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Abstract

The propsect of designing technologies around the quantum behavior of meso-

scopic devices is enticing. This thesis present several tools to facilitate the process of

calculating and analyzing the quantum properties of such devices – resonance, bound-

ary conditions, and the quantum-classical correspondence are major themes that we

study with these tools. In Chapter 1, we begin by laying the groundwork for the tools

that follow by defining the Hamiltonian, the Green’s function, the scattering matrix,

and the Landauer formalism for ballistic conduction.

In Chapter 2, we present an efficient and easy-to-implement algorithm called the

Outward Wave Algorithm, which calculates the conductance function and scattering

density matrix when a system is coupled to an environment in a variety of geometries

and contexts beyond the simple two-lead schematic. In Chapter 3, we present a

unique geometry and numerical method called the Boundary Reflectin Matrix that

allows us to calculate the full scattering matrix from arbitrary boundaries of a lattice

system, and introduce the phenomenon of internal Bragg diffraction. In Chapter

4, we present a new method for visualizing wavefunctions called the Husimi map,

which uses measurement by coherent states to form a bridge between the quantum

flux operator and semiclassics. We extend the formalism from Chapter 4 to lattice
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systems in Chapter 5, and comment on our results in Chapter 3 and other work in

the literature.

These three tools – the Outward Wave Algorithm, the Boundary Reflection Ma-

trix, and the Husimi map – work together to throw light on our interpretation of

resonance and scattering in quantum systems, effectively codifying the expertise de-

veloped in semiclassics over the past few decades in an efficient and robust package.

The data and images that they make available promise to help design better tech-

nologies based on quantum scattering.
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Chapter 1

Landauer Formalism and the

Scattering Matrix

This thesis covers methods for computing and analyzing the single-electron wave-

function in a variety of systems it can inhabit, two of which derive considerable atten-

tion – graphene and the two-dimensional electron gas. In this chapter, we cover the

fundamentals of the two systems, and the assumptions underlying ballistic conduc-

tance experiments and numerical simulations that are used to probe their quantum

behaviors. The numerical simulations are based around implementing the Green’s

function, which describes the response of a system described by a wave equation like

the Schrodinger equation, and the scattering matrix, which condenses information

about how a small and complicated device interacts with modes at a distance. This

chapter acts as a reference for the rest of the thesis: subsequent chapters elaborate on

the formalism reviewed here, and occaisionally review a few key elements as relevant

to their discussion.

1



Chapter 1: Landauer Formalism and the Scattering Matrix 2

1.1 Two Hamiltonians

This thesis studies scattering phenomena and conductance in two-dimensional

systems. In the past few decades, the experimental focus for such phenomena has been

placed on two systems: the two-dimensional electron gas (2DEG) which arises from

crystal heterostructures like gallium arsenide (GaAs)[7], and an atomically thin sheet

of graphite known as a graphene[8]. Because the scattering length in these two systems

is large, and because it is possible to examine the behavior of individual electrons in

them (hence the “gas” terminology), they are ideal candidates for examining single-

body quantum scattering. Moreover, while an electron in the former system behaves

like a free particle in the continuum, graphene introduces new behaviors becuase of

its band structure and dispersion relation[9].

1.1.1 Graphene

Graphene marched onto the scene in 2004 when it was first isolated by Novoselov

and Geim[8] from pencil shavings and scotch tape. In graphene, carbon atoms are ar-

ranged in a honeycomb pattern, allowing each atom’s s,px and py orbitals to hybridize

into an sp2 orbital and forge a strong bond between neighboring atoms, collectively

known as the valence �-band. This leaves over the pz orbital which extends above

and below the plane. The collective pz orbitals form the conductive ⇡⇤-band that

gives graphene its unique conductive properties (see Fig. 1.1.1).

Because the pz orbitals are tightly-bound to their carbon atoms, the overlap be-

tween pz orbitals on adjacent atoms is small but non-trivial. As a result, the single

electron wavefunction that inhabits the ⇡ band can be described by an effective mass
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Figure 1.1.1: The atomic orbitals for graphene. The s, px, and py orbitals form a
hybrid sp2 orbital. The sp2 orbitals of neighboring atoms overlap to form extraordi-
narily strong bonds and constitute the valence band. This still leaves over pz orbitals
which collectively form the conduction band. In the unit cell for graphene, there are
two sublattices which are indicated in black (grey) for the A (B) sublattices, and the
lattice spacing a between adjacent atom sites in the same sublattice is indicated by
the dashed double-arrow.

envelope function over the pz orbitals at each atom site. We can describe the Hamil-

tonian for this envelope function as a sparse matrix with entries along its diagonal

and off-diagonal entires between adjacent orbitals:

H =

X

i

✏ia
†
iai � t

X

hiji

a†
iaj, (1.1.1)

where ai is the annihilation operator for the ith orbital, ✏i is the energy of the sys-

tem plus the disorder potential, and hiji cycles through all nearest-neighbor pairs.

The hopping parameter t is determined by the inter-orbital overlap. For small per-
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turbations from the interatomic distance a = 1.42, the hopping parameter has been

computed as tl = te−3.37(l/a−1)[10] where l is the strained inter-atomic distance, al-

though we will not be addressing questions of strain in this dissertation. Also not

covered are other approximations to the Hamiltonian, such as next-nearest neighbor

tight-binding models.

From this Hamiltonian, we can compute the dispersion relation[11] as

E (k) = ±t
p
3 + f (k)

f (k) = 2 cos

⇣p
3kya

⌘
+ 4 cos

 p
3

2

kya

!
cos

✓
3

2

kxa

◆
. (1.1.2)

The plus and minus refer to the positive-energy ⇡⇤ and negative-energy ⇡ orbitals

respectively. We have plotted the dispersion relation in Fig. 1.1.2.

At energies close to the Dirac point, defined as E = 0, the dispersion relation

approximates to the linear relationship E ⇡ vfq where q = k�K(0) and K(0) are the

wavevectors at the edges of the Brillouin zone and shown in Fig. 1.1.2. This linear

dispersion relationship distinguishes graphene from the continuous system which has

a quadratic relationship E / k2 .

Solutions to the Bloch equation can be written using the creation operators a† and

b† on the A- and B-sublattices respectively, giving rise to two Dirac pseudospinors

written as

 ±,K(k) =

1p
2

�
e�i✓k/2a† ± ei✓k/2b†� (1.1.3)

 ±,K0
(k) =

1p
2

�
ei✓k/2a† ± e�i✓k/2b†� , (1.1.4)

where ✓k = arctan

⇣
q
x

q
y

⌘
, and the ± signs indicate whether the positive- or negative-

energy solutions are being used[12].
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Figure 1.1.2: The dispersion relation for the honeycomb lattice (Eq. 1.1.2) is shown at
top-right, and for the square lattice (Eq. 1.1.13) at bottom-right; three-dimensional
renditions are shown at the left. The parabolic relationship in the square lattice is
instead a linear relationship for the honeycomb lattice at energies near zero, with two
distinct valleys (K and K 0) which appear as cones in the dispersion relation which
touch at the Dirac point E = 0. In the honeycomb lattice, the dispersion relation for
E = 0.5t (dashed white lines) is nearly circular, while the relation at E = 0.98t (solid
white lines) shows strong three-way warping. In the square lattice, the dispersion
relations for E = 0.9t, and 7.1t (dashed white lines) are nearly circular, while the
relation near the band edge at E = 3.9t (solid white lines) shows strong four -way
warping. The warping in both relations are further discussed in Chapters 3 and 5.
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If you create a coherent state defined as

|r0,k0, �i =  +,K(0)(k0)e
�(r�r0)/2�+ik0·r (1.1.5)

and propagate it in time, it will move in the unique direction determined by the group

velocity at wavevector k0. We have tested this and all results in Chapter 3 using the

propagator method

 (t) = eiHt (t = 0) (1.1.6)

where the matrix exponent is computed using the Expokit library[13, 14].

Away from the Dirac point but between �2.7eV < E < 2.7eV, the dispersion

relation for a given energy transforms from circles around each K-point into triangles,

which emphasize three directions for each valley in the distribution of group velocities

vg = rkE (k). As a result, the magnitude of the wavevector q = k �K(0) depends

on its orientation: It is bounded above by

q
up

=

2

a
cos

�1


1

4t

⇣
E + t+

p
�3E2 � 6Et+ 9t2

⌘�
, (1.1.7)

and from below by

q
low

=

2

a
cos

�1


1

4t

⇣
�E + t+

p
�3E2

+ 6Et+ 9t2
⌘�

. (1.1.8)

When characterizing the momentum uncertainty, we use the average of these two

quantities.

The graphene systems examined in this thesis are cut from an infinite honeycomb

lattice. A filter is then applied to remove atom sites which are attached to only

one other atom site, and to bridge under-coordinated sites whose ⇡ orbitals would

strongly overlap. This still leaves over zig-zag edges with under-coordinated orbitals.
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For these sites, it is possible to modify the hopping parameters to neighboring sites

as well as the onsite energy, called the passivation parameter, to reflect bonding to

hydrogen atoms from the environment. We do not make these modifications except

to study the role of edge-state hybridization in Sec. 5.6.2.

Recent calculations have suggested that under certain circumstances, zig-zag edges

reconstruct to form a 5-7 chain[15]. In Sec. 3.6, we conclude that these edges behave

like zig-zag intra-valley scatters at most energies, which has been corroborated by

van Ostaay et al.[16]. At higher energies, the presence of internal Bragg diffraction

also plays a significant role, with the possibility of incorporating a mixture of both

intra- and inter-valley scattering (See Sec. 3.6). For most of this thesis, we restrict

our studies to the zig-zag and armchair boundaries, leaving more complicated mixed

boundaries to future work.

1.1.2 Finite-Difference Approximation to the Continuum

We can use a similar formalism to describe an electron in a two-dimensional elec-

tron gas, which behaves like a free particle in a two-dimensional continuum. To nu-

merically approximate the Schrodinger equation for a continuous system, we sample

it along a square lattice and apply the finite difference equations

dF

dx

����
x=x0

=

1

a
(F (x0 + a)� F (x0 � a)) (1.1.9)

d2F

dx2

����
x=x0

=

1

a2
(F (x0 + a)� F (x0) + F (x0 � a))

where a is the lattice spacing. For the time-dependent Schrodinger equation

i~ @
@t
 =

ˆH (1.1.10)
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Figure 1.1.3: A wavefunction  (r) is represented in this thesis by placing circles
at each lattice site. Their radii correspond to | (r)| and their colors correspond to
the color wheel above. This wavefunction, taken from Fig. 1.1.3, is stationary, so
all probability amplitudes are real. As a result, only cyan and red appear in this
representation.

we write out the Hamiltonian

ˆH = � ~2
2m

r2
+ V (r) (1.1.11)

which can be approximated in parallel to the tight-binding equation for graphene

(Eq. 1.1.1) as

H =

X

i

✏ia
†
iai � t

X

hiji

a†
iaj, (1.1.12)

where ✏i = V (ri) + 2dt, d is the dimensionality of the system (always d = 2 for this

thesis), t = ~2
2ma2

, and the set hiji covers all neighboring pairs.

Throughout this thesis, we represent wavefunctions for both the continuous system

and the graphene system by placing circles at each point in the numerical lattice whose
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radii correspond to the absolute value of the probability amplitude | |. This ensures

that the area contained by each circle corresponds to the measurement probability

| |2 at each point. The color of each circle is defined by the phase arg( ) according

to Fig. 1.1.3. In this example, which is taken from Fig. 4.0.1, a stationary state has

only real wavefunction values, so all colors are either cyan or red. In non-stationary

states, like Fig. 4.3.3, the whole color wheel is engaged.

The dispersion relation for the two-dimensional square lattice is thus

E(k) = 4t� 2t (cos(kxa) + cos(kya)) (1.1.13)

and is shown in Fig. 1.1.2. For wavelengths that are long compared to the lattice

spacing, we can approximate this relationship as E(k) = ~2k2
2m , which is the standard

kinetic energy in a continuum.

Like the graphene system, the magnitude of the wavevector at any energy of the

square lattice depends on its orientation. It is bounded above by

k
up

=

1

a
cos

�1

✓
4t� E

2t

◆
, (1.1.14)

and from below by

k
low

=

1p
2a

cos

�1

✓
4t� E

4t

◆
. (1.1.15)

When characterizing the momentum uncertainty, we use the average of these two

quantities.

1.2 Ballistic Conductance

Imagine that a small piece of graphene, or any conductive material, is attached

to two leads. The system is held at a potential µ0, but across the two leads a bias
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Figure 1.2.1: A schematic of the experimental apparatus for conductance measure-
ments. A central region (C) of graphene is connected to two leads at the left (L) and
right (R). A bias voltage V shifts the potentials in each lead, resulting in electrons in
the conduction band to flow from left to right which have momenta available in the
potential gap and determined by the dispersion relation (top).

voltage V is applied, which raises the potential of the left lead to µ1 and lowers the

potential of the right lead to µ2 (See Fig. 1.2.1). The difference µ1�µ2 / V , and the

potential at each lead corresponds to its Fermi energy, which determines the momenta

of electrons that can conduct transport. What is the current through this device?

Ohm’s law gives the current in relation to the bias voltage by I = V G, where G

is the conductance, which is the inverse of the resistance. For large enough samples,

the resistance is proportional to the length of the sample between the leads and it’s

cross-sectional area, or, in the case of a two-dimensional system, it’s transverse width.

The resistance arises from the fact that as an electron travels between the leads
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under the force of the bias voltage, its momentum changes (scatters) in response

to a myriad of forces such as phonon scattering, electron-electron interaction, and

defect scattering to name a few. Conductance then occurs as a result of drift velocity

over many scattered trajectories. But for certain materials, like graphene or gallium

arsenide, at low enough temperature the average distance between scattering events

can grow to a micron (for graphene, that’s several thousand atoms long), which can

easily exceed the size of mesoscopic systems. In this case, the conductance of the

system is determined by quantum transport.

Due to quantum confinement, a small system can only support a finite set of

modes through which electron transport can occur. For the quantum point contact

or the simple waveguide, these modes are standing waves between each wall of the

waveguide and are known as transverse modes. If the bias voltage is small so that

µ1 ⇡ µ2, then only one conducting electron exists in the device at a time, eliminating

interaction effects. For small bias voltages at zero temperature and for systems where

the mean-free path between scattering events exceeds the size of the system, the

Landauer formula applies[17], which states that the conductivity

G =

2e2

h

X

i

Ti, (1.2.1)

where Ti is the likelihood that the ith mode of transport transmits across the device.

The quantity e is the electron charge, and h is Planck’s constant; the factor of two

arises from the up and down spins of the electron.

For a simple waveguide with no scattering, Ti is always unity since each mode

transmits across the system unfettered, so that the conductance is a simple function of

the number of transverse modes. For more complicated system geometries, quantum
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scattering can reflect some of the transmitting mode back to the incoming lead. As

a result, Ti becomes a function of the fermi Energy within the system. At higher

temperatures, the conductance in the linear regime can be obtained by applying a

Gaussian-like kernel using a thermal broadening function of width kBT , where kB is

the Boltzmann constant and T refers to the temperature. That is,

¯G(EF ) =
2e2

h

ˆ
F (E � EF )

X

i

Ti(E)dE (1.2.2)

where the broadening function is F (E � EF ) =

1
4k

B

T
sech2

⇣
E

2k
B

T

⌘
. The current at

larger voltage biases can be obtained by integrating between the potentials at each

lead,

I =

ˆ E
F2

E
F1

¯G(E)dE. (1.2.3)

Under the assumptions where the Landauer formula applies, the variable need-

ing the most attention is then the set of transmission functions Ti, which depend

on quantum scattering matrix, whose calculation and analysis form the bulk of the

dissertation

1.3 Scattering Matrix and Green’s Function Formal-

ism

Perhaps one of the most valuable currencies in physics is the scattering matrix,

a quantity which gives the transition probability from one wavefunction to another.

In general, the wavefunctions of interest are asymptotic wavefunctions, or modes, far

from a scattering center. This section explains how we arrive at the scattering matrix
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numerically in the case of a device defined by a finite Hamiltonian, and its interaction

with asymptotic modes within waveguides that connect to the device.

The scattering matrix can be divided into four blocks, which describe the set of

modes that are treated as inputs and outputs:

s =

0

B@
r t†

t r†

1

CA (1.3.1)

The sub-matrices r and t represent the reflection and transmission matrices respec-

tively.

The transmission functions Ti from Eq. 1.2.1 are determined by summing over the

scattering matrix elements

Ti =

X

j

|tij|2 (1.3.2)

corresponding to transmission from a particular mode. Determining the scattering

matrix for a system can be aided using the Green’s function formalism.

1.3.1 The Green’s Function

The Green’s function for the system in Fig. 1.2.1 is determined by first considering

the time-independent Schrödinger equation

(EI�H) (r) = 0, (1.3.3)

where I is the identity matrix of the same size as ˆH, and the response to an impulse

(EI�H)G (r, r0) = � (r� r0) . (1.3.4)

where G should not be confused with the conductance introduced earlier. The Green’s

function answers the question: given a source term f(r), what is the time-dependent
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wavefunction of the system? This can be obtained by integrating

 (r) =

ˆ
G (r, r0) f(r0)dr0, (1.3.5)

or by the matrix equation

| i = G |fi .

The response can either consist of wavefunctions that emanate from the impulse

or lead up to it. To choose the former and to avoid poles in the complex plane, we

apply a small positive ⌘ parameter to define the retarded Green’s function

((E + i⌘) I�H)GR

(r, r0) = � (r� r0) . (1.3.6)

In the real-space representation, � (r� r0) ! I and we can write

G (r, r0) = ((E + i⌘) I�H)

�1 . (1.3.7)

In general, we drop the explicit reference to the retarded part of the Green’s function.

1.3.2 Green’s Function for Infinite and Semi-Infinite Waveg-

uides

Imagine a horizontal waveguide with a set of transverse modes �m(y), ordered by

index m (Fig. 1.3.1). Each mode travels down the waveguide with its own wavevector

km(E) determined by the band structure of the waveguide. The Green’s function

along an infinite waveguide is then the sum of excitation responses from each of these

modes, which can be written as

G(x, y, x0, y, E) =

X

m

A±
m�m(y)e

ik
m

(E)|x0�x|, (1.3.8)
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Figure 1.3.1: An unperturbed waveguide is shown with the first three transverse
modes �1,2,3(y) propagating to the right. More discussion of this geometry and trans-
port modes can be found in Fig. 4.4.7.

where A±
m are excitation amplitudes, moving in the positive (+) and negative (�)

directions along the x-axis. We can determine the relationship between A+
m, A�

m, and

km(E) by solving for the Schrodinger equation on the points immediately in front of

and behind x = x0:

✓
E +

~2
2m

@2

@x2
+ i⌘

◆
G(x, x0

) = �(x� x0
). (1.3.9)

We solve for

A+
m = A�

m = � i

~vm
�m(y

0
) =

�im⇤

~2km
�m(y

0
), (1.3.10)

where m⇤ is the effective mass. We then arrive at the solution:

G(x, y, x0, y0, E) =

X

m

� i

~vm(E)

�m(y)�m(y
0
)eikm(E)|x�x0|. (1.3.11)

The semi-infinite lead imposes an additional constraint, since just beyond its sur-

face the wavefunction must go to zero. In the case of a lattice, we impose this condition

at a distance one lattice constant beyond the surface. For the case of a square lattice

with lattice constant a, the Green’s function at the surface of a semi-infinite lead is

given by
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g(y, y0, E) = �1

t

X

m

�m(y)e
ik

m

(E)a�m(y
0
) (1.3.12)

where 1
t
=

2 sin(k
m

(E)a)
~v

m

(E) , a constant. In general, we will be using numerical routines

to determine g, since for many of the systems we study, the derivation must be

automated under many different system parameters.

1.3.3 The Self-Energy

Given the Green’s function for the surface of the semi-infinite lead, we can then

derive its coupling to the the device region. We being by considering the Green’s

function of the system from Eq. 1.3.7. We decompose the Hamiltonian into the central

device region HC , the left lead region HL, and the right lead region HR according

to Fig. 1.2.1. The off-diagonal component that couples the left lead to the device is

written as VLC and VCL = V †
LC , where the dagger refers to the Hermitian conjugate,

and similarly for the right lead, so that the infinite Hamiltonian can be decomposed

into eight sub-units:

H =

0

BBBBB@

HL VLC 0

VCL HC VCR

0 VRC HR

1

CCCCCA
. (1.3.13)

It is then a simple mathematical identity from the decomposition

G =

0

BBBBB@

(E + i⌘) I�HL VLC 0

V †
LC (E + i⌘) I�HC V †

RC

0 VRC (E + i⌘) I�HR

1

CCCCCA

�1

(1.3.14)
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that

GC =

✓
E �HC � VLC

1

(E + i⌘) I�HL

V †
LC � VRC

1

(E + i⌘) I�HR

V †
RC

◆�1

.

(1.3.15)

Because the last two terms on the right-hand side provide a large imaginary contri-

bution, the i⌘ parameter associated with HC is omitted.

Assuming that VLC and VRC only connects lattice sites at the boundary of the lead

to the device region (a safe assumption under all applications in this dissertation),

we can replace

VLC
1

(E + i⌘) I�HL

V †
LC ! VL

S

Cg
R
LV

†
L
S

C (1.3.16)

where the off-diagonal component VL
S

C now projects onto the lead surface LS as

opposed to the entire lead region. Thus, we have actually perturbed the device

Hamiltonian with a self-energy defined by ⌃R

L = VL
S

DgR

LV
†
L
S

D, allowing us to contract

the problem to a finite size

H 0
= HC + ⌃

R

L + ⌃

R

R (1.3.17)

so that

GC = (E �HC � ⌃L � ⌃R)
�1 . (1.3.18)

If we imagine a simple finite-difference lattice, VL
S

C is a sparse matrix containing

the hopping element t at off-diagonal points connecting gL to the device. Under this

assumption, we can write the self-energy in the same form as the semi-infinite Green’s

function from Eq. 1.3.12:
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⌃L(R)(r, r
0, E) = �t

X

m2L(R)

�m(r)e
ik

m

(E)a�m(r
0
) (1.3.19)

The real parts of ⌃L,R indicate what stays within the device, while the imaginary

parts indicate which parts are able to propagate.

To understand why, imagine the system propagating in time, governed by the

Schrodinger equation @
@t
 = � i

~H . The eigestates of the Hamiltonian H can be

obtained from the eigenvalue equation H = E . In general, states evolve in time

according to

 (t) = e�
i

~Ht (t = 0),

but eigenstates evolve according to

�(t) = e�
i

~Et�0.

Thus, real parts of the Hamiltonian cause a phase shift to each eigenstate of H, and

the interference of these phases merely rearrange the wave-function amplitude. On

the other hand, positive and negative imaginary parts of H cause a given state’s

probability amplitude to grow or shrink, giving the system sources and drains.

The direction of time is encoded in the Green’s function in the choice of sign

for the small perturbation i⌘ (positive implies forward time propagation, to derive

the retarded Green’s function, while negative implies backward time propagation, to

derive the advanced Green’s function). Because each piece of the Hamiltonian is a

closed system, we can invert the passage of time by converting all +i⌘ to �i⌘ in

Eq. 1.3.14, that is, by taking the Hermitian transpose of the Green’s function. Using

this identity, it is straightforward to define a quantity that tells use the net flow into
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the device: these will be the imaginary part of the retarded self-energy (sources)

minus the imaginary part of its Hermitian conjugate (drains). This is summarized by

the asymptotic coupling matrix �L defined by �L = =
h
⌃L � ⌃†

L

i
= 2Im [⌃L]

We can also derive the coupling matrix for the left (right) lead �L(R) using Eq. 1.3.19

and the definition of t from Eq. 1.3.12 in terms of the asymptotic modes:

�L(R)(r, r
0, E) =

X

m2L(R)

�m(r)
~vm(E)

a
�m(r

0
). (1.3.20)

1.3.4 Information Inside the Scattering Region

The coupling matrix �
in

for the incoming lead acts as a source term, since it

describes the rate of influx for each mode �m. Specifically, the source term is

S(r) /
X

m2in

r
~vm
a
�m(r) (1.3.21)

since its probability amplitude is S(r)S⇤
(r). The wavefunction in the system can be

determined by applying the Green’s function to the source term

 (r) =

ˆ
G(r, r0)S(r0)dr0 (1.3.22)

and the density matrix can be derived as

⇢(r, r0) =  (r) ⇤
(r0) =

ˆ ˆ
G(r, r1)S(r1)G(r0, r2)S

⇤
(r2)dr1dr2 =

1

2⇡
G�

in

G†.

(1.3.23)

The density matrix can then be used to extract the individual scattering wavefunc-

tions inside the system, as discussed in Subsection 2.2.5.

