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Dr. Evan Rosen Xun Wang 

 

IRF3 is a Critical Regulator of Adipose Glucose and Energy Homeostasis 

Abstract 

 

Obesity is associated with a state of chronic inflammation, which is believed to 

contribute to insulin resistance. We previously identified interferon regulatory factor 3 

(IRF3) as an anti-adipogenic transcription factor with high expression in adipocytes.  

Because IRF3 is known to drive expression of pro-inflammatory genes in immune cells, 

we hypothesized that it may also promote inflammation and insulin resistance in 

adipocytes.  Consistent with our expectations, we found that the expression of 

inflammatory genes in adipocytes was induced by IRF3 overexpression, while 

knockdown of IRF3 had the opposite effect.  Despite this effect on local adipocyte gene 

expression, we found that Irf3
-/- 

mice did not show evidence of altered systemic 

inflammation.  Nonetheless, Irf3-/- mice did display altered metabolism relative to their 

wild type (WT) littermates.  For example, high fat diet (HFD) fed Irf3
-/- 

mice exhibited 

increased lean mass and decreased fat mass compared to WT, accompanied by 

increased food intake and energy expenditure.  Further investigation showed that the 

white adipose tissue (WAT) of Irf3
-/- 

mice had increased expression of brown adipocyte 

selective genes compared to WT, and the inguinal WAT of the Irf3
-/- 

mouse contain 

multilocular adipocytes that resemble brown adipocytes.  These data suggest that IRF3 

affects energy homeostasis by regulating the development of brown adipocyte-like cells 
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in WAT.  Additionally, Irf3
-/- mice are significantly more insulin sensitive and glucose 

tolerant compared to WT when kept on HFD.  Consistent with in vivo observations, IRF3 

knockdown in 3T3-L1 adipocytes resulted in enhanced insulin-stimulated glucose uptake 

and lipogenesis, while overexpression of constitutively active IRF3 had the opposite 

effect.  Several IRF3 target genes in adipocytes were identified using transcriptional 

profiling.  Interestingly, the expression level of Slc2a4 (encoding the Glut4 protein) was 

inversely correlated with that of IRF3 in both WAT and cultured adipocytes. Analysis of 

the Slc2a4 proximal promoter identified a putative IRF3 binding site upstream of the 

transcription start site, and luciferase assay in 3T3-L1 adipocytes showed that IRF3 

negatively regulates Slc2a4 expression via this site.  Taken together, these data indicate 

that IRF3 plays a role in whole body glucose homeostasis by repressing thermogenic 

gene expression as well as the expression of adipose Glut4. 
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Adipose tissue is an important metabolic organ 

 Adipose tissue was traditionally viewed as an inert tissue that merely provides a 

storage site for triglycerides.  However, over the past twenty years, numerous studies 

have shown that adipose tissue is also an important endocrine organ that produces 

numerous hormones and cytokines that control metabolism, blood pressure, 

hemostasis, and immune responses throughout the body
1
.  Leptin is an adipokine, a 

name referring to cytokines produced by the adipose tissue, which regulates food intake 

by binding specific neurons in the hypothalamus to decrease appetite and stimulate 

energy expenditure
2, 3

.  Adiponectin, another major adipokine, acts on the liver and 

muscle to promote fatty acid oxidation and enhance insulin sensitivity.  Adipose tissue 

also releases inflammatory cytokines such as TNFα and IL-6 that regulate and participate 

in inflammation
4
.  Proteins of the renin-angiotensin system are released by the adipose 

tissue in response to changes in nutritional availability and can act on the vasculature to 

regulate blood pressure and fluid balance
5
.  In addition to initiating efferent signals, 

adipose tissue can also respond to signals from the central nervous system and other 

peripheral organs via various receptors expressed by adipocytes.  For instance, insulin 

secreted by pancreatic β-cells can act on the adipose tissue to stimulate glucose uptake 

during feeding, while glucagon secreted by pancreatic α-cells stimulate the adipose 

tissue to breakdown lipid storage and release fatty acids into the circulation during 

starvation6, 7.  Thus, adipose tissue is an integral part of the metabolic regulatory 

machinery. 
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White vs. brown adipose tissue 

 Two distinct types of adipose tissue exist in mammals, i.e. white and brown 

adipose tissues. They have in common the ability to store lipid in the form of triglyceride; 

however, they are distinct both histologically and functionally, and they have different 

developmental origins
6
.  The predominant form is the white adipose tissue (WAT), 

whose major constituents are white adipocytes, preadipocytes, endothelial cells, and 

immune cells.  WAT is localized in many depots throughout the body, but is often 

characterized as belonging to one of two categories
8
.  Subcutaneous fat can be found in 

relatively small depots under the skin, while visceral fat is located in large intra-

abdominal depots
8
.  Each WAT depot also serves distinct functions, with the intra-

abdominal depots more closely associated with the onset of obesity, diabetes and 

cardiovascular diseases
9, 10

.  Because of its primary function of energy storage and 

mobilization, WAT has the ability to greatly expand in size even in adulthood, surpassing 

any other tissue in the body in this regard
11

.  White adipocytes are characterized by 

large unilocular lipid droplets occupying most of the cytoplasm, squeezing the nucleus 

into a thin rim at the plasma membrane
8
.  

In contrast, brown adipose tissue (BAT) specializes in energy expenditure
7
.  

Compared to WAT, BAT exists in much smaller depots and can be found in interscapular 

depots in mice and supraclavicularly in adult humans
12

.  BAT is mostly made up of 

brown adipocytes, which are characterized by multilocular lipid droplets and abundant 

mitochondria in the cytoplasm, facilitating rapid fatty acid oxidation and heat 

production8.  Compared to WAT, BAT is much better vascularized and innervated8. The 
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major function of BAT is to regulate energy expenditure via adaptive thermogenesis, a 

process unique to this tissue
7
.   

Adaptive thermogenesis is achieved through the function of uncoupling protein 

1 (Ucp1), which is highly expressed in brown adipocytes and localizes to the inner 

mitochondrial membrane7.  In most cell types, the mitochondrial electron transport 

chain establishes an electrochemical gradient across the inner mitochondrial membrane 

and ATP is synthesized as the protons rush back across the membrane13.  In brown 

adipocytes, Ucp1 promotes thermogenesis by allowing dissipation of the mitochondrial 

proton gradient without concomitant ATP synthesis14. Thus, in brown adipocytes oxygen 

consumption results in heat generation instead of ATP production.  Mice lacking Ucp1 

protein are unable to maintain normal body temperature when exposed to a cold 

challenge; they are also susceptible to obesity when maintained under 

thermoneutrality12.  Traditionally, it was thought that in humans BAT only exists in 

infants and disappears with age; however, recent clinical studies have identified active 

BAT depots in the interscapular region of adult human subjects15-18.  Thus, BAT is a 

potential therapeutic target in the treatment of the metabolic syndrome by increasing 

energy dissipation via adaptive thermogenesis, and exploring methods to stimulate the 

generation and activation of BAT may result in new therapeutic approaches. 

 

Adipocyte plasticity 

 Adipocytes are derived from a mesenchymal stem cell lineage
8
.  It was previously 

believed that white and brown adipocytes originate from a common progenitor.  Under 
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the appropriate stimulation, brown adipocytes can arise within WAT and vice versa19.  

For instance, ageing leads to replacement of BAT depots by WAT in both human and 

mice20, 21.  High fat diet-induced obesity leads to morphological changes in BAT that 

leads to the appearance of white adipocyte-like cells
22

.  Conversely, under 

thermogenically challenging conditions, such as chronic cold exposure or 

pharmacological treatment with β3 adrenergic receptor agonists, brown adipocyte-like 

cells, also called “beige” or “BRITE” cells, can be found in WAT depots8, 23.  These beige 

cells histologically resemble brown adipocytes in that they have multilocular lipid 

droplets.  Functionally, beige cells also express Ucp1 and perform adaptive 

thermogenesis
19

. 

 Recent work suggests that WAT and BAT are actually derived from distinct 

precursor populations.  Brown adipocytes were found to be developmentally closer to 

skeletal muscle than white adipocytes24-26.  Brown adipocytes are derived from 

dermatomyotomal precursor cells that express Myf5, which was previously thought to 

be exclusively expressed in committed skeletal muscle precursors24-26.  These precursor 

cells differentiated into brown adipocytes upon induction of the PRDM16 transcription 

factor and turned into muscle cells if PRDM16 is absent.  In contrast, these cells were 

unable to form white adipocytes even when treated with a pro-adipogenic cocktail
24-28

.  

Gene expression analysis also showed that brown adipocyte precursors and skeletal 

muscle cell precursors but not white adipocyte precursors express a closely related gene 

profile
29

.  Lastly, proteomic analysis showed that BAT and skeletal muscle, but not WAT, 

have a highly related mitochondrial proteomic signature
30

. 
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Although it is now clear that WAT and BAT are derived from distinct lineages, 

whether the beige cells appearing in WAT are derived from a BAT or WAT lineage is still 

under debate.  Although these cells appear like brown adipocytes both histologically and 

functionally, they are not derived from a Myf5 positive lineage
25, 26, 28

.  Recent data point 

to the possibility that they are derived from resident mesenchymal stem cells from the 

white adipocyte lineage but poised for “browning”. 

 

Transcriptional regulation of adipogenesis 

 Under conditions of excess nutrition, adipose tissue can generate more 

adipocytes for energy storage by inducing adipogenesis of resident mesenchymal stem 

cells, which have been primed to differentiate into adipocytes7.  Adipogenesis is a 

complex but tightly controlled process that involves the interaction of numerous 

transcription factors.  CCAAT/enhancer binding proteins C/EBPβ and C/EBPδ are two of 

the first major transcription factors to be turned on during adipogenesis.  While their 

induction is early but transient, another family member, C/EBPα, is induced later during 

adipogenesis but remains highly expressed throughout the differentiation process as 

well as in mature adipocytes31.  C/EBPβ, δ, and α in turn induces expression of 

peroxisome proliferator activated receptor γ (PPARγ).  PPARγ is considered to be the 

master regulator of adipogenesis as it is both necessary and sufficient for differentiation 

to occur
32, 33

.  PPARγ forms a heterodimer with retinoid X receptor α (Rxrα), which in 

turn activates transcription of downstream adipogenic genes34, 35.  One of PPARγ’s 
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transcriptional targets is C/EBPα, therefore these two transcription factors form a 

positive feedback loop, allowing both to maintain a high level of expression during the 

adipogenic process and throughout the life of the mature adipocyte33, 36-38. 

 Both PPARγ and C/EBPα turn on the expression of additional transcription 

factors important for adipogenesis as well as mature adipocyte function.  For instance, 

in adipose tissue PPARγ turns on the expression of Pepck, Fabp4, CD36, and lipoprotein 

lipase (Lpl)39, 40.  Similarly, C/EBPα can enhance the expression of Pepck and Fabp4 as 

well as Scd1 and Slc2a4
41-43

. 

 Although PPARγ and C/EBPα are the two major transcription factors regulating 

adipogenesis, this complex process requires the interaction of many other transcription 

factors, both pro-adipogenic and anti-adipogenic.  One prominent pro-adipogenic 

transcription factor is kruppel like factor 15 (Klf15).  It is up-regulated during 

adipogenesis and has been found to induce the expression of PPARγ and Glut444, 45.  

Sterol regulatory element binding protein 1 (Srebp1) has also been found to induce 

PPARγ expression, as well as regulate fatty acid metabolism and cholesterol 

homeostasis
36

.  In contrast, Gata2 and Gata3 negatively regulate adipogenesis by 

transcriptionally down-regulating PPARγ; expression of Gata factors also decreased 

during adipogenesis
38, 46

. 

 

Unbiased search for transcription factors regulating adipogenesis 

 Although many major nodes in the complex adipogenic transcriptional cascade 

have been described, many relevant factors have yet to be identified
38

.  To further 
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understand adipogenesis our lab set out to find additional transcription factors 

regulating this process.  One way to predict transcription factor involvement in 

biological processes is to analyze chromatin structure changes throughout the process47.  

Thus we employed DNase hypersensitivity assay followed by computational motif 

finding to identify transcription factors involved in adipogenesis.   

The DNase hypersensitivity assay takes advantage of the ability of small amounts 

of DNase I to digest regions of open chromatin while leaving compact heterochromatin 

intact
47, 48

.  Open chromatin is known to be associated with promoters, enhancers, 

silencers, insulators, and other regions with active transcription factor binding47-49.  

Because we were specifically interested in adipogenesis we focused on studying the 

changes in chromatin state in 3T3-L1 preadipocytes and adipocytes.  To find chromatin 

regions active during adipogenesis, we reviewed relevant literature to identify 27 key 

genes that showed relatively adipocyte-specific expression and whose expression levels 

were induced during adipogenesis.  These 27 genes are all well known players in 

adipogenesis, e.g. Pparγ, Cebpα, Fabp4, etc.  We restricted our search to highly 

conserved regions within 50kb upstream and in the first intron of the 27 selected genes 

and designed primers specific for each of the identified regions.  Q-RTPCR on DNase I 

digested chromatin from 3T3-L1 preadipocytes and adipocytes identified 32 regions that 

had reduced copy numbers in DNase I digested adipocyte chromatin compared to 

preadipocyte chromatin, or in other words, were DNase I hypersensitive
50

.  

Computational motif finding was employed to identify overrepresented motifs in these 

32 regions
50-52

.   
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From this assay, we identified the orphan nuclear receptor chicken ovalbumin 

upstream promoter transcription factor II (COUP-TFII) as a regulator of adipogenesis
53

.  

We performed in vitro assays using 3T3-L1 preadipocytes to confirm this finding.  

Overexpression of COUP-TFII in 3T3-L1 preadipocytes suppressed adipogenesis, while 

knockdown enhanced adipogenesis53.  These results indicate that the combination of 

DNase hypersensitivity assay and computational motif finding is a valid approach to 

identify novel transcription factors in adipogenesis.  In addition to COUP-TFII, one of the 

top scoring motifs identified was a binding site for interferon regulatory factors (IRFs), 

known as interferon stimulated regulatory element (ISRE)50. 

 

IRFs 

IRFs are a family of transcription factors that play a variety of critical roles in the 

immune system.  There are nine members in the mammalian IRF family, IRF1 through 

IRF9, each serving distinct roles in host defense, growth control, and 

immunomodulation
54

.  All nine IRFs contain a well conserved helix-turn-helix DNA 

binding domain (DBD) in their N-terminus, which binds the ISRE in the promoter region 

of target genes
55

.  The C-terminus domain of IRFs consists of an IRF association domain 

(IAD), mediating interactions with other IRFs and additional transcriptional co-

modulators, as well as clusters of phosphorylation sites conferring post-translational 

regulation.  This region is distinct for each IRF family member55 (Figure 1.1). 
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Figure 1111....１１１１The interferon regulatory factor protein family. 

The structure of the nine proteins in the mammalian IRF family.  All IRFs contain a well-

conserved DNA binding domain (DBD, blue) defined by five tryptophan residues (W).  

The regulatory domain (green) is in the C-terminus.  Most IRFs also contain either IRF 

association domain type 1 (IAD1) or type 2 (IAD2).  Some members of the IRF family also 

contain repression domains (yellow) or nuclear-localization signals (orange).  Some IRFs 

are regulated by phosphorylation (P) in their regulatory domains.  Figure adapted from 

Lohoff and Mak, Nature Reviews Immunology 200555. 
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IRFs were originally named for their ability to induce type I interferons upon 

infection
56

; however, further studies revealed IRFs to be involved in a diverse group of 

immune functions.  They are important players in the regulation of innate immune 

response, cell growth, apoptosis, and oncogenesis, and the development and 

maturation of various immune cells including dendritic cells, myeloid cells, natural killer 

cells, B cells, T cells, and erythroid cells
54, 55, 57

.  

Although IRFs are very well studied in the context of immunity, there have been 

no previous reports of their function in adipocytes.  We found all nine IRFs to be 

expressed in 3T3-L1 adipocytes, in a developmentally-regulated fashion, as well as in the 

adipose tissue of mice (Figure 1.2)
50

.  Additionally we performed a combination of ChIP, 

EMSA, and luciferase assays in 3T3-L1 preadipocytes versus adipocytes.  These results 

confirmed the adipocyte specific binding of several IRFs to the ISRE sites predicted by 

the DNase I hypersensitivity assay50. 

Gene expression analysis in 3T3-L1 adipocytes showed that all nine IRFs are 

expressed in adipocytes.  However, IRF3 and IRF4 were particularly interesting in that 

they exhibited low expression levels in preadipocytes and were significantly induced in 

the mature adipocyte (Figure 1.2A)50, indicating that in addition to adipogenesis they 

may also play an important role in mature adipocyte function.    
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Figure 1111....２２２２IRFs are expressed in adipocytes. 

A) Expression of all nine IRFs during 3T3-L1 differentiation as determined by Q-RTPCR.  

