppose the economy has N individuals with hetero-

geneous preferences. Let xi denote individual i�s vector of demands and x =
PN

i=1 x
i denote

9A related concern is that one may inadvertently ignore some pre-existing distortions and apply an
inaccurate version of the Harberger formula. Indeed, Goulder and Williams argue that previous applications
of the simple formula in (4) to assess the deadweight costs of commodity taxation are biased by an order-of-
magnitude because they fail to account for interactions with the labor income tax. This mistake would not
have been made in a properly speci�ed structural model.
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aggregate demand. Individual i is endowed with Zi units of the numeraire and has utility

ui(xi) + y (5)

Under a utilitarian criterion, social welfare is given by:

W (t) =

(
NX
i=1

max
xi
[ui(xi) + Zi � txi1]� c(x)

)
+ t

NX
i=1

xi1 (6)

The structural approach requires identi�cation of the demand functions and utilities for all

i agents. The su¢ cient statistic approach simpli�es the identi�cation problem substantially

here. Because there is an envelope condition for xi for every agent, we can ignore all

behavioral responses within the curly brackets when di¤erentiating (6) to obtain

dW (t)

dt
= �

NX
i=1

xi1 +
NX
i=1

xi1 + t
d
PN

i=1 x
i
1

dt
= t

dx1(t)

dt
(7)

The e¤ect of a tax increase on aggregate demand (dx1
dt
) is a su¢ cient statistic for the marginal

excess burden of that tax; there is no need to characterize the underlying heterogeneity in

the population to implement (7). Intuitively, even though each individual has a di¤erent

demand elasticity, what matters for government revenue and aggregate welfare is the total

change in behavior induced by the tax.10

An important caveat is that with heterogeneity, dx1
dt
may vary considerably with t, since

the individuals at the margin will di¤er with the tax rate. Hence, it is especially important

to distinguish average and marginal treatment e¤ects for welfare analysis by estimating dx1
dt
(t)

as a function of t in this case.

Extension 2: Discrete Choice. Now suppose individuals can only choose one of the J prod-

ucts f1; :::; Jg. These products might represent models of cars, modes of transportation, or

neighborhoods. Each product is characterized by a vector of K attributes xj = (x1j; :::; xKj)

10Of course, to analyze a policy that has heterogeneous impacts across groups, such as a progressive income
tax, one needs group-speci�c elasticity estimates to calculate dW

dt . The key point, however, is that the only
heterogeneity that matters is at the level of the policy impact; any additional heterogeneity within groups
can be ignored. For instance, heterogeneous labor supply responses within an income group need to not be
characterized when analyzing optimal progressive income taxation.
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observed by the econometrician and an unobservable attribute �j. If agent i chooses product

j, his utility is

uij = vij + "ij

with vij = Zi � pj + �j + �i(xj)

where "ij is a random unobserved taste shock. Let Pij denote the probability that individual

i chooses option j, Pj =
P

i Pij denote total (expected) demand for product j, and P =

(P1; :::; PJ) the vector of aggregate product demands. Product j is produced by competitive

�rms using cj(Pj) units of the numeraire good y. Let c(P ) =
P

j cj(Pj). This model di¤ers

from that above in two respects: (1) utility over the consumption goods is replaced by utility

over the product attributes �i(xj) + �j + "ij and (2) the attributes can only be consumed in

discrete bundles.

To build intuition, �rst consider a case in which individuals make binary decisions about

whether to buy a single good x1 (J = 1) and the price of x1 is �xed at p1 (constant marginal

cost of supply). If an individual does not buy x1, he spends his wealth on the numeraire

and obtains utility ui = Zi. If he buys x1, his utility is ui = Zi � p1 + �1 + �i(x1) + "i1.

Let V i = �1+ �
i(x1) + "i1 denote individual i�s gross valuation of x1. Let F (V i) denote the

smooth distribution of valuations in the economy and suppose there is a unit mass of agents.

Let EZ denote the average level of wealth in the economy.

To calculate dW
dt
in this environment, �rst note that individuals with V i above a cuto¤

V will buy x1. The model is therefore isomorphic to one in which a representative agent

chooses V to maximize total private surplus. Social surplus can be written as the sum of

private surplus and tax revenue:

W (t) =

�
EZ +max

V

Z 1

V

[V i � (p1 + t)]dF (V i)

�
+ t

Z 1

V

dF (V i) (8)

Di¤erentiating this expression and using the envelope condition for V , we see that the ag-
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gregate demand response remains a su¢ cient statistic for the marginal welfare gain:

dW

dt
= �(1� F (V )) + (1� F (V )) + t

d
R1
V
dF (V i)

dt
= t

dx1
dt
.

Intuitively, even though the individual demand functions are discontinuous, the model can

be recast as the smooth choice of the demand threshold V by a representative agent. This

permits application of the standard envelope condition to V in the social welfare function. At

the microeconomic level, this envelope condition re�ects the fact that the marginal individual

who stops buying good x1 when t is raised loses no utility, since he was indi¤erent about

buying good x1 to begin with.

The same logic applies in the J good case. To simplify exposition and link the results

to standard multinomial logit discrete choice models, assume that "ij has a type 1 extreme

value distribution.11 Then it is well known (see e.g. Train 2003) that the probability that

a utility-maximizing individual i chooses product j is

Pij =
exp(vij)P
j exp(vij)

(9)

and that agent i�s expected utility from a vector of prices p = (p1; :::; pJ) is

Si(p1; :::; pJ) = Emax(ui1; :::; uiJ) = log(
X
j

exp vij).

Aggregating over the i = 1; :::; N consumers, (expected) consumer surplus is

S =
X
i

log(
X
j

exp(vij))

Since utility is quasilinear, we can add producer pro�ts to this expression to obtain social

welfare:

W =
X
i

log(
X
j

exp(vij)) + p � P � c(P ) (10)

11The results that follow do not rely on the assumption that the "ij errors have an extreme value distribu-
tion (Small and Rosen 1981). The distributional assumption simpli�es the algebra by yielding a closed-form
solution for total surplus, but the envelope conditions used to derive (11) hold with any distribution.
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The classical approach to policy analysis in these models is to estimate the distributions of

�i and �j, and simulate total surplus before and after a policy change (see e.g., Train 2003,

p60). Identi�cation of such models is challenging, especially if the econometrician does not

observe all product attributes, since �j will be correlated with pj in equilibrium (Berry 1994;

Berry, Levinsohn, and Pakes 1995).

Su¢ cient statistic approaches o¤er a means of policy analysis that does not require

identi�cation of �i and �j. For example, suppose the government levies a tax t on good

1, raising its price to p1 + t. The government returns the proceeds to agents through a

lump-sum transfer T so that yi becomes yi + T . As above, agents do not internalize the

e¤ects of their behavior on the size of the transfer T . Using the envelope condition for pro�t

maximization,

dW (t)

dt
=

X
i

[� exp(vi1)P
j exp(vij)

�
X
j

dpj
dt

exp(vij)P
j exp(vij)

] +
X
j

dpj
dt
Pj + P1 + t

dP1
dt

(11)

= t
dP1(t)

dt

where the second equality follows from (9). Identi�cation of the welfare loss from taxation

of good 1 requires estimation of only the e¤ect of the tax on the aggregate market share

(dP1
dt
), as in the standard Harberger formula.

Now suppose that an ad-valorem tax � is levied on all the products except the numeraire

good, raising the price of product j to (1 + �)pj. Again, tax revenue is returned to agents

through a lump sum grant. Following a similar derivation,

dW (�)

d�
= �

X
j

pj
dPj(�)

d�
= �

dEP (�)

d�

where Ep =
P

j pjPj denotes total pre-tax expenditure in the market for the taxed good.

The e¢ ciency cost of a tax on all products depends on the aggregate expenditure elasticity

for the taxed market; it does not require estimation of the substitution patterns within that

market. A similar derivation can be used to show that the e¢ ciency cost of a tax on a single

characteristic � such as gas mileage � can be calculated simply by estimating the e¤ect

of the tax on the equilibrium quantity of that characteristic (e.g., gasoline consumption).
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Hence, many policy questions of interest can be answered simply by estimating reduced-form

aggregate demand responses even in discrete choice models.

The modern su¢ cient statistic literature builds on Harberger�s idea of only identifying

the aspects of the model relevant for the question at hand. Before describing speci�c

applications of this approach, I present a general framework that nests the papers in this

literature and provides a �recipe�for developing such formulas.

II General Framework

Abstractly, many government policies amount to levying a tax t to �nance a transfer T (t). In

the context of redistributive taxation, the transfer is to another agent; in the context of social

insurance, it is to another state; and in the context of the excess burden calculations above,

the transfer can be thought of as being used to �nance a public good. I now present a six

step rubric for calculating the welfare gain from raising the tax rate t (and the accompanying

transfer T (t)) using su¢ cient statistics.