If we treat all leads as sources in a single coupling matrix �, we can arrive at the

customary definition of the local density of states

LDOS(r) =
1

2⇡

⇥
G�G†⇤

r,r
=

1

⇡
Im [G]r,r , (1.3.24)
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since � = 2Im [⌃] and the imaginary parts of ⌃ are the only parts that contribute to

the imaginary part of G.

The current density map

j =
e

2m
( p̂ ⇤

+ 

⇤p̂ ) = � ie~
2m

( r ⇤
+ 

⇤r ) (1.3.25)

can now be written in terms of the density matrix as

j(r) = � ie~
2m

⇥�
r�r†� ⇢

⇤
r,r

, (1.3.26)

where r is a matrix operator.

1.3.5 A Matrix Algebra Formulation of the Scattering Matrix

The relations found in the previous section allow us to complete a simple linear-

algebraic formalism for the scattering matrix. We begin by writing the scattering

matrix in terms of the modes and the Green’s function as

snm = ��nm +

i~pvnvm
a

ˆ ˆ
�n(r1)G

R

(r1, r2)�m(r2)dr1dr2 (1.3.27)

which provides us the probability amplitude by which an asymptotic wave-function

in one mode moves to the other asymptotic modes over an infinite time scale.

A few notes about the terms here. The scattering matrix has units of unity. The

factor preceding the integral has units of energy, and by its definition, the Green’s

function has units of inverse energy, so that the two factors cancel each other out in

dimensional analysis. The delta function exists to maintain unity of the scattering

matrix by anticipating the effect of double-counting the reflection probability. For

instance, in the case where a mode scatters back to itself, the second term in Eq. 1.3.27
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integrates twice over the mode whose integrated amplitude is unity. The value of the

second term is then set to 2, and the delta function ensures that snn = 1.

To obtain the full scattering matrix in linear-algebraic terms, Eq. 1.3.27 is refor-

mulated as

s = i�1/2G�1/2 � I, (1.3.28)

where I is the identity matrix of the size of the central region. A key observation here

is that just like the ��nm term in equation 1.3.27, the identity matrix in Equation

1.3.28 affects only the reflection matrix, and relies on the assumption that � can be

diagonalized into orthogonal vectors. This is because taking the square root of a ma-

trix is identical to diagonalizing the matrix, taking the square root of its eigenvalues,

and then reconstructing the matrix from its eigenvectors and the new eigenvalues.

For most of the thesis, this assumption is held, but in Chapter 3, we will break the

assumption and find another solution which gives the desired result.

There is an ambiguity in Eq. 1.3.28: there are actually two solutions to the square

root of a real matrix like �, and so the above definition is ill-defined by a factor of

�1. However, when probabilities are measured, as opposed to their amplitudes, only

the square of the result (S = ss†) is used.

Thanks to the engineering applications of Landauer-Buttiker, there is a well-

developed field of numerical methods for calculating the energy-dependent Green’s

function for semi-infinite leads, in particular, the methods developed by Lopez-Sancho

and Rubio[18, 19]. Such methods are extremely helpful for lattices like the honeycomb

lattice where analytical solutions to the modes in the leads may not be available. By

the above identities, these numerical methods can also give us the set of open and
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closed asymptotic modes �m at each energy, their coupling matrices � to the device

region, and their band structures. In general, these applications are interested in

calculating the sum of absolute squared scattering matrix elements from one set of

modes that are spatially separated from another set of modes, that is,

T = tt† =
X

n2in,m2out

|snm|2 =
X

n2in,m2out

Snm. (1.3.29)

The Landauer formula (Eq. 1.2.1) gives the proportionality between T and the

conductance across the device in the linear regime (See Sec. 1.2), and is the basis

of a wide range of studies into condensed matter systems. Buttiker later generalized

the formula to systems with more than two leads[20], and now many papers use the

Landauer-Buttiker [17, 20]formula

T = Tr [�
in

G�
out

G⇤
] , (1.3.30)

which makes use of matrix identities to reduce the problem to the trace of the product

of the coupling matrices and the Green’s function of the device. The elegance and

fool-proofness of this formula, along with it’s direct physical intuition, are responsible

for its wide popularity.



Chapter 2

Outward Wave Algorithm

In this chapter we describe a method for computing the electron transport prop-

erties of graphene systems with arbitrary geometries. We are motivated by recent

experiments that have stepped outside the realm of linear, rectangular MOSFET-

type devices and into fully two-dimensional geometries with multiple leads at arbi-

trary angles [21, 22, 23]. Challenges to graphene fabrication give even linear devices

substantial two-dimensional character, largely due to unpredictable defects in the

etching process[24, 25]. Moreover, novel applications for graphene have been recently

proposed using spin polarization that explicitly relies on irregular geometries [26].

The current gap between theory and experiment in the literature can be attributed

to the lack of efficient computational tools to handle such arbitrary devices at the

nano- and meso-scopic scales.

This paper addresses these problems and outlines an algorithm that generalizes

the well-known recursive Green’s function (RGF) method outlined by Datta[27] by

incorporating the reverse Cuthill-McKee algorithm for connected graphs[28]. By rein-

23
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terpreting the Landauer-Buttiker formalism, we demonstrate that RGF can work for

systems that do not fit an input-system-output schematic, expanding the fruits of al-

gorithmic advances in transmission calculations to the general scattering matrix prob-

lem. Like RGF, our algorithm can also produce the local density of states (LDOS)

at a comparable computational cost.

One important aim for this chapter is to produce and explain a method that is

straightforward to implement and does not require cumbersome external software

packages. Accordingly, each calculation is performed using the standard BLAS and

LAPACK dense matrix algebra routines[29] which come pre-installed on nearly all

scientific machines today. Comparisons to sparse matrix packages like SuperLU[30]

are discussed in Section 2.3.4.

2.1 Background

2.1.1 Hamiltonian and Formalism

The methods used in this chapter apply to Hamiltonians with sparse character

(composed of many off-diagonal zeros) and poses some order of localization, that is,

one part of the Hamiltonian doesn’t couple to another distant part. For instance,

for all of our calculations we will be using the general single-orbital nearest-neighbor

tight-binding Hamiltonian from Eq. 1.1.1. These methods are quite general since

the structure of this Hamiltonian is very similar to any finite-difference continuous

wave equation sampled on a lattice of any character. Moreover, recursive methods

apply to all other orders of tight-binding and finite-difference approximations, such
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Figure 2.1.1: While the Hamiltonian is sparse, the Green’s function is dense. However,
only a few parts of the Green’s function are needed to calculate the local density of
states and the transmission function, indicated in red for the left-to-right regime.
Once the Hamiltonian is permuted according to the algorithm in this chapter, the
relevant parts of the Green’s function shift (Fig. 2.2.3)

as nearest-nearest-neighbor tight-binding, although their efficiency will drop for in-

creasing orders.

The reader is encouraged to review the background of scattering matrix calcula-

tions in Section 1.3. The Hamiltonian describing the infinite system can be contracted

onto a finite basis using the retarded self-energy of the leads ⌃(E) according to

H 0
(E) = HC + ⌃(E)

which has the same dimension as the central (finite) region. Because HC describes the

central region as a closed system, it is Hermitian. Accordingly, H 0 is Hermitian except

where there are contributions from the self-energies of the leads (See Fig. 2.1.1).
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Using the definition of the Green’s function

G(E) = [E · IC �H 0
(E)]

�1 , (2.1.1)

we identify the local density of states as

D(E, n) =
1

⇡
Im [Gn,n(E)] (2.1.2)

That is, the local density of states is encoded along the diagonal entries of the full

retarded Green’s function of the system (See Fig. 2.1.1). From here on out, we omit

the explicit energy dependence in G.

The transmission matrix is calculated not from entries of G along the diagonal

but from the off-diagonal elements communicating information from the input to the

output boundaries. Even though these boundaries can be general, we choose to use

the familiar two-terminal nomenclature, so that we write the relevant sub-matrix as

GLR (See Fig. (See Fig. 2.1.1). The incoming and outgoing wavefunctions for each

mode can then be represented by the matrix square-root of the coupling matrix for

the left (right) lead �L(R), and the transmission function between the left and right

leads can be written as a matrix

t =
p
�

L

G
LR

p
�R (2.1.3)

In the linear regime, conductance through the system will be proportional to the

sum-squares of transmission functions for each incoming mode. Trace identities then

produce the transmission probability[31]

T (E) / Tr [T ] = Tr[tt†] = Tr [�LG
⇤
LR�RGLR] . (2.1.4)
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2.1.2 Full Inversion

The most straightforward calculation of the LDOS and transmission matrix in-

volves first inverting the entire matrix M = E · IC �H 0 and then projecting out the

diagonal elements of G for the LDOS and the sub-matrix GLR for the transmission

matrix. As is well known, the time to compute the inverse of a matrix with N rows

and columns scales as N3. Moreover, the sparse systems this chapter addresses invert

to dense matrices, adding a memory cost that scales by N2. Such large scaling factors

make this calculation prohibitively costly for systems on the order of thousands of

atoms.

A shortcut to calculating the LDOS and transmission can be made by solving a

set of linear equations Mxi = êi,C where êi,C is a unit vector of size C with unity on

the basis index i. Solving for the diagonal entries then requires solving for xi for all

i 2 [1, N ]. Such calculations can be aided by sophisticated sparse matrix software

packages which cut the number of operations by permuting the matrix columns and

rows, and many different approaches are outlined in [29]. Solving for all the diagonal

entries, however, requires one to solve for N separate systems of equations, which

makes these approaches less efficient than one would hope. For instance it can be

shown that nested-dissection methods[32] can under optimal circumstances return the

inverse with scaling of order N2
logN after a re-ordering operation whose cost grows

with some function of N . This is better than N3 but still worse than N2 as promised

by the linear recursive Green’s Function method.
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2.1.3 Linear Recursive Green’s Function Method

To reduce the computational footprint of LDOS and transmission calculations,

the recursive Green’s Function method was developed. In its usual implementation,

the recursive Green’s Function method operates on a Hamiltonian that satisfies the

following three conditions:

1. An input lead contributes the boundary condition ⌃L from the left (incoming)

2. An output lead contributes the boundary condition ⌃R from the right (outgoing)

3. A linear device rests in between the leads, which can be divided into N vertical

slices referred to as “primary layers”, which we number in increasing order from

left-to-right.

While the particular expression of this topology can be distorted, the means of calcu-

lation is always the same, and assumes that the system can be mapped onto a linear

chain of primary layers. Accordingly, we refer to it as the linear recursive Green’s

Function method, or LRGF. In LRGF, one employs the Dyson equation, which is

derived from partial block inversion, to move left-to-right along the primary layers

(see, for example, [27, 33]). In fact, LRGF performs partial block inversion on the

tridiagonal matrix

M =

0

BBBBBBBBBBBB@

H 0
1 H 0

12

H 0
21 H 0

2 H 0
23

H 0
32

. . . . . .

. . . H 0
N

L

�1 H 0
N

L

�1,N
L

H 0
N

L

,N
L

�1 H 0
N

L

1

CCCCCCCCCCCCA

(2.1.5)
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where H 0
i is the system Hamiltonian H 0 projected at the primary layer i. The partial-

block inversion algorithm is outlined in the next section.

2.1.4 Block Inversion

To demonstrate the block inversion algorithm, we rewrite

M =

0

BBBBBBBB@

M1 M12

M21 M2
. . .

. . . . . . MN
L

�1,N
L

MN
L

�1,N
L

MN
L

1

CCCCCCCCA

(2.1.6)

and employ Algorithm 2.1.

The first for-loop (Step 2) returns the inverse GN
L

= (M�1
)N

L

at the bottom-

right-most block (see Step 4). The second for-loop (Step 6) returns the set of block

inverses along the diagonal: Gi = (M�1
)i of sizes {Ni|

P
i Ni = N}. From these blocks

one can obtain the diagonal elements of M�1 and thus the LDOS. The efficiency

of this algorithm scales  maxi N3
i NL and in the case of a square device, where

{Ni} ⇠ NL ⇠
p
N , it can scale with N2, a vast improvement over full inversion when

only the diagonal entries are required. A further extension allows us to calculate any

block of the inverse off the diagonal, but at the cost of additional operations (see

Cauley et al. [34]). For LRGF, calculating GLR requires us to calculate the inverse

at the far upper-right block (M�1
)1,N

L

and an additional step in the first for-loop can

compute this block while minimizing memory allocation (see Datta [27]).
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Algorithm 2.1 Diagonal-block-inversion for block-tridiagonal matrix

1. gL1 = M�1
1

2. for i = 2 to NL

(a) ⌃L
i = Mi,i�1gLi�1Mi�1,i

(b) gLi =

�
Mi � ⌃L

i

��1

3. end for

4. GN
L

= gLN
L

5. gRN
L

= M�1
N

L

6. for i = NL � 1 to 1

(a) ⌃R
i = Mi+1,igRi+1Mi,i+1

(b) gRi =

�
Mi � ⌃R

i

��1

(c) Gi = gLi
�
Ii � ⌃R

i g
L
i

��1

7. end for

2.2 The Outward Wave Method

For linear systems satisfying the conditions of LRGF (see Section 2.1.3) the block-

tridiagonal nature of M = E · IC � H 0 is evident: one simply slices the device into

vertical sections, from left-to-right. However, this is not the case for general geome-

tries even though many Hamiltonians are sparse and exhibit a similar structure. In

order to take advantage of the computational efficiency of LRGF, one must find a

way to map the system geometry onto a linear chain,

Literature through the past two decades describes many inventive methods to ac-

complish precisely this goal. Among those methods are a conformal map to transform

a quasi-circular system onto a linear chain, using continuous eigenfunctions as their
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basis[35], and a unique geometry for applying LRGF to four-terminal devices[36].

More recent work on the contact-block reduction method [37] divides a generic device

into smaller blocks which are pieced together like a jig-saw puzzle. In addition, graph

theory has been used to develop a relatively elaborate system permitting the use of

LRGF with generic boundary conditions[38]. These results, along with others[39],

suggest the approach we explore in depth in this chapter, however we argue that the

formalism of the “virtual lead” is not necessary. Our formalism, in addition, opens the

Landauer-Buttiker formalism to tractable reflection matrix calculations as described

in Section 2.2.5.

2.2.1 Reverse Cuthill-McKee

Given any sparse matrix A, the Reverse Cuthill-McKee (RCM) algorithm[28]

automatically calculates a permutation matrix P so that PAP T produces a block-

tridiagonal matrix, which enables us to use the LRGF method. The only requirement

for RCM is that the matrix A satisfy the properties of an adjacency matrix, which

describes the edges between vertices of an undirected graph. This is satisfied when

the non-zero entries of a matrix are symmetrically distributed across the diagonal,

and is therefore satisfied for any Hermitian Hamiltonian. Since the tight-binding and

similar localized models create Hamiltonians that describe actual graphs, where nodes

map onto atomic orbitals and edges onto overlap functions which are distributed in

physical space, RCM is ideal for such systems.

RCM aims to minimize the distance of non-zero entries to the diagonal, which

makes it a “bandwidth minimization” algorithm and ideal for our purposes. This is
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because the most computationally expensive step in an LRGF calculation constitutes

inverting each individual block, and this time is dependent upon the cube of number

of rows Ni for each block. However, we are constrained by the fact that the number

of rows for each block must add up to the number of rows in the entire system, that

is,
P

i Ni = N . We can write a rough optimization function
P

i N
3
i which describes

the time of calculation. This optimization function is minimized when the number

of blocks is maximized, and the size of each block is reduced. Ideally, no block is

especially large compared to the others, since the cubic function grows rapidly.

RCM is able to reduce block sizes by keeping track of site indices while propagating

through the system like a wave propagates on a pond surface. It begins by taking

a seed of indices S1, which constitute a set of nodes in the graph represented by

A. RCM then calculates which nodes share an edge with nodes in S1 and saves their

indices as S2. In the second iteration, it computes the set of nodes connected to S2 but

eliminates any nodes it has previously visited, and saves the result to S3. These steps

are repeated until the entire system has been explored. For a locally connected graph

like a single-orbital tight-binding model, the RCM technique will actually appear as

a wave that emanates from the seed until it has filled the entire system.

To give the reader a precise account of RCM, we describe it in terms of the matrix

A and its indices in Algorithm 2.2.

2.2.2 Applying RCM on a Model System

We demonstrate how the RCM algorithm would apply to a model system which

consists of just six sites arranged in a ring as depicted in Figure 2.2.1. This geometry is
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Algorithm 2.2 Reverse Cuthill-McKee

1. define S1, i = 2

2. while Si�1 6= ;

(a) define Si as the indices of the columns of the off-diagonal elements in the
rows Si�1

(b) Si = Si/ {Sj|j = 1, . . . , i� 1} that is, eliminate the indices that have been
visited previously

(c) i = i+ 1

3. end while

4. reverse subscripts of {Si}

one of the simplest diversions from a linear topology, and we can write the Hamiltonian

for this system as

H =

0

BBBBBBBBBBBBBBBB@

✏1 t 0 0 0 t

t ✏2 t 0 0 0

0 t ✏3 t 0 0

0 0 t ✏4 t 0

0 0 0 t ✏5 t

t 0 0 0 t ✏6

1

CCCCCCCCCCCCCCCCA

where ✏1...6 are on-site potentials and t is the hopping element between neighboring

sites. If the sites were arranged in a straight line, the Hamiltonian would be trivially

block-tridiagonal. But because the sites are now arranged in a ring, the two hopping-

terms in the extreme off-diagonals break this property. To compute H�1 at site 1,

one might naively invert the entire 6⇥ 6 matrix, with an associated 6

3 scaling.

To resolve this, RCM begins with a seed index and moves out through the system,
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Figure 2.2.1: The six sites of a model nearest-neighbor tight-binding system are shown
with index labels. Lines between sites indicate off-diagonal entries in the Hamiltonian

keeping track of indices along the way. If we set the seed to site 1, RCM would obtain

a series of indices S1 = {1}, S2 = {2, 6}, S3 = {3, 5}, S4 = {4}, which allows us to

construct a permutation matrix by placing 1’s in a zero-matrix. As we move down

each row we place a 1 in a column that matches an index in one of the RCM sets,

beginning with S1, then S2 and so on. The order within each set doesn’t matter. For

example, the above construction would give us

P =

0

BBBBBBBBBBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

1

CCCCCCCCCCCCCCCCA
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by which we can then compute

H 0
= PHP T

=

0

BBBBBBBBBBBBBBBB@

✏1 t t 0 0 0

t ✏2 0 t 0 0

t 0 ✏6 0 t 0

0 t 0 ✏3 0 t

0 0 t 0 ✏5 t

0 0 0 t t t✏4

1

CCCCCCCCCCCCCCCCA

The bandwidth of the Hamiltonian has been reduced, converting it into a 4⇥4 block-

tridiagonal form. The Hamiltonian is then reversed in accordance with Algorithm 2.2

Step 4 by a final permutation using

P =

0

BBBBBBBBBBBBBBBB@

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

1

CCCCCCCCCCCCCCCCA

2.2.3 Using RCM to Block-Invert an Open System

Here we explore the role of the seed in RCM. For a given system, the optimization

of RCM is entirely determined by this choice. But because block-diagonal inversion

using RCM only produces blocks along the diagonal, which entries we need to cal-

culate will also affect our choice. For instance, if only the diagonal entries of the

Green’s function matrix are needed, then any seed will suffice because these entries
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Figure 2.2.2: Recursive Green’s function methods demonstrated on a nearest-neighbor
single-orbital tight-binding Hamiltonian for a graphene stadium. Each block of the
Hamiltonian is represented by different colors of atoms. In (a) and (b), we have a
common two-terminal left-to-right system. In (a) the recursive algorithm is deter-
mined by LRGF, and in (b) by the Outward Wave method. In (c), a single lead
enters from the left for studying the full scattering matrix of reflected wavefunctions,
as described in Section 2.2.5. In (d), the Outward Wave method is applied to an
ensemble situation, in which the entire boundary of the device region is treated as a
potential location for attaching a lead, as described in Section 2.2.4.
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will always be returned by the inversion algorithm. We could even sample different

seeds to see which would provide the most efficient permutation, although this process

could prove computationally expensive. When a transmission calculation is required,

however, there is an additional restraint to LRGF: the sub-matrix of the Hamiltonian

describing coupling of the system to the environment is a dense matrix because of the

contribution from the self-energy. Since we also need to produce all of these entries

from the full inversion, it is necessary then to choose this as our seed.

The LRGF technique circumvents some of these restrictions by adding an addi-

tional step that permits block inversion to produce entries at the extreme diagonal

block which conveys information from the input lead to the output lead. RCM could

be adapted to this calculation by setting the seed to the input lead, and propagat-

ing to the output seed. For any system that deviates from a simple linear topology,

however, we run into problems. As soon as a single index in the RCM routine is a

member of the output boundary, the fact that the Hamiltonian for the output bound-

ary is dense requires that all remaining indices be contained in the final block, which

can result in an unnecessarily large block to invert. In fact, this very limitation was

argued by Wimmer and Richter[38] as the motivation for developing their automatic

procedure.

We instead propose to set the seed as the collective boundary between the central

region and all the leads. The first for-loop in Algorithm 2.1 will then provide us the

Green’s function at the boundary G
B

. This block is useful for transmission calcula-

tions since it automatically contains the off-diagonal entries corresponding to GLR.
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In fact, GB can be permuted as

GB =

0

B@
GL GLR

GRL GR

1

CA (2.2.1)

Since the boundaries between a device and its leads generally lie at the device perime-

ter, RCM will first search into the interior of the device from the boundary regions at

the perimeter. When this search is reversed as in the last line of Algorithm 2.2, RCM

will produce a set of layers that appear to emanate from the interior of the device and

radiate toward the leads. In the final step, the waves will converge upon the leads

at the same time. We explore several geometries where this happens in Figure 2.2.2.

Because of the appearance of the set of indices as an outward-moving wave, we call

the techniques described in this chapter as the Outward Wave Method.

2.2.4 Application to Ensembles

For an ensemble of systems where the interior of each system is identical, but only

the coupling to the environment changes, we can choose the seed wisely to enhance

efficiency over the whole ensemble. This can be accomplished by defining the seed

as the set of all possible boundaries in the ensemble. Potential applications include

examining the response of a single device to varying lead geometries, which will attach

at different points along the device perimeter.

We demonstrate this application by assuming that we have a device where we have

set the seed at its entire perimeter. The first for-loop in Algorithm 2.1 will provide

us the Schur complement at the penultimate block ⌃L
N�1 (see Step 2a of Algorithm

2.1). For each member in the ensemble, this Schur complement will stay the same
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while the lead self-energy ⌃r, and thus H 0
B, changes. We can then calculate for each

member

GB =

�
H 0

B � E � ⌃L
N�1

��1 (2.2.2)

which provides us the transmission information by Equation 2.1.4. Performing this

one inversion over the device perimeter saves considerable computational time over

the ensemble, enabling the examination of vast arrays of device-plus-lead ensembles.

2.2.5 Extension to the Reflection and Density Matrices

In systems in which the entire wavefunction is reflected, there is no distinction

between and input and output boundary. While the total reflection coefficient is of

course unity at all energies, mixing between the modes can be of scientific interest,

for instance, when examining quantum ergodicity (see Kaplan and Heller[40] for an

application to the tilted billiard). In this case, there is no alternative available to

full matrix inversion, except for sparse matrix routines like SuperLU[30]. For full

scattering matrix calculations of this variety, the Outward Wave method contributes

an efficient dense-matrix algebra equivalent.

For the full scattering matrix, it is not sufficient to simply derive

r = i
p
�LGB

p
�L � I

according to the analysis in Chap. 1, since the coupling matrix �L cannot generally

be diagonalized into orthogonal modes along the boundary. In Chap. 3, we explore

methods for resolving this issue and extending the Outward Wave method to the full

scattering matrix.
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However, the formalism for obtaining the transmission function doesn’t need a

diagonalizable coupling matrix. Is there a use for a transmission matrix using the same

lead for both the incoming and outgoing coupline matrix, that is, tL =

p
�LGB

p
�L?

Yes: this problem maps onto calculating the transmission across an infinite waveguide,

where perpendicular to the waveguide is attached the equivalent device region. An

example of this geometry is depicted in Figure 2.3.4. Such geometries are similar to

that of a Helmholtz resonator, where current flow is absorbed by the resonator at

some energies and enhanced at others, as a result of interference between the direct

wavefunction and the wavefunction reflected in the resonator. We use this calculation

to contribute to the physical picture of a Fano resonance in Section 2.3.3.

Extensions to the Outward Wave method can produce other quantities of interest.