The shaded area indicates time points <24hr after induction of adipogenesis, n=3.  B) 

IRF3 expression in tissues from male FVB mice as determined by Q-RTPCR.  Br: brain, H: 

heart, Lu: lung, Liv: liver, K: kidney, Sp: spleen, Int: intestine, WAT: epididymal white 

adipose tissue, BAT: interscapular brown adipose tissue, n=3.  C) IRF3 expression in the 

fractionated epididymal fat pads of C57BL/6 mice.  SVF: stromal vascular fraction, Macs: 

F4/80 positive macrophages, Ads: adipocytes, n=6, **P < 0.01 versus SVF, n.d. = not 

detectable.  Figure adapted from Eguchi et al. Cell Metabolism 2008
50

. 

 

We studied the role of IRF4 in adipocytes by characterizing the metabolic 

phenotype of mice lacking IRF4 in adipocytes.  These mice exhibit increased adiposity 
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and deficient lipolysis58.  Mechanistic studies showed IRF4 to be a critical determinant of 

the transcriptional response to nutrient availability in adipocytes.  Fasting induces IRF4 

in an insulin- and FoxO1-dependent manner, and IRF4 is required for lipolysis, at least in 

part due to direct effects on the expression of adipocyte triglyceride lipase (ATGL) and 

hormone-sensitive lipase (HSL) (Figure 1.3)58.   

 

Figure 1111....３３３３IRF4 is a transcriptional regulator of adipose nutrient response. 

 

In addition to IRF4, IRF3 expression is also upregulated in the mature 3T3-L1 

adipocytes (Figure 1.2A)
50

.  We found IRF3 to be expressed in all tissues tested, including 

WAT and BAT (Figure 1.2B).  When the epididymal WAT was fractionated, the 

expression level of IRF3 was higher in the adipocytes compared to the infiltrating 

macrophages, as well as the stromal vascular fraction (SVF) (Figure 1.2C)
50

. 
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IRF3 was also found to be an important player in adipogenesis.  In 3T3-L1 

preadipocytes over-expressing IRF3, adipogenesis was greatly attenuated as measured 

by both Oil-Red-O staining of triglyceride content (Figure 1.4A) and gene expression 

analysis of key markers of adipogenesis such as Pparγ, Cebpα, Fabp4, etc. (Figure 1.4B).  

Conversely, shRNA-mediated IRF3 knockdown in 3T3-L1 adipocytes resulted in 

enhanced adipogenesis (Figure 1.4C and D)
50

.  These data indicate IRF3 to be a 

transcription factor regulating both adipogenesis and adipocyte function. 
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Figure 1111....４４４４IRF3 is anti-adipogenic in 3T3-L1 cells. 

A - B) 3T3-L1 preadipocytes were transduced with retrovirus expressing IRF3, then 

differentiated with a dexamethasone, IBMX, and insulin cocktail (DMI).  Experiments 

were performed seven days post-differentiation.  A) Oil-Red-O staining.  B) Q-RTPCR of 

adipocyte selective genes.  C - D) 3T3-L1 preadipocytes were transduced with lentivirus 

A B

C D

Overexpression

Knockdown
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Figure 1.4 (Continued). expressing shIRF3 and differentiated with DMI.  C) Oil-Red-O 

staining was performed at three, five, and seven days post differentiation.  D) Q-RTPCR 

of adipocyte selective genes was performed seven days after differentiation.  *P<0.05, 

**P<0.01, n=3.  Figure adapted from Eguchi et al. Cell Metabolism 2008
50

. 

 

IRF3 

Although its role in metabolism has not been characterized, IRF3 has been well 

studied in the context of immunity.  It is recognized as the major effector of the 

induction of interferon gene expression as part of the innate immune response to viral 

infection59-61.  Additionally, IRF3 has also been implicated in viral as well as bacterial 

mediated apoptosis
57

. 

IRF3 is a unique member of the IRF family in that it is constitutively expressed in 

all cells and tissues, while its activity in innate immune response is regulated post-

translationally61.  There are two clusters of phosphorylation sites in the C-terminus 

region of IRF3.  The first region is located at Ser385/Ser386, while the second region is at 

Ser396/Ser398/Ser402/Thr404/Ser40562, 63.  Upon viral infection, IRF3 is phosphorylated 

at its C-terminus.  Although the precise residue critical for IRF3 activation is still a 

subject of intense debate64-67, it is widely accepted that phosphorylation must occur 

within the 385-405 amino acid region for IRF3 to be activated
68-70

, and mutation of the 

serine residues in this region into aspartic acid results in a constitutively active IRF3 

mutant
69

 (Figure 1.5).  Phosphorylated IRF3 undergoes a conformational change that 

exposes the DBD and the IAD, facilitating homo-dimerization as well as interaction with 
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the CREB/p300 cofactor62, 63, 71.  Binding with CREB/p300 allows IRF3 to shuttle into the 

nucleus where it forms a complex with other viral response proteins such as NF-κB
72-

75.  This complex can then bind to ISRE sequences and induce transcription of genes 

critical for the antiviral response, including Ccl5, Ifnβ, and Ifit1
59, 61, 76, 77

.  Activated IRF3 

is shuttled out of the nucleus via its nuclear export sequence, after which it rapidly 

undergoes proteasomal degradation, thus ensuring the timely termination of the 

inflammatory response70, 75, 78, 79. 

 

Figure 1111....５５５５Schematic of the IRF3 protein. 

The IRF3 protein has a cluster of phosphorylation sites in its C-terminus.  Mutation of 

amino acids 396 and 398 from serine to aspartic acid results in the 2D mutant that is 

constitutively active. 

 

           The signaling pathways leading to IRF3 activation in the adipocyte have not been 

identified, but it is well studied in immune cells.  IRF3 activation is initiated by pathogen 

associated molecular patterns binding to toll like receptor 4 (TLR4), located on the cell 

surface
54, 61

.  TLR4 recognizes a diverse group of ligands including lipopolysaccharide 

(LPS), the fusion protein of respiratory syncytial virus, and certain free fatty acids 

(FFAs)
80-82

, while its signaling depends on four adaptor molecules, including myeloid 
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differentiation factor 88 (MyD88)83, 84, TIR domain containing adaptor protein (TIRAP)85, 

86
, TIR containing adaptor molecule 1 (TICAM1)

87, 88
, and TRIF related adaptor molecule 

(TRAM)89, 90.  Ligand binding activates two pathways downstream of TLR4: the MyD88-

dependent and the MyD88-independent pathways.  Signaling through the MyD88-

independent pathway activates Iκβ kinase ε (IKKε) and TANK binding kinase 1 (TBK1), 

which together phosphorylate IRF3, leading to its dimerization and translocation
91-93

 

(Figure 1.6). 

 

Figure 1111....６６６６IRF3 signaling pathway in immune cells. 
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Interestingly, TLR4 has been implicated in the crosstalk of innate immunity and 

metabolism as well.  TLR4 is expressed in adipocytes and has been shown to be a target 

of free fatty acids, which are present at increased levels during obesity80.  FFAs increase 

the expression of inflammatory cytokines downstream of TLR4, such as IL-6 and TNFα, 

while deletion of TLR4 substantially decreases levels of inflammatory cytokines and 

ameliorates the FFA-mediated insulin resistance
80, 94

.  Hematopoietic cell-specific 

deletion of TLR4 via bone marrow transplantation results in protection from HFD 

induced insulin resistance
94

.  This is exemplified by decreased serum insulin and 

enhanced glucose clearance in the insulin tolerance test.  Hematopoietic cell-specific 

TLR4 deletion also results in improved hepatic insulin resistance and decreased hepatic 

and adipose inflammation on HFD94.  Thus TLR4 in hematopoietic-derived cells is a 

regulator of whole body insulin response. 

IKKε has also been found to play a role in metabolism.  Diet induced obesity 

increases the expression of IKKε in adipose tissue and liver
95

.  IKKε knockout mice are 

protected from diet induced obesity and show increased body temperature, energy 

expenditure, and food intake.  The IKKε mouse also exhibits enhanced insulin sensitivity 

compared to WT when challenged with high fat diet (HFD), with decreased serum 

glucose, insulin, and cholesterol levels, as well as better performance in both the 

glucose tolerance test and the insulin tolerance tests.  Additionally, IKKε knockout mice 

are also protected from HFD induced hepatic steatosis and obesity induced systemic 

inflammation
95

.   
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Because IRF3 is a major downstream transcription factor of both TLR4 and IKKε61, 

91
, it is likely to be involved in the gene regulation events leading to the downstream 

effects of both proteins.  Thus we hypothesize IRF3 to be a player in the transcriptional 

regulations mediating the crosstalk between immunity and metabolism. 

 

Obesity and inflammation are closely linked 

 The actions of the immune system and the metabolic machinery are closely 

linked.  Clinical observations show that obese patients exhibit 2-3 fold elevated 

circulating levels of proinflammatory cytokines including TNFα, IL-6, and C-reactive 

protein (CRP) corresponding to decreased insulin sensitizing hormones, such as 

adiponectin
96-98

.  Obesity is not only associated with chronic low grade systemic 

inflammation, peripheral tissues including adipose tissue, liver, and muscle are also 

found to be in an inflamed state during obesity
99

.  This state of inflammation is a crucial 

contributing factor to the comorbidities of obesity, including insulin resistance and type 

2 diabetes (T2D)
97, 100, 101

.  

 Obesity is characterized by the expansion of the adipose tissue102, 103.  This 

expansion is due to both adipocyte hyperplasia and hypertrophy to accommodate the 

need for storage space for the excess fuel102, 104.  Rapid WAT expansion results in 

hypoxia in poorly vascularized regions of the tissue which eventually become necrotic.  

Macrophages are recruited to the necrotic regions to remove dying adipocytes105, 106.  

Activated macrophages surround the dying cells, forming “crown like structures,” which 

are now recognized as a classic sign of obesity associated inflammation
105-108

. 
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Even though macrophages were the first immune cells discovered to infiltrate 

WAT, recent data have demonstrated that WAT becomes infiltrated by many other 

groups of immune cells, including T cells109, 110, B cells111, mast cells112, and 

eosinophils
113

.  These resident immune cells, as well as the adipocytes themselves, 

contribute to the WAT inflammatory milieu114.   

In obese mouse models, adipocytes and resident immune cells exhibit increased 

expression of inflammatory cytokines including TNFα, IL-6, IL-10, and IL-1β4, 7.  Mouse 

studies have shown TNFα to be a major factor in obesity-associated insulin resistance.  

TNFα protein and mRNA levels are increased in obese humans as well as in mouse 

models of obesity
115-121

.  Expression of TNFα is positively correlated with the level of 

obesity as measured by the body mass index and insulin resistance as assessed by serum 

insulin
118, 119

.  Conversely, TNFα expression is negatively correlated with lipoprotein 

lipase activity in the adipocyte122.  Antibody neutralization of TNFα can lower serum 

glucose levels and improve insulin resistance in obese mice
123-125

.  TNFα deficient mice 

develop diet-induced obesity similar to WT.  Despite a similar degree of obesity, TNFα 

deficient mice are protected from obesity-induced insulin resistance, exhibited by lower 

serum insulin and enhanced glucose clearance in both the glucose and insulin tolerance 

tests
126

.  Alternatively, when the genetically obese model of ob/ob mice are crossed 

with mice harboring a loss-of-function mutation in the p55 and p75 TNFα receptors, the 

resulting animals exhibit decreased serum glucose and insulin, as well as enhanced 

performance in the insulin and glucose tolerance tests compared to ob/ob mice with WT 
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TNFα receptors126.  In vitro, TNFα treatment also hinders insulin stimulated glucose 

uptake in 3T3-L1 adipocytes
117, 127

.   

Functional studies show that TNFα interferes with the metabolic function of the 

adipocyte via multiple pathways.  First, it can increase reactive oxygen species (ROS) in 

adipocytes, which induces insulin resistance128, 129.  TNFα treatment of 3T3-L1 

adipocytes results in the upregulation of ROS-related genes, and the addition of 

antioxidants can prevent 25-65% of the insulin resistance caused by TNFα127.  These 

results indicate that TNFα induces adipose insulin resistance at least in part via elevating 

ROS.  Secondly, it can impair insulin signaling by interfering with insulin receptor 

substrate 1 (IRS1) tyrosine phosphorylation, thus inhibiting subsequent PI-3 kinase (PI-

3k) activation and insulin stimulated glucose uptake117, 130-132.  In addition, it can 

interfere with lipid storage by down-regulating fatty acid transport and lipoprotein 

lipase, resulting in increased lipolysis100, 133.  

 Another inflammatory cytokine, IL-1β, is also a mediator of obesity-induced 

inflammation.  Mice lacking IL-1β or the IL-1β receptor are protected from diet induced 

obesity induced insulin resistance
134, 135

.  Clinically, type 2 diabetic patients also show 

increased IL-1β, while weight loss in type 2 diabetic patients results in reduced adipose 

IL-1β expression
136

.  Mechanistically, IL-1β directly inhibits insulin signaling via negative 

regulation of IRS-1 expression and hindrance of IRS-1 tyrosine phosphorylation, which 

together contribute to insulin resistance
137

.   

IL-1β is a component of the NOD-like receptor family pyrin domain-containing 3 

(NLRP3) inflammasome protein complex, which plays a role in the innate immune 
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response to infection138.  Activation of the NLRP3 inflammasome leads to caspase-1-

dependent cleavage of the latent pro-IL-1β into the active IL-1β
139

.  Studies indicate 

Caspase-1 to also be involved in whole body metabolism.  Metabolic characterization of 

Caspase-1 deficient mice show protection from diet-induced obesity and improved 

insulin sensitivity on HFD140. 

 In addition to TNFα and IL-1β, numerous other cytokines have been implicated in 

obesity associated inflammation97.  For instance, IL-6 expression is increased in both the 

adipocytes and infiltrating immune cells in WAT during obesity, and elevated IL-6 levels 

have been found to promote insulin resistance97. 

 In addition to proinflammatory cytokines such as TNFα and IL-1β, many kinases 

involved in the inflammatory signaling pathway are also activated in obese adipose 

tissue.  This includes the kinase c jun N terminal kinase (JNK)
141

, inhibitor of NF-κB kinase 

(IKKβ)142, 143, and protein kinase C (PKC)144-146.  Previous studies have also implicated 

these signaling molecules in obesity associated insulin resistance.  For instance these 

kinases can activate NF-κB, resulting in further increase in proinflammatory cytokine 

expression
97, 100

.   

Interestingly, the actions of NF-κB are closely related to that of IRF3 in immunity.  

NF-κB is a key player in the innate immune response
147

.  Like IRF3, latent NF-κB is 

sequestered in the cytoplasm.  Signaling through TLR4 leads to activation and nuclear 

translocation of NF-κB
148

.  Nuclear NF-κB can form a heterodimer with IRF3 to activate 

transcription of downstream genes, including inflammatory cytokines such as TNFα and 

IL-6
147, 148

.  Obese patients show chronically increased activation of NF-κB in the adipose 
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tissue149.  Treating mice with glucose or lipid infusions can also increase adipose tissue 

NF-κB activity
142, 146, 150, 151

.  In vitro, palmitate treatment activates NF-κB in cultured 

3T3-L1 adipocytes152.  Conversely, stimulation with adiponectin or PPARγ, which are 

both insulin sensitizers, suppresses NF-κB activity in adipocytes
153-155

. 

JNK, IKKβ, and PKC also directly interfere with insulin signaling by 

serine/threonine phosphorylating IRS1, thus preventing its activation and downstream 

PI-3K recruitment, resulting in the inability to activate the insulin signaling pathway97, 144, 

145
.  Metabolic characterization of JNK1 deficient mice shows that they are protected 

from diet induced obesity and insulin resistance141.  Mice heterozygous for IKKβ exhibit 

enhanced insulin sensitivity
143

.  Clinical studies show that treatment with salicylates, 

which are known IKKβ inhibitors, enhances insulin sensitivity in patients with type 2 

diabetes
97, 100, 133

.   

 The interaction between the metabolic and the immune system has been a field 

of intense study in the past two decades.  It is now well accepted that many signaling 

molecules can both activate inflammatory pathways while inhibiting metabolic function 

and many cytokines can signal to both immune and metabolic organs.  However, the 

transcriptional pathways regulating this crosstalk are still unknown.  We believe that 

studying the role of IRF3 in adipocytes will shed light on this question. 

 

Overview of Dissertation 

 Chapter 2 of this dissertation will discuss the role of IRF3 in promoting the 

inflammatory milieu in both WAT and cultured adipocytes.  We employed lentiviral 
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mediated IRF3 overexpression and knockdown in 3T3-L1 adipocytes followed by gene 

expression analysis to study the effect of IRF3 on the adipocyte inflammatory profile.  