To simplify exposition, the rubric is formally presented in a static model with a single

agent. The same sequence of steps can be applied to obtain formulas for multi-agent

problems with heterogeneous preferences and discrete choice if U(�) is viewed as a (smooth)

social welfare function aggregating the utilities of all the agents, as in (6) and (10). Similarly,

dynamics can be incorporated by integrating the utility function over multiple periods.

Step 1: Specify the structure of the model. Let x = (x1; :::; xJ) denote the vector

of choices for the representative agent in the private sector. A unit tax t is levied on choice

x1 and the transfer T (t) is paid in units of xJ . Let fG1(x; t; T ); :::; GM(x; t; T )g denote the

M < J constraints faced by the agent, which include budget constraints, restrictions on

insurance or borrowing, hours constraints, etc. The agent takes t and T as given and makes

his choices by solving:

maxU(x) s.t. G1(x; t; T ) = 0; :::; GM(x; t; T ) = 0 (12)
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The solution to (12) gives social welfare as a function of the policy instrument:

W (t) = max
x

U(x) +
MX
m=1

�mGm(x; t; T )

This speci�cation nests competitive production because any equilibrium allocation can be

viewed as the choice of a benevolent planner seeking to maximize total private surplus subject

to technological constraints.

For example, in the single agent Harberger model analyzed above,

U(x) = u(x1; :::; xJ�1) + xJ

G1(x; t; T ) = T + Z � t1x1 � c(x1; :::; xJ�1)� xJ . (13)

Note that a more general speci�cation of preferences and constraints will yield a formula

that is more robust but harder to implement empirically.

Step 2: Express dW
dt
in terms of multipliers. Using the envelope conditions associ-

ated with optimization in the private sector, di¤erentiate W to obtain

dW

dt
=

MX
m=1

�mf
@Gm
@T

dT

dt
+
@Gm
@t

g (14)

where �m denotes the Lagrange multiplier associated with constraint m in the agent�s prob-

lem in (12). In this equation, dT
dt
is known through the government�s budget constraint,

and @Gm
@T

and @Gm
@t

can be calculated mechanically. For example, in the Harberger model,

T (t) = tx1 and hence dT
dt
= x1 + tdx1

dt
. Di¤erentiating (13) yields dG1

dT
= 1 and dG1

dt
= �x1.

It follows that dW
dt
= �1t

dx1
dt
.

The critical unknowns are the �m multipliers. In the excess burden application, �1

measures the marginal value of relaxing the budget constraint. In a social insurance appli-

cation, �1 could represent the marginal value of relaxing the constraint that limits the extent

to which agents can transfer consumption across states. If �1 is small, there is little value

to social insurance, whereas if it is large, dW
dt
could be large.

Step 3: Substitute multipliers by marginal utilities. The �m multipliers are
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recovered by exploiting restrictions from the agent�s �rst-order-conditions. Optimization

leads agents to equate marginal utilities with linear combinations of the multipliers:

u0(xj) = �
MX
m=1

�m
@Gm
@xj

Inverting this system of equations generates a map from the multipliers into the marginal

utilities. It is helpful to impose the following assumption on the structure of the constraints

in order to simplify this mapping.

Assumption 1. The tax t enters all the constraints in the same way as the good on which

it is levied (x1) and the transfer T enters all the constraints in the same way as the good in

which it is paid (xJ). Formally, there exist functions kt(x; t; T ), kT (x; t; T ) such that

@Gm
@t

= kt(x; t; T )
@Gm
@x1

8m = 1; :::;M

@Gm
@T

= �kT (x; t; T )
@Gm
@xJ

8m = 1; :::;M

Assumption 1 requires that x1 and t enter every constraint interchangeably (up to a scale

factor kt).12 That is, increasing t by $1 and reducing x1 by $kt would leave all constraints

una¤ected. A similar interchangeability condition is required for xJ and T . In models with

only one constraint per agent, Assumption 1 is satis�ed by de�nition. In the Harberger

model, where the only constraint is the budget constraint, kt corresponds to the mechanical

increase in expenditure caused by a $1 increase in t ($x1) vs. a $1 increase in x1 ($p1 + t).

Hence, kt = x1
p1+t

in that model. Since increasing the transfer by $1 a¤ects the budget

constraint in the same way as reducing consumption of xJ by $1, kT = 1.

Models where the private sector choices are second-best e¢ cient subject to the resource

constraints in the economy typically satisfy the conditions in Assumption 1. This is because

fungibility of resources ensures that the taxed good and tax rate enter all constraints in

the same way (see Chetty (2006a) for details). The su¢ cient statistic approach can be

implemented in models that violate Assumption 1 (see section IV for an example), but the

12If the tax t is levied on multiple goods (x1; :::; xt) as in Feldstein (1999), the requirement is that it enters
the constraints in the same way as the combination of all the taxed goods, i.e. @Gi

@t =
Pt

i=1 kt(x; t; T )
@Gj

@xi
.
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algebra is much simpler when this assumption holds. This is because the conditions in

Assumption 1 permit direct substitution into (14) to obtain:

dW

dt
=

MX
m=1

�mf�kT
@Gm
@xJ

dT

dt
+ kt

@Gm
@x1

g

= �kT
dT

dt

MX
m=1

�m
@Gm
@xJ

+ kt

MX
m=1

�m
@Gm
@x1

dW

dt
= kT

dT

dt
u0(xJ(t))� ktu

0(x1(t)). (15)

This expression captures a simple and general intuition: increasing the tax t is equivalent

to reducing consumption of x1 by kt units, which reduces the agent�s utility by ktu0(x1(t)).

The additional transfer that the agent gets from the tax increase is dT
dt
kT units of good xJ ,

which raises his utility by kT dTdt u
0(xJ(t)). Since kT , kt, and dT

dt
are known based on the

speci�cation of the model, this expression distills local welfare analysis to recovering a pair

of marginal utilities.13

In models with heterogeneity, the aggregate welfare gain is a function of a pair of average

marginal utilities across agents. In dynamic models, the welfare gain is also a function of a

pair of average marginal utilities, but with the mean taken over the lifecycle for a given agent.

This result is obtained using envelope conditions when di¤erentiating the value function.

Step 4: Recover marginal utilities from observed choices. The �nal step in

obtaining an empirically implementable expression for dW
dt
is to back out the two marginal

utilities. One way to do this is to make assumptions about the relevant marginal utilities

based on surveys or external evidence, such as measures of the value of an additional year

of healthy life. This is implicitly the approach taken in the cost-bene�t analyses sometimes

reported in reduced-form studies (e.g., Levitt 1997).

Su¢ cient statistic studies recover the marginal utilities from choice data using the struc-

ture of the model speci�ed in step 1. There is no canned procedure for this step. The

applications below provide several illustrations. The trick that is typically exploited is that

the marginal utilities are elements in �rst-order conditions for various choices. As a result,

13In many applications, steps 2 and 3 are consolidated into a single step because the constraints can be
substituted directly into the objective function.
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they can be backed out from the comparative statics of behavior. For instance, in the single

agent Harberger model above, the assumption of no income e¤ects implies u0(xJ) = 1. To

identify u0(x1), exploit the �rst-order condition for x1, which is u0(x1) = p1+ t. Plugging in

these expressions and the other parameters above into (15), we obtain (4):

dW (t)

dt
= 1 � (x1 + t

dx1
dt
)� x1

p1 + t
� (p1 + t) = t

dx1(t)

dt
.

Step 5: Empirical Implementation. Suppose the su¢ cient statistic formula one

derives has the following form:

dW

dt
(t) = f(

@x1
@t

;
@x1
@Z

; t). (16)

When implementing this expression empirically, two issues should be kept in mind. First,

the relevant derivatives may require holding di¤erent variables �xed depending upon the

application. For example, the Harberger formula in (4) calls for measurement of the total

derivative dx1
dt
, which incorporates general equilibrium e¤ects and price changes in all mar-

kets. In contrast, many reduced-form empirical studies explicitly seek to identify the partial

derivative @x1
@t
, holding prices in other markets constant. These studies typically compare

the behavior of a small group of individuals �treated�by a tax change with other una¤ected

individuals. Such studies do not recover the su¢ cient statistic of interest for the Harberger

policy question. The elasticities they estimate are, however, directly relevant for assessing

the e¢ ciency cost of a tax increase on a small subset of consumers that does not a¤ect equi-

librium prices in other markets. The general lesson is that the experiment used to identify

the relevant elasticities must be matched to the policy question that is being asked.14 In

situations where one cannot credibly identify the elasticity called for by the formula, it may

be possible to make progress using approximations �e.g., a tax levied on a small market has

negligible e¤ects on prices in other markets in equilibrium.

The second issue arises from the fact that policy changes of interest are never in�nitesimal.