For instance, the density matrix from Eq. 1.3.23 is derived from

⇢ =
1

2⇡
G�LG

†,

where �L is the coupling matrix for the incoming lead. Because the coupling matrix

is only defined on the boundary, the density matrix only has rank as high as the

number of sites along the boundary where the incoming lead touches the scattering

region. In fact, only a small part of G is needed to compute the density matrix – the

vertical (or horizontal) column incident with the boundary.

For this reason, when calculating the scattering wavefunctions, which are eigen-

states of the density matrix ⇢, it is much more efficient not to diagonalize the entire

matrix, but to apply a singular value decomposition (SVD) such that

p
�LG

†
= U †

⌃V.
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Figure 2.2.3: Only certain parts of the Green’s function need to be retrieved for each
metric used in this thesis, and they are premuted from the left-to-right geometry in
Fig. 2.1.1. At top, a sparse Hermitian Hamiltonian is perturbed by dense self-energy
contributions from the leads (blue squares, left). The Outward Wave Algorithm per-
mutes this matrix into block tridiagonal form, and then inverts it piece by piece
(middle). Only the diagonal and final block are needed for the LDOS and the scat-
tering matrix s. The density matrix ⇢, which is used in Chapters 4 and 5, only needs
the vertical block at the boundaries.

The columns of U contain the source terms for each wavefunction (See Subsec-

tion 1.3.4), and the columns of V contain the scattering wavefunction inside the

bulk. By limiting the SVD routine to only compute as many decompositions as there

are lattice sites at the coupling region, extracting the scattering wavefunctions can

be made enormously more efficient.

Because the boundary is often much smaller than the system as whole, this part

of the Green’s function is still manageable, and better still, it can be calculated

by inserting an additional step in the Outward Wave algorithm, resulting in only a
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modest increase in calculation time. We summarize our results in Fig. 2.2.3, showing

that only certain parts of the final Green’s function are needed for the quantities

relevant to this thesis.

2.3 Computational Experiments

We demonstrate the efficacy of our algorithm on a demonstration graphene system:

the “relativistic stadium” geometry, which was first explored by Huang et al. [41].

We choose the single-orbital tight-binding model for graphene described in Equation

1.1.1 as our basis since it is the current de facto standard for computer simulations

on graphene of this type (see, for example, Munoz-Rojas et al.[42]) and is the model

used in the reference[41].

2.3.1 Relativistic Stadium

To validate our code, we compare our transmission results with those of Huang et

al. in Figure 2.3.1. In addition, we compared our results among full inversion, LRGF,

and Outward Wave methods and achieved identical results within machine precision.

Compared to the published data, which we have sampled numerically from their

article, we find that we achieve nearly-identical results for the system, except near

singularities in the density of states, which appear as sharp transmission fluctuations.

A close examination reveals that these deviations are numerical artifact partly as

a consequence of choosing slightly different sampling points in the energy spectrum.

Near singularities, even slight differences in where we sample the energy spectrum will

have a significant impact on the reported value, making it very difficult to align with
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Figure 2.3.1: Transmission coefficient for the graphene stadium[?] using the Outward
Wave method (black) and the original data (grey dashed). Differences between the
two data are shown at bottom. Deviations arise from disparities in sampling points
and the infinitesimal ⌘ parameter. We publish results for a very small ⌘ parameter
of 2.7⇥ 10

�5eV.

the published results exactly. The broader differences, most notably near E=1.938eV

and 1.985eV can be accounted for by another numerical artifact: a discrepancy in the

size of the infinitesimal ⌘ parameter in calculating the self-energies of the leads. Since

the value chosen in the original article is not published, and solutions approach an

asymptote with smaller ⌘ parameters, we have chosen to present our results using a

relatively small ⌘ parameter of 2.7⇥ 10

�5eV.

2.3.2 Relativistic Stadiums of Various Sizes

For a linear system in which the length of the boundary region is comparable

to the width along each segment of the system, LRGF actually offers a factor of 4
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improvement in efficiency over the Outward Wave method. Even though there are

twice as many sub-matrices to invert in this case, each sub-matrix is now half the

size compared to the Outward Wave method, that is,
PN

L

m=1 N
3
m !

P2N
L

m=1

�
1
2Nm

�3
=

1
4

PN
L

m=1 N
3
m. There is a cross-over point, however, where each block in Outward Wave

is equal to or smaller than the sub-matrices in an equivalent LRGF calculation. This

occurs when the minimum distance between the input and output boundaries, L,

satisfies

L  N

2NB

where N is the number of basis functions in the device and NB is the number of basis

functions along the boundary.

To test this, we created an ensemble of 40 relativistic stadiums. Each has the

same radius at the rounded edges of 30a where a is the lattice constant of graphene.

However, the length along the straight section was varied by a linear function ac-

cording to the system size parameter. We benchmarked fifty energy points within

the spectrum of 1.92 and 2.02 eV using the Harvard Odyssey cluster with dual Xeon

E5410 2.3Ghz quad core processors. The results of our benchmarks appear in Figure

2.3.2. Most prominently, we find the cross-over point between LRGF and Outward

Wave to occur around a system size parameter of 12. For our largest system, we found

over a 100-fold improvement for the Outward Wave method over the linear recursive

method.

We expected the calculation time for full inversion to be the largest of the three

methods, and to fail above a certain system size parameter because of memory re-

quirements, which we find in our results above a system size parameter of 25. The
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Figure 2.3.2: Top: Time of calculation for a single energy point for relativistic stadi-
ums using full inversion (blue stars), LRGF (green crosses), and the Outward Wave
method (red pluses). Standard deviations above and below are indicated by whisker
bars. Middle: Estimated time for transmission calculations, in arbitrary units, com-
puted from the optimization function discussed in Section 2.2.1. Bottom: Estimated
memory requirements for each system. The clusters we used had a memory limit of
16GB, which is indicated by the magenta dotted line. Our simulations suggest that
the memory estimation for LRGF and the Outward Wave method are undervalued.
For the transmission calculation, all three methods returned the same transmission
coefficient at the energy point within the precision of the machine. The number of
basis functions in each calculation is a linear function of the system size parameter.
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reduction in variance is partly explained because memory allocation is a major source

of variance in these calculations. All recursive methods require that each sub-block

be allocated to memory, and as these blocks grow larger, the relative allocation time

also grows (which is shown in the other methods). For nodes with shared memory,

interference in this step can be a significant factor. The full inversion method, on

the other hand, only requires one allocation. In addition, the load balancer is likely

shifting these calculations to nodes with identical processors but different priorities,

which suggests the results for full inversion would actually be larger than what we

report if all of our simulations ran on identical nodes. Happily, this would open the

gap between the methods in terms of efficacy even further.

Above a system size parameter of 19, many of our time trials for the full inversion

method failed. As a result, our times show a stark bump in value. To understand

this, we estimated the memory requirements for each method by allocating a double-

precision complex number for every element of the matrices used. We show our results

in Figure 2.3.2. The clusters we used had a memory limit of 16 GB, which is indicated

by the magenta dotted line. Our predictions are consistent with the bump in time

trials for full inversion, since above a system size parameter of 19, the cluster would

run out of memory and rely on virtual memory on the hard disk.

In addition, Figure 2.3.2 demonstrates the memory benefits of recursive methods in

general, but especially the Outward Wave method when a system is large compared

to the distance between its input and output boundaries. Memory use becomes

especially important considering the memory challenges we faced for full inversion.

Time trials using the LRGF method failed due to memory limitations above a
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Figure 2.3.3: The size of each sub-matrix, in order of sub-matrix index, for Outward
Wave (red pluses) and LRGF (green crosses) for stadiums of system size parameters
40 and 10 (insert).

system size parameter of 38, which surprised us since the data themselves wouldn’t

have breached the memory limit. However, since the recursive algorithms require

allocating many blocks of memory of varying sizes, it is very likely that the pointer

tables and the allocation process induce memory overheads.

We also modeled the estimated time of calculation for standard linear recursive

and outward wave methods using the optimization function O ({Ni}) =
P

i N
3
i and

found the same cross-over point at system size parameter 19 (Figure 2.3.2). For our

ensembles, we found it difficult to determine whether the time of inversion or the

challenges with allocating and storing memory were the dominant factors in the final

calculation times. We did not plot the equivalent results using full inversion since the

underlying algorithm is different.
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To understand how each method contributed to the optimization function, we also

plot the size of each matrix that must be inverted for the LRGF and Outward Wave

methods for stadia of system size parameter 10 and 40 in Figure 2.3.3 as in Wimmer

and Richter [38]. The area underneath each function is the same and adds to the

total number of orbitals in each system. As a result, each curve represents, in effect,

the bandwidth of the sparse Hamiltonian according to the two permutations. The

better the permutation, the smaller the overall bandwidth the shorter (and wider)

it will appear in this graphic. At the system size parameter 10, which is near the

cross-over point at 12, we find very similar matrix bandwidths for the two methods,

which corroborates both our predicted and measured calculation times. Beyond the

cross-over point, the Outward Wave method requires the inversion of many more

matrices but of far smaller size, giving an overall performance boost.

2.3.3 Reflection Matrix For Single-Lead Relativistic Stadium

We choose to examine the single transmission fluctuation at E = 1.9584eV in

Figure 2.3.1. The physical explanation for such transmission fluctuations is well

accounted for by Fano resonance theory[43] which provides a succinct formula that

models the conductance fluctuation as

G(✏) / (✏+ q)2

✏2 + 1

(2.3.1)

Here ✏ is the energy of the system, zeroed at the center of the resonance, and q is an

asymmetry factor. Fano proposed that these conductance fluctuations result from the

interference of a directly and an indirectly (resonant) scattering state. This theory

suggests that the breadth of the resonance (and the conductance fluctuation) will be



Chapter 2: Outward Wave Algorithm 49

Figure 2.3.4: Transmission function for the relativistic stadium (dashed) and its
Helmholtz-resonator equivalent (solid) which is shown in the insert.

proportional to the coupling between the resonant mode and the environment (leads),

and that the asymmetrical q-factor can be accounted by the relative phase between

the directly scattering state and the indirectly scattering state.

We can test these implications by comparing the two-lead stadium to an equivalent

simulation where the incoming and outgoing leads are in fact an infinite nanoribbon

with a stadium resonator attached perpendicular to the direction of flow, as depicted

in Figure 2.3.4. This scenario can be described as a Helmholtz resonator as discussed

in Section 2.2.5.

We expect three changes to happen for the Helmholtz resonator:

1. The energy of the resonance, and thus the center of the conductance fluctuation,

will shift to reflect the change in coupling matrix.

2. The resonance width will reduce by a factor of two, to reflect that we have
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System Size Parameter SuperLU Outward Wave Ratio
80 57.3 49.5 1.158
100 76.7 56.3 1.362
200 156.3 95.1 1.644
300 247.6 132.0 1.876
400 340.8 174.8 1.950

Table 2.3.1: Comparison of time trials (in average seconds per energy trial) for rect-
angular graphene stadia. As the system size parameter increased, so did the improve-
ment in efficiency for Outward Wave over SuperLU.

reduced coupling between the resonant state and the environment by half.

3. It has been suggested by Racec et al.[44] that the asymmetry q-factor can be

explained by the relative lateral symmetry between the direct and scattering

states. In this case, we expect the asymmetric pattern in transmission to reverse,

to reflect the fact that we are now reflecting off the same side of the system, as

opposed to tunneling through it. From this perspective, our calculation is an

excellent validation of Racec’s study.

Each point is beautifully verified in Figure 2.3.4. For instance, the peak at E =

1.9584eV shifts down by 0.0003eV and its resonance width is divided by a large frac-

tion. In fact, it is much smaller than we predicted and suggests that there may be

additional factors constricting the resonant width in the Helmholtz resonator scenario.

In addition, we see that its asymmetric profile has reversed, reaching a transmission

minimum before its transmission maximum. In both cases, the transmission fluctua-

tion traverses approximately one unit.
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2.3.4 Sparse Matrix Packages

We performed a set of experiments using a variation of the relativistic stadium with

square ends. We tested our time trials using our Outward Wave method against an

equivalent calculations using sparse matrix inversion for the required elements using

SuperLU[30]. In each trial, we kept the length of the system identical, but increased

its width according to the system size parameter, as with the relativistic stadium

trials. We report the results in Table 2.3.1. In all experiments, we obtained identical

results for transmission to within precision of the machine. For both algorithms, we

found a similar scaling of computation time with the system size parameter. We

found that for small systems, both algorithms returned results in approximately the

same time scale. As the systems grew larger compared to the distance between the

input and output boundaries, however, we found efficiency gain for Outward Wave,

approaching a factor of two for our largest system. We attribute the efficiency gain

of our code to the fact that the algorithm and software are specifically tailored to

our problem. Moreover, the roughly equivalent scaling with system size between the

Outward Wave method and SuperLU corroborates that Outward Wave achieves a

close-to-optimal block-diagonalization of the Hamiltonian, and comes closest to the

ideal case for systems that are large compared to the shortest path between the input

and output boundaries. This would be the case, for instance, when the input and

output boundaries overlap, as in Section 2.2.5.
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Boundary Reflection Matrix

This chapter provides a formalism for calculating the scattering matrix from arbi-

trary lattice boundaries using the numerical Green’s function and Landauer-Buttiker

formalism introduced in Chap. 1. Devised for tight-binding systems, the numerical

Green’s function is ideally suited to solve complex lattice systems which do not yield

to analytical methods. But because conductance calculations only need the mode-

by-mode transmission matrix for lattice systems, so far it has not been extended to

provide that detail for the reflection matrix which is necessary to examine scattering

off a lattice surface (See Fig. 3.0.1).

This chapter addresses the mathematical difficulties with the numerical Green’s

function technique when the system maps onto a semi-infinite plane by using skew-

periodic tubes as leads. We also discuss the relationship between this approach and

the phenomenon of internal Bragg diffraction. We demonstrate the boundary reflec-

tion matrix on square lattices and the honeycomb lattice, and we use it to examine

the re-constructed zig-zag edge[15] at high energies, where we corroborate and extend

52
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Figure 3.0.1: Schematic diagram of plane-wave reflection off a serrated boundary.
Serrations occur on all boundaries of lattice system when they are cut off of an
axis of symmetry, which is shown at bottom for an 18

� cut on a square lattice.
Points in white highlight a single unit cell, and points in grey indicate their skew-
periodic continuation, discussed in Section 3.1. The distance traversed from vertically
circumnavigating the system is indicated by the arrows, with a horizontal and vertical
traverse of dx and dy respectively.

related work in the literature[16].

Our goal is to present a formalism that can be extended to any lattice in a general

way. Merging the Boundary Reflection Matrix with the Outward Wave Algorithm

presented in Chap. 2, we can propose a correct and computationally tractable solution

to the problem.
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(a) (b)

(c)

(d)

Figure 3.1.1: Schematic of the Hamiltonian for the asymptotic region is shown for
the square lattice at 18

� (a) and 45

� (b), and the honeycomb lattice at 30

� (c), and
3

� (d). Each unit cell is indicated in alternating bands of white and black.

3.1 The Skew-Periodic Hamiltonian

This chapter examines square and honeycomb lattice Hamiltonians using the

nearest-neighbor tight-binding approximation as introduced in Chap. 1. To address

the semi-infinite plane, we approximate the Hamiltonian by applying vertical bound-

ary conditions to a horizontal section. To accommodate cuts that do not fall on an

axis of symmetry, these boundary conditions are skewed. Fig. 3.1.1 visualizes the

skew-periodic boundary conditions by showing the unit cells for cuts along angles of

18

� and 45

� for the square lattice, and 30

� and 3

� for the honeycomb lattice.
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To model this system using the numerical Greens’ formalism outlined in Chapter 1

and Chapter 2, we consider the common left-to-right geometry represented by the

Hamiltonian

H !

0

BBBBB@

HL VLC 0

VCL HC VCR

0 VRC HR

1

CCCCCA
, (3.1.1)

where a finite scattering region is described by the central region HC which touches

two infinite leads HL and HR at its left and right boundaries. In the case of a semi-

infinite system, there is only one lead, which corresponds to the asymptotic region.

Accordingly, we adjust our schematic to

H !

0

B@
HA VAC

V †
AC HC

1

CA . (3.1.2)

The boundary between the scattering region and the asymptotic region can be seen

as the line of white circles in Fig. 3.0.1.

3.2 Asymptotic Modes

For the continuum, the modes of the asymptotic region �m can be computed

analytically or numerically by sampling the Schrodinger equation on a lattice with

spacing a and diagonalizing the unit cell Hamiltonian. For the skew-periodic system

and other lattices, however, this is not possible. For example, the unit cell Hamilto-

nian of the square lattice at a 45

� cut has no off-diagonal entries in the Hamiltonian,

so its eigenvectors are merely point functions.

There are two other ways to produce the modes in such systems. The first method
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Figure 3.2.1: Band structure for a 30

� cut with 50 unit cells.

applies horizontal Bloch conditions to the unit-cell Hamiltonian, which is then diag-

onalized to compute the band structure, as shown in Fig. 3.2.1 for the 30

�cut. The

drawback is that each calculation is dependent upon the wave-vector chosen for the

Bloch condition, so that the Hamiltonian must be diagonalized for a spectrum of

k-vectors. To arrive at solutions for a given energy, this method requires a function

minimum search for each mode, which is computationally expensive and potentially

imprecise.

Instead, we start from the asymptotic Green’s function g which is computed in

an automated fashion using the Lopez-Sancho method[18, 19], which provides state-

of-the-art efficiency. This allows us to compute the matrix

A = gVLL = VADAV
†
A, (3.2.1)

where VLL is the hopping term between subsequent unit cells in the asymptotic region.
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The columns of VA yield the asymptotic modes �m and are associated with eigenvalues

equal to eikmx

(E)a where kmx(E) is the horizontal Bloch wavevector.

When computing the asymptotic modes from Eq. 3.2.1, we can map them onto a

plane-wave basis using the eigenvectors eikmx

(E)a, which provide the horizontal com-

ponent of the wavevector km and must be satisfied exactly. Determining the vertical

component is aided by the boundary conditions of the Hamiltonian.

We begin by considering the zero-degree cut, or tube. The vertical component of

any mode in this system must satisfy kmy =

2⇡
L
N where N is a positive or negative

integer, since the wavefunction returns to its original value when it circumnavigates

the tube.

When skew is applied to the periodicity, the plane wave effectively traverses a

horizontal distance when it circumnavigates the system (see Figs. 3.0.1 and 3.1.1),

and returns to its initial position with an additional phase of kmxdx, where dx is the

horizontal distance that the unit cell traverses. The equation

eikmy

d
y

= eikmy

d
y

+ik
mx

d
x (3.2.2)

must be satisfied, yielding

kmy(N) = 2⇡N/dy � kmxdx/dy (3.2.3)

for negative and positive integers N .

To determine the vertical component of km, the function

FmN =

ˆ
�m(x, y)e

i(k
mx

x+k
my

(N)y)dxdy (3.2.4)

is computed for each value of N such that �2⇡a�1 < kmy(N)  2⇡a�1. For each mode,

only one value of N returns a non-trivial value. The wavevector that corresponds to
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this value satisfies both the dispersion relation at the given energy and the vertical

boundary conditions. Thus, for each asymptotic mode obtained from the quantity A,

we can identify a unique plane wave with a wavevector pointing towards the cut.

3.3 Retrieving the Scattering Matrix

The scattering matrix, can be computed according to Eq. 1.3.28 as

s = i�1/2G�1/2 � I, (3.3.1)

where I is the identity matrix of the size of the central region. A key observation here

is that just like the ��nm term in Eq. 1.3.27, the identity matrix in Eq. 3.3.1 affects

only the reflection matrix, and relies on the assumption that � can be diagonalized

into orthogonal vectors.

For lattice systems and even the continuum with skew-periodic boundary condi-

tions, there is no reason to expect this assumption to be held, since � is produced in

a black-box fashion from the semi-infinite Green’s function. For any cut, there will

be degenerate modes with identical magnitudes of kx corresponding to incoming and

outgoing modes, which result in a non-symmetric coupling matrix �.

As a result, diagonalizing the matrix � = V DV † fails to produce an orthogonal

set. However, we can symmetrize the coupling matrix by the transformation

�!
�
�+ �

T
�
/2, (3.3.2)

giving � an orthogonal decomposition, and making it possible to compute the scat-

tering matrix according to Eq. 1.3.28. Unfortunately, the transformation mixes infor-

mation between incoming/outgoing mode pairs, however, this information is already
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mixed in the original coupling matrix. For our calculations, it suffices to assume that

any given mode determined by � is an incoming mode, since the system is expected

to behave identically under time-reversal symmetry (this is obviously broken in the

presence of the magnetic field).

Once the scattering matrix is calculated in Eq. 3.3.1 using the coupling matrix

from Eq. 3.3.2, it can be transformed into any other complete basis set. For cuts along

an axis of symmetry of the underlying lattice, the asymptotic modes �m derived from

Eq. 3.2.1 constitute a complete set, but for others the matrix A is not symmetric,

or the boundary region is often smaller than the size of a unit cell of the asymptotic

region, collapsing asymptotic modes onto an incomplete basis set.

However, in all cases the modes of � under the transformation of Eq. 3.3.2 do

constitute a complete set. As a result, it is possible in these situations to calculate

the overlap between modes of � and the asymptotic modes to compute a quantity

similar to the scattering matrix, but which only indicates whether reflection between

two modes is possible. It turns out the that these permitted reflections follow physical

laws which we explore in Sec. 3.5.

3.4 Results for the Square Lattice

For edge cuts along a symmetry axis of the lattice, the set of modes �m constitute

a complete set and the scattering matrix can be unambiguously projected onto them.

Because of the finite size of the system, however, only a finite number of points in

the scattering matrix for the semi-infinite system are produced.

We introduce the reader to this principle using a square lattice at a 45

� cut at low
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Figure 3.4.1: Part (a): The reflection matrix for the 45

� cut in k-space as lines
connecting discrete asymptotic modes. Part (b): A similar cut, but now with steps,
produces and entirely different reflection matrix which is decomposed into three types
of classical reflections in Fig. 3.4.3.

energy. In Fig. 3.4.1a we show the scattering matrix for this cut as lines connecting

the incoming and outgoing wavevectors in k-space. Each line follows the 45

� diagonal

and corroborates predictions from specular reflection, in which the angles of incidence

across a cut are equal for both the incoming and outgoing plane waves. As seen in

the figure, only a finite set of points in k-space are sampled.

In Fig. 3.4.2 we show the incoming angles of these points as a function of energy.

The figure shows that as energy increases, more modes become available. According

to the law E / k2
= k2

k + k2
?, as soon as a mode becomes available, it proportions all

of its energy into the transverse component of the wavevector and points parallel to

the cut. As energy increases further, the mode proportions more of its energy into the
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Figure 3.4.2: For the 45

� cut with fifty vertical unit cells, the incoming angle is
plotted against system energy. As modes become available at higher energies, their
measured incoming angle asymptotically approaches ⇡/4. This is understood since
the wavevector component parallel to the cut remains the same at all energies for a
given mode, but the component perpendicular to the cut grows with energy.

longitudinal component of the wavevector, and asymptotically points perpendicular

to the cut.

More complicated geometries that follow the 45

� diagonal can also be modeled .

In Figs. 3.4.1b we show k-space representation of the reflection matrix for the 45

�

staircase, and find that we produce many more reflections.

Even though this is a black-box quantum computation, our results corroborate

physical intuition. In the staircase, there are three types of reflections which we

decompose in Fig. 3.4.3, and all can be described classically as reflection off the vertical

wall (top), horizontal wall (middle), or both (bottom). Because this is a quantum

system, however, one expects that as the incoming plane-wave angles move parallel

to the cut, diffraction effects should arise and grow stronger. In Fig. 3.4.3, each mode

close to the horizontal and vertical reflects onto another unambiguously, but modes



Chapter 3: Boundary Reflection Matrix 62

Figure 3.4.3: The reflection matrix from Fig. 3.4.1 is decomposed into four major
reflection types. From top to bottom: Reflection off the vertical wall, reflection off
the horizontal wall, reflection off of both walls, and diffraction from the edges, which
only affects incoming angles that skim along the 45

� cut.

closer the 45

� angles reflect onto many modes, corroborating this expectation.

3.5 Internal Bragg Diffraction

Once we cut against an axis of symmetry, the modes of the asymptotic region are

no longer orthogonal along the unit cell. At higher energies, the non-orthogonality of

the asymptotic modes are closely related to internal Bragg diffraction.

It is possible to quantify internal Bragg diffraction by considering the schematic

in Fig. 3.5.1. Here the boundary is cut at an angle angle � ⇡ 18

�, where � = 0 is

a vertical edge, and an incoming plane wave strikes the surface at angle ✓
in

, where
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Figure 3.5.1: This diagram shows the considerations for Bragg diffraction from a
boundary. In light gray are the lattice sites for the system, and in dark grey are
shown phantom lattice points outside the system where the wavefunction must go
to zero. A ray coming in at an angle ✓

in

and reflects at ✓
out

will interfere with
rays from adjacent equivalent points on the boundary unit cell. The angle � (18�)
and horizontal distance between adjacent unit cells d are identical to many of the
calculations presented throughout this chapter.