The inflammatory state of WAT in Irf3-/- mice is characterized by studying the extent of 

WAT macrophage infiltration.  Chapter 3 focuses on discovering how IRF3 regulates 

energy homeostasis.  We studied the thermogenic profile of IRF3 whole body knockout 

mice.  The effect of IRF3 on adipocyte “browning” is also characterized using cultured 

primary adipocytes from the SVF of the inguinal WAT of WT vs. Irf3-/- mice.  Chapter 4 

looks into the role of IRF3 on insulin action.  We characterized the metabolic phenotype 

of the Irf3-/- mice.  Additionally we studied the effect of IRF3 on insulin action in cultured 

adipocytes.  In summary we found IRF3 to strongly elevate inflammatory genes in 

adipocytes.  Furthermore, it also influences energy homeostasis by suppressing adipose 

tissue “browning” and regulates glucose homeostasis by transcriptional control of 

adipose Slc2a4.
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Chapter 2  

IRF3 regulates adipocyte inflammation 
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Introduction 

 

IRFs are transcription regulators of type I interferon and interferon-inducible 

genes
57

.  Specifically, IRF3 is recognized as the major effecter of the induction of 

interferon gene expression as part of the innate immune response to viral infection
61

.  

Upon viral infection, TLRs recognize pathogen-associated molecular patterns, and then 

activate the innate immune response pathway
54

.  IRF3 acts downstream of TLR4, which 

recognizes a diverse group of ligands, including bacterial LPS, the fusion protein of 

respiratory syncytial virus, and FFAs
54, 80

.  Ligand binding to TLR4 causes IRF3 to become 

phosphorylated, after which it dimerizes and translocates into the nucleus, where it 

activates downstream genes including Ccl5, Ifnβ, and Ifit1
69, 91

.  Activation of these 

interferon response genes results in the mounting of the host innate immune 

response
54

.  In addition to activating the innate immune response, IRF3 is a mediator of 

bacteria-induced apoptosis in macrophages, which is triggered upon TLR4 activation
60

.  

Lastly, IRF3 is also a downstream mediator of DNA dependent protein kinase, which 

activates DNA damage induced apoptosis
57

. 

Sato et al. created the Irf3
-/-

 mouse in 2000 and characterized its immunological 

phenotype
156

.  Consistent with IRF3’s role in the innate immune response, the Irf3
-/-

 

mouse was found to be susceptible to encephalomyocarditis virus infection
156

.  

Additionally, the Irf3-/- mouse was also found to be resistant to LPS-induced endotoxic 

shock, which is expected since IRF3 is a mediator of LPS induced TLR4 signaling
157

.  
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However, no abnormalities were observed in the size, behavior, or reproduction of Irf3-/- 

mice
156

. 

In the past 20 years there has been a growing recognition of the close link 

between the immune system and the metabolic system.  Obesity is associated with 

chronic low grade systemic inflammation, and peripheral metabolic tissues including 

adipose tissue, liver, and muscle also show signs of inflammation during obesity
97

.   

Under obese conditions the adipose tissue quickly expands in order to store the 

excess energy in the form of lipids
102, 103

.  Rapid WAT expansion results in hypoxia in 

poorly vascularized regions of the tissue which eventually becomes necrotic106.  

Macrophages are recruited to the necrotic regions to remove the dying adipocytes
97, 105

.  

Resident macrophages also switch from the M2 polarized anti-inflammatory state 

during lean conditions toward a M1 polarized pro-inflammatory state during obese 

conditions158, 159.  Additionally, obesity also elevates the secretion of inflammatory 

cytokines in the adipose tissue including TNFα, IL-6, IL-10, and IL-1β
4, 7

.   

Interestingly, IRF3 has been implicated in the crosstalk between immune 

response and metabolic function.  Activation of IRF3 during viral infection inhibits liver X 

receptor (LXR) activation and downstream induction of Abca1 in macrophages.  This 

leads to an inability of macrophages to rid themselves of excess cholesterol during an 

infection
160

.  Additionally, statins, which are inhibitors of the HMG-CoA reductase 

enzyme in cholesterol production, have also been found to inhibit IRF3 activation in 

macrophages
161

. 
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One the other hand, IRF3 function in macrophages can also be inhibited by 

nuclear receptor signaling.  Treatment with the Pparγ ligand troglitazone inhibits IFN-β 

production in mice following LPS injection162.  In vitro studies in macrophages found that 

troglitazone prevents IRF3 binding to the ISRE site in the Ifnβ promoter while enhancing 

Pparγ binding to the same site.  This results in a reduction of IFN-β production in 

macrophages during microbial infection
162

.   

Since IRF3 is highly expressed in adipocytes, we hypothesized that IRF3 is also a 

transcriptional regulator of the inflammatory pathway in adipocytes.  We speculated 

that deletion of IRF3 may hamper activation of the inflammatory pathway in adipocytes 

of Irf3
-/-

 mice, and would subsequently lead to reduced overall systemic inflammation 

during the obese state, with beneficial metabolic consequences. 

 

Materials and methods 

 

3T3-L1 adipocytes 

3T3-L1 cells (ATCC) were cultured in high glucose DMEM (Invitrogen) 

supplemented with 10% bovine calf serum (Hyclone).  Proliferating cells were 

maintained at or below 70% confluency.  For adipogenic differentiation, cells were 

grown until two days after confluency then stimulated with an adipogenic cocktail 

including dexamethasone, insulin, and isobutylmethylxanthine in high glucose DMEM 

supplemented with 10% fetal bovine serum (FBS) (Atlas Biologicals)
163, 164

.  Cells were 

stimulated for 48 hours, after which they were maintained on high glucose DMEM/FBS 
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until further experimentation.  All experiments were performed at least seven days after 

adipogenic differentiation to ensure that adipogenesis was complete. 

 

IRF3 knockdown and overexpression in 3T3-L1 adipocytes 

 IRF3 knockdown and overexpression experiments were performed by lentiviral 

transduction into mature 3T3-L1 adipocytes.  For overexpression experiments, IRF3 

cDNA was cloned into the pCDH-CMV-MCS-EF1-puro lentiviral construct (System 

Biosciences).  For knockdown experiments shIRF3 hairpin designed by the Broad 

Institute RNAi Consortium (TRCN0000085242) was cloned into pSIH1-H1-copGFP 

lentiviral construct (System Biosciences). 

 Lentivirus was generated by transient transfection of the appropriate viral 

construct and two packaging vectors pMD2.g and psPAX2 (Addgene) in a mass ratio of 

10μg:5μg:5μg respectively into ~80% confluent HEK293T cells using the ProFection 

calcium phosphate transfection kit (Promega).  Transfected HEK293T cells were changed 

into fresh high glucose DMEM medium (Gibco) containing 10% FBS (Atlas Biologicals) 16 

hours later.  The viral-laden media was collected 48 hours after the transfection, filtered 

through a 0.4uM filter (BD Biosciences), and frozen down at -80⁰C for later use. 

 3T3-L1 adipocytes were transduced with lentivirus 7 days after adipogenic 

differentiation.  Viral-laden media was warmed to room temperature and mixed with 

7ug/ml polybrene then applied to 3T3-L1 adipocytes for 12hr.  To achieve optimal 

transduction efficiency, 3T3-L1 adipocytes were subjected to 2 successive rounds of viral 

transduction.  At the end of a total of 24hr of viral transduction 3T3-L1 adipocytes were 
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switched back to fresh DMEM media containing 10% FBS.  Subsequent experiments 

were performed 6-10 days after viral transduction. 

 

Microarray 

 Microarray was performed using cDNA from 3T3-L1 adipocytes after IRF3 

overexpression or knockdown.  All experiments were performed in duplicates.  Illumina 

mouse whole genome microarray was used for this experiment, and all procedures were 

performed by the Broad Institute genetic analysis platform. 

Normalization:  All data were normalized using the quantile algorithm implemented in 

the 'limma' package in R. All signal intensities were log2 transformed. 

Differentially expressed genes: We first set the cutoff of fold-change as 0.35. There were 

< 0.1% probes with fold-change > 0.35 or < -0.35 in pairs of biological repeats.  We then 

set the cutoff of signal intensity as 6.6. Only < 0.1% probes in background may have 

signal intensity > 6.6 according to Illumina's array image scanning results.  

The differentially expressed genes met the following criteria: 

1. Maximal signal intensity > 6.6 in EGFP, IRF3, shLuc, or shIRF3 samples  

2. Absolute value of fold-change was greater than 0.35 in both IRF3 vs. EGFP comparison 

and shLuc vs. shIRF3 comparison. 

3. The directions of differential expression in EGFP vs. IRF3 comparison and in shLuc vs. 

shIRF3 comparison are the opposite. 
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Pathway analysis: Gene Set Enrichment Analysis (GSEA) algorithm was used to identify 

KEGG pathways significantly associated with the expression profile alteration between 

different conditions. 

Heatmap: All signals in heatmaps were pseudo-relative signals. For the purpose of 

visualization, we artificially normalized signals so that pseudo-signals at each row in 

heatmaps have a mean value of 0 and standard deviation of 1. 

 

Q-PCR 

 Tissue was harvested from mice and homogenized in Trizol (Invitrogen).  Total 

RNA was harvested using the manufacturer’s suggested protocol.  mRNA concentration 

was measured using a NanoDrop ND-1000 spectrophotometer and 1ug of mRNA was 

then used to synthesize cDNA using the RETROscript 2-Step RT-PCR Kit (Ambion).  The 

resulting cDNA product was diluted by 10-fold with water and subjected to real time 

qPCR with the SybrGreen reagent (ABI) in the ABI 7900-HT qPCR apparatus.  36B4 was 

utilized as an internal control for each sample.  Relative expression of each gene was 

calculated using the ΔΔCt method. 

 

Animals 

 All animal procedures used in this study were approved by the Institutional 

Animal Care and Use Committee (IACUC) of Beth Israel Deaconess Medical Center.  All 

mice were kept under 12 hr light : dark conditions at an ambient temperature of 73⁰F 

(22.8⁰C).  Mice were housed at 1-5 per cage and were fed ad libitum on chow diet 
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consisting of Purina Diet #5008.  High fat diet (HFD) fed animals were given Research 

Diets #D12331i with 58% kcal from fat beginning at three weeks of age. 

 The Irf3-/- mice were purchased from Riken BioResource Center.  These mice 

have been completely backcrossed onto a C57BL/6 background, and all subsequent 

generations were maintained on a C57BL/6 background. 

 Mice cohorts were generated by mating heterozygous males and females with 

each other, and offsprings were born in genotypes in the expected Mendelian ratios.  

WT and Irf3
-/-

 littermates were used for all studies. 

 

Serum cytokine measurements 

 Mice were fasted overnight and fasting serum was collected from cheek bleed 

using a 5.5mm sterile animal lancet (Goldenrod).  Fasting serum was separated from 

whole blood by centrifugation at 3000 rpm for 5 min at 4⁰C in BD Microtainer serum 

separator tubes (BD Bioscience #365956).  Serum MCP-1 was measured using the 

Quantikine mouse MCP-1 immunoassay kit (R&D Systems #MJE00).   

 

Tissue histology 

 WAT and BAT were collected from chow and HFD-fed mice.  Fresh tissue was 

fixed by incubating in 4% paraformaldehyde in PBS overnight at 4⁰C.  Fixed tissue was 

paraffin embedded, sectioned, and mounted onto microscope slides.  Slides were 

stained with hematoxylin-eosin (H&E), anti-F4/80, or anti-UCP1 (Abcam #ab10983).  All 

tissue histology was performed by the BIDMC histology core facility. 
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 Tissue slides were visualized using a Zeiss Axio Imager A1 microscope fitted with 

a Zeiss Axiocam at 10 times magnification.   

 

Statistical analysis 

 Unpaired t-tests or one-way ANOVA were applied to the data with either 

Bonferroni or Fisher-post hoc tests. 

 

Results 

 

Lentiviral transduction can effectively manipulate IRF3 expression in 3T3-L1 adipocytes. 

 We sought to study the effects of IRF3 on inflammatory gene expression in 

adipocytes using gain- and loss-of-function models. We began our analysis in 3T3-L1 

cells, one of the best characterized models of adipocytes in culture
165, 166

.  We and 

others have long used retroviral vectors to manipulate gene expression in proliferating 

cell lines such as 3T3-L1 preadipocytes.  However, we have previously identified IRF3 as 

an inhibitor of adipogenesis, and so to study the role of IRF3 in mature adipocytes, all 

manipulations must be performed after differentiation is complete.  Since mature 3T3-

L1 adipocytes are notoriously difficult to transfect with reagents such as calcium 

phosphate or lipofectamine, we chose lentiviral-mediated transduction for this study. 

 The mouse IRF3 cDNA was cloned into the pCDH lentiviral vector for 

overexpression experiments.  Previous studies in immune cells have shown that under 

basal conditions IRF3 resides in the cytoplasm and is inactive.  Under appropriate 
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stimulation, such as during viral infection, IRF3 becomes phosphorylated, undergoes 

dimerization, and subsequently translocates into the nucleus, where it can activate 

transcription of downstream genes61, 91.  A cluster of key phosphorylation sites involved 

in this process has been identified in the C-terminus of the IRF3 protein, and mutation of 

amino acids 396 and 398 from serine to aspartic acid has been found to result in a 

constitutively active form of IRF3 that can translocate into the nucleus and activate 

transcription of downstream genes without additional stimulation62, 63, 69.  Therefore, to 

mimic active IRF3 we mutated amino acids 396 and 398 to create a constitutively active 

pCDH lentiviral IRF3 construct. 

 Overexpression of IRF3 was performed by lentiviral transduction into 3T3-L1 

mature adipocytes seven days after differentiation, which we consider to represent the 

mature state.  An EGFP-expressing viral vector was used as control.  Two days after viral 

transduction, visualization of EGFP shows very high transduction efficiency of ~90% 

(Figure 2.1A).  Six days after viral transduction, RNA and protein were harvested and Q-

RTPCR and Western blot experiments were performed to assess IRF3 overexpression 

efficiency.  Q-RTPCR showed significant overexpression of constitutively active IRF3 

(IRF3-2D), but the wild type IRF3 (wtIRF3) overexpression was much stronger (Figure 

2.1B).  Despite this, IRF3-2D overexpression induced greater expression of Ifit1 and Ccl5, 

two IRF3 downstream target gene, than wtIRF3 (Figure 2.1C and D).  This indicates that 

IRF3-2D can indeed act as a potent constitutively active form of IRF3 in adipocytes.  The 

inability to overexpress IRF3-2D and wtIRF3 to an equal level may be due to a negative 

feedback mechanism initiated by active IRF3 protein.  Although previous studies have 
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not identified any negative feedback mechanism in IRF3 action, IRF4 has been 

implicated in the negative feedback suppression of TLR signaling
167

.  Therefore, we 

hypothesize that IRF3 may be involved in a similar mechanism of negative feedback so 

that active IRF3 levels cannot be grossly overexpressed.   

On the protein level, Western blot experiments showed that both wtIRF3 and 

IRF3-2D protein were highly overexpressed (Figure 2.1E).  It is interesting to note that 

although on the mRNA level, wtIRF3 overexpression is much stronger compared to IRF3-

2D overexpression, on the protein level the extent of overexpression is similar in both 

wtIRF3 and IRF3-2D.  One possible cause for this discrepancy is that the IRF3-2D 

mutation may increase the translational efficiency of the protein in adipocytes.  

Although we did not further explore this possibility, it is a future area to explore in 

studying the regulation of IRF3 activation in adipocytes. 
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Figure 2222....１１１１    Lentiviral transduction can overexpress IRF3 in 3T3-L1 adipocytes. 
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Figure 2.1 (Continued). 3T3-L1 adipocytes were transduced with pCDH virus expressing 

EGFP, IRF3, or IRF3-2D seven days after adipogenesis.  A) Live visualization of pCDH-

EGFP transduced cells.  B-D) Q-RTPCR of IRF3 and representative target genes in 

transduced cells *P<0.05.  E) Western blot of transduced cells. 

 

For IRF3 knockdown experiments, a shIRF3 hairpin was cloned into the pSIH1 

lentiviral vector, which encodes GFP in its backbone for easy assessment of transduction 

efficiency.  Lentiviral transduction into 3T3-L1 mature adipocytes was performed seven 

days after differentiation, and transduction efficiency was assessed two days later by 

visualization of GFP (Figure 2.2A).  Eight days after transduction, cells were harvested for 

Q-RTPCR and Western blot experiments.  Both Q-RTPCR and Western blot showed IRF3 

knockdown efficiency to be ~60-70% (Figure 2.2B and C).  We were never able to 

achieve a greater amount of knockdown efficiency, likely due to intrinsic limitations of 

the specific shIRF3 hairpin sequence, since GFP visualization showed very high 

transduction efficiency (Figure 2.2A).  To overcome this limitation, several other shIRF3 

hairpin sequences were assessed but none could achieve a higher knockdown efficiency.  

Therefore we chose to proceed with this shIRF3 hairpin. As discussed later, we used Irf3-

/-
 mouse embryonic fibroblast (MEF)-derived adipocytes as an additional genetic loss-of-

function model to confirm our experimental results. 
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Figure 2222....２２２２    Lentiviral transduction of shIRF3 causes knockdown of IRF3 RNA and 

protein levels in 3T3-L1 adipocytes. 

3T3-L1 adipocytes were transduced with pSIH1 virus expressing either shLuc or shIRF3 

seven days after adipogenesis.  A) Live visualization of pSIH1-shLuc transduced cells.  B) 

Q-RTPCR of IRF3 gene expression in transduced cells *P<0.05.  C) Western blot of IRF3 in 

transduced cells. 