14A related problem is that reduced-form studies often estimate the combined e¤ect of multi-dimensional
changes, such as welfare reforms that a¤ect both time limits and �nancial incentives to work. Such estimates
cannot be directly plugged into su¢ cient statistic formulas. In such cases, structure may be needed to obtain
elasticities with respect to each dimension of the change.
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The ideal way to implement (16) to assess the e¢ ciency costs of a discrete policy change

is to estimate the inputs as non-parametric functions of the policy instrument t. With

estimates of @x1
@t
(t) and @x1

@Z
(t), one can integrate (16) between any two tax rates t1 and t2

that lie within the support of observed policies to evaluate the welfare gain �W for a policy

change of interest. This procedure is similar in spirit to Heckman and Vytlacil�s (2001,

2005) recommendation that researchers estimate a complete schedule of marginal treatment

e¤ects (MTE), and then integrate that distribution over the desired range to obtain policy

relevant treatment e¤ects. In the present case, the marginal welfare gain at t depends on the

MTE at t; analysis of non-marginal changes requires estimation of the MTE as a function of

t. Predictions about welfare gains from policies outside the observed support can be made

by extrapolating @x1
@t
(t) out of sample. That is, one can e¤ectively obtain su¢ cient statistics

for out-of-sample welfare analysis under assumptions about the functional form of @x1
@t
(t).

In most applications, there is insu¢ cient power to estimate x1(t) non-parametrically. In-

stead, typical reduced-form studies estimate local average treatment e¤ects (Angrist, Graddy,

and Imbens 2000), such as the e¤ect of a discrete change in the tax rate from t1 to t2 on

demand: �x1
�t

= x1(t2)�x1(t1)
t2�t1 . The estimate of �x1

�t
permits inference about the e¤ect of

raising the tax rate from t1 to t2 on welfare. To see this, consider the Harberger model,

where dW
dt
(t) = tdx1

dt
(t). A researcher who has estimated �x1

�t
has two options. This �rst is

to bound the average welfare gain over the observed range:

W (t2)�W (t1) =

Z t2

t1

dW

dt
dt =

Z t2

t1

t
dx1
dt
(t)dt

) t1
�x1
�t

> dW=dt > t2
�x1
�t

(17)

Intuitively, the excess burden of taxation depends on the slope of the x1(t) between t1 and

t2, multiplied by the height of the �Harberger trapezoid�at each point. When one observes

only the average slope between the two tax rates, bounds on excess burden can be obtained

by setting the height to the lowest and highest points over the interval.

The second option is to use an approximation to x1(t) to calculate dW=dt. For instance,

if one can estimate only the �rst-order properties of x1(t), making the approximation that dx1dt
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is constant over the observed range implies

dW=dt ' t1 + t2
2

�x1
�t

If x1(t) is linear, the average height of the trapezoid and �x1
�t

exactly determine excess

burden. If one has adequate data and variation to estimate higher-order terms of x1(t),

these estimates can be used to �t a higher order approximation to x1(t) to obtain a more

accurate estimate of dW=dt.

The same two options are available in models in which dW
dt
is a function of more than one

behavioral response, as in (16). Bounds may be obtained using the estimated treatment

e¤ects (�x1
�Z

; �x1
�t
) by integratingdW

dt
and setting the other parameters at their extrema as in

(17). Under a linear approximation to demand (dx1
dt
; dx1
dZ
constant), treatment e¤ects can be

mapped directly into the marginal welfare gain: dW (t)
dt

= f(�x1
�t
; �x1
�Z

; t). If dW (t)
dt

can only

be estimated accurately at the current level of t, one can at least determine the direction in

which the policy instrument should be shifted to improve welfare.

The bottom line is that the precision of a su¢ cient statistic formula is determined by

the precision of the information available about the su¢ cient statistics as a function of the

policy instrument. In the applications discussed below, the data and variation available

only permit estimation of �rst-order properties of the inputs, and the authors are therefore

constrained to calculating a �rst-order approximation of dW=dt. The potential error in this

linear approximation can be assessed using the bounds proposed above or using a structural

model.

Step 6. Model Evaluation. Although su¢ cient statistic formulas do not require full

speci�cation of the model, they do require some modelling assumptions; it is impossible to

make theory-free statements about welfare. It is important to assess the validity of these

assumptions to ensure that the formula�s results are accurate. Unfortunately, because this

step is not necessary to calculate dW (t)
dt
, it is often not implemented in existing su¢ cient

statistic studies.

The model can be evaluated in two ways. First, one can test qualitative predictions that

would falsify the assumptions that are central for deriving the su¢ cient statistic formula.
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For example, Harberger�s formula assumes that individuals treat prices and taxes identically,

making choices based only on the total price of the good (p + t). This assumption can be

tested by comparing price and tax elasticities of demand (Chetty, Looney, and Kroft 2008).

Second, one should identify at least one vector of structural parameters ! that is consistent

with the su¢ cient statistics estimated in step 5. If the empirical estimates of the su¢ cient

statistics are internally consistent with the model, at least one ! must �t the estimated

statistics. This is not a stringent test, because the idea of the su¢ cient statistic approach

is that there will be multiple values of ! consistent with the su¢ cient statistics. However,

there are cases in which the estimated high-level elasticities may not be consistent with any

underlying vector of primitives, rejecting the assumptions of the model (see Chetty (2006a,b)

for an example).

The next three sections show how a variety of recent papers in public economics can

be interpreted as applications of this six-step rubric. Each application illustrates di¤erent

strengths and weaknesses of the su¢ cient statistic approach and demonstrates the techniques

that are helpful in deriving such formulas.

III Application 1: Income Taxation

Since the seminal work of Mirrlees (1971) and others, there has been a large structural

literature investigating the optimal design of income tax and transfer systems. Several

studies have simulated optimal tax rates in calibrated versions of the Mirrlees model (see

Tuomala 1990 for a survey). A related literature uses microsimulation methods to calculate

the e¤ects of changes in transfer policies on behavior and welfare. The most recent structural

work in this area has generalized the Mirrlees model to dynamic settings and simulated the

optimal design of tax policies in such environments using calibrated models. Parallel to this

literature, a large body of work in labor economics has investigated the e¤ects of tax and

transfer programs on behavior using program evaluation methods. See Table 1 for examples

of structural and reduced-form studies.

Recent work in public economics has shown that the elasticities estimated by labor econo-

mists can be mapped into statements about optimal tax policy in the models that have been
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analyzed using structural methods. This su¢ cient statistic method has been widely applied

in the context of income taxation in the past decade, with contributions by Feldstein (1995,

1999), Piketty (1997), Diamond (1998), Saez (2001), Gruber and Saez (2002), Goulder and

Williams (2003), Chetty (2008b), and others. All of these papers can be embedded in the

general framework proposed above. I focus on two papers here in the interest of space:

Feldstein (1999) and Saez (2001).

Feldstein (1999). Traditional empirical work on labor supply did not incorporate the

potential e¤ects of taxes on choices other than hours of work. For instance, income taxes

could a¤ect an individual�s choice of training, e¤ort, or occupational choice. Moreover,

individuals may be induced to shelter income from taxation by evading or avoiding tax

payments (e.g. taking fringe bene�ts, underreporting earnings). While some studies have

attempted to directly examine the e¤ects of taxes on each of these margins, it is di¢ cult

to account for all potential behavioral responses to taxation by measuring each channel

separately.

Feldstein proposes an elegant solution to the problem of calculating the e¢ ciency costs

of taxation in a model with multi-dimensional labor supply choices. His insight is that the

elasticity of taxable income with respect to the tax rate is a su¢ cient statistic for calculating

deadweight loss. Feldstein considers a model in which an individual makes J labor supply

choices (x1; :::; xJ) that generate earnings. Let wj denote the wage paid for choice j and

 j(xj) denote the disutility of labor supply through margin xj.
15 In addition, suppose that

the agent can shelter $e of earnings from the tax authority (via sheltering or evasion) by

paying a cost g(e). Total taxable income is TI =
PJ

j=1wjxj � e. Let c = (1 � t)TI + e

denote consumption. For simplicity, assume that utility is linear in c to abstract from

income e¤ects. Feldstein shows that it is straightforward to allow for income e¤ects. As

in the Harberger model, we calculate the excess burden of the tax by assuming that the

government returns the tax revenue to the agent as a lump sum transfer T (t). Using the

15Feldstein takes the wage rates wj as �xed, implicitly assuming that the demand for each type of labor
supply is perfectly elastic. Allowing for downward-sloping labor demand curves in a competitive market
does not a¤ect the formula he derives for the same reason that endogenous prices do not a¤ect the Harberger
formula in (4). With endogenous wages, the su¢ cient statistic for deadweight loss is the total derivative
dTI
dt , which incorporates all equilibrium wage responses to the tax change.
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notation introduced in section II, we can write this model formally as:

u(c; x; e) = c� g(e)�
JX
j=1

 j(xj)

T (t) = t � TI

G1(c; x; t) = T + (1� t)TI + e� c

Social welfare is

W (t) =

(
(1� t)TI + e� g(e)�

JX
j=1

 j(xj)

)
+ t � TI (18)

To calculate the marginal excess burden dW
dt
, totally di¤erentiate (18) to obtain

dW

dt
= TI + t

dTI

dt
� TI + (1� t)

dTI

dt
+
de

dt
(1� g0(e))�

JX
j=1

 0j(xj)
dxj
dt

=
dTI

dt
+
de

dt
(1� g0(e))�

JX
j=1

 0j(xj)
dxj
dt

(19)

This equation is an example of the marginal utility representation in (15) given in step 3 of

the rubric in section II. To recover the marginal utilities (step 4), Feldstein exploits the �rst

order conditions

g0(e) = t (20)

 0j(xj) = (1� t)wj

)
JX
j=1

 0j(xj)
dxj
dt

=
JX
j=1

(1� t)wj
dxj
dt

= (1� t)
d(TI + e)

dt

where the last equality follows from the de�nition of TI. Plugging these expressions into

(19) and collecting terms yields the following expression for the marginal welfare gain from

raising the tax rate from an initial rate of t:

dW (t)

dt
= t

dTI(t)

dt
. (21)
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A simpler, but less instructive, derivation of (21) is to di¤erentiate (18), recognizing that

behavioral responses have no �rst-order e¤ect on private surplus (the term in curly brackets)

because of the envelope conditions. This immediately yields dW
dt
= �TI + TI + tdTI

dt
.