✓
in

= 0 points to the right, and positive angles point upward. This plane wave reflects

to an outgoing angle ✓
out

where ✓
out

= 0 points to the left and positive angles point

upward.

If there is a repeating unit cell in the edge, two rays which hit equivalent points

of adjacent boundary unit cells gain or lose relative phase based on their wavevec-

tors and the distances they travel. For instance, a ray incurs an additional phase of

� = kd sin(✓��)
sin�

when ✓
in

> �� and � = kd sin(✓+�)
sin�

when ✓in � �. Here d is the horizon-

tal distance between identical points in adjacent unit cells and k is the wavevector

magnitude of the incoming wave. When the plane wave is reflected, its neighbor gains

phase according to the above formulas, but with k indicating the outgoing wavevector
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magnitude. When these two phases add to n2⇡ where n is an integer, the two rays

constructively interfere.

Because the wavelength shrinks with increasing energy, more Bragg branches ap-

pear as energy goes up. And because the distance between adjacent unit cells in-

creases for slighter angles against an axis of symmetry, more Bragg branches appear

for shallower cuts.

To model internal Bragg diffraction, we have repeated the 18

� unit cell from

Fig. 3.1.1 and simply terminated it to produce a system similar to Fig. 3.5.1. In

this case, and for all systems constructed in a similar fashion, the resulting scattering

matrix in terms of modes of the transformed coupling matrix � is always identity.

The off-diagonal results in terms of the asymptotic modes then arise entirely by the

overlap of modes which satisfy Bragg conditions.

As a result, calculations using this method cannot unambiguously resolve between

asymptotic modes and provide an accurate scattering probability. However, the scat-

tering matrix that results does show among which asymptotic modes scattering is

possible. In the left-hand column of Fig. 3.5.2, we show these relationships for the 18

�

as lines connect the incoming and outgoing wavevectors (bottom) and as a scatter plot

in terms of incoming and outgoing angles (top), using the conventions in Fig. 3.5.1.

As can be seen, the equality of incoming and outgoing angles of incidence (dotted

line) is no longer satisfied due the presence of additional Bragg branches above and

below this relation. Specular reflection can be conceived as a special case of Bragg

diffraction where n = 0, but because the dispersion relation alters the magnitudes of

the incoming and outgoing based on their orientation (see Fig. 3.5.3), it is not true
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Figure 3.5.2: Top: The scattering modes for a system with an 18

� cut, with 50 vertical
unit cells and at energy E = 3.95t. On the left, results are shown in terms of phase
velocity, and on the right results are shown in terms of group velocities. Specularity
conditions are shown in the dotted lines. Each branch is indicated by color. Bottom:
For each branch in the scattering matrix, the incoming and outgoing modes are shown
as points in k-space (left) and group-velocity space (right). Each point in the top
figure corresponds to a line connecting two modes. For this representation, we use a
system with only 10 vertical unit cells to visually resolve individual reflections.
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Figure 3.5.3: The two-dimensional dispersion relation for the square (left) and hon-
eycomb lattices (right) demonstrate strong group-velocity warping at high energies.
In dashed, the dispersion relations for E = 0.9t, 7.1t (left) and 0.5t (right) are nearly
circular, while their neighbors near the band edge E = 3.9t (left) and 0.98t (right)
show strong warping.

that this branch always correlates to equal angles of incidence. This can be seen in

the warping at higher energies of the central, specular branch (Branch 0) in Fig. 3.5.2

from the dotted line.

If one is interested not in the scattering of plane waves but semiclassical particles,

it is necessary to examine the group-velocity vectors rkE (k) associated with the

wavevector of each asymptotic mode, since these are stronger indications of classical

dynamics. Warping in group-velocity (See Sec. 3.6) can further distort the angles of

incidence for possible scattering pairs, as shown in the right-hand column of Fig. 3.5.2.

We corroborate our results using a Gaussian beams at lower energies on the 18

�

cut, which is produced using a coherent wavepacket |r0,k0, �i where k0 satisfies the
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Figure 3.5.4: The internal Bragg relationship for a square lattice with an 18

� cut as
depicted in Figs. 3.5.5 and 3.5.1, computed using a scattering matrix on a square-
lattice with 50 vertical unit cells at energy E = 2.5t. The identity line is shown in
grey. The two incoming group-velocity angles from Fig. 3.5.5 of 0

� and �40

� are
shown in vertical black dashed lines. The specular line is shown in blue, and the
upper and lower branches are shown in green and red respectively.

dispersion relation at energy E0, and a set of eigenstates { E} for a system, each of

which is associated with an eigenenergy E. The wavefunction that results is written

as

 =

X

E

h E| r0,k0, �i E. (3.5.1)

Because of the uncertainty of the wavepacket, only wavefunctions at energies close

to E0 contribute to the sum. Thus, only a finite range centered around E0 must be

considered.

It is important to choose the spread of the coherent state wisely. Too large a

coherent state restricts the set of eigenstates that contribute to the sum, giving unclear

results. Too small a coherent state does not provide enough information to resolve
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Figure 3.5.5: Two Gaussian Beams are shown, constructed by summing the set of
closed-system eigenstates in the energy range 2.48 < E < 2.52 weighted by Eq. 3.5.1,
using a coherent state with momentum uncertainty �k/k = 5% that sits on the right-
hand boundary (black circles) with specified momentum (small black arrows). The
system is a square lattice cut at an 18

� angle (inset). The incoming group-velocity
angle is set to 0

� at top and �40

� at bottom.
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features of the beam. In Fig. 3.5.5 a compromise is chosen at �k/k = 5%, which

provides a sufficient range of eigenstates to make a clear beam.

The classical paths suggested by the Gaussian beams in Fig. 3.5.5 must all travel

through the position r0 with momentum ~k0 (Eq. 3.5.1) defined by the coherent state

for each beam. In both top and bottom figures, the coherent state lies along the right-

hand boundary, although the wavevectors for each coherent state differs. Because the

breadth of a coherent state grows in time when it propagates, each beam focuses at

the coherent state, and spread from its center.

In Fig. 3.5.4, we present the reflection matrix for the 18

� cut at E = 2.5t, which

corresponds with the Gaussian beam in Fig. 3.5.5. The two incoming beams from

Fig. 3.5.5 are represented by vertical dashed lines in Fig. 3.5.4. Each intersects the

graph at the three locations: along the identity line for the incoming beam, along the

blue specular line for an outgoing beam, and along one of the Bragg branches for the

other outgoing beam. Our predictions are strongly validated by Fig. 3.5.5.

The test wavepacket used to create the Gaussian beam has a spread that is only

6 unit cells across, meaning that only a few surface defects can produce substantial

Bragg scattering. The ubiquity of this effect has implications for ray-tracing methods,

which bridge classical and quantum explanations for phenomena such as fractal con-

ductance fluctuations[45, 46, 47] and caustics[48, 49] and encourages a re-examination

ray-splitting[50] and other hypothetical edge effects[51, 52].
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3.6 Results for the Honeycomb Lattice

The classical dynamics of lattice Hamiltonians depend on the band structure of

the system. While the number of orbitals in the unit cell determines the number of

distinct bands[9], warping in the band structure can produce additional valleys. In

the square square lattice, only one band exists because there is one orbital per unit

cell, but warping gives rise to an additional set of pseudo-particles called holes which

exist above E = 4t (see the contour lines in Fig. 3.5.3 near the corners of the Brillouin

zone).

Holes can be treated like particles if the local origin of the valley is subtracted from

the wavevector associated with each mode to closely parallel the group-velocity vector.

Our calculations (not shown) show that this modification produces identical scattering

matrices for both sets of pseudo-particles under the transformation Eh = 8t� Ep.

In the honeycomb lattice, two orbitals in the unit cell give rise to two bands

that are isolated in energy by the Dirac point at E = 0t. Because of warping, two

inequivalent valleys, indicated by K and K 0 in Fig. 3.5.3, co-exist in the energy range

�t < E < t. These valleys are famous in graphene since they exhibit a linear as

opposed to parabolic dispersion relation near the Dirac point[8]. The fact that the

two valleys of the honeycomb lattice exist in the same band means it is possible to

scatter between them without invoking large potentials[9].

In Fig. 3.6.1, we show the internal Bragg branches for the honeycomb lattice cut

at 3� (See Fig. 3.1.1d) as a parallel to internal Bragg diffraction for the square lattice

in Fig. 3.5.2. Armchair edges at 0� cuts only produce reflections between the K 0 and

K valleys, and even though the 3

� honeycomb cut produces a near-armchair edge,
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Figure 3.6.1: Internal Bragg relationships for the 3

� cut on a honeycomb lattice
(See Fig. 3.1.1d) at E = 0.8t. Specularity conditions are shown in the dotted line.
Even though this is a nearly armchair edge (which normally only exhibits inter-valley
scattering), Bragg diffraction can induce other forms of valley scattering.

its jaggedness is actually able to scatter within the same valley as well. For such

a shallow cut and at such high energies, many Bragg branches are available to the

system.

It’s worth noting that the incoming wavevectors in the K 0 valley and outgoing

wavevectors in the K valley are strongly restricted for this system at E = 0.8t, as

indicated in Fig. 3.6.1. This is a result of group-velocity warping, which permits a

smaller range of wavevectors to produce group-velocity vectors pointing towards or

away from the cut for these valleys.

For the graphene system, asymptotic modes are orthogonal for the 30� cut, making

it possible to examine different reconstructions of the zig-zag edge. In this section,

we examine the “re-zag” edge studied by Ostaay et al.[15, 16] (see Fig. 3.6.2). While
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Figure 3.6.2: Hamiltonian for the reconstructed zig-zag edge in graphene. Pertur-
bations to the hopping energies are indicated by t1...4. The asymptotic unit cell is
identical to that used for any 30

� in graphene, as indicated in white.

the hopping parameters at different sites should vary for the re-zag edge, we set all

hopping parameters to t1...4 = t in order to compare our results against the original

authors.

At low energies, we corroborate the findings of Ostaay et al.[15, 16], who found only

intra-valley scattering for this system. The most salient consequence of varying the

hopping parameters is instead a shift in the energies of localized edge states[12, 53, 16].

Our results at low energy are identical to the zig-zag edge. At higher energies,

however, it is possible for the incoming wavelength to be comparable to the distance

between adjacent unit cells of the re-zag edge. At these energies, Bragg diffraction

allows the re-zag edge to exhibit inter -valley scattering. In Fig. 3.6.4, we show the

scattering matrix for the re-zag edge at E = 0.8t, which exhibits stronger inter-valley

scattering than intra-valley scattering for certain incoming angles. By comparison,

the pure zig-zag reflection matrix at this energy (Fig. 3.6.3) still only shows intra-

valley scattering
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Figure 3.6.3: Scattering matrix for the zig-zag boundary in graphene at E = 0.8t and
150 unit cells. This boundary only reflects within the same valley, so that incoming
wavevectors in one valley reflect onto wavevectors of the same valley. Each reflection
occurs along the dashed specularity line.

In Fig. 3.6.5 we show two Gaussian beam wavefunctions for a K 0-valley coherent

state centered on a zig-zag edge (a) and the re-zag edge (b). To determine the valley

of each reflected beam, we use the Husimi map technique introduced later in the

thesis (See 5, not shown). While the zig-zag edge only scatters back into the K 0

valley at an angle, the re-zag edge instead reflects most of the beam into the other

K valley, and directly to the left (grey arrows). These results perfectly corroborate

Fig. 3.6.4, where we have added a vertical dashed line to reflect the initial conditions

of the Gaussian beam in Fig. 3.6.5b.

In Fig. 3.6.5 we show two Gaussian beam wavefunctions for a K 0-valley coherent

state centered on a zig-zag edge (a) and the re-zag edge (b). To determine the valley
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Figure 3.6.4: Scattering matrix for the reconstructed zig-zag boundary at at E = 0.8t
and 150 unit cells. Specular reflection conditions are shown in the dotted line. Like
the zig-zag edge, each wave reflects onto another of the same valley. However, due to
internal Bragg diffraction, at some incoming angles the plane wave reflects far more
in the other valley. The vertical dashed line correlates to the initial conditions of the
Gaussian beam in Fig 3.6.5b.

of each reflected beam, we use the Husimi map technique introduced later in the

thesis (See 5, not shown). While the zig-zag edge only scatters back into the K 0

valley at an angle, the re-zag edge instead reflects most of the beam into the other

K valley, and directly to the left (grey arrows). These results perfectly corroborate

Fig. 3.6.4, where we have added a vertical dashed line to reflect the initial conditions

of the Gaussian beam in Fig. 3.6.5b.
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(a)

(b)

Figure 3.6.5: Gaussian beams are shown for two skew-periodic graphene systems,
with zig-zag boundaries in blue and the reconstructed zig-zag boundary in red (see
insets). The same coherent state from the K 0 valley is used to generate both beams
(black circle) and points to the right. Since the zig-zag boundary is a pure intra-
valley scatterer, the incoming K 0 valley reflects specularly into the same valley (top),
but due to internal Bragg scattering, the re-zag boundary reflects instead into the K
valley (grey arrows, bottom).



Chapter 4

The Husimi Map

The probability flux, or probability current, is introduced in quantum mechan-

ics textbooks as a deterministic operator that can be calculated, but its connection

to experiment is often left to the reader’s imagination. The flux operator, whose

expectation over the wavefunction gives the traditional flux j (r,p), is defined as

ˆjr =
1

2m
(|ri hr| p̂+ p̂ |ri hr|) , (4.0.1)

where m is the mass of a particle in the system, and r and p the position and

momentum. The concept of “flux at a point” seems paradoxical because we say

something about momentum while also knowing position precisely. This raises the

question: Can the flux even be measured?

On the other hand, probability flux vanishes on stationary states for systems with

time-reversal symmetry. This is a shame, since strong semiclassical connections be-

tween trajectory flow and quantum eigenstates lie completely hidden in the universal

value of 0 for the flux. Consider the example in Fig. 4.0.1, where the strong influence

of classical orbits is seen in the scarred eigenstate. For this bound system, the flux is

76
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Figure 4.0.1: A scarred eigenstate of the stadium billiard problem is a particle in
a box with the shape shown, revealing the strong influence of classical orbits. The
traditional flux provides no help: it is uniformly 0 inside the billiard.

always zero, but when it is coupled to a continuum, flux becomes useful as a tool for

examining its dynamics, even though information about the dynamics clearly exists

before the coupling. Is it possible to bridge this gap?

By using coherent state projections, we can reveal the meaning of the flux operator

and see how to extend it to become much more useful. The experimental equivalent

of a flux map has not been discussed because it is effectively impossible to measure

– determining the flux, even at a single point, requires an infinite number of mea-

surements. Instead, we offer an experimentally feasible extension of the flux operator

based on the Husimi projection[54], which we show is equivalent to the traditional

flux (Eq. 4.0.1) in the limit of infinitesimal coherent states. Because the Husimi pro-

jection is able to work away from this limit and on a wider variety of systems, it is

able to bridge the gap between stationary and scattering states.

When many Husimi projections are sampled across a system, they produce a

Husimi map which is a powerful tool for interpreting the semiclassical behavior of
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wavefunctions. In addition to showing the locations and directions of classical trajec-

tories suggested by a wavefunction, Husimi maps can also quantify how boundaries

and external fields affect those trajectories. In this chapter, we resolve issues with

the flux operator using the Husimi projection, and demonstrate Husimi maps on a

variety of systems with and without external fields. We then show how to use Husimi

maps to interpret flux through various open devices.

4.1 Measurement and the Flux Operator

4.1.1 The Gaussian Basis

Several discussions connecting the flux to experimental measurement exist in the

literature[55, 56, 57]; here we offer an alternative view. We begin by identifying the

eigenstates of the flux operator and giving them a physical interpretation.

When discussing uncertainty, the Dirac basis implicit in Eq. 4.0.1 introduces sin-

gularities which we can avoid by replacing the delta functions with the Gaussian basis

defined as

hr| r0, �i =
✓

1

�
p
2⇡

◆d/2

e�(r�r0)
2/4�2

, (4.1.1)

where d is the number of dimensions in the system. The Gaussian function becomes

a delta function as � ! 0. In the Gaussian basis, the flux operator is

ˆjr0,� =

1

2m
(|r0, �i hr0, �| ˆp+

ˆp |r0, �i hr0, �|) . (4.1.2)

The eigenstates, projected onto each orthogonal spatial dimension i, are obtained



Chapter 4: The Husimi Map 79

using the eigenvalue equation

ˆjr0,�,i |��,ii = ��,i |��,ii , (4.1.3)

which has a solution of the form

|��,ii = |r0, �i+ ap̂i |r0, �i . (4.1.4)

Using the two equations

hr |ˆp| r0, �i = i~��2
(r� r0) e

�(r�r0)
2/4�2 (4.1.5)

and

hr0, � |ˆp| r0,�i = 0, (4.1.6)

we can write

ˆjr0,�,i |��,ii =
1

2m

�
a
⌦
p̂2i
↵
�
|r0, �i+ p̂i |r0, �i

�
. (4.1.7)

Further, it is useful to find the conditions on ��,i that allow Eq. 4.1.7 to be written

in the form of Eq. 4.1.3,

��,i =
a

2m

⌦
p̂2i
↵
�
;��,i =

1

2ma
. (4.1.8)

Since hp̂2i i� =

~2
4�2 , we can determine the value of a = ±2�

~ and from that we obtain

the two eigenvalues

��,i,± = ± ~
4m�

. (4.1.9)

The eigenstates take the form

hr|��,i,±i = hr| r0, �i±
i

�
ei · (r� r0) hr| r0, �i , (4.1.10)
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where ei is the unit vector along spatial dimension i. Eq. 4.1.10 is a linear combi-

nation of two functions: the Gaussian (Eq. 4.1.1) and its derivative. Projection of

a wavefunction onto the first term can be interpreted as measuring its probability

amplitude at point r0, and projection onto second term as measuring its derivative

along the ith spatial dimension at the point r0.

4.1.2 Flux Expectation Value in the Gaussian Basis

To determine the expectation value of the flux operator, we begin by labeling the

excited states of the harmonic oscillator at position r0 oriented along the ith spatial

dimension

hr| 0i = hr| r0, �i

hr| 1i =

e1 · (r� r0)

�
hr| r0, �i

hr| 2i =

r
1

2

 
(e1 · (r� r0))

2

�2
� 1

!
hr| r0, �i

... . (4.1.11)

These states form a complete set in which the flux operator can be explicitly expressed,

using a zero-indexed matrix, as

ˆjr0,�,i =

0

BBBBBBBBBBBB@

0 +i� 0 · · · 0

�i� 0 0 · · · 0

0 0 0 · · · 0

...
...

... . . . ...

0 0 0 · · · 0

1

CCCCCCCCCCCCA

(4.1.12)
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where � = ��,i,+ =

~
4m�

. There are additional sets of harmonic oscillators orthog-

onal to the above states which are centered at points other than r0 also with zero

components in the flux matrix

The complete set of eigenstates |�1i , |�2i |�3i , . . . of the flux operator expressed

in terms of excited states of the harmonic oscillator are solved for
0

BBBBBBBB@

+1

�i

0

...

1

CCCCCCCCA

,

0

BBBBBBBB@

+1

+i

0

...

1

CCCCCCCCA

,

0

BBBBBBBB@

0

0

1

...

1

CCCCCCCCA

, · · · (4.1.13)

with eigenvalues ��,�, 0, . . . . Measurement by the flux operator collapses the wave-

function onto one of these eigenstates, the infinite majority of which are in the degen-

erate zero-eigenvalue subspace spanning all excited states of the harmonic oscillator

above |1i. Only the first two eigenstates, confirmed in Eq. 4.1.10, yield non-zero flux

values, which, as we have already shown, tend towards positive and negative infinity

as � ! 0.

When expanding the flux expectation value, we can use the complete eigenbasis

to show that

D
 
���ˆjr0,�,i

��� 
E

=

*
 

�����
ˆjr0,�,i

1X

i=1

������i

+*
�i

�����

����� 
+

= � |h |�1i|2 � � |h |�2i|2 . (4.1.14)

From Eq. 4.1.10, it can be shown that the contributions from |h | 0i|2 and |h | 1i|2

cancel themselves due to the opposite sign of the eigenvalues, and only the cross-term

h | 0i⇤ h | 1i� h | 0i h | 1i⇤ remains. This form is directly related to the commonly-
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found expression of the flux at point r0 as

jr0 ( (r)) =
~

2mi
( 

⇤
(r0)r (r0)� (r0)r ⇤

(r0)) . (4.1.15)

By Eqs. 4.1.10 and 4.1.9, we can write the expectation value as

D
 
���ˆjr0,�,i

��� 
E

=

i~
4m�2

[h |ei · (r� r0) | r0, �i h | r0, �i⇤

�h |ei · (r� r0) | r0, �i⇤ h | r0, �i]. (4.1.16)

The traditional flux operator arises from the limit � ! 0

+, at which point the

two terms in Eq. 4.1.10 become the delta function and its derivative, while the flux

values of the first two eigenstates become

lim

�!0+
��,i,± = ±1. (4.1.17)

In addition, there are an infinite number of other eigenstates with zero eigenvalues.

Traditionally, measurements of the flux correspond to the application of the oper-

ator and averaging the results. A single application of the flux operator at a particular

point in space ˆjr0,i almost always results in zero, but occasionally in an immensely

positive or negative value. It is thus necessary to perform the averaging over an in-

finite number of measurements to obtain an expression equivalent to the textbook

flux.

4.1.3 Connection to Coherent States

The physical meaning of coherent states is straightforward: they describe a semi-

classical particle minimizing the product of position and momentum uncertainties.

The projection of many coherent states onto a wavefunction over a range of mean
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positions has come to be called a "Husimi map"[54, 58, 59]. The traditional flux and

Husimi measures coincide for small Gaussian spreads, as we now show.

The coherent state is defined as

hr| r0,k0, �i =
 

1

�
p
⇡/2

!d/2

e�(r�r0)
2/4�2+ik0·r, (4.1.18)

which is a Gaussian envelope over a plane wave eik0·r. Its inner product with a generic

wavefunction  (r) is

h | r0,k0, �i =

 
1

�
p
⇡/2

!d/2 ˆ
 (r) e�(r�r0)

2/4�2+ik0·rddr. (4.1.19)

Observing that the phase eik0·r0 is arbitrary, we can Taylor expand the exponential

function in the limit of k0� ⌧ 1 to produce

hr| r0,k0, �i ⇡
 

1

�
p
⇡/2

!d/2

e�(r�r0)
2/4�2

(1 + ik0 · (r� r0))

⇡ hr| r0, �i+ ik0 · (r� r0) hr| r0, �i . (4.1.20)

Note that the dispersion relation for the free-particle continuum is a circle with

radius k0 =

p
2mE
~ , which doesn’t depend on the orientation of k0. The second term

in Eq. 4.1.20 is thus proportional to the second term in Eq. 4.1.10 for k0 projected

along the ith dimension. The similarity in form between Eq. 4.1.20 and Eq. 4.1.10

allows us to relate the flux expectation value from Eqs. 4.1.16 and 4.1.16 to coherent

state projections as

lim

�k0!0

D
 
���ˆjr0,�,i

��� 
E

=

~k0
4m�2

[|h | r0, k0ei, �i|2

� |h | r0,�k0ei, �i|2], (4.1.21)
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where ei is the unit vector along spatial dimension i. The traditional flux vector is

approximated by taking measurements along each orthogonal direction by rotating

ei.

By the well-known uncertainty relation

�x / 1

�k
/ �, (4.1.22)

taking � ! 0 results in coherent state measurements with infinite uncertainty in k-

space, and zero uncertainty in real space. This is the limit where the traditional flux

operates.

4.2 Definition of the Husimi Projection

The properties of coherent states make them a suitable basis for expanding the

flux operator to a measurable definition, which we call the Husimi function[54]. It

is defined as a measurement of a wavefunction  (r) by a coherent state, or “test

wavepacket”, written as

Hu (r0,k0, �; (r)) = |h | r0,k0, �i|2 . (4.2.1)

Weighting each of these measurements by the wavevector produces a Husimi vector;

plotting all Husimi vectors at a point produces the full Husimi projection. These

projections are the sunbursts in Fig. 4.2.1, which shows Husimi projections for the

wavefunctions

 

A

(r) = eik1·r

 

B

(r) = cos (k1 · r) , (4.2.2)



Chapter 4: The Husimi Map 85

(a) (b) (c) (d)

Figure 4.2.1: Husimi vectors for 32 equally-space points in k-space, are shown at
left for two wavefunctions at right: the complex plane wave ( 

A

) and the cosine
wave ( 

B

) defined in Eq. 4.2.2. The uncertainty for each projection corresponds
to �k/k = 2%(a), 10%(b), 50%(c), 250%(d), corresponding to smaller wavepacket
spreads (middle) and less distinction between independent measurements (top and
bottom). Above, we represent the coherent wavepacket spread using schematic circles;
in general, we indicate the spread precisely using double-arrows.

where k1 points towards the upper-right. We show the wavevectors that generate

each state in the white arrow overlay.