 

IRF3 regulates inflammatory genes in adipocytes. 

 We performed transcriptional profiling using Illumina mouse whole genome 

microarrays to assess the effect of IRF3 knockdown and overexpression in adipocytes.  

RNA was harvested from 3T3-L1 adipocytes transduced with IRF3-2D or EGFP control, as 

well as from cells transduced with shIRF3 or shLuc control.  Gene set enrichment 
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analysis (GSEA)
168

 showed that the genes most strongly regulated by IRF3 were those in 

the immune response pathway (Figure 2.3A and B).  This cluster of genes was 

coordinately upregulated by IRF3 overexpression and downregulated by IRF3 

knockdown.  The second most strongly regulated group of genes was involved in GTPase 

activity (Figure 2.3B).  GTPase activation is a part of the inflammatory response 

pathway
169

, and many of the GTPase activity genes identified in the microarray were 

those involved in inflammatory response, indicating that IRF3 is indeed a critical 

regulator of adipocyte inflammatory response. 

 
Up-regulated by IRF3-2D  P-value Down-regulated by shIRF3  P-value 

Immune response  1.3x10
-14

 Immune response 1.4x10
-6

 

GTPase activity 3.3x10
-6

 GTPase activity 4.7x10
-4

 

Cytokine production 2.7x10
-3

 Endocytosis 2.2x10
-2

 

Ubiquitin 3.0x10
-2

 Lipoprotein 2.0x10
-1

 

DNA damage response 4.5x10
-2

 Protein kinase activity 6.0x10
-1

 

Figure 2222....３３３３    Immune response genes are among the top group of genes regulated by 

A

IR
F

3
-2

D

E
G

F
P

sh
Lu

c

sh
IR

F
3

B 



41 

 

Figure 2.3 (Continued). IRF3 in adipocytes. 

Whole genome transcriptional profiling of 3T3-L1 adipocytes transduced with pCDH-

EGFP, pCDH-IRF3-2D, pSIH1-shLuc, or pSIH1-shIRF3.  A) Heat map of microarray.  B) Top 

five clusters of genes most highly upregulated by IRF3-2D or downregulated by shIRF3 in 

the microarray identified by GSEA.   

 

To confirm the results from the microarray, Q-RTPCR was performed on several 

of the top genes identified in the immune response cluster, including Ifnβ, Ifit1, Ccl5, 

and Mcp1.  We focused on these four genes because they showed some of the largest 

fold inductions by IRF3-2D overexpression in the microarray, and previous studies in 

immune cells indicate that Ifnβ, Ccl5, and Ifit1 are direct transcriptional targets of IRF369, 

91
.  Indeed, these genes were strongly induced by IRF3 overexpression, while suppressed 

by IRF3 knockdown (Figure 2.4A and B).  Additionally, the expression of these genes in 

epididymal WAT from WT and Irf3
-/-

 mice was assessed; as expected, Irf3
-/-

 WAT showed 

marked reduction in the expression of these genes compared to WT littermates, in both 

chow and HFD-fed conditions (Figure 2.4C and D).   
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Figure 2222....４４４４    IRF3 is a regulator of inflammatory gene expression in adipocytes in vitro 

and in vivo. 

Expression analysis of immune response genes by Q-RTPCR in adipocytes.  A) IRF3-2D 

overexpression in 3T3-L1 adipocytes.  B) IRF3 knockdown in 3T3-L1 adipocytes.  C) 

Chow-fed male epididymal WAT. D) HFD-fed male epididymal WAT. *P<0.05 

 

IRF3 deletion does not reduce systemic MCP-1 level. 
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16 weeks of either chow or HFD feeding.  As expected, HFD feeding increased the serum 

MCP-1 level since diet induced obesity is known to be an inducer of systemic 

inflammation.  However, Irf3-/-
 and WT mice showed similar levels of MCP-1 (Figure 2.5), 

indicating that while IRF3 has potent effects at the level of the adipocyte, it may not be 

a critical regulator of the systemic inflammatory state. 

 

Figure 2222....５５５５ IRF3 deletion does not affect serum MCP-1 level. 

Fasting serum MCP-1 ELISA, *P<0.05. 

 

IRF3 deletion does not reduce macrophage infiltration in WAT. 

 Adipose tissue-derived MCP-1 is involved in the recruitment of macrophages to 

white adipose tissue in obesity
106, 108

.  Since IRF3 regulates MCP-1 expression in WAT, 

we asked whether deletion of IRF3 would reduce macrophage recruitment under high 

fat fed conditions.  Male Irf3
-/-

 and WT mice were subjected to 16 weeks of high-fat 
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feeding after which their epididymal WAT was harvested and sectioned.  Staining with 

H&E showed no difference in the appearance of adipocytes between the two genotypes 

(Figure 2.6A).  To assess for macrophage infiltration, sections were subjected to 

immunohistochemistry against the macrophage marker F4/80.  Comparison between 

Irf3
-/-

 and WT did not show any difference in the number of crown-like structures, which 

are formed by macrophages surrounding an inflamed adipocyte (Figure 2.6A and B). 
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Figure 2222....６６６６    Loss of IRF3 does not affect adipose tissue macrophage infiltration in high 

fat fed mice. 
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Figure 2.6 (Continued). Immunostaining of epididymal WAT from male HFD fed mice.  A) 

H&E and F4/80 staining.  B) Quantification of the number of crown-like structures per 

low power field in F4/80 stained WAT.  N=114 fields per genotype. 

 

Discussion 

 

IRF3 is an important transcriptional regulator of innate immunity.  Therefore we 

hypothesized that IRF3 can also regulate inflammatory gene expression within 

adipocytes.  To this end we employed lentiviral mediated IRF3 knockdown and 

overexpression in 3T3-L1 adipocytes, and then used whole genome microarray analysis 

to find IRF3-regulated genes.  Indeed, the top cluster of genes showing coordinate up-

regulation by IRF3 overexpression and down-regulation by IRF3 knockdown were those 

in the immune response pathway.  This result indicates that IRF3 plays a similar 

transcriptional role in adipocytes as noted by others in immune cells.  Interestingly Kopp 

et al. found that IRF3 is not a mediator of LPS-induced inflammation in 3T3-L1 

adipocytes
170

.  However, in the Western blot used to demonstrate this, Kopp et al. did 

not use a positive control170.  Therefore, this experiment is inconclusive because one 

cannot determine whether the LPS stimulation produced a proper inflammatory 

response in the 3T3-L1 adipocytes, or if the antibody worked properly. 

 To our surprise, further analysis of the inflammatory state of Irf3
-/-

 mice found no 

difference between in the extent of macrophage infiltration of WAT between Irf3-/-
 mice 



47 

 

and WT littermates.  The state of systemic inflammation was also indistinguishable 

between the two genotypes, shown by the similar serum levels of the inflammatory 

cytokine MCP-1 in the serum. 

 We used MCP-1 as a marker of systemic inflammation because it is an important 

chemokine secreted by adipocytes during obesity-induced inflammation.  Increased 

MCP-1 secretion in the adipose tissue recruits monocytes into the adipose tissue, where 

they differentiate into macrophages171, 172.  These macrophages themselves also secrete 

MCP-1 which help build up even more macrophages in the adipose tissue, resulting in a 

positive feedback mechanism perpetuating the increase of adipose tissue macrophages 

during obesity induced inflammation
106

. 

 Although MCP-1 is an important player in inflammation, many other chemokines 

and cytokines are involved in this process.  For instance, leukotriene B4 (LTB4) is 

another chemokine secreted by adipocytes during obesity induced inflammation to 

recruit neutrophils into the adipose tissue
173, 174

.  Mice lacking the LTB4 receptor, BLT1, 

are protected from obesity-induced inflammation and insulin resistance175.  Additionally, 

many inflammatory cytokines are also upregulated during obesity induced inflammation.  

The expression of TNFα, a proinflammatory cytokine, is increased in the adipose tissue 

during obesity, while serum TNFα is also elevated in obese individuals
118, 119, 121, 123

.  

Another proinflammatory cytokine, IL-6 is also elevated in obese individuals and 

reduced with weight loss
96

.  These and other proinflammatory chemokines and 

cytokines may be regulated by IRF3.  Therefore, to gain a more complete understanding 

of the systemic inflammatory state of Irf3
-/-

 mice we will need to measure the serum 
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concentrations of additional chemokines and cytokines.  Since IRF3 is a positive 

regulatory of innate immunity we hypothesize that certain inflammatory markers will be 

decreased in the Irf3-/-
 mice. 

 Obesity induced inflammation is manifested as both an increase in systemic 

inflammation as well as local adipose tissue inflammation97.  In this study we used the 

number of F4/80+ macrophages as an indicator of adipose tissue inflammatory state.  

Obesity induced inflammation leads to macrophage infiltration in the adipose tissue106.  

These adipose tissue macrophages secrete proinflammatory cytokines such as TNFα, IL-

1β, and IL-6, all of which can impair insulin action, leading to insulin resistance98, 134, 140, 

176, 177
.  However, two groups of macrophages reside in the adipose tissue, namely 

classically activated macrophages (CAMs), also called M1 macrophages, and 

alternatively activated macrophages (AAMs), also called M2 macrophages
158

.  Although 

moth M1 and M2 macrophages are F4/80+, they are differentiated by the expression of 

CD11c.  While M1 macrophages are CD11c+, M2 macrophages are CD11c- 
158, 159, 178

.  M1 

and M2 macrophages are also distinct in their inflammatory milieu.  While M1 

macrophages mainly secrete proinflammatory cytokines such as TNFα and CXCL5, M2 

macrophages secrete a signature of anti-inflammatory cytokines such as IL-10 and IL-

1Ra
158

.   

During obesity-induced inflammation a majority of the adipose tissue infiltrating 

macrophages are M1
159, 178

.  Mice depleted of all CD11c+ macrophages are protected 

from HFD-induced insulin resistance
179

.  These data indicate that the obesity-associated 

inflammation positively correlates with the amount of M1 macrophage infiltration as 
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oppose to that of M2 macrophages.  In this study we assessed the total number of 

adipose tissue macrophages; however, there may still be a difference between the 

number of M1 macrophages between WT and Irf3-/-
 mice, which will cause a difference 

in adipose tissue inflammation between the two genotypes.  To study this possibility we 

can count the number of F4/80+, CD11c+ and F4/80+, CD11c- cells in the adipose tissue 

of these mice. 

 While we assessed the number of adipose tissue macrophages, many other 

immune cell types have been found to be recruited to the adipose tissue during obesity 

and can contribute to the adipose tissue inflammatory state.  Regulatory T cells (Treg 

cells) secrete anti-inflammatory cytokines that inhibit macrophage recruitment and also 

induce the development of M2 macrophages109, 110.  Clinical studies show that obese 

patients have reduced number of adipose tissue Treg cells
110

.  In contrast CD8+ T helper 

cells (TH1 cells) produce proinflammatory cytokines and are found to be increased in 

obese adipose tissues
110

.  Adipose TH1 cells recruit monocytes to the adipose tissue and 

promote M1 macrophage activation during obesity180. 

 In addition to T cells, B cells are also recruited to the adipose tissue during 

obesity.  Adipose tissue B cells can activate proinflammatory T cells, which in turn 

promote insulin resistance through M1 macrophage activation
111

.  Mast cells are also 

increased in the obese adipose tissue in both human and mouse, and found to play a 

role in obesity induced metabolic disregulation
112

.  Depletion of mast cells in mice 

results in protection from diet induced obesity and improved glucose homeostasis on 

HFD
112

.  Recently, adipose tissue eosinophils have also been found to affect obesity 
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induced inflammation.  Eosinophils are the main producers of anti-inflammatory 

cytokines IL-4 and IL-13 in adipose tissue, which promote the development of M2 

macrophages181.  Obesity results in the reduction of adipose tissue eosinophils, leading 

to a reduction of adipose tissue M2 macrophages.  Mice deficient for eosinophils exhibit 

elevated diet induced inflammation and insulin resistance113. 

 These studies indicate that the inflammatory state of the adipose tissue cannot 

be determined only by the extent of macrophage infiltration.  For a more complete 

picture of the Irf3
-/-

 adipose tissue inflammatory state we can fractionate the adipose 

tissue to collect the stromal vascular fraction and use FACS to sort and count the 

number of different immune cells present, including macrophages, T cells, B cells, mast 

cells, and eosinophils.  Since IRF3 is a positive regulator of inflammatory response we 

hypothesize that there will be a decrease in proinflammatory immune cells and / or an 

increase in anti-inflammatory immune cells in Irf3-/-
 mice. 

 Our results so far indicate that although IRF3 can activate transcription of 

immune response genes in the adipocyte, it is likely not sufficient to alter the chronic 

inflammatory state associated with obesity.  This finding is consistent with previous 

observations made in Irf3
-/-

 mice, which respond normally to most immune challenges 

other than the aforementioned susceptibility to encephalomyocarditis virus infection 

and resistance to LPS-induced endotoxic shock
157

.  Additionally, Irf3
-/-

 dendritic cells are 

still able to respond to viral RNA stimulation by inducing downstream interferon gene 

expression
156

.  This indicates that other factors must play important roles in the innate 

immune response in the absence of IRF3.  One such transcription factor may be IRF7, 
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which has the closest sequence homology to IRF3 among the nine IRF proteins54.  Similar 

to IRF3, IRF7 is activated by TLR4 signaling and can dimerize with NF-κB to induce 

downstream activation of interferon genes156.  To study this possibility one could look at 

the level of IRF7 expression and activity in 3T3-L1 adipocytes after IRF3 knockdown.  If 

IRF7 is indeed compensating for IRF3 we would expect to see elevated IRF7 expression 

and activation after IRF3 knockdown.  Furthermore one can assess the expression of key 

immune response genes after IRF7 knockdown in cultured Irf3-/- adipocytes, which we 

expect to decrease even more compared to that of Irf3
-/-

 adipocytes.   

We found Irf3-/-
 mice to exhibit a decrease in intra-adipocyte inflammation.  

However, since IRF3 is deleted in all cells, whether this change is caused by IRF3 action 

within the adipocyte or by the effect of IRF3 in adipose tissue immune cells is unclear.  

We performed in vitro experiments using IRF3 overexpression or knockdown in 3T3-L1 

adipocytes to show that at least a part of the phenotype is due to cell autonomous 

effects in adipocytes.  To definitively answer this question one can use tissue specific 

knockout models of IRF3, specifically IRF3 adipocyte-specific knockout and IRF3 

macrophage-specific knockout mice.  If the decrease in adipocyte inflammation is 

manifested in the IRF3 adipocyte-specific knockout mouse but not in the IRF3 

macrophage-specific knockout model, then one can conclude that this phenotype is due 

to IRF3 action in the adipocyte but not in the macrophage.  Additionally one can study 

IRF3 tissue-specific knockout models in other immune cells present in the adipose tissue 

such as T cells, B cells, and eosinophils to determine whether they are contributors to 

IRF3’s effects on adipocyte inflammation.   
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We can also use bone marrow transplant models to answer this question.  We 

can irradiate WT mice and replace their bone marrow with that from Irf3
-/-

 mice and vice 

versa.  If Irf3-/-
 mice with WT bone marrow show a decrease in adipocyte inflammation 

while WT mice with Irf3
-/-

 bone marrow do not, then we can conclude that this 

phenotype is not due to the action of IRF3 in hematopoietic-derived cells such as 

macrophages. 

Despite the fact that global immune function appears to be intact in Irf3-/- mice, 

these animals do not have normal metabolic function.  This will be described and 

discussed in the next two chapters.
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Chapter 3  

IRF3 affects energy homeostasis by repressing “browning” of white 

adipose tissue 
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Introduction 

 

Obesity is a result of the imbalance between energy intake and energy 

expenditure
182

.  When the energy content from food consumption outweighs the 

energy expended in everyday activities to maintain life, the excess energy is stored in 

the body in the form of lipids and leads to an increase in body weight
182

. 

Whole body energy expenditure consists of three different components 

including resting energy expenditure (REE), thermic effect of food (TEF), and activity 

energy expenditure (AEE)
182

.  REE makes up the largest portion of energy expenditure.  

It is the energy expenditure at rest required to maintain life.  TEF is the energy 

expenditure required for the digestion and processing of food.  AEE is the energy 

expenditure associated with physical activity, and is made up of two subcomponents, 

namely exercise energy expenditure and non-exercise activity thermogenesis
182

. 

One component of non-exercise activity thermogenesis is adaptive 

thermogenesis, which is a specific function of BAT.  BAT is found in the interscapular 

depot in mice and supraclavicularly in adult humans
12, 16-18

.  In contrast to WAT, which 

stores excess energy in the form of lipids, BAT dissipates energy through adaptive 

thermogenesis
7
.  The process of adaptive thermogenesis is achieved through the 

function of UCP-1, a BAT-specific protein that localizes to the inner mitochondrial 

membrane.  UCP-1 alters the ATP production process in the mitochondria by allowing 

dissipation of the mitochondrial proton gradient without concomitant ATP synthesis
7, 12

. 
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Thus, in brown adipocytes, a significant percentage of oxygen consumption results in 

heat generation instead of ATP production
12

. 