Equation (21) shows that we simply need to measure how taxable income responds to

changes in the tax rate to calculate the deadweight cost of income taxation. There is no

need to determine whether TI changes because of hours responses, changes in occupation,

or avoidance behaviors in order to calculate e¢ ciency costs. Intuitively, the agent supplies

labor on every margin (x1; :::; xJ) up to the point where his marginal disutility of earning

another dollar through that margin equals 1 � t. The marginal social value of earning an

extra dollar net of the disutility of labor is therefore t for all margins. Likewise, the agent

optimally sets the marginal cost of reporting $1 less to the tax authority (g0(e)) equal to the

marginal private value of doing so (t). Hence, the marginal social costs of reducing earnings

(via any margin) and reporting less income via avoidance are the same at the individual�s

optimal allocation. This makes it irrelevant which mechanism underlies the change in TI

for e¢ ciency purposes.

The main advantage of identifying dTI(t)
dt

as a su¢ cient statistic is that it permits inference

about e¢ ciency costs without requiring identi�cation of the potentially complex e¤ects of

taxes on numerous labor supply, evasion, and avoidance behaviors. Moreover, data on

taxable income are available on tax records, facilitating estimation of the key parameter dTI
dt
.

Feldstein (1995) implements (21) by estimating the changes in reported taxable income

around the Tax Reform Act of 1986, implicitly using the linear approximation described

in step 5 of the rubric. He concludes based on these estimates that the excess burden of

taxing high income individuals is very large, possibly as large as $2 per $1 of revenue raised.

This result has been in�uential in policy discussions by suggesting that top income tax rates

should be lowered (see e.g., Joint Economic Committee 2001). Subsequent empirical work

motivated by Feldstein�s result has found smaller values of dTI
dt
, and the academic debate

about the value of the taxable income elasticity remains active.

The sixth step of the rubric �model evaluation �has only been partially implemented

in the context of Feldstein�s formula. Slemrod (1995) and several other authors have found

that the large estimates of dTI
dt
are driven primarily by evasion and avoidance behaviors (de

dt
).
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However, these structural parameters (g(e);  j(xj)) of the model have not been directly

evaluated. Chetty (2008b) gives an example of the danger in not investigating the structural

parameters. Chetty argues that the marginal social cost of tax avoidance may not be equal

to the tax rate at the optimum �violating the �rst-order-condition (20) that is critical to

derive (21) �for two reasons. First, some of the costs of evasion and avoidance constitute

transfers, such as the payment of �nes for tax evasion, rather than resource costs. Second,

there is considerable evidence that individuals overestimate the true penalties for evasion.

Using a su¢ cient statistic approach analogous to that above, Chetty relaxes the g0(e) = t

restriction and obtains the following generalization of Feldstein�s formula:

dW (t)

dt
= tf�(t)dTI(t)

dt
+ (1� �(t))

dLI(t)

dt
g (22)

where LI =
PJ

j=1wjxj represents total earned income and �(t) =
g0(e(t))

t
measures the gap

between social marginal costs of avoidance and the tax rate. Intuitively, deadweight loss

is a weighted average of the taxable income elasticity (dTI
dt
) and the total earned income

elasticity (dLI
dt
), with the weight determined by the resource cost of sheltering. If avoidance

does not have a large resource cost, changes in e have little e¢ ciency cost, and thus it is only
dLI
dt
�the �real�labor supply response �that matters for deadweight loss.

Not surprisingly, implementing Chetty�s more general formula requires identi�cation of

more parameters than Feldstein�s formula. The most di¢ cult parameter to identify is g0(e),

which is a marginal utility. By leaving g0(e) in the formula, Chetty does not complete step 4

of the rubric above; as a result, further work is required to implement (22). Gorodnichenko

et al. (2009) provide a method of recovering g0(e) from consumption behavior. Their insight

is that real resource costs expended on evasion should be evident in consumption data; thus,

the gap between income and consumption measures can be used to infer g0(e). Implementing

this method to analyze the e¢ ciency costs of a large reduction in income tax rates in Russia,

Gorodnichenko et al. �nd that g0(e) is quite small and that dTI
dt
is substantial, whereas dLI

dt

is not. They show that Feldstein�s formula substantially overestimates the e¢ ciency costs

of taxation relative to Chetty�s more general measure. Intuitively, reported taxable incomes

are highly sensitive to tax rates, but the sensitivity is driven by avoidance behavior that has
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little social cost at the margin and hence does not reduce the total size of the pie signi�cantly.

This literature underscores the point that su¢ cient statistic approaches are not model

free. It is critical to evaluate the structure of the model, even though the formula for dW
dt

can be implemented without the last step of the rubric. In the taxable income application,

estimating g0(e) has value instead of simply assuming that g0(e) = t given plausible concerns

that this condition does not hold in practice.

Saez (2001). Harberger and Feldstein study the e¢ ciency e¤ects and optimal design of

a linear tax. Much of the literature on optimal income taxation has focused on non-linear

income tax models and the optimal progressivity of such systems. Mirrlees (1971) formalizes

this question as a mechanism design problem, and provides a solution in di¤erential equations

that are functions of primitive parameters. The Mirrlees solution o¤ers little intuition into

the forces that determine optimal tax rates. Building on the work of Diamond (1998),

Saez (2001) expresses the optimality conditions in the Mirrlees model in terms of empirically

estimable su¢ cient statistics.

Saez analyzes a model in which individuals choose hours of work, l, and have heteroge-

neous wage rates w distributed according to a distribution F (w). Wage rates (skills) are

unobservable to the government. Let pre-tax earnings be denoted by z = wl. For simplicity,

I again restrict attention to the case without income e¤ects, as in Diamond (1998).

Saez begins by analyzing the optimal tax rate on top incomes. He considers a model

where the government levies a linear tax � on earnings above a threshold z and characterizes

the properties of the optimal tax rate � � as z ! 1. For a given z, individuals maximize

utility

u(c; l) = c�  (l)

s.t. G1(c; l) = (1� �)max(wl � z; 0) + z � c = 0

Let c(w; �) and l(w; �) denote an agent�s optimal choices as a function of his wage and

the tax rate and z(w; �) = wl(w; �) denote the optimized earnings function. Let zm(z) =

E[wl(w; �)jz(w; �) > z] denote the mean level of earnings for individuals in the top bracket.

Let w denote the wage threshold that corresponds to an earnings threshold of z when the tax
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rate is � : wl(w; �) = z. The tax revenue generated by the top bracket tax isR = �(zm(z)�z).

The planner uses this tax revenue to fund a project that has a (normalized) value of $1 per

dollar spent.

The social planner�s objective is to maximize a weighted average of individual�s utilities,

where the weights eG(u) are �social welfare weights�that re�ect the redistributive preferences
of the planner:

W =

�1R
0

eG(u(c(w; �); wl(w; �)))dF (w)�+ �(zm(z)� z)

In this equation, the �rst term (in curly brackets) represents private surplus and the second

term re�ects government revenue. To calculate dW
d�
, observe that individuals with incomes

below z are una¤ected by the tax increase. Normalize the measure of individuals in the

top bracket to 1. Utility maximization implies that behavioral responses ( @l
@�
) have no �rst-

order e¤ect on private surplus, as wuc(w; �) =  0(l(w; �)). Using this envelope condition,

we obtain

dW

d�
(�) = �

1R
w

eGu(u)(z(w; �)� z)dF (w) + [(zm � z) + �
dzm
d�
]

= �(zm(z)� z)g + [(zm(z)� z) + �
dzm
d�
] (23)

where g =
1R
w

eGu(u)(z � z)dF (w)=
1R
w

(z � z)dF (w) denotes the mean marginal social welfare

weight placed by the planner on individuals in the top tax bracket. The parameter g

measures the social value of giving $1 more income to individuals in the top bracket relative

to the value of public expenditure. If g = 1, the government weighs the consumption of

the individuals it taxes and public expenditure equally, and (23) collapses to the Harberger

formula for excess burden in (4). When g < 1, the �rst term in (23) captures the welfare

loss to individuals in the top tax bracket from having to pay more taxes. The second term

re�ects the gain in revenue to the government, which consists of two familiar components:

the mechanical gain in revenue and the o¤set due to the behavioral response.