Both wavefunctions are pure momentum states which are not spatially localized,

and constitute the building blocks for the wavefunctions addressed in this paper. The

plane wave  
A

is relevant to magnetic field states discussed in Section 4.3.2. The

cosine wave  
B

corresponds to time-reversal symmetric wavefunctions discussed in

Sections 4.3.1 and 4.3.3. Both  
A

and  
B

are important for scattering wavefunctions

presented in Section 4.4 which exhibit a mixture of both properties.

Because of the large momentum uncertainty for small �, coherent state projections
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merely reproduce the probability amplitude | (r)|2 in all directions of k0, as seen in

Fig. 4.2.1d. The flux emerges as a small residual which can be retrieved by summing

each coherent state projection weighted by k0. We call this quantity the vector-valued

Husimi flux,

Hu (r0, �; (r)) =

ˆ
k0 |h | r0,k0, �i|2 ddk0. (4.2.3)

In Appendix A, we show that as � ! 0, the contributing points in the integral over k-

space reduce to just the orthogonal directions. In this limit, we can write the Husimi

flux as

lim

�!0
Hu (r0, �; (r)) /

dX

i=1

ei[|h | r0, k0ei, �i|2

� |h | r0,�k0ei, �i|2], (4.2.4)

where ei is the unit vector along the ith orthogonal direction, and we sum over d

dimensions. By Eq. 4.1.21, both sides of Eq. 4.2.4 are proportional to the traditional

flux measured at point r0 so that

D
 
���ˆjr0
��� 
E
/ lim

�!0
Hu (r0, �; ) . (4.2.5)

For larger �, reduced momentum uncertainty allows for substantial variation in

the coherent state projections between different directions of k0. This can be seen

in Fig. 4.2.1 as uncertainty is reduced and uniform sunbursts (d) contract into lobes

(c), and finally to unambiguous vectors (a-b). At all uncertainties, the zero flux that

appears in time-reversal symmetric states can be interpreted as the perfect canceling

out of coherent state projections along each direction in k-space. The equal partici-



Chapter 4: The Husimi Map 87

pation of counter-propagating flux is absent in  
A

and evident in  
B

as a reflected

sunburst.

While we reduce momentum uncertainty for larger coherent states, we sacrifice

spatial resolution. In the intermediate regime, we can use Husimi projections to map

the local phase space of a wavefunction. By taking snapshots of the local phase space

at many points across a system for larger �, we can process the result to produce

a map of the classical trajectories that correspond to a given wavefunction. These

visualizations are known as “Husimi maps”[54, 60, 58, 59]. Like the traditional flux

map, Husimi maps can be integrated over lines and surfaces to reveal net current.

Husimi maps also have implications for experiments since they could be measured

in a fashion similar to angle-resolved photo-emission spectroscopy (ARPES)[61, 62,

63, 64], which is currently used to obtain measurements of the dispersion relation in

a solid. In the ARPES setup, a focused photon beam on a sample kicks off electrons

in the valence band. The energy of the photo-emitted electrons incorporates both

their bonding energies, which can be averaged over, and their kinetic energy, which

depends on the angle of the beam with respect to the sample surface.

The ARPES response function behaves similarly to coherent state projections

with k0 proportional to the beam angle. By rotating the beam angle around the

same point of intersection, the response in different directions provides the momen-

tum distribution of the wavefunction at that point. Perturbations from the known

dispersion relation can then be inserted into Eq. 4.2.3 to obtain the flux expectation

value.

While a narrow beam would make it possible to measure the flux vector at the
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Figure 4.2.2: A coherent state within the system (lower-left) bounces off the sys-
tem boundary (middle) and reflects into a coherent state with a different wavevector
(upper-right). This can also be imagined with the boundary replaced by an image
wavepacket (lower-right). When the original wavepacket bounces off the boundary,
instead the image wavepacket simply passes through it. In this way, the incoming
wavepacket scatters into an outgoing wavepacket, which was originally the image
wavepacket.

intersection point, it will be difficult to distinguish the occasional large perturbation

measurements from noise. However, wider beams would capture additional terms

from the Taylor expansion of the coherent state in Eq. 4.1.20, producing more reliable

perturbation measurements. Applying the technique at many points across the sample

would then provide the Husimi map and an approximation to the flux map.

A question arises regarding the handling of boundaries in the system, beyond

which the wavefunction goes to zero. Our definition causes Husimi projections within

distance � of the boundary to reduce in magnitude. If one imagines a coherent state

interacting with a boundary, we can replace the boundary by an image wavepacket

(See Fig. 4.2.2). In this case, bouncing off the boundary amounts to scattering be-
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tween wavepackets with different wavevectors. The reduction in the Husimi projec-

tions near the boundaries therefore reflects wavepacket scattering, making it possible

to use Husimi maps to compute scattering metrics along the boundary, such as an-

gular deflection in Section 4.2.2.

To produce the Husimi map, we sample Husimi projections along a grid in spatial

coordinates, since it is easier to plot, straightforward to interpret, and allows for

computing metrics like angular deflection (see Section 4.2.2). However, other schemes

may be preferred. In Fig. 4.3.2, for example, we sample along classical trajectories

to emphasize the quantum-classical correspondence. While this paper addresses two-

dimensional systems, Husimi projections are equally applicable for higher-dimensional

systems.

4.2.1 Multi-Modal Analysis

The Husimi projections in Fig. 4.2.1 reveal that even a single plane wave pro-

duces a range of Husimi vectors because of the finite spread of the wavepacket. Can

distinct trajectories intersecting at a point be distinguished unambiguously? If the

dominant plane waves at a point are sufficiently separated in k-space that the mo-

mentum uncertainty of the coherent state can resolve between them, we can retrieve

them numerically using the Multi-Modal Algorithm (Algorithm 4.1). This analyti-

cal tool can be especially useful for time-reversal symmetric systems where both the

traditional flux and the Husimi flux are identically zero.

Figs. 4.2.3 demonstrates the algorithm on the pure momentum state

 

C

(r) = ↵ cos (k1 · r) + � cos (k2 · r) , (4.2.6)
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(a)

(b) (c) (d) (e)

Figure 4.2.3: Husimi vectors for 32 equally-space points in k-space are shown (a) for
the double cosine waves ( 

C

) from Eq. 4.2.6. The uncertainty for each projection
corresponds to �k/k = 30%. As the multi-modal algorithm (Algorithm 4.1) loops
through each iteration (b-e), a trajectory is matched and then subtracted from the full
Husimi projection, until all major trajectories are approximated by their appropriate
values.

where k1 points towards the upper-right and k2 points towards the upper-left. We

set ↵ = 1 and � = 0.8. In Fig. 4.2.3a, the Husimi projection is shown with a sizable

uncertainty of �k/k = 30%. Parts b-e iterate through the for loop in steps 1-6 of

the Multi-Modal Algorithm. At each iteration, the most dominant plane wave in the

sunburst is modeled and then subtracted from the projection. This is repeated until

all major plane waves have been approximated.

If the dominant trajectories intersecting at a point have sufficiently divergent

momenta, not only does the algorithm do an excellent job of modeling them, it can

even compute how many there are. In general, we stop the loop in Step 7 after a

certain number of iterations to make clearer figures.
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Algorithm 4.1 Multi-Modal Analysis

1. A set of Husimi templates on N wavevectors {kj} is created for the wave-
functions  = eik

test
i

·r generated by the M wavevectors {ktest

i } . Both sets of
wavevectors lie along the dispersion contour. Each template can be stored as a
vector of values ui of length M where each member corresponds to the Husimi
function along the wavevector kj.

2. Writing the Husimi projection as the vector v, a metric is computed di = v ·ui

for each Husimi template.

3. The maximum of the set {di} is determined, and both the wavevector ktest

i and
the dot product di are stored.

4. The contribution of the trajectory with wavevector ktest

i is determined by the
re-weighted vector ui

d
i

u
i

·u
i

.

5. The re-weighted template vector is subtracted form the projection, that is,
v ! v � ui

d
i

u
i

·u
i

.

6. All elements of v which are now negative are set to zero.

7. Steps 1-6 are repeated until the metric di dips below a threshold.

8. The set of vectors {diktest

i } are used to approximate the Husimi projection

On the other hand, when there are a number of trajectories of equal weight whose

momenta cannot be resolved by the coherent state, Algorithm 4.1 can produce unex-

pected results. An example of unresolved trajectories is seen in the points sampled

along the perimeter of Fig. 4.3.1a and in the central regions of Figs. 4.3.1b-d and 4.3.2.

In these cases, the Multi-Modal Algorithm approximates overlapping trajectories by

first choosing their average, and then contributing additional trajectories on either

side.

Even when the traditional flux is non-trivial, as in Fig. 4.3.5 and magnified in

Fig. 4.3.6a, it can only produce an average of the trajectories at a point. For this
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reason the multi-modal analysis improves upon the flux operator even when the flux is

non-zero, since the paths indicated by the flux map can be misleading. For example,

in Sec. 4.3.2, we compare the trajectories highlighted by the flux to the classical paths

and the multi-modal analysis for the same system.

4.2.2 Angular Deflection and Boundary Effects

The Husimi map makes it possible to compute other quantities tied to the un-

derlying classical dynamics of a quantum wavefunction. This chapter focuses on one:

angular deflection, which shows where system boundaries and external fields deflect

classical trajectories from straight paths. Other metrics appear in Chapter 5.

We begin by considering the Husimi function for one point in k-space measured

at equally-spaced points on a grid that covers the system. The scalar field yields a

spatial map of the presence of an individual trajectory angle, and fluctuations in the

map indicate points where classical paths deflect away from and towards the angle.

Summing the results for all wavevectors along the contour line defined by system

energy in the dispersion relation, we can derive a measurement of angular deflection

Q (r; ) written as

Q
ang.

(r; ) =

ˆ
D

abs.

(r,k; )kddk. (4.2.7)

D
abs.

(r,k; ) is the absolute Gaussian-weighted divergence of the Husimi map for

wavevector k, written as

D
abs.

(r,k; ) =

ˆ dX

i=1

����
Hu (k, r0; )� Hu (k, r; )

(r0 � r) · êi

���� exp
"
(r0 � r)2

2�2

#
ddr0. (4.2.8)

where we sum over the d orthogonal dimensions each associated with unit vector êi.
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Using the Husimi map to measure angular deflection has close ties to its initial

introduction as a measurement state for building phase diagrams[54]. It is possible,

for instance, to use the divergence of the Husimi map for each wavevector to com-

pute a state’s Poincare map[65] without requiring numerical ray-tracing algorithm to

propagate in time. This form of the Husimi map has been used to examine the angle

of impact against a coordinate along the boundary[65] to study chaotic behavior in

stadium billiards[66, 67].

Angular deflection is useful for examining the role of boundaries and external

potentials in forming the shape and properties of a given wavefunction. This chapter

will examine these effects in Sections 4.3.1, 4.3.2, and 4.3.3.

When modeling a wavefunction using coherent states, questions arise around how

to handle boundaries. For instance, as the coherent state extends beyond the system,

part of its amplitude fails to contribute to the Husimi function. This causes Husimi

maps to diminish in magnitude within a distance � of the boundary. Should the

projections near the boundary be compensated to account for this effect?

For this thesis, we have elected not to, on grounds that keeping the original def-

inition of the Husimi function consistent across the entire system provides a more-

accurate analysis. It is also under this basis that angular deflection can be properly

defined.

4.3 Examples in Closed Systems

This section examines eigenstates of closed systems that are generated using the

tight-binding finite-difference Hamiltonian as defined in Subsection 1.1.2 and the stan-
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dard sparse eigensolvers.

4.3.1 Eigenstates of the Circular System

The circular well is an ideal system for demonstrating the Husimi map since their

classical dynamics are simple and can be analytically determined.

The Schrodinger equation can be written in radial form as

d2R(r)

dr2
+

1

r

dR(r)

dr
+

✓
k2 � m2

r2

◆
R(r) = 0. (4.3.1)

Solutions to this equation are simultaneous eigenstates of energy and angular momen-

tum, and thus possess the good quantum numbers n (number of nodes in the radial

direction) and m (number of angular nodes). Fig. 4.3.1a-c shows three such states,

the first with n = 0, the second with n � m, and the third with n ⇡ m. The Husimi

map in each shows the clear distinction between angular and radial components of

the wavefunction, and how they correlate with classical paths with similar properties

(further discussion of the classical correspondence can be found[68]).

To examine the harmonic oscillator state in Fig. 4.3.1d, the Husimi projection at

each point must be modified. For the circular well, the dispersion relation is ~k =

p
2mE, but due to the harmonic potential, it changes to ~k(r) =

p
2m(E � V (r)).

This means that a different sweep in k-space must be made at each point to produce

an accurate Husimi map. Fig. 4.3.1d shows such a state with V (r) = V0r2.

The Husimi vectors in Figs. 4.3.1c align to suggest straight trajectories, but the

vectors in Fig. 4.3.1d do not, suggesting the presence of curved paths. Moreover,

projections near the boundaries of both systems indicate that the paths of the circular
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(a)

(b)

(c)

(d)

Figure 4.3.1: Husimi maps (left), multi-modal analysis (middle), and the wavefunction
(right) are shown for eigenstates of the circular well (a-c) and the harmonic oscillator
(d). Double-arrows at far right indicate the spread of the coherent state which is
�k/k = 10%. The states in (c) and (d) correspond to the classical paths in Figs. 4.3.2a
and b respectively.
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well bounce off the boundary with a consistent and acute angle, while they graze the

edge of the harmonic oscillator.

Because there are so many trajectories occurring simultaneously, however, it is

difficult to evaluate how closely the Husimi map corresponds to an individual classical

path. In this chapter and later in Chapter 5, we have chosen to sample the Husimi

projections at equally-spaced points along a grid, which makes it possible to compute

quantities such as the angular deflection. If we instead sample along one of the

classical paths corresponding to the state, we find a set of Husimi vectors which

align themselves perfectly with the classical path. We show these two approaches in

Figs. 4.3.2a and 4.3.2b, which correspond to the wavefunctions in Figs. 4.3.1c and

4.3.1d respectively.

Each Husimi projection in Fig. 4.3.2b contains an additional set of Husimi vectors

which don’t align with the path. These vectors can be understood by considering

that wavefunctions for the circular well and harmonic oscillator actually correspond

to infinitely many such paths rotated in space due to the circular symmetry of these

systems, which we indicate in Fig. 4.3.2c. The “cross-hatching” patterns in Fig. 4.3.2a-

b arise because two rotated classical paths intersect at any point.

Towards the center of the system, a large number of paths come into close prox-

imity. Even though an infinitesimal point is intersected by only two paths, the finite

spread of the coherent state is sensitive to other paths nearby, giving rise to Husimi

projections showing a large number of trajectories with similar angles. These points in

a wavefunction can violate assumptions of the multi-modal analysis in Section 4.2.1.

As a result, the multi-modal analysis in Figs. 4.3.1c and 4.3.1d does not produce the
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(a)

(b)

(c)

Figure 4.3.2: Where the Husimi map is sampled in space can dramatically alter
its appearance. In part (a), the Husimi map is shown for the two eigenstates in
Fig. 4.3.1c-d, where Husimi projections are sampled along a grid. In part (b), projec-
tions are instead sampled along classical paths that correspond to the wavefunction.
Because of rotational symmetry, however, the wavefunction is actually created by the
sum of many rotations of such paths, as indicated in part (c).
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original paths, but their average and approximations on either side.

4.3.2 Magnetic Field

Systems without time-reversal symmetry can also be studied with the Husimi

technique as shown below for systems in the presence of a magnetic field. To properly

reflect these states, both the momentum operator in Eq. 4.0.1 and the momentum

term ik0 · r0 in Eq. 4.2.3 must be modified to reflect the canonical transformation

p ! p� qA/c, (4.3.2)

where the magnetic potential A is defined below.

To apply magnetic fields to our Hamiltonian, we use the Peierls substitution[69],

wherein the magnetic field contributes a phase to the hopping potential t in Eq. 1.1.12

according to

tij = t exp [i�] ,� = qA · (ri � rj)/~, (4.3.3)

where ri is the position vectors of the site corresponding to the ith column of the

Hamiltonian, ~ is Planck’s constant, and q is the electron charge. Calculations in

Subsection 4.3.2 assume that the magnetic field is perpendicular to the plane on which

the system sits and is bounded by a cylinder centered on the system’s center. The

radius of this column is chosen to be greater than the size of the system. Accordingly,

the gauge of the magnetic potential for an out-of-plane magnetic field is defined such

that

A(r) =
e✓
2⇡r

ˆ
Bzdxdy, (4.3.4)
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(a) (b) (c)

Figure 4.3.3: The eigenstates are plotted for the upper-right-hand corner of a circular
system with Dirichlet boundary conditions. The Husimi projection below is taken
from the point indicated by the black circle. The uncertainty for each projection is
10% and each wavefunction has a similar energy (the same number of wavelengths
along its perimeter). The magnetic fields for each row are B0 = 0(a), 1.5⇥10

�7(b), and
1.5⇥10

�6 ~
qa2

(c). The Husimi projection reflects the lifting of time-reversal symmetry
in a gradual process that emphasizes one lobe over the other as the magnetic field is
increased.

where the integral is over a disc centered on the origin and limited by radius r.

The cyclotron radius can be determined by the relation

r =
~k
B0q

. (4.3.5)

For a free particle, ~k =

p
2mE, giving

r

a
=

p
2mE

B0qa2
. (4.3.6)

This means that at E = 0.2 ~2
ma2

, a magnetic field strength of B0 = 2 ⇥ 10

�3 ~
qa2

is

sufficient to produce a cyclotron radius that is 2/3 of the system radius. This relation

is used to predict the cyclotron radius for all calculations in this section.
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(a)

(b)

Figure 4.3.4: Husimi map (left), multi-modal analysis (middle), and the wavefunction
(right) are shown for two eigenstates of the circular well with magnetic field vectors
coming out of the plane. The magnetic field strength is set so that the cyclotron
radius is approximately 1/2(a) and 1/3(b) of the the system radius. Double-arrows
at far right indicate the spread of the coherent state which is �k/k = 10%. These
states correspond to the classical paths discussed in Fig. 4.3.5.

In Fig. 4.3.3, the Husimi projection reveals that as we increase the strength of

the magnetic field from zero, the phase difference between counter-propagating paths

grows, which is proportional to the flux. This is expressed in the Husimi projection

as one of the lobes shrinks to zero while the wavefunction shifts from real to complex

values.

Results for large magnetic fields, such as when the cyclotron radius is smaller than

the system size, are presented in Fig. 4.3.4. The classical trajectories for these systems

are circular with radii corresponding to the cyclotron radius, which the Husimi map

is perfectly capable of revealing. In Fig. 4.3.5, the full classical paths corresponding

to each state are depicted, and correlate strongly with the Husimi map with the

canonical transformation.
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(a)

(b)

Figure 4.3.5: The flux map, multi-modal analysis, and classical paths are shown
for the states represented in Fig. 4.3.4(a-b). The traditional flux correlates strongly
with Husimi flux (Eq. 4.2.3) but fails to show the classical paths suggested by the
wavefunction. Red circles correspond to magnified views in Fig. 4.3.6.

The Husimi projection can obtain information about the dynamics of the system

that is lost in the conventional flux analysis. In Fig. 4.3.6, magnified views from the

flux operator, multi-modal analysis, and full Husimi map corresponding to the red

circles in Figs. 4.3.4 and 4.3.5 are shown. We model this point in the wavefunction

according to the pure momentum state

 

D

(r) = eik3·r
+ eik4·r, (4.3.7)

where k3 and k4 are indicated by the white arrows. While the multi-modal analysis

is able to properly identify two independent trajectories, the flux merely averages

them. The left column of Fig. 4.3.5, which shows the flux map, integrated with a

Gaussian kernel corresponding to the coherent state used to generate the Husimi map,
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(a) (b)

Figure 4.3.6: Husimi vectors for 32 equally-space points in k-space are shown in grey
for the double plane waves  

D

defined in Eq. 4.3.7. The uncertainty corresponds to
�k/k = 30%. The flux operator (a) averages the trajectories, but the multi-modal
analysis (b) accurately reflects them.  

D

is representative of the points circled in red
in Fig. 4.3.5.

is consequently unable to represent the classical paths (right column). In contrast,

the multi-modal analysis in the middle column indicates these paths with remarkable

fidelity.

4.3.3 Stadium Billiard Eigenstates

The dynamics of the circular stadium are integrable while those of the Bunimovich

stadium[70] are chaotic. As a result, their dynamics have been featured prominently

in previous studies [71, 72, 73, 74, 75, 65] .

Fig. 4.3.7 shows three Husimi maps for a billiard eigenstate. The wavelength at

the energy of the eigenstate is much shorter than the size of the system, allowing

well-defined scars to form, which are spawned by modestly unstable and rare (among

all the chaotic orbits) classical periodic orbits[76].

For Fig. 4.3.7a, an extended coherent state is used to generate the Husimi map,

so that many fine features of the wavefunction are washed out. Only the scar path
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(a) (b) (c) (d)

Figure 4.3.7: Husimi maps for the scarred stadium billiard eigenstate (d, from
Fig. 3.0.1) are shown. Each map uses a different spread of the measurement
wavepacket. The spread is indicated by the double-arrows on the bottom, with rela-
tive uncertainties of �k/k = 5%(a), 20%(b), and 50%(c). A single Husimi projection,
circled in red, is magnified at the bottom of each representation.

(seen as a rotated “v” pattern in the depiction) is clearly visible. The sharply peaked

Husimi sunburst reflects both the low momentum uncertainty of the Gaussian used

and the strong dominance of the periodic orbit pathway in the eigenfunction.

Compare this to the Husimi map in Fig. 4.3.7c which is generated by a small

coherent state with larger momentum uncertainty. Here, each Husimi projection is

more ambiguous, and local variations in the wavefunction probability amplitude have

a large impact on the representation, making it very sensitive to the sampling of

the visualization. The trajectories implied by the map no longer continue from one

projection to its neighbors and appear strongly irregular since the distance between



Chapter 4: The Husimi Map 104

each sampling point is several times larger than the coherent state.

In general, a compromise can be made by choosing an intermediate momentum

uncertainty, as shown in the Husimi map presented in Fig. 4.3.7b. Trajectories are

fairly well-resolved, and local variations are easy to follow. Coherent states of this

size provide the clearest representation of semiclassical paths.

Even at low energies, where the wavelength is comparable to the size of the system,

stadium billiards provide another angle on the utility of the Husimi map. Unlike the

circular system, in which the trajectories adding up at a particular point are fairly

regular and predictable, any point in a stadium billiard eigenstate is rife with many

unpredictable trajectories, making the Husimi map an ideal tool for lifting the veil

on the underlying classical dynamics.

Fig. 4.3.8 considers three eigenstates of the closed stadium billiard Hamiltonian.

For each calculation, the size of the coherent state is kept constant, but because the

energy of these eigenstates changes, so does the corresponding uncertainty for each

Husimi projection. This can be seen by the increase in precision as plots go up in

energy, as well as the reduction of angular deflection in the bulk (which acquires

small positive values in the top figure due to uncertainty, not because there is actual

deflection at these points).

To the unaided eye, the wavefunctions in Fig. 4.3.8 do not appear to emphasize

a few classical trajectories like the high-energy stadium state in Fig. 4.3.7, especially

since at such low energies the system only accommodates a few wavelengths along

its diameter. In the Husimi map, however, it is quite clear that a very limited set of

classical trajectories are largely responsible for these wavefunctions, suggesting that
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(a)

(b)

(c)

Figure 4.3.8: Three eigenstates of the stadium billiard system with Dirichlet boundary
conditions are shown at three increasing energies. The Husimi map (left), multi-modal
analysis (middle) and wavefunction (right) are shown. Angular deflection is indicated
in blue, and the double arrows indicate the test wavepacket spread of �k/k = 20%(a),
15%(b) and 10%(c).
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Figure 4.3.9: Another eigenstate from the system in Fig. 4.3.8 is shown, with the wave-
function (upper-left), extended Husimi map (upper-right), and multi-modal analysis
(both lower-left and lower-right). Angular deflection is shown in blue. In the lower-
right, the average incident scattered wavevector is indicated in color, corresponding
to the color-wheel at the far-right.