It was previously believed that white and brown adipocytes originate from a 

common progenitor cell, and clinical evidence point to the possible trans-differentiation 

of brown to white adipocyte and vice versa.  For instance, during cold challenge or 

pharmacological treatment with β3-adrenergic receptor agonists, brown adipocyte-like 

cells that can perform adaptive thermogenesis are found in WAT depots7.  These cells 

are also called “BRITE” or “beige” cells. 

However, recent work suggests that WAT and BAT are actually derived from 

distinct precursor populations.  “Classic” brown adipocytes found in the interscapular 

BAT of mice were found to be derived from Myf5 positive precursor cells that also give 

rise to skeletal muscle cells.  Although WAT and BAT are derived from distinct lineages, 

the origin of the beige cells is still under debate, because these cells appear like brown 

adipocytes, but are not Myf5 positive.  Recent data point to the possibility that they are 

derived from WAT resident mesenchymal stem cells from the white adipocyte lineage, 

but poised for “browning”
25, 26

.  However, whether the exact origins of these cells come 

from resident stem cells, committed preadipocytes, or white adipocytes undergoing 

trans-differentiation remains to be determined. 

Human newborn infants have BAT surrounding the great vessels of the thorax 

that helps them maintain normal body temperature; however, this BAT regresses with 

age
183

.  Until recently, it was believed that humans lose BAT completely by adulthood
183

.  

Recently, however, three groups employed positron-emission tomography and 
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computed tomography (PET-CT) to identify active Ucp1-expressing BAT in the 

supraclavicular region of adult humans
16-18

. Although the exact lineage of the brown 

adipocytes in the supraclavicular BAT is still unclear, these findings validate the 

physiological relevance of BAT in human metabolism, and present BAT, as well as 

adaptive thermogenesis as a valid target for novel anti-obesity treatments in human. 

Chiang et al. identified a potential role for IKKε in thermogenesis.  When kept on 

HFD, IKKε
-/- mice were found to have increased food intake coupled with an increase in 

O2 consumption compared to WT, suggesting an overall increase in energy expenditure.  

Additionally, IKKε
-/- mice on HFD also show up-regulation of Ucp1 in WAT as well as a 

1.5⁰C increase in body temperature compared to WT, pointing to an increase in 

adaptive thermogenesis95.  IKKε is an immediate upstream kinase of IRF3 in the innate 

immune response pathway
54

.  Upon antigen binding to TLR4, IKKε and TBK1 are 

activated downstream of the MyD88-independent signaling pathway.  Together IKKε 

and TBK1 phosphorylate IRF3, which leads to its dimerization and translocation into the 

nucleus.  Nuclear IRF3 activates the transcription of downstream genes including 

interferon response genes crucial for the innate immune response
54

. 

 Since IRF3 acts downstream of IKKε, we hypothesized that IRF3 may also play a 

role in energy homeostasis.  Therefore we studied the thermogenic phenotype of Irf3
-/-

 

mice as well as the potential development of beige cells in Irf3
-/-

 WAT. 

 

Materials and methods 
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Animals 

 Please refer to Materials and Methods in Chapter 2 to see a complete 

description of animal housing conditions and diet, as well as breeding schemes.  

 

Body weight and composition 

 Body weight of mice was recorded weekly beginning at three weeks of age.  

Body mass composition was measured using an Echo-MRI 3-in-1 Composition Analyzer 

(Echo Medical Systems, Houston, TX) at 20 weeks of age.  Individual conscious animals 

were placed in a glass tube and placed in the MRI for brief scanning.   

 For tissue weight, each tissue was carefully dissected and weighed on a Mettler 

Toledo AG140 analytical scale. 

 

Food intake 

 Mice food intake was measured daily over a one week period at 21 weeks of age.  

Mice were housed individually and provided the same amount of either chow diet or 

HFD ad libitum.  The amount of food placed into the cage was weighed everyday and 

the amount remaining was weighed again 24hr later, and the daily food intake was 

calculated by taking the difference between the two values.  Food was replaced every 

day after weighing.  Food intake was measured at the end of the daily light cycle.  Data 

were analyzed using two-way ANOVA. 

 

CLAMS 
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Mice metabolic rate was measured by indirect calorimetry in open-circuit 

Oxymax chambers that are a component of the Comprehensive Lab Animal Monitoring 

System (CLAMS, Columbus Instruments).  All mice were acclimatized to monitoring 

cages for 48 hours prior to the beginning of an additional 72 hours of hourly automated 

recordings of physiological parameters.  Mice were housed singly and maintained at 

73⁰F (22.8⁰C) under a 12:12 light dark cycle.  Food and water were available ad libitum.  

Data were analyzed using two-way ANOVA. 

 

Cold exposure 

 Mice were individually housed and given free access to food and water.  Cages 

were placed in an air ventilated 4⁰C cooler and subjected to 12hr light : dark conditions. 

 Body temperature of each mouse was measured individually using a rectal probe 

attached to a Precision Thermometer 4600 (YSI). 

 

Thermoneutral treatment 

 Ten week old male mice were housed 5 per cage and given free access to food 

and water.  Cages were placed in an air ventilated 30⁰C incubator and subjected to 12hr 

light : dark conditions.  Tissues were harvested 3 weeks later. 

 

Tissue histology 

 Please refer to the Materials and Methods section in Chapter 2 for a complete 

description of procedures used for tissue histology.  
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Inguinal WAT SVF isolation 

Inguinal WAT was dissected from pairs of WT vs. Irf3-/- littermates at 5-6 weeks 

of age.  The SVF was dissociated from adipocytes by 1hr incubation in PBS buffer 

supplemented with Collagenase D (Roche) and Dispase II (Roche).  The SVF was further 

purified by filtering through a cell strainer.  The resulting cells were cultured in 1:1 

DMEM/F12 media with Glutamax (Invitrogen) supplemented with 10% FBS and 

Pen/Strep.  Primary SVF cells were maintained no more than five passages. 

For adipogenic differentiation, cells were pretreated with 20ng/ml BMP-4 at one 

day before confluency.  Adipogenesis was induced one day post confluency with an 

adipogenic cocktail containing dexamethasone, insulin, isobutylmethylxanthine, and 

rosiglitazone.  Cells were induced for 48 hours, after which they were maintained in 

DMEM/F12/Glutamax/FBS/Pen/Strep media supplemented with 5ug/ml insulin.  

Adipocytes were harvested for experiments 7 days after adipogenesis. 

 

Q-PCR 

 Please refer to the Materials and Methods section in Chapter 2 for a complete 

description of procedures for Q-RTPCR. 

 

Statistical analysis 

 Please refer to the Materials and Methods section in Chapter 2 for a complete 

description of methods used for statistical analysis. 
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Results 

 

Male Irf3
-/-

 mice have reduced fat mass on HFD. 

 To determine the role of IRF3 in metabolism, we characterized the metabolic 

phenotype of Irf3-/-
 mice.  When kept on chow diet, the body weights of both male and 

female Irf3
-/-

 mice were indistinguishable from their WT littermates (Figure 3.1A and B).  

Body composition analysis was performed using Echo-MRI after 16 weeks of chow diet, 

and revealed no differences in either the lean or fat mass distribution between the two 

genotypes (Figure 3.1C and D). 
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Figure 3333....１１１１  Irf3
-/-

 mice do not show a body weight or body mass composition 

phenotype on chow diet. 

A-B) Weekly body weight of chow-fed A) male and B) female mice.  C-D) Body mass 

composition of chow-fed mice as measured by MRI of A) males and B) females.  N=9-12. 

 

A second cohort of mice was challenged with HFD (58% kcal from fat).  After 24 

weeks of HFD feeding, there was no divergence in the overall body weight between Irf3-

/-
 mice and WT littermates in both male and females (Figure 3.2A and B).  However, after 

20 weeks of high-fat feeding male Irf3-/-
 mice showed a slight but statistically significant 

Male

15

20

25

30

35

WT
Irf3-/-

0                                                     20
Weeks on Chow

b
o

d
y 

w
ei

g
h

t (
g

)
Female

10

15

20

25

30

WT
Irf3-/-

0                                                     20
Weeks on Chow

b
o

d
y 

w
ei

g
h

t (
g

)

0

20

40

60

80

fat mass               lean mass

Irf3-/-
WT

Male

%
 b

o
d

y 
m

as
s

0

20

40

60

80

fat mass               lean mass

Irf3-/-
WT

Female

%
 b

o
d

y 
m

as
s

A

C

B

D



62 

 

decrease in fat mass and an increase in lean mass compared to WT littermates (Figure 

3.2C).  Consistent with this observation, high fat fed female Irf3
-/-

 mice also displayed a 

trend toward decreased fat mass and increased lean mass, but this did not reach 

statistical significance (Figure 3.2D). 

 

Figure 3333....２２２２  Irf3
-/-

 mice have decreased fat mass and increased lean mass on HFD. 

A-B) Weekly body weight of HFD-fed A) male and B) female mice.  C-D) Body 

composition analysis of HFD-fed mice as measured by Echo-MRI of A) males and B) 

females.  N=9-12 *P<0.05. 
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To determine whether IRF3 affects the mass of different fat depots, inguinal 

WAT, epididymal WAT, and BAT were dissected and weighed on an analytical scale.  The 

weights of these three fat pads were indistinguishable between Irf3-/-
 mice and WT 

littermates (Figure 3.3A and B).  The spleen was used as a negative control organ 

because it is a non-metabolic tissue in which IRF3 is highly expressed.  

  

Figure    3333....３３３３        IRF3 deletion does not affect the mass of fat depots. 

 A) Tissue weight of 12 week-old male chow-fed mice.  BAT: brown adipose tissue, I-

WAT: inguinal white adipose tissue, E-WAT: epididymal white adipose tissue.  B) Body 

weight of the mice used in panel A.  N=6. 

 

We thus had to reconcile the observations that the MRI showed decreased 

adiposity, while actual fat pad weights (and body weight) were unchanged. This led us 

to hypothesize that lack of IRF3 may promote the development of brown adipocyte-like 

cells within the WAT. These cells, also called ‘beige’ or ‘BRITE’ cells, can develop within 

white fat pads in certain conditions, such as cold exposure or β3-adrenergic stimulation.  
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Classic BAT, as well as these brown-adipose like cells, have reduced lipid content and 

can possibly be recognized as lean mass by the Echo-MRI machine. 

 

Irf3
-/-

 mice develop beige cells in the inguinal WAT. 

 To determine whether Irf3
-/-

 mice are predisposed to develop beige cells in WAT, 

subcutaneous adipose tissue from the inguinal depot was dissected from 12 week-old 

male mice maintained at room temperature (22.8⁰C), sectioned and stained with 

hematoxylin-eosin (H&E).  One simple way to identify beige cells is to look for the 

presence of multilocularity, which is a hallmark of brown adipocytes.  Indeed, the 

inguinal WAT of Irf3
-/-

 mice had many clusters of multilocular adipocytes, while the 

inguinal WAT of WT mice contained predominantly unilocular adipocytes (Figure 3.4A).  

Interestingly, the histological appearance of classic interscapular BAT from Irf3
-/-

 mice 

was not different from that of WT mice (Figure 3.4B).  Inguinal WAT and BAT sections 

were subjected to immunohistochemistry using a UCP-1 antibody.  Again, many clusters 

of UCP-1 positive adipocytes were found in the inguinal WAT from Irf3-/-
 mice, while 

very few were present in the inguinal WAT from WT mice (Figure 3.4A).  No difference 

was found in the number of UCP-1 positive adipocytes in the interscapular BAT of Irf3-/-
 

and WT mice (Figure 3.4B).  
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Figure 3333....４４４４        Irf3
-/-

 mice have increased beige cells in inguinal WAT. 

A
WT Irf3-/-

H&E

UCP-1

B

WT Irf3-/-

H&E

UCP-1

Inguinal WAT

BAT



66 

 

Figure 3.4 (Continued). Tissue section immunostaining from chow fed male mice kept at 

ambient temperature.  A) Inguinal WAT.  B) Interscapular BAT.  

 

Previous research has shown that cold challenge can stimulate the development 

of beige cells in the inguinal WAT of mice12, 19.  To determine whether IRF3 deletion can 

further enhance the development of beige cells under cold challenged conditions, ten 

week-old male mice were exposed to 4⁰C for three days, and their inguinal WAT and 

BAT was analyzed histologically.  Interestingly, H&E staining revealed that multilocular 

cells were equally abundant in the inguinal WAT of both Irf3-/-
 and WT mice, while 

immunohistochemistry against UCP-1 showed a similar amount of UCP-1 positive 

adipocytes between the two groups (Figure 3.5A).  The interscapular BAT also did not 

differ histologically between the two genotypes (Figure 3.5B).  These results suggest 

that IRF3 represses the formation of beige cells under basal (i.e. warm) conditions, and 

that cold exposure relieves this inhibition.   
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Figure 3333....５５５５ Loss of IRF3 does not increase the number of beige cells in the inguinal 

WAT under cold challenged conditions. 

Tissue section immunostaining of chow fed male mice after 3 days exposure to 4⁰C 

conditions.  A) Inguinal WAT B) interscapular BAT.   
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Although laboratory mice are studied at room temperature, their thermoneutral 

temperature is actually 30⁰C.  To determine if deletion of IRF3 can stimulate the 

development of beige cells in mice at thermoneutrality, ten week old Irf3-/-
 and WT mice 

were housed in a 30⁰C chamber for 3 weeks and their inguinal WAT and BAT were 

studied. H&E staining showed that the inguinal WAT of Irf3-/-
 mice contained clusters of 

multilocular adipocytes, while the inguinal WAT from WT mice was made up of 

predominantly unilocular adipocytes.  Immunohistochemistry against UCP-1 showed 

that many of the multilocular cells detected in Irf3
-/-

 inguinal WAT were UCP-1 positive, 

while barely any UCP-1 positive cells could be detected in WT inguinal WAT (Figure 3.6A).  

H&E staining of interscapular BAT showed that exposure to thermoneutral conditions 

increased lipid accumulation in both Irf3
-/-

 and WT mice, while no difference was found 

in the abundance of UCP-1 positive cells (Figure 3.6B).  Together these results indicate 

that IRF3 prevents the development of beige cells in the inguinal WAT under basal 

conditions, and that deletion of IRF3 is sufficient to release this inhibition. 
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Figure 3333....６６６６ Irf3
-/-

 mice have increased beige cells under thermoneutral conditions. 
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Figure 3.6 (Continued). Tissue section immunostaining of chow fed male mice after 3 

weeks exposure to 30⁰C.  A) Inguinal WAT B) interscapular BAT.   

 

Brown adipocyte genes are induced in the white adipocytes of Irf3
-/-

 mice. 

 We next assessed whether these histologically identified beige cells express 

brown adipocyte signature genes in the inguinal WAT and BAT of Irf3
-/-

 and WT mice.  

We assessed the expression of Prdm16, a critical determinant of brown adipogenesis24-

26, 28
; Pgc1α and Ucp1, both important players in adaptive thermogenesis

12, 16, 17, 26
; 

Cox7a1, an indicator of mitochondrial activity184; and CideA, a regulator of Ucp1 

activity
185

.  Key brown adipocyte genes were significantly up-regulated in both tissues of 

Irf3
-/-

 mice compared to WT (Figure 3.7).  These results suggest that the histologically 

identified beige cells in the Irf3
-/-

 inguinal WAT are indeed functional. 

 

Figure 3333....７７７７ Loss of IRF3 elevates the expression of brown adipocyte-selective genes in 

white and brown adipose tissue. 
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Figure 3.7 (Continued). Q-RTPCR of brown adipocyte genes.  A) Inguinal WAT from HFD-

fed male mice.  B) Interscapular BAT from HFD-fed male mice.  N=4, *P<0.05. 

 

In addition to studying inguinal WAT tissue, an in vitro model was also employed 

to determine whether the observed “browning” effect was cell autonomous.  The 

stromal-vascular fraction (SVF) of inguinal WAT was fractionated from Irf3
-/-

 and WT 

mice.  Pre-adipocytes from the SVF were briefly propagated and then differentiated into 

adipocytes.  This model allows us to study the role of IRF3 in beige cell development 

independent of other tissues.  Since IRF3 is anti-adipogenic, we need to ensure both Irf3
-

/-
 and WT cells are equally differentiated.  Pre-adipocytes were treated with BMP-4 

before adipogenic differentiation, and rosiglitazone was applied during the 

differentiation process to drive adipogenesis to completion.  Differentiated adipocytes 

were treated with Oil-Red-R, which stains neutral lipids, to assess the extent of 

differentiation (Figure 3.8A).  The expression of key adipocyte genes was also measured 

using Q-RTPCR (Figure 3.8B).  Results from both Oil-Red-O and gene expression analysis 

indicate that both Irf3
-/-

 and WT cells underwent adipogenic differentiation to an equal 

extent.  