Equation (23) shows that three parameters are together su¢ cient statistics for the wel-

fare gain of increasing top income tax rates: (1) the e¤ect of tax rates on earnings (dzm
d�
),
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which quanti�es the distortions created by the tax; (2) the shape of the earnings distribution

(zm(z)), which measures the mass of individuals whose behavior is distorted by the marginal

tax, and (3) the marginal social welfare weight (g), which measures the planner�s redistrib-

utive preferences. Note that Saez does not implement step 4 of the rubric � recovery of

marginal utilities from observed behavior �because he views the relevant marginal utility

in this case (g) as a feature of the planner�s social welfare function that is external to the

choice environment. Thus, g is determined by the shape of the earnings distribution and

the (exogenous) speci�cation of the social welfare function (e.g. utilitarian or Rawlsian).

The advantage of (23) relative to a structural approach is that one does not need to

identify preferences ( ) or the shape of the skill distribution F (w) to calculate dW=d� .

Moreover, one can permit arbitrary heterogeneity across skill types in preferences without

changing the formula. The disadvantage of (23) is that zm; g; and dzm
d�
are endogenous to

� : the level of earnings and the weight the social planner places on top earners presumably

decrease with � , while dzm
d�
may vary with � depending upon the shape of the  (l) function.

Hence, dW
d�
(�) measures only the marginal welfare gain at a given tax rate � and must be

estimated at all values of � to calculate the tax rate � � that maximizes W . To simplify em-

pirical implementation and derive an explicit formula for the optimal tax rate, Saez observes

that the ratio zm(z)
z

is approximately constant in the upper tail of the empirical distribution

of earnings in the U.S.: that is, the upper tail of the income distribution is well described

by a Pareto distribution. A Pareto distribution with parameter a has zm(z)
z
= a

a�1 for all z.

Hence, (23) can be expressed as

dW

dt
=
(1� g)

a� 1 z + �
dzm
d�

The optimal top-bracket tax rate � satis�es dW
d�
(�) = 0, implying

� �

1� � �
=
1� g

a"
(24)

where " = dzm
d(1��)

1��
zm
denotes the taxable income elasticity in the top bracket. In the Mirrlees

model, a and " converge to constants (invariant to �) in the limit as z ! 1. Equation

(24) is therefore an explicit formula for the optimal asymptotic top income tax rate if the
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social welfare weight g is taken as exogenous. For example, one plausible assumption is that

g ! 0 as z ! 1: Saez exploits this property of (24) to calculate optimal top income tax

rates using reduced-form estimates of the taxable income elasticity for high incomes (Gruber

and Saez 2002) and a Pareto parameter of a = 2 consistent with the earnings distribution

in the U.S. He �nds that optimal top income tax rates are generally above 50% when the

formula is calibrated using plausible elasticities.

Building on this su¢ cient statistic approach, Saez characterizes the optimal tax rate

at any income level z in a non-linear tax system. Let E denote the �xed amount of

government expenditure that must be �nanced through taxation. Let T (z) denote the total

tax paid by an individual who earns income z, so that net of tax income is z � T (z). Let

"(z) = dz
d(1��)

1��
z
denote the earnings elasticity at income level z and h(z) the density of the

earnings distribution at z. Finally, let eG(u(z)) denote the weight that the planner places
on an individual with earnings z and g(z) = eGu � uc(z) the corresponding marginal social
welfare weight.

The government chooses the schedule T (Z) that maximizes social welfare

W (T (z)) =
1R
0

eG(u(c(w; T ); wl(w; T ))dF (w)
subject to resource and incentive-compatibility constraints:

G1(c; z; T ) =
1R
0

z(w; T )dF (w)�
1R
0

c(w; T )dF (w)� E = 0

G2(c; z; T ) = (1� T 0(z))w �  0(l(w)) = 0

Exploiting envelope conditions and perturbation arguments as above, the �rst order condi-

tions for the optimal tax rates can be expressed in terms of su¢ cient statistics. In the case

without income e¤ects, the optimal tax schedule satis�es the following condition at all z:

T (z)

1� T (z)
=

1

"(z)zh(z)

1R
z

(1� g(z0))h(z0)dz0 (25)

Equation (25) depends on the same three parameters as (23): the taxable income elasticity,

the shape of the earnings distribution, and the social welfare weights. It is again important
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to recognize that all three of these parameters are endogenous to the tax regime itself, and

hence (25) is not an explicit formula for optimal taxation. The techniques used to obtain

the explicit formula for the asymptotic top income tax rate in (24) cannot be applied at an

arbitrary income level z because there are no analogous limit convergence results. Hence,

(25) can only be used to evaluate how perturbing the existing tax system T (z) would a¤ect

welfare.

To go further and calculate the optimal tax schedule, Saez makes additional assumptions

about the model�s structure. He assumes that the elasticity "(z) is constant, which pins down

the functional form of the utility u(c; l). Given this utility function and an elasticity estimate

taken from the literature, he infers the skill distribution F (w) from the empirically observed

distribution of incomes in the current tax regime. Having identi�ed all the primitives of the

model, he simulates the optimal tax schedule in the calibrated model. The resulting optimal

income tax schedule is inverse-U shaped, with a large lump sum grant to non-workers and

marginal rates ranging from 50-80%.

This exercise illustrates the costs and bene�ts of placing more structure on the problem.

By assuming a one-parameter constant-elasticity utility, one can point identify the primitives

from the data and calculate the optimal tax schedule. However, the strong assumptions

required for structural identi�cation of the model reduce our con�dence in the optimal tax

schedule calculations. We have greater con�dence in the top tax rate calculations based on

the su¢ cient statistic formula in (24) or marginal welfare gain calculations based on (25).

IV Application 2: Social Insurance

Programs such as unemployment insurance, health insurance, social security, workers com-

pensation, and disability insurance account for the majority of government expenditure in

many countries. Starting with seminal contribution of Wolpin (1987), a large literature

has studied the optimal design of social insurance programs in dynamic structural models.

Parallel to this literature, a large body of reduced-form empirical work has investigated the

impacts of social insurance programs on health expenditures, unemployment durations, con-

sumption, disability claims, etc. See Table 1 for examples of structural and reduced-form
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studies.

In the context of social insurance, an important harbinger to the su¢ cient statistic ap-

proach is the work of Baily (1978), who showed that the optimal level of unemployment

bene�ts can be expressed as a function of a small set of parameters in a static model. Baily�s

result was viewed as being of limited practical relevance because of the strong assumptions

made in deriving the formula. However, recent work has shown that the parameters Baily

identi�ed are actually su¢ cient statistics for welfare analysis of social insurance in a rich class

of dynamic models. Studies in this literature include Gruber (1997), Chetty (2006a), Shimer

and Werning (2007), Chetty (2008a), Einav, Finkelstein, and Cullen (2008), and Chetty and

Saez (2008). I now embed these papers in the general framework above, focusing primarily

on the �rst four papers.16

Baily (1978) and Chetty (2006a). For simplicity, consider a static model with two states:

high and low. Let wh denote the individual�s income in the high state and wl < wh income

in the low state. Let A denote wealth. Let ch denote consumption in the high state and cl

consumption in the low state. The low state can be thought of as corresponding to job loss,

injury, disability, natural disaster, etc. The agent can control the probability of being in the

bad state by exerting e¤ort e at a cost  (e). For instance, �e¤ort�could re�ect searching

for a job, taking precautions to avoid injury, or locating a house away from areas prone to

natural disasters. Choose units of e so that the probability of being in the high state is

given by p(e) = e.

Individuals may have some ability to insure against shocks through informal private

sector arrangements, such as transfers between relatives. To model such informal private-

insurance arrangements, suppose that the agent can transfer $bp between states at a cost

q(bp), so that increasing consumption by bp in the low state requires payment of a premium
1�e
e
bp + q(bp) in the high state. The loading factor q(bp) can be interpreted as the degree of

incompleteness in private insurance. If q(bp) = 0, private insurance markets are complete; if

q(bp) =1, there is no capacity for private insurance.