Husimi projections could be used to study the properties of low-energy scar states[76].

Points with high angular deflection show which parts of the system boundary are

responsible for the creation of each state, and indicate where adiabatic changes in the

boundary conditions are most likely to affect the state[77, 78]. This can be imagined

as a quantum force on the boundary. Because the size of the coherent state used to

generate each Husimi map is kept constant, the angular deflection penetrates into

the bulk to the same extent for each state. However, the locations of high angular

deflection along the boundary form a unique fingerprint for each state.

Elaborating on Sec. 4.2.2 and Fig. 4.3.8, we show another eigenstate from the same

system but at a lower energy. To properly define the angular deflection, and later
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divergence, all Husimi maps in this thesis are actually calculated over the system and

all points outside it within 3� of the system boundary, although we only plot points

that fall within the system. As a result, angular deflection, which is a gestalt metric

of coherent-state scattering, is concentrated along the boundary, and penetrates both

within and without the system. As mentioned in Sec. 4.2.2, we can coordinate the

scattered angles at each point. In the lower-right of Fig. 4.3.9, we color the angular

divergence by the average absolute incoming angle. This correlates strongly with

the absolute angle of the boundary, as expected for specular reflection. At higher

energies, other relationships in scattering angles may emerge as a result of internal

Bragg diffraction (See Sec. Section 3.5), although we do not explore them in this

thesis.

4.4 Flux Through Open Systems

The previous section used the Husimi map to examine the semiclassical dynamics

of closed systems directly from their wavefunctions, providing substantial benefits over

the flux operator which is either zero or averages over local trajectories. Moreover, the

spread of the coherent state used to generate the Husimi map gives it the flexibility

to examine dynamics at a variety of scales, while the flux operator is confined to the

limit of infinitesimal spread. In its traditional guise (Eq. 4.0.1), the flux operator

is most often employed in scattering problems which arise when a closed system is

coupled to an environment. Is it possible to connect the semiclassical dynamics of

the closed system to the open system using the extended Husimi flux?

In this section, we demonstrate how the Husimi flux can help interpret the tra-
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ditional flux and deepen our understanding of transport across a device. We first

consider sub-threshold resonance for a waveguide that is slightly widened along a

short section. This simple system reveals a rich set of phenomena for which the

Husimi flux proves ideal as an analytical tool, since the Husimi map can provide

insight where the flux and wavefunction cannot. We then move onto flux through a

strongly constricted device, and show how the Husimi map can help us understand

the nature of flux vortices, and cut through them to reveal the direct channel of

transport.

4.4.1 Sub-Threshold Resonance

In an unperturbed waveguide, transport occurs through transverse modes which

open for transport when the system energy exceeds the transverse energy of the

mode. At these energies, the transmission function exhibits distinct plateaus as seen

in Fig. 4.4.1, where the plot of the transmission for a wide(narrow) waveguide is

presented in red(blue).

If a small section of a narrow waveguide is widened, the transverse energy of

each mode diminishes in the wider section. Thus, for each mode, there is a range of

energies bounded above by its transverse energy in the unperturbed waveguide, and

below by its energy in the wider region. In this energy range, the mode can reside

in the wider region but cannot propagate through the narrower leads. This forces

it into a quasi-bound state which is trapped in the wider region and is only weakly

coupled to the environment, causing a striking peak in the density of states. In the

quasi-bound state, the particle bounces vertically between the walls of the perturbed
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Figure 4.4.1: Top: An infinite waveguide schematic shown with a slight bulge in the
middle (grey). This can be modeled as two waveguides of different widths (blue and
red). Bottom: In an infinite waveguide, the transmission curve has a series of plateaus
as each transverse mode opens up (blue transmission curve). In a wider waveguide,
each mode opens up at lower energies (red curve). If only a small segment of the
waveguide is widened, then sub-threhold resonances occur in between the energies of
the narrow and wide waveguides (grey transmission curve). These correlate with sub-
threshold resonant states which peak in the density of states (DOS) at those energies
(grey curve). Energy is given in units of t where 4t is the band edge.
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(a)

(b)

Figure 4.4.2: The full Husimi map for the resonant state (see inset) is plotted with
�k/k = 100% (a) and �k/k = 20% (b). The spread of the test wavepacket is
indicated by double-arrows. A single Husimi projection (circled in red) for each map
is magnified at right. The vector sums of each map are shown in Figs. 4.4.4b.

region and is unlikely to escape.

At certain energies, a particle propagating in a lower energy mode corresponding to

the narrow section interacts with the wider region and becomes trapped in the quasi-

bound state. This causes the quasi-bound state to hybridize with the propagating

mode and interfere with the transmission in this device, as seen in Fig. 4.4.1. The

suppression of transmission appears as a pair of sharp dips, accounting for symmetric

and antisymmetric versions of the quasi-bound state. Since it is the hybridized state

which inhabits the system at resonance, we refer to it as the resonant state.

Since a resonant state “traps” the wavefunction at a specific energy, it creates a

striking peak in the density of states (see Fig. 4.4). As a result, the resonant state
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can be easily identified among the eigenvectors of the density matrix computed using

Eq. 1.3.23, since it will be associated with the largest eigenvalue near the resonance

energy. When discussing resonant wavefunctions, it will be assumed that we are

using a density matrix near the resonance energy and examining the eigenvector

associated with the largest eigenvalue (and measurement probability) at that energy.

This makes it possible to distinguish the resonant wavefunction from other modes

which are propagating through the system but are unaffected by the resonance.

We compute the wavefunction of the resonant state corresponding to the first

transmission dip in Fig. 4.4.1. Fig. 4.4.2 shows the full Husimi map for this wave-

function, using coherent states with uncertainties of �k/k = 100% (a) and 20%

(b). The individual projections correspond strongly to the cosine-wave projections in

Fig. 4.2.1. Spatial variations in the Husimi map decrease as the size of the coherent

state increases, as in Fig. 4.3.7.

The full Husimi map is visually identical between the quasi-bound state and the

resonant state, which is expected since the resonant state is a hybrid of the quasi-

bound state and only slightly perturbed by the propagating mode. However, the flux

of the quasi-bound state is zero, but exhibits characteristic vortices in the resonant

state. Moreover, as the energy is increased across resonance, the wavefunction doesn’t

substantially change in appearance, while the flux patterns alter dramatically. At first

these behaviors appear to contradict the Husimi map, but we can show that the flux

patterns correlate with subtle changes in the Husimi maps which we can retrieve by

adding all their vectors.

We can begin to understand these subtle changes by examining the fundamental
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(a)

(b)

Figure 4.4.3: The full Husimi map for fundamental mode wavefunction (see inset)
from the waveguide in Fig. 4.4.1 is plotted in (a), at an energy well above resonance
(E = 0.02745 in arbitrary units scaled to Fig. 4.4.1). The uncertainty for this map is
�k/k = 20%. At right, a magnified view of the projection circled in red. In (b), the
Husimi flux is shown. This is the mode which hybridizes with the resonance state to
produce Figs. 4.4.2 and 4.4.4.

mode. The full Husimi map far away from resonance, shown in Fig. 4.4.3 for a

moderate coherent state, corresponds to the complex plane wave in Fig. 4.2.1. In

the Husimi flux, the left-to-right flow appears unchanged within the central region of

the system. The flux operator for this mode, not shown, is similar. In contrast, the

vector-sum and the flux of the bound state is always zero. So what happens when it

interacts with the fundamental mode to produce the resonant state?

In Fig. 4.4.4 we address this question by showing the traditional flux, wavefunc-

tion, and the Husimi flux above (a), at (b), and below (c) resonance. The flux op-

erator is integrated over a Gaussian kernel corresponding to a coherent state spread
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(a)

(b)

(c)

Figure 4.4.4: The traditional flux (left column) and the Husimi flux (right column)
are shown for the resonance state in Fig. 4.4.1 slightly above resonance (a, E =

E
res.

+ 0.00005), at resonance (b, E = E
res.

) and slightly below resonance (c, E =

E
res.

� 0.00005). The coherent state for the Husimi map corresponds to �k/k = 0.2.
The transmission function at each energy corresponds to T = 1(a), 0(b), and 1(c).
Even though the full Husimi maps at each energy are indistinguishable from Fig. 4.4.2,
their vector additions (Husimi flux) vary substantially. Energies are in arbitrary units,
scaled to Fig. 4.4.1.
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of �k/k = 100%, and is visually identical to the Husimi flux with the same coherent

state spread.

In the flux operator, we see the characteristic vortex patterns which flip above and

below resonance, as expected when the bound state shifts through a phase of ⇡ over

resonance. Moreover, while it is clear that the presence of the fundamental mode is

stronger away from resonance, the wavefunction representation at all three energies

is quite similar to the bound state. Similarly, probability flux is strongly localized in

the center of the system, and it is unclear how the vortices correlate with the fact

that transmission goes to zero on resonance.

In the Husimi flux, however, the correlation is obvious. At all three energies,

vortices cancel out and leave behind the drift velocity of the mode. Above and below

resonance, the Husimi flux is quite similar to the fundamental mode in Fig. 4.4.3, and

the left-to-right flow extends through the semi-infinite leads, although there are slight

changes in the central region. At resonance, however, the vortices no longer interfere

to produce flow from left-to-right, but instead to produce flow from right-to-left. This

drift velocity interferes with the transmitting mode to produce zero flow in leads, and

therefore, zero transmission.

In other words, the classical dynamics of the resonance indicate a subtle shift

in the overall contribution of classical trajectories which give rise to the resonance.

The vortex pattern in the flux operator shows the small residual summation of these

trajectories, but in fact the trajectories are dominated by the vertical bouncing mo-

tion from Fig. 4.4.2, as indicated by the wavefunction. Because these trajectories

so strongly cancel each other out, the residual becomes exquisitely sensitive to the
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contribution from the fundamental mode.

Using the flux operator alone, the residual dominates, and using the wavefunction

alone, the bouncing mode dominates. By examining at an intermediate scale using

the Husimi map, however, we can complete the semiclassical correspondence and

examine the drift velocity at resonance for this system.

4.4.2 Transport Through Other Geometries and the Nature

of Flux Vortices

Because the � parameter defines the spatial spread of the coherent states used

to generate a Husimi map, we can use it to probe flux maps at arbitrary scales. In

Fig. 4.4.5a, we show the probability flux for a scattering wavefunction in a large square

block geometry that is associated with a mode of full transmission. This geometry

is changed from the previous subsection so that: 1) Its dimensions are much larger

than the characteristic wavelength at the energies we examine, 2) the leads are shifted

vertically from the center towards the bottom-left and upper-right, and 3) the center

is obstructed to constrain transport through the central region. As a result, classical

paths related to transport in this system must reflect off the boundaries many times

to propagate from the left to the right lead.

Transmission for a given mode in this system averages around one-half throughout

the spectrum we examine. This is a result of the fact that all classical paths in this

system must exit either through the incoming lead or the outgoing lead – whether it

does or not is sensitive to the initial conditions, as indicated by the raplidly fluctuation

transmission function for each mode.
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Figure 4.4.5: For the constricted device (black lines), the scattering wavefunction for
the first mode is calculated at E = 0.265t (black arrow in transmission plot), which is
associated with full transmission, and where 4t is the band edge. Its current density is
shown at top. In the transmission plot, the partial transmissions for the first (second)
mode is shown in blue (red).
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(a) (b)

(c) (d)

Figure 4.4.6: The scattering wavefunction associated with the current in Fig. 4.4.5
is shown with the wavefunction representation (a), the Husimi flux (c) and multi-
modal analysis (d) for a coherent state spread of �k/k = 10%, indicated by the
double arrows. The traditional flux from the part of the system indicated by the
black squares is magnified (b).

In Fig. 4.4.5, we have selected a wavefunction that achieves full transmission, as

indicated by the black arrow in the transmission function. Sure enough, the flux map

shows a strong outgoing current to corroborate this fact. The bulk, however, is flush

with many small vortices, which are magnified in the inset. The smallest vortices are

of the same size but can combine to form larger vortices of various sizes; the salient

feature is that many appear in pairs like those in the inset.

In Fig. 4.4.6, we show the wavefunction, a magnified view of the traditional flux,
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Figure 4.4.7: The scattering wavefunction associated with distinct modes of a wide
unperturbed waveguide at E = 0.26t are shown at top, with the multi-modal analysis
at bottom. Each mode is associated with a pair of trajectory angles. As the num-
ber of horizontal nodal lines increases, and as energy increases, these angles become
increasingly vertical. See also Fig. 3.4.2 for a quantitative analysis of the 45

� cut.

the full Husimi flux, and the multi-modal analysis for this scattering state. In the

wavefunction, nodal lines appear to fall along the 45� diagonals, which is corroborated

by trajectories favoring those diagonals in the multi-modal analysis. This arises be-

cause all boundary conditions are vertical or horizontal walls; since each mode of the

unperturbed waveguide leads is associated with a distinct pair of trajectory angles

(See Fig. 4.4.7), the vertical and horizontal walls therefore reflect all trajectories back

onto the same pair rotated at 45 degrees. At the energy we have selected, the pair

of trajectory angles for the incoming mode are at perfect 45� diagonals, so that their

rotations from reflecting off the walls also point along the diagonals, giving rise to

strong standing waves.

In Fig. 4.4.6b, it is clear that transport occurs primarily through a narrow chan-

nel we call the conductance pathway with the majority of arrows pointing from the

lower-left to the upper-right corners. By comparison, the full traditional flux map
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Figure 4.4.8: For the half-stadium (black lines), a full-transmission scattering wave-
function is calculated at E = 0.495t. Its current density is shown.

in Fig. 4.4.5 is rife with vortices throughout the entire system, dramatically limiting

our ability to identify overall flow. The conductance pathway does not have to be

classical, since it is an aggregate phenomenon from many other classical trajectories;

as a result, it is able to curve in the bulk without external forces. As the pathway

moves against many other perpendicular classical paths indicated in the multi-modal

analysis, pairs of vortices form on either side1. These vortex pairs also arise in sub-

threshold resonance as the left-to-right conductance pathway passes through perpen-

dicular trajectories in the perturbed waveguide (See Fig. 4.4.4 and the surrounding

discussion).

In Figs. 4.4.5 and 4.4.6, there are a huge number of trajectories within the

bulk that equally contribute to the wavefunction, resulting in many flux vortices. By

1Although the vortex pairs in Figs. 4.4.4 and 4.4.6 resemble von Karman vortex shedding[79],
their origin is quite different.
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(a) (b)

(c) (d)

Figure 4.4.9: The scattering wavefunction associated with the current in Fig. 4.4.8 is
shown with the wavefunction representation (a), the Husimi flux (c) and multi-modal
analysis (d) for a coherent state spread of �k/k = 10%, indicated by the double
arrows. The traditional flux from the part of the system indicated by the black and
red squares is magnified (b).

applying the Husimi map with a large coherent state spread, we can pierce through

local fluctuations to reveal the conductance pathway and appreciate the origin of flux

vortices. What does the Husimi map tell us about flux in the other limit, where only

a few classical trajectories dominate the wavefunction?

We address this question in Figs. 4.4.8, which shows the probability current for a

full-transmission scattering state for a large half-stadium with two leads attached at

its sides. Because scar orbits must self-loop but be otherwise unstable[76], scar states

can only participate in transport when the leads attach at points that are slightly
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displaced from one of the orbit’s reflection points. Otherwise, the classical orbit leaks

out the system too quickly. The wavefunction in Fig. 4.4.9 shows strong scarring, and

the multi-modal analysis corroborates the scarring with an identifiable classical orbit

which just misses the leads.

Like the square device with obstructions in Fig. 4.4.6, flux also occurs most

strongly along a narrow conductance pathway which, in this case, flows along the

bottom of the device while deviating into the bulk at its middle. In addition, flux

vortices occur throughout the system, making interpretation difficult without apply-

ing our methods. Unlike the square device, however, these vortices no longer form

identifiable pairs. In the stadium state, classical paths do not intersect at 90

� an-

gles, but take on a variety of other oblique angles. As a result, the vortices take

on forms that are consistent with the multi-modal Husimi map at each intersection.

For instance, in the black inset, there is strong flow from bottom-left to upper-right,

with other near-vertical flows forming vortices, and in the red inset, there are three

primary flows propagating at 60

� to each other, forming the triangular arrangement

of vortices shown.
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The Husimi Map in Lattices

The previous chapter introduced a new interpretation of the flux operator

ˆj(r) =
1

2m
(|ri hr| p̂+ p̂ |ri hr|) (5.0.1)

as the limit of measurement by infinitesimally small coherent states, resulting in a

new analytical tool called the Husimi map. This chapter extends the formalism of

the Husimi map from the continuous free-particle system to crystals and lattices.

Even though the extended wavefunction of an electron in a crystal is also continu-

ous, the potential imposed by the nuclei can sometimes be modeled by replacing the

continuum with localized wavefunctions centered at individual tight-binding lattice

sites. These individual wavefunctions combine to form a model of the entire wavefunc-

tion, which now defines their envelope function, dramatically simplifying calculations

and making it possible to model much larger systems. In this model, Eq. 5.0.1 de-

scribes not the probability flow at an infinitesimal point, but the flow of probability

in and out of the localized wavefunction at a single site.

122
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Lattice systems can behave very differently from continuous systems. For instance,

the orientation of the group velocity vector, which dictates classical dynamics, can

strongly diverge from the phase velocity, which was the initial foundation of the

Husimi projection. At higher energies, the group-velocity space can be strongly re-

stricted, permitting classical trajectories only along certain directions. When these

trajectories hit a boundary, internal Bragg diffraction can produce additional non-

classical ray reflections.

Here we explore two-dimensional square and honeycomb lattices; extension to

three-dimensional systems is straightforward. Honeycombs induce an additional phe-

nomenon: the presence of multiple bands and valleys, by which different classes of

pseudo-particles can propagate and interfere. While the flux operator is unable to

reflect any of these behaviors, with proper modifications, the Husimi projection can

handle them with ease. Moreover, Husimi maps can help produce novel insights into

the interactions among multiple particle types in the system.

5.1 Effects of Group Velocity on the Husimi Projec-

tion

In Chapter 4, each Husimi function is weighted by the wavevector of the coherent

state to produce a visual guide to the classical dynamics of the system. Summing

all the vectors equates to the flux operator (Eq. 4.2.3) when the coherent states

are sufficiently small. This equivalence holds in lattices, however, the direction and

magnitude of the group velocity rkE (k) can strongly diverge from the wavevector.
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Figure 5.1.1: The two-dimensional dispersion relation for the square (left) and hon-
eycomb lattices (right) demonstrate strong group-velocity warping at high energies.
In dashed, the dispersion relations for E = 0.9t, 7.1t (left) and 0.5t (right) are nearly
circular, while their neighbors near the band edge E = 3.9t (left) and 0.98t (right)
show strong warping.

Since a coherent state, which is now defined as an envelope function over localized

wavefunctions, follows the group-velocity vector instead of its wavevector, it is neces-

sary to weight the Husimi function by group-velocity vectors to indicate the classical

dynamics. This suggests another shortcoming of the flux operator (Eq. 5.0.1) for

understanding the dynamics of these systems.

At low energies, the square lattice closely approximates a free-particle continuous

system so that this modification is minimal. At higher energies, however, the mapping

from phase to group velocity can be strongly constricted. For example, at energies

near the band edge of E = 4t, there are only four directions available to the group

velocity in the square lattice, as shown in the contour line of Fig. 5.1.1.

To help the reader visualize this effect, we show group-velocity Husimi projec-



Chapter 5: The Husimi Map in Lattices 125

(a) (b) (c) (d)

Figure 5.1.2: The group-velocity Husimi projection is strongly affected by warping at
high energies (Fig. 5.1.1). Husimi projections are shown for the square lattice for the
group-velocity representation at E = 0.9t(a), 3.0t(b), and 3.9t(c) with relative uncer-
tainties of �k/k = 2 (top) and 50% (middle and bottom). The dispersion relation
contour at each energy is shown at the far bottom. The generating wavefunction  for
each row is shown in (d). In the top and middle row the test wavefunction is a cosine
wave pointing along the 45

� diagonal, and in the bottom along the 0

� horizontal.
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tions at three representative energies in Fig. 5.1.2 for the square lattice. Thirty-two

equally-spaced angles along a circle are chosen to represent the local momentum space.

Wavevectors are chosen with these angles to satisfy the dispersion relation for a given

energy.

At high enough energy, most classical trajectories in a system must follow the

preferred directions determined by the dispersion relation, but the manner in which

they do this may differ. This can be seen in Fig. 5.1.2 which examines two cosine-

wave states with different wavevectors. As the energy of the system increases from

left-to-right, group-velocity warping draws Husimi vectors, and the classical paths,

towards four preferred directions. When the generating wavevector points along one

of these directions, group-velocity warping merely sharpens the profile. When the

generating wavevector points in between the preferred directions, as in the bottom

row of Fig. 5.1.2, the classical trajectories are more strongly dependent upon the

system energy.

If a system is modeled by the continuous Schrodinger equation, but sampled on a

lattice, the effects of group-velocity warping can be avoided by increasing the number

of sample points in the system (See Fig. 5.3.1). But for real-world lattice systems,

the lattice spacing is not an adjustable parameter, and group velocity must be given

careful attention.

Any quantity that measures the statistics of classical dynamics from the Husimi

projection should be first computed using phase velocity, and then modified to re-

flect the group velocity. In the Multi-Modal Algorithm, for example, templates and

matchings still occur using the phase-velocity Husimi projection to produce wavevec-
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tors describing individual trajectories. These results are then mapped onto group

velocity by taking the local derivative of the dispersion relation.

5.2 Extensions Due to Band Structure

The number of bands for a lattice system is proportional to the number of tight-

binding orbitals in the unit cell[9]. The square lattice we use has only one unique

tight-binding orbital and only one band, but due to the warping in the band structure,

there is an additional set of quasiparticles above E = 4t (see the contour lines in

Fig. 1.1.2 near the corners of the Brillouin zone). Because both sets of quasiparticles

are separated by energy, they cannot scatter into each other.

In the honeycomb lattice, however, there are two unique orbitals in the lattice

structure, yielding two bands that are isolated by energy: they only touch at the

Dirac points at E = 0t. But more interestingly, the band structure warps each band

to produce two inequivalent valleys, K and K 0, which are visible in Fig. 5.1.1. Unlike

the square lattice, these two valleys co-exist in the energy range �t < E < t.

It might be tempting to obtain a representation of either valley in a graphene

wavefunction by subtracting off a plane wave whose wavevector corresponds to the

origin of either K or K 0 valley, leaving behind the residual q = k �K(0). However,

the simultaneous presence of quasiparticles in both valleys invalidates this idea.

On the other hand, since wavevectors for each valley are sufficiently separated in

k-space, the Husimi projection can distinguish each valley unambiguously for most

momentum uncertainties.1 Because the two valleys in graphene are part of the same

1More complicated lattices can have additional bands, and any automated method for calculating
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band, they are able to scatter into each other without large potentials[9]. When this

occurs, the Husimi map exhibits quasiparticles in one valley funneling into a drain,

and quasiparticles in the other valley emitting from a source at the same point, leaving

behind a signature wherever there is inter-valley scattering.

For the square lattice, time-reversal symmetry is expressed in the Husimi projec-

tion by the fact that each Husimi vector is accompanied by another of equal mag-

nitude but opposite direction. This causes the flux operator and Eq. 4.2.3 to return

null results. The same is true for the honeycomb lattice, except that the range of

wavevectors available at low energies point towards the K and K 0 valleys.

When Husimi vectors are weighted by the group-velocity and not phase-velocity,

a different behavior emerges. In the honeycomb lattice, group-velocity doesn’t corre-

late at low energies with k but k � K(0); examining the Husimi projection for each

valley individually, it is no longer true that each Husimi vector is accompanied by

its opposite. Rather, each valley is the time-reversal symmetric version of the other,

allowing Husimi vectors in each valley to sum to non-trivial results.

We can represent this feature by using the Husimi flux, defined in Eq. 4.2.3 as

Hu (r0, �; (r)) =

ˆ
k0 |h | r0,k0, �i|2 ddk0, (5.2.1)

but instead weight the integrand by the group velocity rkE (k0
) to obtain the group-

velocity Husimi flux Hu
g

(r0, �; (r)) equal to

Hu
g

(r0, �; (r)) =

ˆ
rkE (k0) |h | r0,k0, �i|2 ddk0, (5.2.2)

which is used throughout this chapter.

Husimi maps for these systems have to take their mutual distance in k-space into account.