The expression of key brown adipocyte selective genes was assessed by Q-RTPCR 

in cultured SVF-derived adipocytes.  In agreement with results from adipose tissue, 

these key brown adipocyte selective genes were significantly upregulated in Irf3
-/-

 

adipocytes compared to WT (Figure 3.8C). 
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Figure 3.8 (Continued). Brown adipocyte-selective genes are elevated in cultured Irf3
-/-

 

adipocytes. 

Inguinal SVF-derived adipocytes 7 days after adipogenic differentiation.  A) Oil-Red-O 

staining.  Whole field scan (top) and 10X magnified image (bottom).  B) Q-RTPCR of 

adipocyte genes.  C) Q-RTPCR of brown adipocyte selective genes.  N=4 *P<0.05. 

 

Irf3
-/-

 mice are partially protected from cold challenge. 

 One of the major functions of brown adipocytes is to perform adaptive 

thermogenesis.  An increase in the number of beige cells in Irf3-/-
 mice should promote 

adaptive thermogenesis, and thus ameliorate the drop in body temperature of these 

mice during cold exposure.  Twelve week-old male Irf3-/-
 and WT mice were exposed to 

4⁰C, and the change in their rectal temperatures was measured over time.  Although 

both Irf3-/-
 and WT mice dropped to 31⁰C after two hours, the rate of drop in 

temperature was slower in Irf3
-/-

 mice compared to WT, suggesting at least partial 

protection from cold (Figure 3.9).   

One may expect “browning” of the white adipocyte to confer greater protection 

from cold induced body temperature drop for Irf3-/-
 mice than what we observed.  

However, adaptive thermogenesis is just one mechanism of thermogenesis under cold 

challenge.  For instance, shivering is another mechanism to maintain physiological body 

temperature
186

.  We hypothesize that the increase in the number of beige adipocytes 

allows Irf3
-/-

 mice to confer faster response to cold challenge in maintaining their body 
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temperature.  However, as time progresses other mechanisms of thermogenesis such as 

shivering allow WT mice to eventually reach the same body temperature. 

 

Figure 3333....９９９９ Irf3
-/-

 mice are partially protected from cold-induced drop in body 

temperature. 

Rectal temperature of 12 week old male mice exposed to 4⁰C.  N=6, *P<0.05. 

 

Irf3
-/-

 mice exhibit increased food intake and energy expenditure on HFD. 

 If Irf3
-/-

 mice have increased numbers of beige cells at room temperature, we 

might expect them to show increased energy expenditure. These mice were placed in 

open-circuit Oxymax chambers that are a component of the Comprehensive Lab Animal 

Monitoring System (CLAMS) to monitor their metabolic rate.  No difference was 

observed in the amount of physical activity between Irf3
-/-

 and WT mice (Figure 3.10B).  

However, Irf3
-/-

 mice displayed significantly increased O2 consumption and CO2 

production compared to WT, which together caused a marked shift in the respiratory 

exchange ratio (RER) (Figure 3.10C-E), suggesting a movement away from glucose as a 

Rectal temperature

0 0.5 1 2
28

30

32

34

36

38

40

WT
Irf3-/-

*

Time (h)

T
em

p
 (C

)



75 

 

main source of fuel towards a fatty acid burning scheme.  This is consistent with an 

increase in beige cells, which rely on fatty acid oxidation for adaptive thermogenesis. 

Irf3
-/-

 mice displayed increased body heat compared to WT, again consistent with 

increased adaptive thermogenesis (Figure 3.10F).  Given that energy expenditure was 

increased, we were puzzled to note that the Irf3-/-
 mice did not weigh less than WT 

littermates. We therefore measured daily food intake in male mice after 18 weeks of 

HFD feeding.  Irf3-/-
 mice consumed approximately 0.4 g more food everyday compared 

to WT littermates (Figure 3.10A), which likely counterbalances the effect of the 

increased energy expenditure on body mass.  Although the decrease in RER in Irf3-/-
 

mice indicates that they are burning a smaller percentage of glucose in favor of fatty 

acids, their increase in food intake suggests that overall, Irf3-/-
 mice are burning more 

energy than WT mice, only with a change in preference for the source of energy. 



76 

 

 

Figure    3333....１０１０１０１０  Irf3
-/-

 mice have increased food intake and energy expenditure on HFD. 

A) Daily food intake and cumulative food intake (inset) of male mice after 18 weeks on 

HFD, *P<0.05.  B-F) Metabolic rate as measured by CLAMS  B) Movement, C) O2  
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Figure 3.10 (Continued). consumption, D) CO2 production, E) Respiratory exchange ratio, 

F) Total body heat output.  N=8. 

 

Discussion 

 

We found IRF3 to be a potent suppressor of beige cell development in inguinal 

WAT (Figure 3.11).  Specifically, Irf3
-/-

 mice were found to have increased numbers of 

beige cells in the inguinal WAT compared to WT mice at both room temperature and 

thermoneutral conditions, but not in cold challenged conditions.  Interscapular BAT 

showed no histological difference between Irf3-/-
 and WT mice at any condition.  This 

suggests that IRF3 may act as a brake for the development of WAT resident beige cells. 

Under basal conditions deletion of IRF3 allows the development of resident precursor 

cells into mature beige cells, while cold challenge overcomes the brake put into place by 

IRF3.  This would explain why beige cell number and thermogenic capacity are not 

different between WT and Irf3
-/-

 mice after prolonged exposure to 4⁰C. 

 

Figure 3333....１１１１１１１１    IRF3 regulates energy homeostasis by inhibiting adipocyte browning.  
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Further characterization under HFD-fed conditions show that Irf3
-/-

 mice exhibit 

increased food intake, increase energy expenditure, and a shift away from glucose 

toward fatty acid as a source of fuel.  These characteristics are all consistent with 

enhanced adaptive thermogenesis due to an increase in the number of beige cells.  

Lastly, adaptive thermogenesis by these beige cells also conferred short-term protection 

from cold-induced body temperature drop in Irf3-/-
 mice.  Additional ex vivo experiments 

will need to be performed to assess the functional characteristics of the beige cells 

appearing in the WAT of Irf3
-/-

 mice, such as the rate of cellular respiration and 

mitochondrial density, which should both be increased due to a more brown adipocyte-

like phenotype. 

One of the unexplained phenotypes observed in the Irf3
-/-

 mice is a small but 

significant increase in lean mass accompanied by a similar decrease in fat mass 

compared to WT littermates when fed HFD.  One possible explanation for this 

observation is the inability of the Echo-MRI analyzer to properly classify BAT.  The Echo-

MRI analyzer distinguishes fat mass from lean mass via the difference in their density
187, 

188.  Because BAT is denser than WAT we hypothesize that BAT may be recognized as 

lean mass by the Echo-MRI analyzer.  Since the Irf3
-/-

 mice exhibit browning of the WAT, 

this phenotype may be manifested as an increase in lean mass with decrease in fat mass.  

One way to test this hypothesis is to analyze pure BAT and see if the Echo-MRI analyzer 

recognizes it as lean mass.   
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One might wonder if Irf3-/-
 mice exhibit increased “browning” of the WAT, why 

did we not detect an elevation of brown adipocyte specific genes in the microarray of 

3T3-L1 adipocytes after lentiviral mediated IRF3 knockdown (Figure 2.3)?  This 

inconsistency can be explained by the inability of 3T3-L1 adipocytes to become brown 

adipocytes.  Among the many in vitro adipocyte models, 3T3-L1 cells are one of the most 

white adipocyte-like
189, 190

.  Key brown adipocyte selective genes such as Ucp1 and 

Pgc1α are undetectable in 3T3-L1 adipocytes (data not shown).  Due to this reason, we 

employed an alternative in vitro model of adipocytes, namely preadipocytes isolated 

from the SVF fraction of the inguinal fat pad, to study the cell autonomous effect of IRF3 

on adipocyte “browning” (Figure 3.8). 

We observed increased “browning” of the WAT in chow fed Irf3-/-
 mice; however, 

we found increased thermogenesis in high fat-fed Irf3
-/-

 mice.  This may be due to the 

fact that under the metabolic challenge of HFD a small increase in energy expenditure 

may be more easily detectable.  Further experiments are underway to study adipocyte 

“browning” in high fat-fed Irf3-/-
 mice.  These are similar experiments performed to 

study adipocyte browning in chow diet-fed mice, such as tissue histology to look for 

multilocular and Ucp1 positive cells in the inguinal WAT.  We hypothesize that lack of 

IRF3 will also induce “browning” of WAT in high fat-fed mice. 

One interesting phenotype of the Irf3
-/-

 mice is their increased food intake 

compared to WT littermates.  This phenotype cannot be explained by increase adipocyte 

“browning.”  One adipokine that regulates food intake is leptin.  Leptin reports 

peripheral nutritional information such as the energy store level of the adipose tissue to 
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the central nervous system3.  Leptin expression increases with feeding and decreases 

with starvation.  Elevation of leptin levels acts as a satiety signal and initiates a negative 

feedback loop to the hypothalamus to suppress food intake1, 3, 191.  When leptin levels 

drop, the hypothalamus initiates a feeding response to increase energy intake
3, 192

.  

Studies of the ob/ob mouse, which is deficient of the obese gene encoding leptin, show 

massive weight gain and hyperphagia
191, 193, 194

.  Alternatively, the db/db mouse, which 

expresses a mutant leptin receptor effectively abolishing leptin signaling, exhibit 

massive adipose tissue depots and produces excessive leptin
193, 195

.  Similar to the ob/ob 

mouse, db/db mice are also extremely obese, hyperphagic, as well as diabetic193, 195.   

Leptin action is mediated by receptors present in the brain as well as peripheral 

organs such as the pancreas, liver, and the immune system3, 196.  Leptin receptor binding 

in the hypothalamus results in downstream activation of the JAK-STAT3 signaling 

pathway, leading to an increase in anorexigenic neuropeptides such as 

proopiomelanocortin (POMC), as well as the expression of orexigenic neuropeptides 

neuropeptide Y (NPY) and agouti-related protein (AgRP)196, 197.  Therefore, we 

hypothesize that IRF3 may be affecting food intake through its effects on adipose leptin 

expression.  To test this hypothesis we can begin by measuring the serum leptin levels of 

WT and Irf3
-/-

 mice.  We expect serum leptin to be decreased in Irf3
-/-

 mice.  Additionally 

we can inject leptin into WT and Irf3
-/-

 mice.  If a difference in leptin level is causing the 

differences in food intake then leptin injection should equalize this difference. 

An alternative possibility is that IRF3 plays a role in the central nervous system 

that regulates feeding behavior.  We have previously shown that IRF3 is expressed in the 
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brain (Figure 1.2B), and previous studies have also shown that IRF3 plays an important 

role in immune response in the brain
198, 199

.  IRF3 was found to be a mediator of 

interferon response to corneal infection with herpes simplex virus198 as well as response 

to viral double stranded RNA in astrocytes
199

.  Interestingly, IRF3 and the interferon 

response pathway which it regulates has also been implicated in protecting the brain 

against ischemic injury post stroke
200

.  Therefore it is possible that IRF3 plays a role on 

the central nervous system to regulate feeding behavior.   

One possible way to test this hypothesis is to knockout IRF3 specifically in the 

hypothalamus and assess whether this still leads to an increase in food intake.  To 

perform this experiment we can first create a floxed IRF3 mouse model, then inject 

adeno-associated virus (AAV) expressing the Cre protein into the hypothalamus of the 

floxed IRF3 mouse
201

.  This will result in a mouse with IRF3 deleted only in the 

hypothalamus.  If IRF3 is indeed acting on the hypothalamus to regulate food intake 

then this mouse will exhibit increase food intake just as in the Irf3
-/-

 mouse. 

Further studies could focus on fully characterizing the role of IRF3 in beige cell 

development.  We do not know which stage of beige cell development IRF3 is acting 

upon, but it is intriguing that Prdm16, one of the earliest known transcriptional 

activators of the brown as well as beige cell fate, is altered by loss of IRF3.  This suggests 

that IRF3 plays a role very early in the developmental process of beige adipogenesis.  

Since IRF3 is a transcription factor it is possible that it is transcriptionally regulating the 

expression of Prdm16.  One possible way to test this is to perform a luciferase reporter 

assay of the Prdm16 promoter with IRF3 overexpression.  If IRF3 is transcriptionally 
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regulating the IRF3 promoter we would expect IRF3 overexpression to reduce Prdm16 

promoter luciferase activity. 

In addition to possible transcription regulation of brown adipocyte selective 

genes, it is also possible that IRF3 affects the adipose sympathetic tone, and thus lack of 

IRF3 may lead to activation of the sympathetic tone, which can lead to increased 

adaptive thermogenesis.  Activation of the sympathetic tone can lead to increased 

noradrenaline release in the adipose tissue202, 203.  Noradrenaline can stimulate the 

expression of brown adipocyte selective genes such as Ucp1 and Pgc1α in adipocytes 

and thus result in “browning” of white adipocytes204-206.  To test this hypothesis we can 

measure the level of noradrenaline in the WAT of WT and Irf3
-/-

 mice, and we would 

expect to find higher noradrenaline levels in Irf3-/-
 mice. 

Our results also suggest that cold might inhibit the expression or activity of IRF3 

in WAT, a possibility that we are currently investigating (Figure 3.11).  We are 

performing two experiments to test this hypothesis.  We investigated the expression of 

IRF3 mRNA in inguinal WAT after cold exposure but did not detect any change (data not 

shown).  However, in immune cells it is known that IRF3 is regulated post-translationally 

but not transcriptionally69, therefore it is possible that this is also true in the adipocyte.  

We plan to study IRF3 protein level in inguinal WAT after cold exposure to determine 

whether cold challenge decreases IRF3 protein.  It is also possible that cold exposure 

affects the phosphorylation state of IRF3, and we plan to use mass spectrometry to 

determine the phosphorylation state of adipose IRF3 before and after cold exposure. 
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Chapter 4  

IRF3 hinders adipocyte glucose homeostasis through 

transcriptional regulation of GLUT4 
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Introduction 

  

IRF3 is an important transcriptional regulator of the innate immune response.  It 

acts downstream of TLR4 to initiate interferon response to pathogen infection.  Upon 

antigen recognition, TLR4 signaling leads to the downstream activation of IKKε and TBK1, 

which act together to phosphorylate IRF3, leading to its dimerization and nuclear 

translocation.  Nuclear IRF3 then binds to the promoter and activates transcription of 

interferon response genes such as Ccl5 and Ifnβ, ultimately resulting in the activation of 

the interferon response pathway
54

. 

 Characterization of Ikkε
-/-

 mice show them to be protected from HFD-induced 

obesity.  Additionally they exhibit decreased fasting serum insulin as well as better 

glucose tolerance compared to WT mice on HFD conditions.  Interestingly, studies of the 

Tlr4
-/-

 mice also found them to be more insulin tolerant compared to WT mice on HFD
95

.   

Adipose tissue is an important regulator of insulin stimulated glucose uptake.  It 

influences the glucose uptake ability of peripheral tissues by secreting adipokines that 

act on muscle and liver
7
.  For instance, adiponectin, a major adipokine, which has been 

found to be down-regulated during obesity, enhances insulin sensitivity
207-209

.  

Conversely, adipose tissue can also secrete insulin-desensitizing cytokines.  TNFα, a pro-

inflammatory cytokine secreted by WAT, is up-regulated during obesity and decreases 

insulin sensitivity125.  Resistin, another major cytokine found to be up-regulated in 

obesity, hinders glucose uptake while elevating hepatic glucose output
210, 211

. 
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In addition to influencing liver and skeletal muscle glucose homeostasis, adipose 

tissue itself also accounts for ~10-15% of systemic glucose uptake via insulin stimulated 

glucose uptake into adipocytes1.  Following nutritional intake, pancreatic β-cells secrete 

insulin in response to elevated glucose in the circulation
212

.  Insulin stimulates glucose 

uptake in peripheral tissues, including skeletal muscle and adipose tissue212.  Insulin 

binds to the insulin receptor (IR) on the plasma membrane of target cells, resulting in IR 

dimerization and auto-phosphorylation213-215.  Activated IR subsequently phosphorylates 

insulin receptor substrates IRS1 and IRS2, which then recruit Pl-3 kinase (PI-3k) to the 

cell surface216, 217.  PI-3k converts phosphatidylinositol 4, 5 bisphosphate (PIP2) to 

phosphatidylinositol 3, 4, 5 triphosphate (PIP3)
218, 219

, resulting in the activation of 3-

phosphoinositide dependent kinase (Pdk1), which ultimately leads to protein kinase B 

(Akt) phosphorylation
220, 221

.  Akt promotes the exocytosis of glucose transporter 4 

(Glut4) containing vesicles to the plasma membrane, allowing the import of glucose into 

the cell via an ATP-independent, facilitative diffusion mechanism
221-225

.  Imported 

glucose serves distinct purposes in different tissues.  In skeletal muscle cells, glucose is 

metabolized to generate ATP, while in the adipose tissue excess glucose is stored as 

triglycerides212. 