16The tax and social insurance problems are closely related because social insurance is e¤ectively state-
contingent taxation. Rather than levying taxes on the basis of income, taxes and transfers are levied on the
basis of a state (joblessness, sickness, injury, disability, etc.). Conversely, redistributive taxation is social
insurance against uncertain skill realizations behind the veil of ignorance.
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The government pays a bene�t b in the low state that is �nanced by an actuarially fair

tax t(b) = 1�e
e
b in the high state. The model can be formally speci�ed using the notation

in section II as follows.17

U(cl; ch; e) = eu(ch) + (1� e)u(cl)�  (e) (26)

t(b) =
1� e

e
b

G1(cl; ch; t) = ch +
1� e

e
bp + q(bp) + t� wh � A

G2(cl; ch; t) = cl � bp � b� wl � A

Substituting the constraints into the utility function yields social welfare as a function of the

government bene�t level:

W (b) = eu(A+ wh �
1� e

e
bp � q(bp)� t(b)) + (1� e)u(A+ wl + bp + b)�  (e)

Di¤erentiating this expression and using the envelope conditions for bp and e gives

dW (b)

db
= (1� e)u0(cl)�

dt

db
eu0(ch)

= (1� e)fu0(cl)� (1 +
"1�e;b
e
)u0(ch)g

where "1�e;b =
d(1�e)
db

b
1�e denotes the elasticity of the probability of being in the bad state

(which can be measured as the unemployment rate, rate of health insurance claims, etc.)

with respect to the bene�t level. This elasticity measures the total e¤ect of an increase

in bene�ts on e, taking into account the tax increase needed to �nance the higher level of

bene�ts.

In tax models with quasilinear utility, the welfare gain measure dW
dt
is a money metric.

Since curvature of utility is an essential feature of the social insurance problem, we need a

method of converting dW
db
to a money metric. An intuitive metric is to normalize the welfare

gain from a $1 (balanced budget) increase in the size of the government insurance program

17I follow the convention in the social insurance literature of specifying the problem in terms of the transfer
bene�t b rather than the tax t.
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by the welfare gain from raising the wage bill in the high state by $1:

MW (b) =
dW
db
(b)=(1� e)
dW
dwh
(b)=e

=
u0(cl)� u0(ch)

u0(ch)
� "1�e;b

e
(27)

This expression, which is Baily�s (1978) formula, corresponds to the marginal utility expres-

sion obtained after the third step of the rubric in section II. The �rst term in (27) measures

the gap in marginal utilities between the high and low states, which quanti�es the welfare

gain from transferring an additional dollar from the high to low state. The second term

measures the cost of transferring this $1 due to behavioral responses.

Chetty (2006a) establishes that the parameters in (27) are �su¢ cient statistics�in that

they are adequate to calculateMW (b) in a general class of dynamic models that nest existing

structural models of insurance. Chetty analyzes a dynamic model where transitions from

the good state to the bad state follow an arbitrary stochastic process. Agents make J

choices and are subject to M constraints. The choices could include variables such as

reservation wages, savings behavior, labor supply, or human capital investments. Subject

to a regularity condition analogous to Assumption 1, Chetty shows that (27) holds in this

general model, with the di¤erence in marginal utilities replaced by the di¤erence between the

average marginal utilities in the high and low states over the agent�s life. This result distills

the calculation of welfare gains in complex dynamic models to two parameters: the gap in

average marginal utilities and the elasticity that enters the government�s budget constraint

"1�e;b. Identi�cation of parameters such as asset limits or the degree of private insurance

(q(bp)) is not required. This permits calculation of dW
db
without the assumptions made in

the structural studies for tractability, such as no private insurance or no borrowing (Hansen

and ·Imrohoro¼glu 1992, Hopenhayn and Nicolini 1997).

Equation (27) is not directly implementable because the gap in marginal utilities must

be recovered from choice data. The recent literature has proposed the use of three types of

choice data to recover the marginal utility gap: consumption (Gruber 1997), liquidity and

substitution e¤ects in e¤ort (Chetty 2008a), and reservation wages (Shimer and Werning

2007).
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Gruber (1997). Taking a quadratic approximation to the utility function, Gruber observes

that
u0(cl)� u0(ch)

u0(cl)
= 


�c

ch
(b) (28)

where 
 = �u00(ch)
u0(ch)

ch is the coe¢ cient of relative risk aversion evaluated at ch and�c = ch�cl.

Gruber posits that the e¤ect of UI bene�ts on consumption is linear (an assumption that

should ideally be evaluated using a structural simulation):

�c

ch
(b) = �+ �b

In this speci�cation, � measures the consumption-drop that would occur absent government

intervention while � measures the slope of the consumption function with respect to the ben-

e�t level. Putting this equation together with (28) and (27) yields the following expression

for the marginal welfare gain from increasing the bene�t level:

MW (b) = (�+ �b)
 � "1�e;b
e
. (29)

Building on work by Hamermesh (1982), Gruber estimates the consumption-smoothing e¤ect

of unemployment insurance (UI) bene�ts by exploiting changes in UI bene�t laws across

states in the U.S. coupled with panel data on consumption. He estimates � = 0:24 and

� = �0:28, and then calibrates the welfare gain from raising UI bene�ts using estimates

of "1�e;b from Meyer (1990). He �nds that at conventional levels of risk aversion (
 < 2),

increasing the UI bene�t level above the levels observed in his data (roughly 50% of the

wage) would lead to substantial welfare losses.

Gruber proceeds to solve for the b� such that dW
db
(b�) = 0 in (29), and �nds that b� is

close to zero. These calculations of the optimal bene�t level assume that �c
c
is linear in

b and 
(b) and "1�e;b(b) do not vary with b. This application of the su¢ cient statistic

formula �which is not guided by a structural model �could be very inaccurate, because

it uses ad hoc assumptions to make predictions about counterfactuals that are well out-of-

sample. Equation (29) should not be used to make statements about global optima unless

one can estimate the su¢ cient statistics for a range of di¤erent bene�t levels. Lacking such
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estimates, a more coherent method of inferring b� would be to calibrate a structural model to

match the su¢ cient statistics and simulate the optimal b� in that model, as in Saez (2001).

A di¢ culty with (29) is that risk aversion (
) is known to vary substantially across

contexts (Rabin 2000, Chetty and Szeidl 2007). Since Gruber�s results are highly sensitive to

the assumed value of 
, more recent studies have sought alternative techniques for recovering

the gap in marginal utilities that do not require an estimate of 
.

Chetty (2008a). Chetty (2008a) shows that the gap in marginal utilities in (27) can be

backed out from the comparative statics of e¤ort choice. To see this, observe that the �rst

order condition for e¤ort is

 0(e) = u(ch)� u(cl). (30)

Now consider the e¤ect of an exogenous cash grant (such as a severance payment to job

losers) on e¤ort, holding �xed the private insurance level bp and the UI tax t:

@e=@A = fu0(ch)� u0(cl)g= 00(e) � 0 (31)

The e¤ect of increasing the bene�t level on e¤ort (again holding bp and t �xed) is:

@e=@b = �u0(cl)= 00(e) (32)

Combining (31) and (32), we see that the ratio of the �liquidity� e¤ect (@e=@A) to the

�substitution�e¤ect (@e=@wh = @e=@A� @e=@b) recovers the gap in marginal utilities:

u0(cl)� u0(ch)

u0(ch)
=

�@e=@A
@e=@A� @e=@b

Plugging this into (27) yields the following expression for the welfare gain from increasing

the bene�t level:

MW (b) =
�@e=@A

@e=@A� @e=@b
� "1�e;b

e
(33)

The intuition for this formula is that the gap between marginal utilities in the good and

bad states can be inferred from the extent to which e¤ort is a¤ected by liquidity vs. moral

hazard. In a model with perfect consumption smoothing (ch = cl), the liquidity e¤ect
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@e=@A = 0, because a cash grant raises u(ch) and u(cl) by the same amount. Chetty shows

that like Baily�s formula, (33) holds in a general dynamic search model because of envelope

conditions in the agent�s value functions.

An issue which arises in empirical implementation of (33) is that @e
@b
must be measured

holding the tax t �xed, whereas the elasticity "1�e;b must be measured while permitting t to

vary. Instead of attempting to estimate both parameters, Chetty uses numerical simulations

to show that the e¤ect of a UI bene�t increase on job �nding rates is virtually identical

whether or not UI taxes are held �xed. This is because the fraction of unemployed individuals

is quite small, making UI tax rates very low.

Chetty implements (33) by estimating the e¤ects of unemployment bene�ts and severance

payments on search intensity using hazard models for unemployment durations. He �nds

that the welfare gains from raising the unemployment bene�t level are small but positive,

suggesting that the current bene�t level is slightly below the optimum given concavity of

W (b). He concludes that the optimal bene�t level is close to the current wage replacement

rate of approximately 50%.

Shimer and Werning (2007). Shimer and Werning (2007) infer the gap in marginal

utilities from the comparative statics of reservation wages instead of e¤ort in a model of job

search. They consider a model where the probability of �nding a job, e, is determined by

the agent�s decision to accept or reject a wage o¤er rather than by search intensity. Wage

o¤ers are drawn from a distribution F (w). If the agent rejects the job o¤er, he receives

income of wl+ b as in the model above. For simplicity, assume that the agent has no private

insurance (q = 1); allowing q < 1 complicates the algebra but does not a¤ect the �nal

formula. The remainder of the model is speci�ed as in (26).