Chapter 5: The Husimi Map in Lattices 129

When a quasiparticle in one valley scatters into another in the honeycomb lattice,

this appears as non-trivial divergence in the Husimi flux Hu
g

(r0, �; (r)). We quantify

this divergence according to

Q
div.

(r; ) =

ˆ
D (r,k0

; )rkE (k0
) ddk0, (5.2.3)

where D (r,k; ) is defined as the divergence of the Husimi map for one wavevector

k,

D (r,k; ) =

ˆ dX

i=1

Hu (k, r0; )� Hu (k, r; )

(r0 � r) · êi
exp

"
(r0 � r)2

2�2

#
ddr0. (5.2.4)

On the other hand, when a quasiparticle in one valley reflects off a boundary but

does not scatter into the other valley, the divergence is zero, but the reflection can

still be measured in the angular deflection of the Husimi map,

Q
ang.

(r; ) =

ˆ
|D

abs.

(r,k0
; )rkE (k0

)| ddk0, (5.2.5)

where D
abs.

(r,k; ) is defined as the absolute divergence of the Husimi function for

one particular trajectory angle with a wavevector k,

D
abs.

(r,k; ) =

ˆ dX

i=1

����
Hu (k, r0; )� Hu (k, r; )

(r0 � r) · êi

���� exp
"
(r0 � r)2

2�2

#
ddr0. (5.2.6)

As a result, boundary points with large angular deflection are either inter-valley or

intra-valley scatterers depending on the magnitude of divergence at each point.

5.3 Stadium Billiard Eigenstates

In Fig. 5.3.1, we begin by examining eigenstates from two closed stadium billiard

systems with identical geometric parameters. Both systems are created using the
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(a)

(b)

Figure 5.3.1: The full phase-velocity Husimi map (left), multi-modal analysis (mid-
dle) and wavefunction (right) are shown for two stadium eigenstates at energies
E1 = 1.496t (a) and E2 = 3.982t (b) (the dispersion relation contour at each energy is
shown in the insets). The uncertainty for each projection is set to �k/k = 10%, and
the spread of the coherent state is indicated by double arrows on the right. Angular
deflection (Eq. 5.2.6) is indicated in blue. Each eigenstate has similar characteris-
tic wavelengths, but the lower eigenstate is sampled with half the linear resolution,
causing its energy to go up and the group velocity to become more restrictive.
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square-lattice tight-binding model, but the lattice constant in Fig. 5.3.1b is twice as

large, so the system possesses far fewer sampling points.

As a result, keeping the characteristic wavelength constant raises the energy in

the under-sampled system, causing strong effects from group-velocity warping. In

Fig. 5.3.1b, an eigenstate of the under-sampled system is shown with energy E1 =

3.892t, near the band edge. The energy for the finely-sampled system was chosen

to reflect the same characteristic wavelength, which depends upon which direction in

k-space is considered. Along the kx-axis, the energy is bounded below by

E2

t2
= �2

✓
cos

✓
a2
a1

cos

�1


1� E1

2t1

�◆
� 1

◆
, (5.3.1)

and at 45-degrees from the kx-axis, it is bounded from above by

E2

t2
= �4

✓
cos

✓
a2
a1

cos

�1


1� E1

4t1

�◆
� 1

◆
. (5.3.2)

By setting a2
a1

=

1
2 and t1 = t2 = t an eigenstate was chosen with an energy near the

average of the bounds at E = 1.496t.

It is immediately apparent that the Husimi map for the higher energy eigenstate

in Fig. 5.3.1b emphasizes a few classical trajectories that are strongly restricted to

the angles ±⇡
4 and ⇡ ± ⇡

4 , while the Husimi map for the lower-energy eigenstate

(Fig. 5.3.1a) has a much broader selection of trajectory angles. Moreover, the trajec-

tories in the higher-energy system are much clearer, which is consistent with having

a restricted group-velocity space.

The Husimi map makes it possible to measure “angular deflection”, which reflects

how classical trajectories deviate from the straight line in response to the system.

Angular deflection thus provides a map of where the boundaries or external potentials
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most strongly effect these dynamics, and can be interpreted as a force on the particle

represented by the wavefunction.

Fig. 5.3.1 shows this quantity in blue, and it is concentrated on the boundary as

expected. Because the resolution of angular deflection is limited by the spread of

the coherent state used for Husimi sampling, the variance of the angular deflection

along the boundary exhibits the same Gaussian distribution that is used for the

test wavepacket. It is worth noting that without the proper modifications, angular

deflection based on phase velocity shows non-trivial results in the bulk of the system

even when there are no external fields.

This also suggests that modifications may be in order for other metrics for high-

energy lattice systems. For instance, by coordinating the boundary divergence with

each angle, one can automatically compute a state’s Poincare map without requiring

numerical ray-tracing algorithm to propagate in time. In Birkhoff coordinates[80, 81],

the angle of impact is mapped against a coordinate along the boundary[65], and

both fully quantum[66, 67] and classical[82] variations have become valuable tools in

quantum chaos. By incorporating group-velocity considerations, these metrics may

be improved.

Fig. 5.3.2a shows the Husimi map of the K 0 valley for a high-energy eigenstate in

part (b) where the strong pull towards the three preferred group-velocities is evident.

In parts (c) and (d), the multi-modal analysis for the K 0 and K valleys are shown.

According to the time-reversal symmetric relation, the Husimi map for the K valley is

the precise inverse of the K 0 valley. While the classical trajectories are evident in the

wavefunction Fig. 5.3.2, the Husimi map identifies their orientation for each valley.
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(a) (b)

(c) (d)

Figure 5.3.2: The full Husimi map around the K 0 valley(a), the wavefunction(b), the
multi-modal analysis for the K 0 valley(c) and for the K valley(d) are shown for high-
energy eigenstate of the honeycomb lattice at E = 0.786t. This system is a closed
stadium billiard system with 20270 lattice points. The relative uncertainty in all
calculations is �k/k = 20% with the coherent state spread indicated by the double-
arrows. Because of time-reversal symmetry, the Husimi maps in (c) and (d) are exact
inverses of each other. Unlike the square lattice, the summing the Husimi vectors for
each valley in a honeycomb lattice gives non-zero results for a closed system, giving
rise to non-trivial divergences along the boundary where one valley scatters into the
other (indicated in green for positive and red for negative).
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(a)

(b)

Figure 5.4.1: Two stadium eigenstates are shown for the square lattice (a) and the
honeycomb lattice (b). The wavefunctions (left), phase-velocity Husimi (middle) and
group-velocity Husimi (right) projections are shown for the points circled in red.
Uncertainties for both projections are �k/k = 20%. Not only is there more spread
to the phase-velocity projections, these projections also indicate markedly different
trajectory paths than the group-velocity equivalents. Moreover, the group-velocity
projections are more consistent with the paths indicated by the wavefunctions.

The total divergence appears in green and red in Figs. 5.3.2c and 5.3.2d corre-

sponding to positive and negative values. These points are, in fact, sources and drains

for each valley, and represent the inter-valley scattering points along the boundary.

The results in Fig. 5.3.2 suggest that each classical trajectory in this wavefunction

shares half of its existence in one valley, and half in the other.
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Figure 5.4.2: The extended Husimi maps for 16 angles are summed over hundreds
of eigenstates near E = 0.5t for the square lattice stadium billiard with a coherent
wavepacket spread of �k/k = 10%. The magnified view shows that all points have
equivalent Husimi projections, except along the boundary where directions parallel
to the boundary are emphasized, consistent with Dirichlet boundary conditions.

5.4 Group Velocity Warping

Figs. 5.4.1 expands upon our findings in Figs. 5.3.1 and 5.3.2 by looking at the

phase-velocity and group-velocity Husimi projections for eigenstates of the square and

honeycomb lattices. As expected, the spread of each Husimi projection is dramat-

ically reduced in the group-velocity representation, a consequence of group-velocity

warping and consistent with Fig. 5.1.2. Moreover, a close examination reveals that

phase-velocity Husimi vectors can point along surprisingly divergent angles from their

trajectories, emphasizing the extent to which group-velocity warping establishes such

states.

If it is possible to produce similar classical trajectories using a wider variety of

phase-velocities for lattices at higher energies, then what is the distribution of either

over all states of the system? We can provide an answer by summing the Husimi
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Figure 5.4.3: The Husimi map for 32 angles are summed over a hundred of eigen-
states near E = 0.72t for a small graphene billiard (the Huang system introduced
in Subsection 5.6.1) with coherent state spread of �k/k = 30%. From left-to-right:
the phase-space Husimi map, the group-velocity Husimi map, and the group-velocity
Husimi flux, with divergence indicated in green (positive) and red (negative). Em-
phasized in the divergence are the two armchair boundaries on both sides which act
as inter-valley scatterers, and smaller armchair edges at the corners of the system.

projections over a range of eigenstates. We find that with a sufficient range of eigen-

states, neither phase-velocity nor group-velocity distributions vary across the bulk of

the system, except along the boundaries. For the square-lattice billiards, directions

parallel to boundaries are emphasized, which is consistent with Dirichlet boundary

conditions (Fig. 5.4.2).

For the honeycomb lattice, inter-valley scattering points along the perimeter em-

phasize trajectories perpendicular to the boundary. For smaller honeycomb lattice

billiards at higher energies, additional fluctuations emerge in the bulk in response to

the locations of these inter-valley scattering points (see Fig. 5.4.3). These fluctuations

emphasize trajectories that connect inter-valley scattering points, are strongly depen-

dent upon the set of states chosen, and whether inter-valley scattering points can be

connected by a path that falls along a preferred group-velocity direction. However,
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(a) (b)

(c) (d)

Figure 5.4.4: The distribution of Husimi vectors from the red circles in Fig. 5.4.1,
summed over hundreds of eigenstates near E = 3.5t for the square lattice and E = 0.8t
for the honeycomb lattice, with a coherent wavepacket spread of�k/k = 10%. Above,
the phase-velocity in the square lattice (a), group-velocity in the square lattice (b),
phase velocity for the K 0 valley in the honeycomb lattice (c), and group velocity for the
K 0 valley in the honeycomb lattice (d). Husimi projections tend to emphasize phase
velocities away from the preferred group-velocity directions (a,c), but not enough to
overcome that preference in the group-velocity distribution.

these fluctuations are small enough that they do not substantially alter our results.

In Fig. 5.4.4, we show a representative distribution of the phase and group veloci-

ties for the systems from Fig. 5.4.1. These plots are produced by summing the Husimi

vectors over many eigenstates of each system: For the square lattice, 600 states with

energies 3.46t < E < 3.54t and for the honeycomb lattice, 300 states with energies

0.76t < E < 0.84t. This is done for 256 wavevectors equally separated by angle, and

then we apply a small Gaussian kernel of angle width ⇡/32. Each Husimi vector is

multiplied by the infinitesimal dk determined by the average distance to neighboring
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vectors in the sample, and each calculation takes place at the points circled in red in

Fig. 5.4.1 with coherent spread of �k/k = 10%. The contour line in the dispersion

relation is re-computed for each eigenstate to generate the coherent states for the

Husimi projection. This is done to ensure that the steeper gradient of the dispersion

relation near the preferred group velocities does not affect our results.

Fig. 5.4.4 shows that the distribution among phase velocities emphasizes directions

away from the preferred directions in group velocity. For lattices at high energies,

neither phase velocity nor group velocity are evenly distributed across all eigenstates.

5.5 The Nature of Scar-Like Patterns in High-Energy

Eigenstates

The high-energy eigenstates from Fig. 5.4.1 exhibit an unusual behavior: the self-

looping classical trajectories that are strongly emphasized in the wavefunctions do

not exhibit specular reflection at the boundary. We clarify these reflections in the

schematics in Fig. 5.5.1. Even though the absolute angles at each reflection point

fall along the same diagonal, the angles of incidence vary substantially between the

incoming and outgoing rays. In the honeycomb eigenstate (Fig. 5.5.1b), the reflection

consists of scattering into the other valley and propagating in the exact opposite

direction.

While the reflections of many trajectories in high-energy states violate specularity

as a result of group-velocity warping, we have chosen the states in Figs. 5.4.1 and

5.5.1 specifically because these reflections behave in completely unexpected ways.
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Figure 5.5.1: High-energy states in the square (a) and honeycomb (b) lattices can
exhibit unusual behaviors, such as group-velocity warping and non-specular boundary
reflections. The former can be seen in the wavefunction (left) by the restriction
of trajectories to 45

� diagonals for the square lattice (a) and the 60

� diagonals for
the honeycomb lattice (b). Non-specular reflections are magnified in the schematic
(right). Even though the absolute incoming and outgoing angles for each point are
the same angle, their angles of incidence (single and double arcs) are in fact strongly
divergent.
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Moreover, these surprising reflections occur only at certain points along the boundary

where the lattice cut deviates from an axis of symmetry; specifically, they occur

slightly off of clean cuts where jaggedness is most prominent. These reflections can

be explained by internal Bragg diffraction, which we explore in depth in Section 3.5.

Combining group-velocity restriction and internal Bragg diffraction, we argue that

the dense linear paths in the wavefunctions in Figs. 5.4.1 and 5.5.1 are indeed linked to

classical rays which bounce back and forth approximately linearly; at one boundary

the bounce is non-specular due to the cut of the edge and internal Bragg diffrac-

tion. For the honeycomb lattice, each bounce can be additionally associated with

valley-switching. For both systems, these wavefunction enhancements are not strictly

scars[76], which are generated by unstable classical periodic orbits in the analogous

classical limit (group velocity) system. Instead, the wavefunction structures are more

likely normal quantum confinement to stable zones in classical phase space.

At lower energies away from the band edge, but still high enough to experience

group-velocity warping, it is also possible to invoke scar-like pattern using stable

orbits. In Fig. 5.5.2, we show Husimi maps for two stadium billiard eigenstates

in both the continuous regime (top) and the group-velocity warping regime (top).

Both states show strongly linear classical paths for large enough coherent states, but

at smaller coherent states, the Husimi projections for the lower-energy state wobble

along the classical paths. This suggests different physical phenomena are contributing

to the scar-like patterns in each state.

In fact, it is shocking that the scar pattern in the higher-energy state does not

show similar interference patterns, since all classical paths that reflect off the circular
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Figure 5.5.2: Phase-velocity Husimi maps for two stadium billiard eigenstates are
shown. Each map uses a different spread of the measurement wavepacket. The
spread is indicated by the double-arrows on the bottom, with relative uncertainties
from left-to-right of �k/k = 5%, 20%, and 50%. At top, an eigenstate with energy
E = 1.1t (same as Figs. 3.0.1 and 4.3.7), and at bottom an eigenstate with energy
E = 3.01t
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boundaries are unstable in a stadium billiard. However, because of the gentle nudging

of group-velocity warping at the energy E = 3.01t, previously unstable orbits can

become stable, giving rise to the strongly self-reinforcing classical orbit seen. The

nature of this phenomenon, and metrics of orbit stability as a function of energy in

lattices deserve further study.

5.6 Additional Results in Graphene

Interest and experimental capabilities in graphene devices are growing[8, 83, 84,

85, 86, 87, 88, 89], but despite the success of the Dirac effective field theory for

graphene[12], many of new technological proposals instead come from the more fun-

damental tight-binding approximation[90, 91, 92, 26]. This is because the atomistic

model underlies the Dirac theory and easily breaks its assumptions, for instance by

small scatterers[93, 94, 95, 96, 97], ripples[98], or edge types[99, 100, 101] – all of

which promise technological applications. While such features can be modeled using

scattering theory in the Dirac field, a robust approach which can handle them in an

automatic and general fashion remains to be seen.

In this section, we use Husimi maps to deepen our understanding of relativistic

scar states[41], edge states[12, 90, 92], and Fano resonances[43, 102, 103] in graphene.

Fano resonances are an ideal case study for the Husimi map, not only because they

are ubiquitous in theoretical predictions[104, 42] and experiments[105, 106, 107], but

also because their behavior is well-understood on the mesoscale[27, 108, 109, 110,

111, 112, 103]. However, Fano resonances in graphene quantum dots are less well

characterized[113, 114, 115, 116], and their understanding is important to build-
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ing a comprehensive theory relating boundary conditions to bulk state behavior in

graphene.

5.6.1 Boundary Conditions at High Energies

Fig. 5.6.1 shows Husimi maps for three eigenstates of a large closed-system stadium

billiard with 20270 orbital sites at energies of E = 0.974t(a), 0.964t(b), and 0.951t(c).

We have chosen these states because they exhibit very clear linear trajectories which

exhibit characteristic trigonal warping (See Section 5.3).

Because just a few dominant classical paths are present in each wavefunction in

Fig. 5.6.1 it is easy to observe the relationship between boundary types and scattering

among the two Dirac valleys. We can measure inter-valley scattering by examining

the divergence of the Husimi map as defined in Section 5.2. The divergence in the

K 0 valley, seen in green and red (for positive and negative values, respectively) in

Figs. 5.6.1 and 5.6.2, shows that inter-valley scattering points all lie along non-zig-zag

boundaries. Plots for the K valley (not shown) are perfectly inverted, corroborating

the time-reversal symmetry relationship between the two valleys.

Intra-valley scatterers, on the other hand, cause reflections that can be measured

using angular deflection, but do not exhibit divergence. In Figs. 5.6.1 and 5.6.2, we

plot the angular deflection in blue to compare to the divergence in green and red.

Using this information, we can determine that for the wavefunction in Fig. 5.6.1a,

all boundary scattering points are inter-valley scatterers, since all points of angular

deflection exhibit divergence. The wavefunction in Fig. 5.6.1b, on the other hand, only

exhibits divergence along the vertical sides of the stadium billiard: the horizontal top
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(a)

(b)

(c)

Figure 5.6.1: The Husimi map is plotted for three eigenstates of the
closed graphene stadium billiard with 20270 orbital sites at energy E =

0.974t(a), 0.964t(b), and 0.951t(c). All three calculations use coherent states with
relative uncertainty �k/k = 30%, whose breadth is indicated by the double arrows
on the right. Only the upper-right quarter of each stadia is shown. The multi-modal
analysis for the K 0 valley (left) is shown alongside the wavefunction (right). The
divergence of the Husimi map is shown in green (red) to indicate positive (nega-
tive) values. Angular deflection is shown in blue (Eq. 5.2.4). Red boxes indicate the
magnified views in Fig. 5.6.2.
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(a) (b) (c)

Figure 5.6.2: Magnified views of the divergence and angular deflection in Fig. 5.6.1
(red boxes) are shown and calculated at a higher resolution. The sources and drains
in the K 0-valley Husimi map are actually inter-valley scattering points, which occur
along non zig-zag boundaries. In contrast, points of angular deflection that are not
sources or drains correspond to intra-valley scatterers and occur along pure or nearly-
pure zig-zag boundaries.

edge exhibits strong angular deflection but no divergence, and constitutes an intra-

valley scatterer. Examining the magnified views in Figs. 5.6.2a and 5.6.2b, we see that

inter-valley scatterers correspond to armchair edges, and the intra-valley scatterers

belong to zig-zag edges, corroborating the findings at zero energy by Beenakker et

al.[117]. Similar points of scattering can also be found in Figs. 5.6.1c and 5.6.2c.

Because of the time-reversal relationship between the two valleys, the severe re-

striction on group velocities, and the placement of zig-zag and armchair boundaries,

no path at these energies exists without interacting with an inter-valley scatterer (data

not shown). By comparison, it is not only possible but common to find states near the

Dirac point that exhibit the opposite: all boundary conditions which are expressed
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belong to only intra-valley scatterers (See Subsection 5.6.2).

In comparison to Fig. 5.6.1, the eigenstate of the much smaller graphene stadium

system in Figs. 5.6.3 does not appear to show isolated trajectories in its wavefunction

representation. This isn’t too surprising since this system can only accommodate five

deBroglie wavelengths vertically, and three horizontally, severely restricting its ability

to resolve such trajectories.

However, clear self-retracing trajectories are quite visible in the Husimi map in

Figs. 5.6.3, with evident sources and drains inhabiting the boundary. This result

suggests the underlying classical dynamics even for states which do not possess obvi-

ous interpretations from their wavefunction representation, and helps show why this

state is able to form resonances. Because the paths indicated by the Husimi map are

successful at marshaling the electron away from lateral boundaries, where the leads

connect in the resonance state (see Sec. 5.6.3), this state is ideal for capturing and

electron from a direct channel to form a long-lived resonance.

5.6.2 Interpreting States Near the Dirac Point

We now explore the properties of low-energy closed-system states in graphene, us-

ing the circular graphene flake and the distorted circular flake introduced by Wimmer

et al.[53]. The placement of armchair and zig-zag boundaries is indicated in Fig. 5.6.4,

which plays a significant role in the classical dynamics of these systems.

Because the effective wavevector q = k � K(0) grows linearly with energy from

zero at the Dirac point, the effective wavelength for graphene systems is much larger

than equivalent continuous systems, making it difficult to conduct calculations with
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Figure 5.6.3: The closed-system eigenstate at E = 0.72t responsible for the Fano res-
onance in Figs. 5.6.9 and 5.6.12 is shown. At top, the filtered Multi-Modal analysis
is shown with relative momentum uncertainty �k/k = 30% along with the wavefunc-
tion (right). The spread of the coherent state is indicated by the double arrows. At
bottom, higher-resolution calculations of the divergence (green for positive, red for
negative) and the angular deflection (blue) are shown against the graphene structure.
The black circle indicates where the system boundary is perturbed in the original
paper[41] as discussed in Section 5.6.3.
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Figure 5.6.4: Schematic indicating the locations of armchair (blue) and zig-zag (red)
edges in the circular system (left) and the Wimmer system (right).

sufficient structure in the wavefunction. Consequently, we examine states at higher

energies from the Dirac point to bring calculations within a reasonable scope. (For

instance, we have selected a system size under 100,000 orbital sites to facilitate repli-

cation of our results). Since trigonal warping becomes significant above E = 0.4t, we

have selected the energy of 0.2t for all states in our analysis to maximize the number

of wavelengths within a small graphene system while maintaining the same physics

from energies closer to the Dirac point.

Fig. 5.6.5 shows four eigenstates of the circular graphene flake. Like the free-

particle circular well, eigenstates of the graphene circular flake resemble eigenstates

of the angular momentum operator (see Mason et al.[3] for direct comparisons and

Husimi maps). For instance, the wavefunctions in Figs. 5.6.5a-b are radial-dominant,

while the wavefunction in Fig. 5.6.5d is angular-dominant. These appearances are cor-

roborated in the multi-modal analysis for the K 0 valley, which shows radially-oriented

paths in Figs. 5.6.5a-b and circular paths skimming the boundary in Fig. 5.6.5d.

Fig. 5.6.5c shows a state with a mixture of radial and angular components; in the
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(a)

(b)

(c)

(d)

Figure 5.6.5: Low-energy graphene states require additional tools to fully grasp the
classical dynamics. The Husimi map for the K 0-valley is plotted for four eigenstates
of a closed circular system with 71934 orbital sites at energies around E = 0.2t. All
three calculations use coherent states with relative uncertainty �k/k = 20%, whose
breadth is indicated by the double arrows on the right. From left-to-right: the Husimi
flux, multi-modal analysis, and the wavefunction. The divergence of the Husimi flux
is shown in green (red) to indicate positive (negative) values. In blue, the angular
deflection.
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multi-modal analysis, this appears as straight paths between boundary points high-

lighted by the angular deflection.

Unlike free-particle circular wells, however, the lattice sampling on the honeycomb

lattice breaks circular symmetry and replaces it with six-fold symmetry. Because

eigenstates of the system emphasize certain boundary conditions, the manner in which

each state establishes itself strongly varies. For instance, the two radial-dominant

states in Figs. 5.6.5a-b exhibit scattering exclusively within the same valley (a) or

between valleys (b). Accordingly, the locations where the rays terminate on the

boundary correlate with zig-zag and armchair boundaries respectively. The wider

spread in angular deflection in Fig. 5.6.5a corroborates Beenakker et al.[117], showing

that that intra-valley scattering occurs over a larger set of boundaries than inter-valley

scattering.

Because each valley reflects back to itself in Fig. 5.6.5a, there is no net flow of

either valley in the bulk of the system. As a result, the multi-modal analysis shows

counter-propagating flows, and the Husimi flux (Eq. 5.2.2) is zero except at the center,

where slight offsets in trajectories form characteristic vortices. In Fig. 5.6.5b, on the

other hand, each ray in the wavefunction is associated with a distinct source and

drain, which is evident in both the multi-modal analysis and the Husimi flux.

In Figs. 5.6.5c-d, the locations of sources and drains for the K 0 valley are reversed

from Fig. 5.6.5b. However, the roles that inter-valley scattering play in these states

is less clear; rather, inter- and intra-valley scattering dominate these wavefunctions.