Glut4 is a 12-transmembrane protein that is the major transporter responsible 

for insulin stimulated glucose transport in adipocyte and muscle cells
226

.  Under basal 

conditions Glut4 undergoes idle cycling among several intracellular compartments 

including Glut4 storage vesicles (GSV), endosomal recycling compartment (ERC), and 

Trans-golgi network (TGN)
226

.  Without insulin stimulation, Glut4 is prevented from 
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translocation to the plasma membrane (PM) by proteins that promote intracellular 

retention such as AS160 and Sortilin.  Under insulin stimulation Glut4 vesicles bud from 

GSV, quickly translocate to the cell surface and fuses with the plasma membrane227.  

While new Glut4 protein synthesized by the endoplasmic reticulum are modified in the 

TGN, then sorted directly into GSV.  Post insulin stimulation cell surface Glut4 is recycled 

via clathrin-mediated endocytosis or cholesterol-dependent, clathrin-independent 

endocytosis226.  Endocytosed Glut4 accumulates in the endosomal recycling 

compartment (ERC).  From the ERC a small amount of Glut4 is sorted back to the plasma 

membrane, while a majority of the Glut4 is sorted into the GSV or TGN where it 

undergoes idle cycling until the next insulin stimulation
226

. 

In addition to the tight intracellular regulation of its localization, GLUT4 is also 

regulated transcriptionally
228

.  GLUT4 is encoded by the Slc2a4 gene.  Mice studies show 

that Slc2a4 transcription is decreased in obesity and T2D models229, 230.  Many 

transcription factors have been found to upregulate Slc2a4 expression in adipocytes, 

including sterol response element binding protein-1c (Srebp-1c) and liver X receptor α 

(LXRα)
228

.  Additionally thyroid hormone receptor α1 (TRα1) and kruppel-like factor 15 

(Klf15) can regulate Slc2a4 expression in both muscle and adipocytes44, 228.  Conversely, 

tumor necrosis factor α (Tnfα), nuclear factor 1 (Nf-1), and nuclear factor-kappa B (Nf-κB) 

are negative regulators of Slc2a4 expression
132, 176, 228

.   

Since IRF3 acts downstream of both TLR4 and IKKε we hypothesized that it too, 

may play a role in glucose homeostasis.  To this end we characterized the metabolic 

phenotype of Irf3
-/-

 mice.  Skeletal muscle and adipose tissue are the two major players 
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in peripheral glucose uptake, which is tightly regulated by insulin secreted from 

pancreatic β cells.  Both tissues utilize glucose in different ways; skeletal muscle cells 

metabolize glucose to generate ATP, while in the adipose tissue excess glucose is stored 

as triglycerides
7, 222

.  Therefore, to elucidate the role of IRF3 in glucose homeostasis we 

must carefully dissect the different roles played by each tissue, which can best be done 

by studying tissue-specific knockout models of IRF3.  However, at present the floxed 

IRF3 mouse model is unavailable.  To overcome this difficulty we employed in vitro 

models of IRF3 overexpression and knockdown to supplement in vivo data from global 

knockout mice.  Specifically, we chose to study IRF3 in cultured adipocytes because IRF3 

is highly expressed and its expression is induced during adipogenic differentiation.  This 

suggests that IRF3 may play a critical role in mature adipocytes, an excellent model for 

studies of cellular glucose uptake. 

 

Materials and methods 

 

Animals 

 Please refer to Materials and Methods in Chapter 2 to see a complete 

description of animal housing conditions and diet, as well as breeding schemes.  

 

Insulin tolerance test 

 Mice were fasted for 6hr then injected intraperitoneally with human insulin 

(Humulin, Eli Lilly).  Insulin doses range from 0.6-1 units/kg body weight depending on 
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whether the animals were on chow diet or HFD.  The blood glucose level was measured 

before and at multiple time points after insulin injection by taking tail bleeds from each 

mouse.  Glucose readings were taken with OneTouch handheld glucometers (Johnson 

and Johnson). 

 

Glucose tolerance test 

 Mice were fasted overnight and fasting serum was collected from cheek bleed 

using a 5.5mm sterile animal lancet (Goldenrod).  Mice were then injected 

intraperitoneally with a solution of 20% glucose at a dose of 1g/kg body weight.  The 

blood glucose level was measured before and at multiple time points after insulin 

injection by taking tail bleeds from each mouse. 

 

Serum cytokine measurements 

 Mice were fasted overnight and fasting serum was collected from cheek bleed 

using a 5.5mm sterile animal lancet (Goldenrod).  Fasting serum was separated from 

whole blood by centrifugation at 3000 rpm for 5 min at 4⁰C in BD Microtainer serum 

separator tubes (BD Bioscience #365956).  Serum adiponectin was measured using the 

Chemicon Mouse Adiponectin ELISA Kit (Millipore #EZMADP-60K). 

 

3T3-L1 adipocytes 

 Please refer to the Materials and Methods section in Chapter 2 for a complete 

description of the procedures followed for 3T3-L1 cell culture and adipogenesis. 
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IRF3 knockdown and overexpression in 3T3-L1 adipocytes 

 Please refer to the Materials and Methods section in Chapter 2 for a complete 

description of the procedures used for lentiviral production and lentiviral mediated IRF3 

overexpression and knockdown in 3T3-L1 adipocytes. 

 

MEFs 

Pairs of WT vs. Irf3
-/-

 embryos from the same litter were harvested on E13.5.  

After trypsinization and dissociation the fibroblasts are plated in high glucose 

DMEM/FBS.  The 3T3 protocol was followed for immortalization
231

.  Briefly, cells were 

subcultured every 3 days at a density of 1.17 million cells per 10cm dish, and after 30 

passages MEFs were considered immortalized.   

For adipogenic differentiation, immortalized WT and Irf3-/- MEFs were 

transduced with retrovirus encoding Pparγ.  After puromycin selection for transduced 

cells, differentiation was induced with an adipogenic cocktail, including dexamethasone, 

insulin, isobutylmethylxanthine, and rosiglitazone.  After 3 days of induction cells were 

maintained in high glucose DMEM/FBS until further experiments. 

 

Glucose uptake assay 

3T3-L1 adipocytes and MEF-derived adipocytes were subjected to glucose 

uptake assay either 10 days after adipogenic differentiation or 8 days after lentiviral 

transduction.  Cells were serum-starved in high glucose DMEM for 4 hours and then 
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stimulated with 100nM insulin or vehicle for 15 min in KRH buffer at 37°C, after which 

[
3
H] 2-deoxyglucose (2-DG) were added to the cells and incubated for 4 min.  Glucose 

uptake is terminated by the addition of ice cold KRH with 25mM glucose and 10uM 

cytochalasin B (Sigma Aldrich).  Excess [
3
H] 2-DG was eliminated by repeated washing 

with ice cold KRH buffer.  Cell lysates were solubilized in 0.1%SDS, mixed with EcoLite 

scintillation fluid (MP Biomedicals), and [
3
H] 2-DG uptake was measured by liquid 

scintillation counting.  All glucose uptake experiments were performed with six 

replicates for each sample. 

 

Lipogenesis assay 

3T3-L1 adipocytes and MEF-derived adipocytes were subjected to lipogenesis 

assay either 10 days after adipogenic differentiation or 8 days after lentiviral 

transduction.  Cells were serum-starved in low glucose DMEM (Invitrogen) 

supplemented with 0.5% FBS for 3 hours then treated with 100nM insulin for 15 min at 

37°C.  Lipogenesis was then stimulated by adding [14C] glucose and terminated after 45 

min by repeated washing with ice cold PBS.  Cells are harvested in PBS and mixed with 

EcoLite scintillation fluid.  After overnight phase separation, 200ul of the lipid top layer 

is extracted for scintillation counting.  All lipogenesis experiments were performed with 

six replicates for each sample. 

 

Q-PCR 
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 Please refer to the Materials and Methods section in Chapter 2 for a complete 

description of the procedures used for Q-RTPCR. 

 

Tissue western blot 

 Mice were fasted overnight before tissue harvest.  Tissues were frozen in liquid 

nitrogen immediately after dissection.  For Western blots, tissues were homogenized in 

RIPA buffer supplemented with MiniComplete Protease Inhibitor (Roche) and 

phosphatase inhibitor cocktail II (Boston BioProducts).  Total protein was quantified 

using the DC method (Bio-Rad) and 50ug of each protein sample was used for Western 

blot.  Each sample was mixed with Laemmli buffer and boiled for 5 min at 95⁰C.  

Samples were loaded into 10% polyacrylamide denaturing gels (Bio-Rad).  Each gel was 

transferred onto PVDF membrane (Millipore).  After transfer each membrane was 

blocked in 5% milk in PBS-T for 1 hr then incubated in primary antibody overnight at 4⁰C.  

On the next day each membrane is washed in PBS-T before incubating with secondary 

antibody for 1 hr at room temperature.  Lastly each membrane was washed in PBS-T 

before being developed with SuperSignal West Pico Maximum Sensitivity Substrate 

(Pierce) and exposed to film.   

 

Luciferase assay 

 3T3-L1 adipocytes were transfected using the Amaxa Nucleofection II 

transfection device following manufacturer’s protocol 7 days after adipogenesis.  Briefly, 

one 10cm plate of adipocytes were trypsinized, pelleted, and then resuspended in 100μl 
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of Amaxa Nucleofector Solution V (Lonza #VCA-1003).  Cell solution was then mixed 

with DNA containing 4μg pGL3 basic vector, 2μg pCDH IRF3 overexpression vector, and 

50ng of pRL Renilla luciferase control reporter vector.  The resulting mixture was placed 

in the transfection device and transfected with program A33.  Transfected cells were 

immediately replated in high glucose DMEM with 10% FBS.  Cells were allowed to attach 

overnight and the media was replaced 18hr later. 

 Luciferase assay was performed 48hr after transfection using Dual Luciferase 

Reporter Assay Kit (Promega #E1960) following the manufacturer’s protocol.  Luciferase 

activity was measured using FluoStar Optima fluorescence plate reader (BMG Labtech).  

Luciferase activity was normalized with Renilla, and all experiments were performed in 

quadruplicates. 

 

Statistical analysis 

 Please refer to the Materials and Methods section in Chapter 2 for a complete 

description of the procedures followed for statistical analysis. 

 

Results 

 

Male Irf3
-/-

 mice exhibit enhanced glucose metabolism on HFD. 

We sought to determine whether IRF3 plays a role in glucose homeostasis. When 

kept on a chow diet, male Irf3
-/-

 and WT mice at 22 weeks of age were found to be 

equally glucose tolerant (Figure 4.1A).  However, after 22 weeks of HFD, male Irf3
-/-

 mice 
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exhibited an enhanced ability to clear glucose compared to WT in a glucose tolerance 

test (GTT) (Figure 4.1B). 

 

Figure 4444....１１１１Male Irf3
-/-

 mice have enhanced glucose tolerance on HFD. 

Glucose tolerance test of male mice on A) chow or B) HFD.  N=9-12, *P<0.05. 

 

To test whether the improved glucose tolerance of Irf3 
-/-

 mice is associated with 

increased insulin sensitivity, we performed insulin tolerance tests (ITT). At 21 weeks of 

age, chow fed male Irf3
-/-

 mice displayed comparable insulin tolerance as their WT 

littermates (Figure 4.2A).  However, male Irf3
-/-

 mice maintained on 21 weeks of HFD 

showed significantly improved insulin tolerance compared to WT (Figure 4.2B). 
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Figure 4.2 (Continued). Male Irf3
-/-

 mice have enhanced insulin tolerance on HFD. 

Insulin tolerance test of male mice on A) chow or B) HFD.  N=9-12, *P<0.05. 

 

Fasting serum glucose and insulin levels were measured in male mice after an 

overnight fast.  For both chow and HFD cohorts, no difference was observed in the 

serum glucose levels of Irf3
-/-

 and WT mice (Figure 4.3A).  Irf3
-/-

 and WT mice kept on 

chow diet exhibited similar levels of fasting serum insulin.  Under HFD conditions, 

however, Irf3
-/-

 mice had significantly lower serum insulin compared to their WT 

littermates, consistent with their improved performance in the GTT and ITT (Figure 4.3B). 

 

Figure 4444....３３３３ Male Irf3
-/-

 mice have reduced fasting serum insulin on HFD. 

Fasting serum A) glucose or B) insulin of chow and HFD fed male mice.  N=9-12, *P<0.05. 
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littermates (Figure 4.4A).  Similarly, female Irf3
-/-

 and WT mice had similar insulin 

tolerance (Figure 4.4B).  The fasting glucose and insulin levels were also 

indistinguishable between female high fat-fed WT and Irf3-/-
 mice (data not shown). 

 

Figure 4444....４４４４    Female Irf3
-/-

 mice do not display enhanced glucose homeostasis on HFD. 

A) Glucose tolerance test and B) Insulin tolerance test of female mice on HFD.  N=9-12, 

*P<0.05. 

 

IRF3 hinders insulin action in 3T3-L1 adipocytes. 

 Glucose homeostasis is regulated through the interaction of peripheral tissues 

such as the adipose tissue, liver, and muscle.  The enhanced glucose homeostasis 

phenotype in male Irf3
-/-

 mice on HFD may be due to the role of IRF3 in any or all of 

these three organs.  Because IRF3 is highly expressed in adipocytes and its expression 

level is elevated in mature 3T3-L1 adipocytes, we hypothesized that at least part of this 

phenotype is due to IRF3’s role in adipocytes.  One way to test this hypothesis in vivo is 

to study the metabolic phenotype of adipocyte-specific IRF3 knockout mice.  

Unfortunately, conditional (i.e. floxed) Irf3 mice are not currently available, so we used 
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an in vitro adipocyte model to study the role of IRF3 in cell autonomous adipocyte 

glucose homeostasis. 

 Mature 3T3-L1 adipocytes were transduced with lentiviral constructs mediating 

IRF3 overexpression or knockdown as described earlier.  Insulin-stimulated glucose 

uptake and lipogenesis assays were performed 10 days later.  While both wtIRF3 and 

IRF3-2D overexpression did not change basal glucose uptake, insulin-stimulated glucose 

uptake was significantly reduced by IRF3-2D overexpression.  Similarly, wtIRF3 

overexpression resulted in a trend toward reduced insulin-stimulated glucose uptake 

that did not reach statistical significance (Figure 4.5A). Conversely, shRNA mediated IRF3 

knockdown resulted in enhanced insulin-stimulated glucose uptake, while basal glucose 

uptake was not affected (Figure 4.5B).   

 In addition to glucose uptake, insulin also stimulates lipogenesis in fat cells.  

Lentiviral-mediated overexpression of both wtIRF3 and IRF3-2D reduced insulin-

stimulated lipogenesis, while basal lipogenesis remained unchanged (Figure 4.5C).  

Consistent with these observations, knockdown of IRF3 resulted in improved insulin-

stimulated lipogenesis (Figure 4.5D).  These data indicate IRF3 plays an important role in 

adipocyte insulin action and glucose homeostasis.  Thus, the enhanced glucose 

metabolism observed in HFD-fed Irf3
-/-

 mice is at least in part due to the role of IRF3 in 

the adipose tissue. 
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Figure 4444....５５５５    IRF3 reduces insulin-stimulated glucose uptake in 3T3-L1 adipocytes. 

A-B) Glucose uptake assay in 3T3-L1 adipocytes 8 days after lentiviral mediated IRF3 A) 

overexpression or B) knockdown.  C-D) Lipogenesis assay in 3T3-L1 adipocytes 8 days 

after lentiviral mediated IRF3 C) overexpression or D) knockdown.  N=6, *P<0.05 
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0

2000

4000

6000

8000

10000

EGFP         wtIRF3       IRF3-2D

*

**
*

C
P

M
/m

g

0

2000

4000

6000

8000

10000

shLuc                  shIRF3

*

*

*

C
P

M
/m

g

0

1000

2000

3000

EGFP         wtIRF3        IRF3-2D

D
M

P
/m

g

*
*

*

*

*
*

0

2000

4000

6000

shLuc                   shIRF3

D
P

M
/m

g

*

*
*

100 nM InsVehicle

Li
po

ge
ne

si
s

G
lu

co
se

 u
p

ta
ke

A B

C D



98 

 

additional in vitro model, namely immortalized mouse embryonic fibroblasts (MEFs) 

isolated from WT and Irf3
-/-

 mice and differentiated into adipocytes in vitro.   

Since IRF3 is known to be anti-adipogenic, WT and Irf3-/-
 MEFs may not 

differentiate equally.  To overcome this problem, MEFs were transduced with a 

retrovirus overexpressing PPARγ and treated with rosiglitazone, a potent PPARγ ligand, 

during adipogenic differentiation.  Together these two measures drive adipogenesis to 

completion, as measured by Oil-Red-O staining, which showed that both WT and Irf3
-/-

 

MEFs achieved equal levels of differentiation (Figure 4.6A).  Additionally, the expression 

of representative adipocyte genes were measured by Q-RTPCR and showed no 

difference between adipocytes derived from WT and Irf3
-/-

 MEFs (Figure 4.6B). 
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Figure 4444....６６６６    WT and Irf3
-/-

 MEFs achieved equal levels of adipogenesis. 