The agent rejects any net-of-tax wage o¤er w� t below his outside option wl+ b. There-

fore, e = 1� F (wl + b+ t) and the agent�s expected value upon job loss is

W (b) = eE[u(w � t)jw � t > wl + b] + (1� e)u(wl + b)

Note that even though the microeconomic choices of accepting or rejecting wage o¤ers are

discrete, the welfare function is smooth because of aggregation, as in (10).
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Shimer and Werning�s insight is that dW
db
can be calculated using information on the

agent�s reservation wage. Suppose we ask the agent what wage he would be willing to

accept with certainty prior to the start of job search.18 De�ne the agent�s reservation wage

prior to job search as the wage w0 that would make the agent indi¤erent about accepting

a job immediately to avoid having to take a random draw from the wage o¤er distribution.

The reservation wage w0 satis�es

u(w0 � t) =W (b)

The government�s problem is to

maxW (b) = maxu(w0 � t)

) maxw0 � t (34)

Di¤erentiating (34) gives a su¢ cient-statistic formula.19

MW (b) =
dw0
db

� dt

db
=
dw0
db

� 1� e

e
(1 +

1

e
"1�e;b)

Intuitively, dw0
db
encodes the marginal value of insurance because the agent�s reservation wage

directly measures his expected value when unemployed. Shimer and Werning implement (34)

using an estimate of dw0
db
from Feldstein and Poterba (1984) and �nd a large, positive value

for MW (b) at current bene�t levels. However, they caution that the credibility of existing

reservation wage elasticity estimates is questionable, particularly in view of evidence that UI

bene�t levels have little impact on subsequent wage rates (e.g. Card, Chetty, Weber 2007,

van Ours and Vodopivec 2008).

The multiplicity of formulas for MW (b) illustrates a general feature of the su¢ cient-

18Shimer and Werning study a stationary dynamic model with CARA utility where the reservation wage
is �xed over time, in which case it does not matter at what point of the spell the reservation wage is elicited.
19This corresponds to equation (12) in Shimer and Werning (2007), where the unemployment rate is

u = 1 � e. The slight di¤erence between the formulas (the 1
1�u factor in the denominator) arises because

Shimer and Werning write the formula in terms of a partial-derivative-based elasticity. Here, "1�e;b is the
elasticity including the UI tax response needed to balance the budget; in Shimer and Werning�s notation, it
is holding the tax �xed.
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statistic approach: since the model is not fully identi�ed by the inputs to the formula, there

are generally several representations of the formula for welfare gains.20 This �exibility

allows the researcher to apply the representation most suitable for his application given the

available variation and data. For example, in analyzing disability insurance, it may be easiest

to implement Chetty�s (2008a) formula since the available variation permits identi�cation of

liquidity and moral hazard e¤ects (Autor and Duggan 2007).

Ine¢ ciencies in Private Insurance. An important assumption made in all three formulas

above is that the choices within the private sector are constrained Pareto e¢ cient � that

is, total surplus is maximized in the private sector subject to the constraints. In practice,

private insurance contracts are likely to be second-best ine¢ cient as well because of adverse

selection and moral hazard in private markets. In this case, the envelope condition invoked

in deriving (27) is violated because of externalities on the private insurer�s budget constraint

that are not taken into account by the individual.

Recent work by Einav, Finkelstein, and Cullen (2008) and Chetty and Saez (2008) iden-

ti�es su¢ cient statistics for the welfare gains from social insurance in environments with

adverse selection and moral hazard in private insurance markets. Einav et al. develop a

method of characterizing the welfare gain from government intervention that uses informa-

tion about insurance purchase decisions. They show that the demand curve for private

insurance and the average cost of providing insurance as a function of the price are together

su¢ cient statistics for welfare analysis. Einav et al. implement their method using quasi-

experimental price variation in health insurance policies and �nd that the welfare gains from

government intervention in health insurance markets is small.

Chetty and Saez focus on ex-post behaviors, namely how marginal utilities vary across the

high and low states, as in the Baily formula. They develop a simple extension to Gruber�s

(1997) implementation of the formula that includes two more parameters �the size of the

private insurance market and the crowdout of private insurance by public insurance. Intu-

itively, the government exacerbates the moral hazard distortion created by private insurance,

20All three formulas hold in models that allow both reservation wage and search intensity choices. Chetty�s
(2006a) generalization of Baily�s formula nests the model with stochastic wages. If agents control the arrival
rate of o¤ers via search e¤ort, the �rst order condition for search e¤ort remains the same as in (30), with
Eu0(ch) replacing u0(ch). It follows that Chetty�s (2008a) formula also holds with stochastic wages.
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and must therefore take into account the amount of private insurance and degree of crowdout

to calculate the welfare gains from intervention. Chetty and Saez apply their formula to

analyze health insurance, and show that naively applying (27) dramatically overstates the

welfare gains from government intervention in this case.

These examples illustrate that the su¢ cient statistic approach can be extended to en-

vironments where private sector choices are not second-best e¢ cient. One has to deviate

slightly from the general rubric to handle such second-best ine¢ ciencies because the incen-

tive compatibility constraints for private insurance violate Assumption 1. These constraints

lead to additional terms in the su¢ cient statistic formula, increasing the number of moments

that need to be estimated for welfare analysis.

V Application 3: Behavioral Models

There is now considerable reduced-form evidence that individuals�behavior deviates system-

atically from the predictions of neoclassical perfect optimization models; see Table 1 for a

few examples and DellaVigna�s (2008) review for many more. In light of this evidence, an

important new challenge is normative analysis in models where agent�s choices deviate from

perfect optimization. The budding literature on this topic has proposed some structural

approaches to this issue, primarily in the context of time discounting. An early example is

Feldstein�s (1985) model of social security with myopic agents, in which individuals have a

higher discount rate than the social planner. Feldstein numerically calculates the welfare

gains from social security policies under various assumptions about the primitives. More re-

cently, a series of papers have using calibrations of Laibson�s (1997) �-� model of hyperbolic

discounting to make numerical predictions about optimal policy for agents who are impa-

tient (see Table 1). Another set of studies has modelled the behavioral patterns identi�ed

in earlier work �such as �ironing�and �spotlighting�e¤ects in responses to non-linear price

schedules �and simulated optimal tax policy in such models (Liebman and Zeckhauser 2004,

Feldman and Katu�µcák 2006).

The di¢ culty with the structural approach in behavioral applications is that there are

often multiple positive models which can explain deviations from rationality, and each of
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these models can lead to di¤erent welfare predictions. The su¢ cient statistic approach can

be very useful in such situations, because welfare analysis does not require full speci�cation of

the positive model underlying observed choices (Bernheim and Rangel 2008). In applications

where agents optimize, the main bene�t of the su¢ cient statistic approach is that it simpli�es

identi�cation. If one had unlimited power to identify primitives, there would be no advantage

to using the su¢ cient statistic approach in such models. In non-optimizing models, however,

the su¢ cient statistic strategy has value even if identi�cation is not a problem because there

is no consensus alternative to the neoclassical model.

Given the infancy of this area, there is currently very little work applying su¢ cient sta-

tistic approaches to behavioral models. However, this is a fertile area for further research, as

illustrated by Chetty, Looney, and Kroft�s (2008) recent analysis of the welfare consequences

of taxation when agents optimize imperfectly with respect to taxes. Chetty et al. present

evidence that the e¤ect of commodity taxes on demand depend on whether the tax is in-

cluded in posted prices or not. Taxes that are not included in posted prices �and are hence

less salient to consumers �induce smaller demand reductions. There are various psycholog-

ical and economic theories which could explain why salience a¤ects behavioral responses to

taxation, including bounded rationality, forgetfulness, and cue theories of attention. Chetty

et al. therefore develop an su¢ cient-statistic approach to welfare analysis that is robust to

speci�cations of the positive theory of tax salience.

Chetty et al. characterize the e¢ ciency costs and incidence of taxation in a two-good

model analogous to the Harberger model presented in section I of this paper. Let x denote

the taxed good and y the numeraire. Let demand for x as a function of its pretax price and

tax rate be denoted by x(p; t). I assume here that utility is quasilinear in y and production is

constant-returns-to-scale. These assumptions simplify the exposition by eliminating income

e¤ects and changes in producer prices; Chetty et al. shows that similar results are obtained

when these assumptions are dropped.

The agent�s true ranking of the consumption bundles (x; y) is described by a smooth,
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quasiconcave utility function

U(x; y) = u(x) + y

= u(x) + Z � (p+ t)x

where the second line imposes that the allocation (x; y) the agent chooses must satisfy

the true budget constraint (p + t)x + y = Z. Chetty et al. depart from the traditional

Harberger analysis by dropping the assumption that the consumption bundle (x; y) is chosen

to maximize U(x; y). Instead, they take the demand function x(p; t) as an empirically

estimated object generated by a model unknown to the policy maker, permitting @x
@p
6= @x

@t
.