In Fig. 5.6.5c, this can been by the emphasis of angular deflection along the zig-

zag boundaries, which do not show any divergence. In Fig. 5.6.5d, even though
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the wavefunction and the multi-modal analysis clearly emphasize a classical path

that skims the boundary, the path actually flips between each valley each time it

encounters an inter-valley scatterer. For both states, the various trajectories merge

to form vortices in the Husimi flux, with sources and drains at armchair edges.

When the circular flake is distorted, as in the Wimmer system (Figs. 5.6.4 and

5.6.6), inter- and intra-valley scatterers are re-arranged and re-sized as a function of

the local radius of curvature of the boundary.

Figs. 5.6.6a-b show two eigenstates of the Wimmer system. The boundary con-

ditions for these states most closely resemble Fig. 5.6.3, since sources and drains

appear next to each other. This is a signature of mixed scattering – both inter- and

intra-valley scattering occur in various proportions at these points. For example,

the multi-modal analysis in Fig. 5.6.6a shows a triangular path, but not all legs of

the triangle are equally strong, corresponding to various degrees of absorption and

reflection at each scattering point which can be seen in the divergence.

Edge-states are a set of zero-energy surface states that are strongly localized to

zig-zag boundaries and potentially long-lived[12]. Because they can be used as modes

of transport[90, 92], and also be strongly spin-polarized[91, 26], they have become a

fascinating candidate for spin-tronic[12, 91, 90, 92, 26] devices.

Edge states exhibit a different dispersion relation than the two valleys in the bulk,

so they cannot be “sensed” by the K 0 or K valley Husimi projections at their actual

energies. Instead, the Husimi map can be generated using wavevectors appropriate to

the edge states. On the right-hand side of Fig. 5.6.7, we show a Fourier transform of

the edge state wavefunction in the upper-left, which shows that these edge states can
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Figure 5.6.6: In parts (a) and (b), the same information is plotted as in Fig. 5.6.5,
but for the Wimmer system (see Fig. 5.6.4), with 96425 orbital sites. These states
also have energies near E = 0.2t and are represented by coherent states of uncertainty
�k/k = 20%. In parts (c) and (d), edge-state hybrid wavefunctions with bulk-state
parallels to (a) and (b) are shown. These states are realized by setting the on-site
energies of under-coordinated carbon atoms to 0.25t.
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Figure 5.6.7: An extremely small “rooftop” graphene flake at energy E = 0.0015735t
showing two edge states at the top and bottom boundaries which tunnel into each
other. At top left, the full wavefunction, at bottom-left, divergence is indicated
in green and red, and a schematic of the Husimi projection is shown, using circles
centered at each valley to determine the effective wavelength. At right, the Fourier
transform of the state is shown, with the contour line used to generate the Husimi
map at left.

be modeled using the valley formalism at the artificial energy E = 0.45t. We find that

each edge state corresponds to a standing wave, which appears as if it is bouncing

between the two valleys. The results do not substantially differ from other models –

for instance, using wavevectors relative to the origin k = 0 rather than k = K0.

As noted in Wimmer et al. [53], it is possible for edge states to tunnel into each

other using bulk states as a medium. In Figs. 5.6.6c-d, edge-state hybridization with

bulk states near E = 0.2t has been induced by raising the onsite energies of under-

coordinated atoms to 0.25t. While onsite energies are likely non-trivial, and can arise

from a number of sources[53], we have artificially inflated them to probe energies

where a larger number of wavelengths can fit into the system. We have kept ratio

of eigenenergies to passivation energy similar to theoretical predictions to provide a
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Figure 5.6.8: Additional edge-bulk hybrid states for a smaller Wimmer system with
identical parameters. Here, the two sublattice are differentiated by adding black
outlines to each B sublattice site. This helps show the connection between the bulk
state and its orientation with different edges.

good analogy with larger systems at more experimentally realizable energies.

Using the normal valley formalism, we can examine edge states using Husimi maps

of the bulk states with which they hybridize. However, effects of bulk-state selection

among hybrid states appear to be subtle. For instance, it is possible for edge states to

hybridize with bulk states whose classical dynamics interact strongly with boundaries

where the edge state resides (See Fig. 5.6.6d) or not (Fig. 5.6.6c). Subtle changes to

the bulk states do appear in extremely low-energy hybrid states: among features
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we have seen, orientations with different boundary types shift in response to the

passivation parameter (See Fig. 5.6.8). Whether such effects can be observed for

larger systems is a topic of further study.

5.6.3 Fano Resonance in Graphene

This section addresses Fano resonance[43] in graphene systems, a conductance

phenomenon that occurs as a result of interference between a direct state (conduc-

tance channel) and a quasi-bound indirect state[103] similar to the eigenstates this

thesis has examined. To study Fano resonance, we first compute a scattering wave-

function using the recursive numerical Green’s function method described in Mason

et al.[1]. This method produces a scattering density matrix ⇢, which is diagonalized.

Each eigenvector corresponds to a scattering wavefunction, which has an associated

eigenvalue indicating its measurement probability (Fig. 5.6.9, middle).

This section focuses on the eigenstate from Fig. 5.6.3 of the closed billiard system

that couples only weakly to leads which are attached at its sides (shown in the inset

of Fig. 5.6.9). This makes it possible for a scattering electron to enter the system

through a direct channel but then become trapped in a quasi-bound state related to

the eigenstate, causing the density of states projected onto the eigenstate to strongly

peak near its eigenenergy (Fig. 5.6.9, bottom). As the system energy sweeps across

this energy, the phase of the eigenstate component shifts through ⇡, causing it to

interfere negatively and then positively with the direct channel, giving rise to the

distinctive Fano curve (Fig. 5.6.9, top). As a result, the scattering wavefunction

with the largest measurement probability is in fact a hybridized state between the
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Figure 5.6.9: System properties of the scattering density matrix ⇢ around the Fano
resonance centered at E = 1.9582eV for the open system shown in the inset. Top:
The transmission profile across the two leads, with the closed-system eigenstate en-
ergy at E = 1.9579eV, corresponding to the eigenstate at index 1483 (below) shown
in the vertical grey line. Middle: Diagonalizing the density matrix produces a hand-
ful of non-trivial scattering wavefunctions in its eigenvectors. The eigenvalues of
these vectors, which correspond to their measurement probability, are graphed. The
wavefunction associated with the closed-system eigenstate hybridizing with the direct
channel peaks strongly around the Fano resonance. Bottom: The density matrix is
projected onto the closed-system eigenstates, showing that eigenstate 1483 strongly
peaks at the Fano resonance.
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closed-system eigenstate and the direct channel, which we call resonant state. Its

probability peaks around an energy near, but not exactly the same as, the eigenstate

energy (Fig. 5.6.9, middle); the shift in energy arises as a perturbation from the leads.

Figs. 5.6.10 and 5.6.11 show the probability current below and above resonance

under two representations: the bond current and the finite-difference flux. The bond

current shows the probability flow between every pair of adjacent carbon atom sites,

and it is defined as

ji!j =
4e

h
Im
⇥
HijG

n
ij(E)

⇤
, (5.6.1)

where Hij and Gn
ij(E) are the off-diagonal components of the Hamiltonian and the

electron correlation function between orbital sites i and j[27, 118]. The electron

correlation function is proportional to the density matrix defined in Eq. 1.3.23, but

in our calculations, we examine just one scattering state, so that Gn
ij /  i ⇤

j where

 i is the scattering state probability amplitude at orbital site i. We can obtain a

finite-difference analog of the continuum flux operator by defining

ji =
X

j

ji!j
rj � ri

|rj � ri|2
, (5.6.2)

which computes the vector sum of each bond current associated with a given orbital[119]2.

In Figs. 5.6.10 and 5.6.11, we have color-coded the bond current by the sublat-

tice of the origin site, which shows the strong presence of small vortices alternating

between the sublattices. These strong vortices indicate the mechanism by which the

resonant state is able to “trap” the electron away from the leads. As expected, the

2. A quick derivation shows that ji / ~
m Im [ ⇤r ]i for the finite-difference Hamiltonian, as

expected.
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Figure 5.6.10: At top, the bond currents for the scattering wavefunction at energies
E = 1.9582t and 1.9586t are shown with the originating vector color-coded red (blue)
for sublattice A (B). If the bond currents flowing in and out of each lattice site are
summed, we obtain a finite-difference approximation to the probability flux, shown
at bottom.
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Figure 5.6.11: Magnified views from the bond currents in Fig. 5.6.10, showing that
bond-current vortices are able to “trap” the electron in cyclical orbits. Due to the ⇡
phase shift, these vortices flip across resonance.

direction of flow reverses below and above resonance, consistent with the ⇡ phase

shift of the indirect channel.

Fig. 5.6.12 shows the results of adding the Husimi flux maps of both valleys at

two energies, below and above resonance. We find sources and drains in the summed

Husimi flux map at the corners of the system where the classical paths of the K 0-valley

Husimi map (Fig. 5.6.3) reflect off the system boundary.

To understand why, we consider that during transmission, quasiparticles enter

from the left incoming lead and exit through the right outgoing lead. However, near

resonance, the wavefunction is strongly weighted by the closed-system eigenstate,

which has no net quasiparticle current. Husimi maps for either valley also reflect this

fact: they are indistinguishable from the Husimi maps of the closed-system eigenstate

in Fig. 5.6.3, and the two valleys are inverse images of each other.
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Figure 5.6.12: Above and below the Fano resonance in Figs. 5.6.9 (inset), the time-
reversal symmetry between the K and K 0 valleys is lifted, making it possible to
add the Husimi flux for both valleys to measure valley-polarized current. Above, the
Husimi flux maps of both valleys are added for the scattering wavefunction at energies
E = 1.9582t and 1.9586t, with �k/k = 30%. Below, the probability flux is shown,
convolved with a Gaussian kernel of the same size as the coherent state. At energies
this close to resonance, the wavefunction does not visually change from the closed-
system eigenstate, shown in the inset, but the residual valley-polarized current that
occurs near these resonances switches direction across resonance. This seems to be a
phenomenon which likely accompanies most Fano resonances in graphene systems.
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But the Husimi maps for the two valleys don’t exactly cancel each other out.

When we add them together to reveal the time-reversal asymmetric behavior of the

wavefunction, the residual shows sources and drains of net quasiparticle flow which

are strongly related to the Husimi maps for each valley, and do not show left-to-

right transmission. Instead, the summed Husimi flux map shows the influence of

transmission on the strongly-emphasized classical paths underlying the closed-system

eigenstate.

Convolving the flux defined in Eq. 5.6.2 with a Gaussian kernel of the same spread

as the coherent state used to generate the Husimi map creates an analog to the Husimi

flux. While the convolved flux does not distinguish among valleys, it can help make

sense of localized bond currents which are nearly impossible to interpret when the

current flows are not constrained along a particular direction[119, 118]. We show the

convolved flux at the bottom of Fig. 5.6.12, and find that it forms vortices which

correlates with the summed Husimi flux maps for both valleys, and also fails to show

the left-to-right flow responsible for transmission.

This behavior is directly analogous to flux in continuum systems, where flux vor-

tices above and below resonance show local variations of flow but not the left-to-right

flow responsible for transmission (see Fig. 4.4.4). Because of the ⇡ phase shift of the

indirect channel across resonance, the local flows reverse direction above and below

resonance, but they do not affect the overall drift velocity except exactly on reso-

nance. We can recover the left-to-right drift velocity only by examining the system

at larger scales using a larger Gaussian spread (Fig. 5.6.13)[3]. Like the continuum

case in Fig. 4.4.4, the convolved current below and above resonance switches between
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Figure 5.6.13: At top, the extended Husimi flux is shown for the K 0 valley at E =

1.9582t and 1.9586t, with�k/k = 5%. Below, the probability flux is shown, convolved
with a Gaussian kernel of the same size as the coherent state. Even though the
direction of the Husimi flux reverses across resonance, the convolved current remains
largely left-to-right in analogy to Fig. 4.4.4.
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extending vertically (below) or contracting (above). Interestingly, for the honeycomb

lattice, net probability flux does not always equate to net particle flow in the same

direction; in this case, the two anti-correlate.

For laterally symmetric systems like the graphene stadium billiards in this sec-

tion, Fano resonances are often associated with a symmetric quasi-bound state which

interferes with a non-symmetric direct channel, and undergoes a ⇡ phase shift across

resonance. As a result, Fano resonances can leave their mark on the scattering wave-

function by inducing lateral asymmetries in the the scattering wavefunction. Because

of the ⇡ phase shift, asymmetrical features below resonance reverse their lateral ori-

entation above resonance.

The stable orbits that are emphasized by the quasi-bound state can be dramati-

cally disturbed by slight modifications of the boundary, if those modifications happen

at the scattering points most relevant to the orbit. The original authors Huang et

al.[41] examined the relationship between system symmetry and strength of the Fano

resonances by slightly modifying the system boundary at the black circle in Fig. 5.6.3,

and demonstrated that some resonances were drastically reduced by this modification.

We have chosen the resonance in this study because the Fano resonance profile as-

sociated with it was among the most-reduced as a result of their system modification,

and our analysis provides a clear picture as to why: the authors perturbed the system

precisely where the eigenstate in Fig. 5.6.3 has the largest probability amplitude at

the boundary. With the semiclassical picture, we are able to add to this finding an

intuitive understanding: by disturbing the reflection angle at the exact point where

the two valleys scatter, each time the electron scatters off that point some of its
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probability leaves the stable orbit. The authors effectively introduced a leak into the

orbit, reducing its lifetime and the strength of its resonance considerably.

In another study, we explored the relationship between the direct and indirect

channels by reducing the quantum dot to a two-state subspace: one state being the

indirect channel eigenstate in Fig. 5.6.3, designated as |�
indirect

i , the other being

any other orthogonal state of our choice, written as |�
direct

i. We write out a new

Hamiltonian from the two-terminal geometry (Eq. 1.3.13) as

H
(in)direct,(in)direct

=

⌦
�

(in)direct

��H
���

(in)direct

↵
(5.6.3)

and

V
(in)direct,L(R) =

⌦
�

(in)direct

��VCL(CR). (5.6.4)

This reduces the Hamiltonian of the central region to a dense 2⇥ 2 matrix, allowing

the formalism in Chapter 1 to remain the same.

Using the eigenstates of the closed system as the set of direct states {|�
direct

i}

, we are able to produce various Fano resonance profiles depending on our choice.

The state associated with eigenstate index 1475 (see Fig. 5.6.14), produces the most

similar profile to the full simulation in Fig. 5.6.9.

In our two-state study, all direct states that produce a Fano profile with the

symmetric indirect channel share the following properties:

1. They have large amplitude at the region bordering the leads

2. Their boundary amplitudes overlap the relevant eigenchannel

3. They exhibit lateral antisymmetry
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Figure 5.6.14: A laterally antisymmetric direct channel in the reduced two-state Fano
study is shown alongside its resonance profile with the symmetric indirect channel
from Fig. 5.6.3.

The last point is crucial since the indirect state is horizontally symmetrical. Just

as an atomic s-orbital (spatially symmetric) and p-orbital (spatially antisymmetric)

hybridize to form a spatial asymmetric wavefunction, the direct and resonant states

hybridize to form asymmetrical scattering states. For more general studies, the direct

channel is a hybrid of many closed-system eigenstates and is asymmetric as opposed

to strictly antisymmetric.

The Husimi flux can also cast insight onto the scattering states associated with this

resonance. For instance, we can examine the direct channel by a simple mathematical

manipulation. Taking the scattering wavefunction  of the resonant state, we can

subtract the contribution from the quasi-bound state obtained by diagonalizing the

perturbed Hamiltonian H 0
= H+⌃L+⌃R where ⌃L(R) is the self-energy contribution

from the left (right) lead. Of the complex eigenstates {�i}, only one will have an inner
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Figure 5.6.15: The wavefunction (top) of the direct channel, and the Husimi flux for
the K 0, K, and K 0

+ K valleys showing overall flow from left-to-right. These maps
are taken from the center of the resonance at E = 1.9584eV, and do not noticeably
change across resonance.

product h�i| i close to one – this is the indirect channel which we label as �
indirect

.

The direct channel is obtained by

|�
direct

i = | i � |�
indirect

i h�
indirect

|  i . (5.6.5)

We show the direct channel, and its Husimi maps, in Fig. 5.6.15.

For this resonance, the direct channel also has strong closed-system character.

Sources and drains for both valleys occur along boundaries not connected by leads,

and the maps for both valleys are approximately inverses of each other. This helps ex-

plain why the direct channel is so easily affected by the indirect channel in Fig. 5.6.12,

since it is also trapping the electron in a quasi-bound state.
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Figure 5.6.16: The transmission function (Total) is decomposed into individual trans-
mission modes, with the Fano resonance clearly modulating quickly in blue. The other
modes in red and green barely change over the energy range. One of those modes
and its Husimi maps are shown in Fig. 5.6.17.

During a Fano resonance, other modes are also transmitting across the device,

unperturbed by the quasi-bound state responsible for the resonance. In Fig. 5.6.16,

we show the transmission matrix, decomposed according to the singular value decom-

position

t = U †
⌃V. (5.6.6)

The columns of U and V are incoming and outgoing wavefunctions defined on the

boundary of the scattering region, and the singular values in ⌃ give their respective

transmission values. In Fig. 5.6.17, we show one of the full-transmission scattering

wavefunctions, showing that transmission occurs almost entirely in the K 0 valley.

Unlike the direct and indirect channels (Fig. 5.6.12 and 5.6.15), the Husimi flux maps

for both valleys in this scattering state combine to reveal unambiguous left-to-right

flow even at small scales.
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Figure 5.6.17: The wavefunction (top) of another full-transmission channel, and the
Husimi flux for the K 0, K, and K 0

+ K valleys showing overall flow from left-to-
right. Current in this state is entirely provided by the K 0 valley – contributions from
the K valley are minor perturbations. These maps are taken from the center of the
resonance at E = 1.9584eV, and do not noticeably change across resonance.



Appendix A

Uncertainty Propagation for Husimi

Vector Addition

When integrating over the available k-space in Eq. 4.2.3, the resulting Husimi flux

vector has lower uncertainty than the individual terms in the integral, but by how

much? Understanding this mathematical detail is key to appreciating why the Husimi

projection is valuable to extending the flux operator to an operator with defined

uncertainty. Moreover, understanding the behavior of uncertainty propagation in

this integral makes it possible to confidently approximate the result with a discrete

sum, such as the sunbursts in Fig. 4.2.1, offering both visual and computational

advantages.

We begin by considering the extreme cases. If the wavevector orientation remains

unchanged for each measurement, summing up identical measurements has no effect

on the final relative uncertainty. On the other hand, when either the spatial coor-

dinates or the wavevectors are sufficiently separated, each Husimi vector constitutes

169
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an independent measurement; the uncertainty of the result will reduce by the square

root of the number of measurements. In general, calculations fall in between these

two extremes.

This analysis is concerned with only one dimension, since the variance along each

orthogonal axis can simply be summed. First, the coherent state is expressed in the

momentum basis as

hk| r0,k0, �i =

 
�p
⇡/2

!1/2

e��2(k�k0)
2+i(k�k0)·r0 . (A.0.1)

Most generally, the Husimi projection in Eq. 4.2.3 is the integral of Husimi func-

tions over all of k-space. In this appendix, and in the figures throughout this paper,

the integral is replaced with a finite sum of test wavevectors {ki} which satisfy the

dispersion relation at a particular energy.

The variance of the integral in Eq. 4.2.3 can be obtained by building on intuition

about coherent states. It is well-known that the k-space variance of the coherent

state can be simply derived by integrating the coherent state probability amplitude

over k-space, weighting the integrand by (k� k0)
2. Using the notation in Eq. A.0.1,

this gives �2
k =

1
4�2

x

yielding the familiar relation �x�k = 1
2 . This can be thought of in

the Husimi formulation as a statistical result where the quantity �k is the variance

of each individual term in the Husimi vector summation. In this formulation, the

variable is the wavevector and the probability function is the probability amplitude

of the coherent state. Because the probability function is complex, we have to take

the absolute sum squared.

Factoring in more than one Husimi function into the Husimi projection results in
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the expression

�p
⇡/2

ˆ 1

�1

�����
X

i

(k � ki) e
��2(k�k

i

)2+i(k�k
i

)x0

�����

2

dk, (A.0.2)

where the set {ki} are the set of test wavevectors, projected onto the given axis, x0 is

the spatial point being tested, and � is the chosen spatial Gaussian spread. Setting

the coherent states to the same phase at their centers, x0 = 0, and the above integral

can be evaluated to return

�2
k =

1

4�2
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i,j>i

e�
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i

�k
j
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�
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(ki � kj)
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Already it is possible test this result against intuition. If each wavevector is

identical, then ki� kj = 0 and the sum of N measurements results in the uncertainty

�2
k =

N2

4�2 which would provide no reduction of relative uncertainty. For large values

of |ki � kj| � �, the exponential term will overwhelm the quadratic term and the

uncertainty becomes �2
k =

N
4�2 , a reduction in the relative uncertainty of

p
N .

Perhaps most surprising about Eq. A.0.3 is that the second term, which quantifies

the covariance between the two measurements, can actually be negative. What are its

bounds? Fig. A.0.1 plots the quantity Q(k1, k2, �) = 2e�
�

2

2 (k2�k1)
2
(1� �2

(k2 � k1)),

showing that a minimum value of � 4
e3/2

⇡ �0.893 is achieved at |k2 � k1| =
p
3/�.

Every value of |k2 � k1| beyond which Q goes through zero has achieved nearly inde-

pendent measurements, which is found at |k2 � k1| = ��1.

The terms in Eq. A.0.3 suggest that when more and more vectors are added the

uncertainty can be reduced arbitrarily by setting the correct separations between the

test wavevectors. It even suggests that for three or more vectors we could possibly

produce results with negative uncertainty, but intuitively that cannot be possible.
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Figure A.0.1: The second term in Eq. A.0.3 is plotted for the addition of two vectors in
the Husimi projection. This term represents the covariance between the two vectors,
and is bounded above by 2 and below by � 4

e3/2
for all choices of �.

To appreciate why from an analytical perspective, Fig. A.0.2 plots the results of �2
k

for the addition of three wavevectors. The minima that occur from maximizing the

separation between each pair of wavevectors is indicated by the white dashed lines.

At the center of the graph, a peak exists at �2
k = 9/4�2, which falls to 3/4�2 for

areas beyond the area bounded by the white dashed lines, consistent with earlier

observations. There is also a minimum (positive) uncertainty which arises from the

fact that the separation between all pairs of points on a line cannot be equal. In

Fig. A.0.2 this is evidenced by the fact that there are no points where three dashed

lines intersect. For two vectors the minimum occurs at �2
k ⇡ 0.981/4�2, for three

�2
k ⇡ 1.017/4�2 and for four �2

k ⇡ 1.036/4�2. We can generalize and state that

for N
min

vectors that fall on separate minima, the uncertainty of their sum will be

�k ⇡ 1
2Nmin�

.
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Figure A.0.2: The uncertainty that results from summing three vectors of a Husimi
projection, as written in Eq. A.0.3 is plotted. The uncertainty is bounded above
by 9/4�2 and below by ⇠ 1.017/4�2. The dashed white lines indicate local minima
that result from spacing each pair of vectors by

p
3/�, which would give a minimum

uncertainty for two-vector addition (see Fig. A.0.1).

Moreover, even if vectors are added that do not fall on the uncertainty minima

in Figs. A.0.1 and A.0.2, they will have a negligible impact on the total relative

uncertainty. So no matter how many vectors contribute to the sum, only the vectors

on the minima will reduce the relative uncertainty, making the key quantity not the

total number of vectors that are added, but the number that have sufficient separation

to fall on the uncertainty minima.

How many vectors is this? We know, for instance, that this minimum will occur

when the maximum number of vector pairs have a separation near
p
3/�, and that

this is likely to occur when they are evenly spaced on a line at that separation.

Thus we propose that the number of vectors that can fall on the minima is given by
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N
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, and using ~k =
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2mE, we can rewrite this as N

min

=

floor
⇣
�
q

8mE
3~2

⌘
. Substituting this value results in the proportionalities
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. (A.0.4)

This makes sense intuitively: the relative uncertainty of a finely sampled Husimi

vector addition goes down with larger � and energy.

This result deepens the connection between the flux operator and the Husimi

function for small �, since for very small coherent states, the uncertainty minima,

which are separated by ��1, grow increasingly far apart. There is only a finite range

of wavevectors which satisfy the dispersion relation at a given energy, meaning that

as the coherent states get smaller, fewer and fewer samples in k-space minimize the

uncertainty. In fact, at the extreme limit of � ! 0, the uncertainty cannot be

minimized beyond a single measurement in each orthogonal direction, indicating that

results for these small coherent states have undefined uncertainty, just like the flux

operator. We corroborate this result using a different proof in Eq. 4.1.21.
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