To calculate excess burden, assume that tax revenue is returned to the agent as a lump-

sum. Then, under the assumption that individual�s utility is a function purely of their

ultimate consumption bundle, social welfare is given by

W (p; t) = fu(x) + Z � (p+ t)xg+ T (t)

where T (t) = tx(t). In non-optimizing models, one must deviate from step 2 of the rubric

in section II at this point because the envelope condition used to derive (14) does not hold.

Instead, totally di¤erentiate the social welfare function to obtain

dW

dt
= [u0(x)� p]

dx

dt
(35)

This marginal-utility based expression captures a simple intuition. An in�nitesimal tax

increase reduces consumption of x by dx
dt
. The loss in surplus from this reduction in con-

sumption of x is given by the di¤erent between willingness to pay for x (u0(x)) and the cost

of producing x, which equals the price p under the constant-returns-to-scale assumption.

Equation (35) applies in any model, irrespective of how x(p; t) is chosen. Given that
dx
dt
can be estimated empirically, the challenge in calculating dW

dt
�which re�ects the main

challenge in behavioral public economics more generally �is the recovery of the true pref-

erences (u0(x)). In neoclassical models, we use the optimality condition u0(x) = p + t to

recover marginal utility and immediately obtain the Harberger formula in (4). Since we
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do not know how x is chosen, we cannot use this condition here. Chetty et al. tackle this

problem by making the following assumption.

Assumption 2 When tax inclusive prices are fully salient, the agent chooses the same

allocation as a fully-optimizing agent:

x(p; 0) = argmax
x

u(x) + Z � px

This assumption requires that the agent only makes mistakes with respect to taxes, and

not fully salient prices. To see why this assumption su¢ ces to calculate welfare, let P (x) =

x�1(p; 0) denote the agent�s inverse-price-demand curve. Assumption 2 implies that P (x) =

u0(x) via the �rst order condition for x(p; 0). Plugging this into (35) yields

dW

dt
= [P (x)� p]

dx

dt

This formula for dW
dt
can be implemented using an estimate of the inverse-price-demand curve

P (x). To simplify implementation, Chetty et al. make the approximation that demand

x(p; t) is linear in both arguments to obtain

dW

dt
= [

dp

dx
� (x(p; t)� x(p; 0)]

dx

dt

= [
dp

dx
� dx
dt
t]
dx

dt
= t�

dx

dt
(36)

where � = dx
dt
=dx
dp
measures the degree of underreaction to the tax relative to the price. This

expression, which nests the Harberger formula as the case where � = 1, shows that the price

and tax elasticities of demand are together su¢ cient statistics to calculate excess burden in

behavioral economics models. Intuitively, the tax-demand curve (dx
dt
) is used to determine

the actual e¤ect of the tax on behavior. Then, the price-demand curve (dx
dp
) is used to

calculate the e¤ect of that change in behavior on welfare. The price-demand curve can

be used to recover the agent�s preferences and calculate welfare changes because it is (by

assumption) generated by optimizing behavior.

Because it does not rely on a speci�c structural model, (36) accommodates all errors in
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optimization with respect to taxes, and is hence easily adaptable to other applications. For

example, confusion between average and marginal income tax rates (Liebman and Zeckhauser

(2004), Feldman and Katu�µcák (2006)) or overestimation of estate tax rates (Slemrod 2006)

can be handled using the same formula, without requiring knowledge of individuals� tax

perceptions or rules of thumb. Any such behaviors are re�ected in the empirically observed

tax and price elasticities.

In sum, one can make progress in behavioral welfare economics by making assumptions

that narrow the class of models under consideration without fully specifying one particular

model. One is e¤ectively forced to make stronger assumptions about the class of models in

exchange for relaxing the full optimization assumption. These stronger assumptions make

it especially important to implement step 6 of the rubric (model evaluation) in behavioral

models. For instance, identifying the structural reasons for why tax salience matters would

cast light on the plausibility of Assumption 2.

VI Conclusion: Other Applications

The literature reviewed in this paper has focused on identifying su¢ cient statistics for norma-

tive (welfare) analysis. Su¢ cient statistics can also be used to answer positive (descriptive)

questions. A simple example is predicting the e¤ect of a tax change on tax revenue. One

only needs to estimate the elasticity of equilibrium quantity with respect to the tax rate

to answer this question. Another example is the literature on capitalization e¤ects (e.g.,

Summers 1981, Roback 1982, Greenstone and Gallagher 2008), which shows that changes

in asset prices are su¢ cient statistics for distributional incidence in dynamic equilibrium

models. The techniques relevant for positive analysis di¤er from those discussed in this

article, as one cannot exploit envelope conditions in most positive applications. However,

the general concept is still to formulate answers to questions in terms of a few elasticities

instead of a full primitive structure.

Although the su¢ cient statistic approach has been most widely applied in the public

economics literature, it is natural to apply this approach in other areas. I conclude by

brie�y discussing applications in other �elds.
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Macroeconomics. A central debate in macroeconomics is whether households adhere

to the permanent income hypothesis. The structural approach to answering this question,

taken for example by Scholz et al. (2006), is to specify a dynamic model of optimization and

test whether observed consumption and savings patterns and consistent with those predicted

by the model. The su¢ cient statistic counterpart to this approach is to isolate one moment �

such as the drop in consumption at retirement or the sensitivity of behavior to cash-on-hand

�that is adequate to test between models (see e.g., Aguiar and Hurst 2005; Card, Chetty,

and Weber 2007). Similarly, models of business cycles and growth can be distinguished

simply by identifying the �labor wedge�(Shimer 2008).

Labor. Labor economists have studied the e¤ects of minimum wages on employment

and wages extensively using reduced-form methods. Such evidence can be mapped into

statements about optimal policy using a su¢ cient statistic approach (Lee and Saez 2008).

Another potential application is to the analysis of returns to schooling. Many studies

have investigated the e¤ects of schooling on behaviors such as job mobility and occupation

choice. A su¢ cient statistic approach would intuitively suggest that examining e¤ects on

total earnings is adequate to measure the bene�ts of additional schooling in a model where

agents optimize.

Development. Starting with Townsend (1994), a large literature in development has

studied risk sharing arrangements. While it is informative to understand the mechanisms

through which shocks are smoothed, identifying consumption �uctuations and risk aversion

is su¢ cient to make inferences about the welfare costs of shocks (Chetty and Looney 2006).

Hence, quasi-experimental evidence such as that of Gertler and Gruber�s (2002) study of

health shocks in Indonesia sheds light on welfare and optimal policy even though it does not

fully characterize the structure of insurance and risk sharing networks. More generally, one

may be able to give precise answers to policy questions using estimates from randomized

experiments coupled with su¢ cient statistic formulas derived from standard structural mod-

els. For example, the e¤ects of interventions on health, education, or income may encode

all that is needed for policy analysis.

Industrial Organization. Weyl and Fabinger (2009) show that estimates of the pass-

through of cost shocks are su¢ cient statistics for questions ranging from the e¤ects of mergers
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on markups to the e¤ects of price caps on market structure. Researchers who seek to

develop su¢ cient statistic approaches to other problems in IO must confront two challenges.

First, many questions of interest concern discrete changes such as antitrust policy or the

introduction of a new product. Second, much of the IO literature focuses on models of

strategic interaction rather than price theory. In strategic games, small changes in exogenous

parameters can lead to jumps in behavior. Since the techniques used in this paper rely on

smoothness, one may need to develop di¤erent techniques to apply the su¢ cient statistic

approach to IO problems. These are interesting topics for further research at the interface

of structural and reduced-form methods.
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TABLE 1 
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Notes: Categories used to classify papers are defined as follows.  Structural: estimate or calibrate primitives to make predictions about welfare.  
Reduced form: estimate high-level behavioral elasticities qualitatively relevant for policy analysis, but do not provide quantitative welfare results.  
Sufficient statistic: make predictions about welfare without estimating or specifying primitives.  This list includes only selected examples that relate to 
the topics discussed in the text, and omits many important contributions in each category.



FIGURE 1
THE SUFFICIENT STATISTIC APPROACH

 1t
 2t

preferences,  = f(,t) dW/dt used for 
constraints y = 1X1 + 2X2 +  policy analysis








dW
dt
t

 not uniquely  identified using
identified program evaluation

Primitives Sufficient Stats. Welfare Change

NOTE–Consider a policy instrument t that affects social welfare Wt. The structural

approach maps the primitives () directly to the effects of the policy on welfare ( dW
dt

).

The sufficient statistic approach leaves  unidentified and instead identifies a smaller

set of high-level parameters () using program evaluation methods, e.g. via a

regression of an outcome y on exogenous variables X. The  vector is “sufficient” for

welfare analysis in that any vector  consistent with  implies the same value of dW
dt

.

Identifying  does not identify  because there are multiple  vectors consistent with

a single  vector.