MEF derived adipocytes 7 days after adipogenic differentiation.  A) Oil-Red-O staining.  

Whole field scan (top) and 10X magnified image (bottom).  B) Q-RTPCR of adipocyte 

genes, N=4. 
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Glucose uptake and lipogenesis assays were performed using MEF-derived 

adipocytes.  Irf3
-/-

 adipocytes showed enhanced insulin-stimulated glucose uptake 

compared to WT, while basal glucose uptake was unchanged (Figure 4.7A).  To confirm 

that this is an IRF3-specific effect, Irf3
-/-

 MEF adipocytes were rescued by reintroducing 

IRF3-2D or EGFP control via lentiviral transduction.  Reintroduction of IRF3-2D in Irf3-/-
 

MEF adipocytes diminished insulin-stimulated glucose uptake compared to EGFP control 

(Figure 4.7B). 

Additionally, lipogenesis was also assessed in Irf3
-/-

 MEF adipocytes.  Irf3
-/-

 

adipocytes showed improved insulin-stimulated lipogenesis compared to WT, while 

basal lipogenesis was unaffected (Figure 4.7C).  In the rescue experiment, Irf3
-/-

 

adipocytes overexpressing IRF3-2D showed reduced insulin-stimulated lipogenesis 

compared to those overexpressing EGFP control (Figure 4.7D).  These data are entirely 

consistent with and validate the observations made in 3T3-L1 adipocytes.  Taken 

together, these results indicate that IRF3 is a suppressor of insulin-stimulated glucose 

homeostasis in adipocytes. 
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Figure 4444....７７７７    Adipocytes derived Irf3
-/-

 MEFs have enhanced insulin-stimulated glucose 

uptake. 

A-B) Glucose uptake assay in MEF-derived adipocytes adipocytes A) 10 days after 

adipogenic differentiation or B) 8 days after IRF3 overexpression.  C-D) Lipogenesis assay 

in MEF-derived adipocytes C) 10 days after adipogenic differentiation or D) 8 days after 

IRF3 overexpression.  N=6, *P<0.05. 
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insulin-stimulated glucose uptake was performed in 3T3-L1 cells after shRNA-mediated 
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IRF3 knockdown using a range of insulin doses from 1nM to 100nM.  Regardless of the 

dose of insulin used, IRF3 knockdown enhanced insulin-stimulated glucose uptake 

(Figure 4.8).  This was interesting to us because proportionate increase in glucose 

uptake at all insulin levels after a manipulation has been suggested to indicate a role for 

that factor in late insulin action, post-insulin receptor (IR) activation232.   

 

Figure 4444....８８８８    IRF3 knockdown enhances glucose uptake at different doses of insulin. 

Dose-dependent insulin-stimulated glucose uptake in 3T3-L1 adipocytes.  A) 1nM insulin 

B) 10nM insulin C) 100nM insulin and D) a composite view across all insulin doses.  N=6, 

*P<0.05. 
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The insulin signaling pathway involves many different nodes
221

.  Insulin binding 

leads to dimerization and auto-phosphorylation of IR.  Phosphorylated IR subsequently 

phosphorylates IRS1 and IRS2, which then recruit PI-3k to the cell surface.  PI-3k 

converts PIP2 to PIP3, leading to the downstream activation Pdk1, which ultimately leads 

to Akt phosphorylation and activation.  Activated Akt recruits the Glut4 glucose 

transporter to the cell surface to facilitate glucose transport into the cell212, 221, 224.  To 

determine whether IRF3 regulates the insulin signaling pathway we used Western blots 

to detect the abundance of phosphorylated Akt in the visceral adipose tissue of high fat-

fed male Irf3
-/-

 and WT mice five minutes after intraperitoneal insulin injection.  No 

difference was found in the amount of phosphorylated Akt between Irf3-/-
 and WT mice 

(data not shown).  Since Akt is a late node in the insulin signaling pathway, this data 

suggests that IRF3 is not affecting the insulin signaling pathway in adipocytes.  However, 

we are still studying the effect of IRF3 on pre-Akt nodes, such as possible changes in IRS 

phosphorylation and activation. 

 

Irf3
-/-

 WAT has increased levels of Glut4. 

 Since IRF3 is a transcription factor, it is likely that IRF3 is hampering insulin 

stimulated glucose homeostasis by transcriptionally regulating target genes involved in 

insulin action.  The results from the microarray analysis in 3T3-L1 adipocytes (Figure 2.1) 

were used to find such target genes.  An analysis was performed to search for genes 

that are regulated in opposite directions by IRF3-2D and shIRF3, and are also known to 
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be players in insulin-stimulated glucose uptake.  The two top candidates that emerged 

were Adipoq and Slc2a4.  Both genes were down-regulated after IRF3-2D 

overexpression and up-regulated by shIRF3 in 3T3-L1 adipocytes.  Adipoq encodes the 

hormone adiponectin, which has an insulin-sensitizing function.  Slc2a4 encodes the 

Glut4 glucose transporter, which is necessary for insulin-stimulated glucose uptake in 

adipocytes.   

 To confirm the microarray results, Q-RTPCR was used to determine the 

expression of Adipoq and Slc2a4.  Indeed, both genes were potently down-regulated by 

IRF3-2D overexpression and significantly up-regulated after IRF3 knockdown in 3T3-L1 

adipocytes (Figure 4.9A and B).  Additionally, the expression of these genes was also 

assessed in mouse WAT.  In agreement with the in vitro data, both Adipoq and Slc2a4 

were up-regulated in WAT from Irf3
-/-

 mice compared to WT in both chow and high fat-

fed conditions (Figure 4.9C and D).   

While Adipoq is an adipocyte-specific gene, Slc2a4 is also expressed in skeletal 

muscle, which is a key organ in insulin-stimulated glucose homeostasis.  To determine 

whether IRF3 is a regulator of Slc2a4 in skeletal muscle, the expression of Slc2a4 in 

muscle was assessed by Q-RTPCR and no difference was found between Irf3
-/-

 and WT 

mice on HFD (Figure 4.9E).  This result indicates that the effect of IRF3 on global insulin-

stimulated glucose homeostasis is likely not mediated via regulation of Slc2a4 

expression in skeletal muscle. 

Although Slc2a4 expression is up-regulated in Irf3
-/-

 WAT, Glut4 protein levels 

must also be elevated to confer an insulin-sensitizing phenotype.  Indeed, Western 
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blotting showed that Glut4 protein was significantly elevated in WAT of Irf3
-/-

 mice 

compared to WT littermates under HFD conditions (Figure 4.9F).  WT and Irf3
-/-

 MEF 

derived adipocytes were used as an in vitro model, and Glut4 protein was also markedly 

increased in Irf3
-/-

 cells compared to WT (Figure 4.9G).   
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Figure    4444....９９９９    IRF3 regulates Slc2a4 expression in adipocytes. 

A-E) Q-RTPCR of Slc2a4 and Adipoq expression in A) 3T3-L1 adipocytes after IRF3 

overexpression, B) 3T3-L1 adipocytes after IRF3 knockdown, C) epididymal WAT of 
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Figure 4.9 (Continued). chow-fed male mice, D) epididymal WAT of HFD-fed male mice, 

E) skeletal muscle of HFD-fed male mice. N=4, *P<0.05.  F) Western blot of epididymal 

WAT from HFD-fed male mice, G) Western blot of MEF-derived adipocytes with WAT 

from the GLUT4 transgenic mouse as positive control. 

 

Irf3
-/-

 mice do not show increased serum adiponectin. 

 To study adiponectin protein levels, serum adiponectin was measured via ELISA 

in both chow and HFD-fed mice.  Our results show the expected reduction in serum 

adiponectin level after HFD.  However, adiponectin levels are not elevated in Irf3
-/-

 mice, 

and in fact are somewhat lower than in WT animals, suggesting that IRF3’s role in 

insulin-stimulated glucose homeostasis is not mediated by systemic changes in serum 

adiponectin. 
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Figure 4.10 (Continued). Serum adiponectin is not elevated in Irf3
-/-

 mice. 

Fasting serum adiponectin of chow and HFD fed male mice.  N=8, *P<0.05. 

 

IRF3 transcriptionally regulates the Slc2a4 promoter. 

 Because IRF3 is a transcription factor, it is possible that it exerts its effect on 

Glut4 expression by directly transcriptional regulation of the Slc2a4 gene.  Analysis of 

the Slc2a4 proximal promoter using the Mulan multiple sequence local alignment and 

visualization tool (http://mulan.decode.org) identified several potential ISRE sites, with 

the most proximal ISRE located at 801 base pairs upstream of the transcription start site.  

To test whether IRF3 regulates Slc2a4 via this ISRE site, promoter luciferase constructs 

containing 808 base pairs of the Slc2a4 promoter were cloned and luciferase assays 

were performed in 3T3-L1 adipocytes after wtIRF3 or IRF3-2D overexpression.  

Compared to EGFP control, overexpression of wtIRF3 significantly reduced luciferase 

activity driven by the Slc2a4 proximal promoter, and IRF3-2D reduced luciferase activity 

to an even greater extent.  When the putative ISRE site was deleted, neither wtIRF3 nor 

IRF3-2D overexpression reduced luciferase activity (Figure 4.11).  These results indicate 

IRF3 hinders glucose homeostasis at least in part by transcriptionally regulating the 

expression of Glut4 in adipocytes. 
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Figure 4444....１１１１１１１１    IRF3 regulates the Slc2a4 promoter. 

Luciferase promoter assay of the Slc2a4 promoter after EGFP or IRF3 overexpression in 

3T3-L1 adipocytes.  pGL3 control: pGL3 basic empty vector, pGL3-Slc2a4: pGL3 vector 

containing the Slc2a4 proximal promoter including the ISRE site at -801bp, pGL3-Slc2a4Δ: 

pGL3 vector containing 789bp of the Slc2a4 proximal promoter so that the ISRE site is 

deleted.  N=4, *P<0.05.  

 

Discussion 

  

Here we characterized the role of IRF3 in glucose homeostasis.  Analysis of Irf3
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mice after high fat feeding showed enhanced glucose and insulin tolerance in the GTT 

and ITT, accompanied by decreased fasting serum insulin levels.  Unlike the Tlr4
-/-

 and 
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did exhibit a small decrease in fat mass and complementary increase in lean mass, which 

we proposed above is correlated with an increase in beige adipocytes, such a small 

change in body composition is not likely to be sufficient to increase systemic insulin 

sensitivity to such a degree.  Furthermore our results in Chapter 2 suggested that IRF3 

deletion did not alter macrophage infiltration of WAT or the whole body systemic 

inflammatory state.  Hence the enhanced glucose homeostasis in Irf3
-/-

 mice is not likely 

due to reduced inflammation.  As a result, we hypothesized that IRF3 may hinder 

glucose homeostasis through an additional mechanism in white adipose tissue. 

 Using 3T3-L1 adipocytes and MEF-derived adipocytes as in vitro adipocyte 

models, we found IRF3 overexpression to reduce insulin-stimulated glucose uptake and 

lipogenesis, and IRF3 knockdown or knockout to have the opposite effect.  Subsequent 

Q-RTPCR experiments found Slc2a4 mRNA and the Glut4 protein it encodes to be 

reduced in adipocytes after IRF3 overexpression and induced by IRF3 knockdown; Irf3
-/-

 

WAT also showed elevated Glut4 levels.  A luciferase assay was used to show that IRF3 

suppresses Slc2a4 expression via an ISRE site 801 base pairs upstream of the Slc2a4 

transcriptional start site (Figure 4.12). 

 

Figure 4444....１２１２１２１２IRF3 suppresses adipocyte glucose uptake by transcriptionally 

downregulating adipose Glut4. 

  

IRF3 Glut4 Glucose uptake
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One intriguing question arising from these results is the sexual dimorphism 

observed in the enhanced insulin handling phenotype of the Irf3
-/-

 mice.  A possible 

explanation for this discrepancy is the differences in hormones between the male and 

female mice
233

.  Specifically, estrogen, the primary female sex hormone has been 

implicated to play a role in whole body insulin sensitivity.  Treating postmenopausal 

women with estrogen increased their insulin sensitivity as measured by both GTT and 

ITT; however, another study showed that estrogen can cause insulin resistance in young 

women
234, 235

.  Treating insulin receptor mutant mice with estrogen enhances their 

resistance to oxidative stress, while ovariectomy leads to increased susceptibility to 

oxidative stress, which has been shown to contribute to insulin resistance
127, 236

.  To test 

whether the sexual dimorphism of the Irf3-/-
 mice insulin handling phenotype results 

from a difference in estrogen levels, we can remove the effect of estrogen by 

performing ovariectomy on WT and Irf3-/-
 female mice, then determine whether the Irf3-

/-
 mice exhibit enhanced insulin sensitivity on HFD compared to WT. 

It is still unknown whether IRF3 regulates the Slc2a4 promoter by direct binding 

or via an intermediate protein, although the involvement of the ISRE makes direct 

binding the most likely scenario.  We would like to use chromatin immunoprecipitation 

(ChIP) to confirm direct binding, but we have not been able to locate a ChIP-grade 

mouse IRF3 antibody.  An alternative strategy would be to perform ChIP after ectopic 

expression of a tagged form of IRF3 in 3T3-L1 adipocytes.  We will design primers 

against computationally predicted ISRE regions in the Slc2a4 promoter and perform PCR 

on the ChIP products.  Regions directly bound by IRF3 should be successfully amplified. 
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 The Glut4 glucose transporter is regulated transcriptionally as well as post-

translationally
228, 237

.  Under basal conditions GLUT4 resides intracellularly, but upon 

insulin stimulation, Glut4 containing vesicles fuse with the plasma membrane facilitating 

contact with extracellular glucose
237

.  It would be interesting to determine whether 

increased Glut4 protein in Irf3-/-
 adipocytes also translates to increased Glut4 transport 

to the plasma membrane.  To test this hypothesis we can use GFP-tagged Glut4 to 

visualize Glut4 location in the adipocyte.  Glut4-GFP and IRF3-2D will be overexpressed 

in 3T3-L1 adipocytes and Glut4 localization will be visualized under a confocal 

microscope.  If IRF3 is a regulator of Glut4 translocation then we will see differences in 

Glut4 trafficking in IRF3-2D overexpressing cells compared to negative control. 

 Another intriguing question is the tissue specific regulation of Glut4 expression 

by IRF3 only in adipocytes but not in muscle.  One way this can occur is that IRF3 

regulation of Glut4 requires cofactors that are only present in adipocytes but not in 

muscle.  For instance it is known that there are transcription factors that regulate Glut4 

only in adipocytes such as Srebp-1c and LXRα228.  Alternatively transcription factors that 

regulate Glut4 only in muscle include muscle-specific Glut4 enhancer factor (GEF) and 

myogenic bHLH factors (MyoD)223, 228.  To test this hypothesis we can perform 

immunoprecipitation (IP) of IRF3 followed by mass spectrometry.  Performing this 

experiment in both muscle and adipocytes will determine the different cofactors bound 

to IRF3 in each tissue.   

These results will also help us answer the question of whether IRF3 directly binds 

to the Slc2a4 promoter or regulates Glut4 via an intermediate transcription factor, 
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which binds the Slc2a4 promoter.  By studying the list of cofactors bound to IRF3 in 

adipocytes we can look for transcription factors that are previously known to be direct 

transcription regulators of Glut4.  If such a factor is identified we can further test 

whether this factor is required for IRF3 regulation of Glut4 by knocking down this factor 

in 3T3-L1 adipocytes followed by IRF3-2D overexpression and testing whether IRF3-2D 

can still cause insulin resistance compared to negative control. 

 In addition to Slc2a4, we also identified Adipoq to be down-regulated by IRF3 

overexpression and up-regulated in IRF3 knockdown and knockout adipocytes.  

However, when we measured serum adiponectin levels in Irf3
-/-

 mice, we did not see the 

expected increase.  Adiponectin is an adipokine that’s secreted by the adipose tissue 

and acts on the liver and muscle.  It enhances insulin sensitivity, leading to a decrease in 

hepatic gluconeogenesis and an increase in skeletal muscle glucose uptake
238-240

.  

Adiponectin binding to its receptors in liver and muscle leads to downstream activation 

of Ampk and Pparα
238

.  Ampk activation inhibits gluconeogenesis while stimulating fatty 

acid oxidation, and Pparα activation stimulates energy dissipation through increased 

fatty acid oxidation and by lowering oxidative stress and inflammation
238, 241

. 

Circulating adiponectin is found in three different isoforms: global trimers, low-

molecular weight hexamers, and high-molecular weight 18-mers
238

.  Metabolic diseases 

such as T2D, hypertension, atherosclerosis, and endothelial dysfunction are associated 

with low circulating adiponectin levels
238, 240, 242, 243

.  However, the risk for T2D is 

inversely associated with only high molecular weight adiponectin
242, 244, 245

.  In addition, 

only the high molecular weight isoform of adiponectin is associated with insulin 
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sensitizing effects, while the other two isoforms are implicated in the central effects of 

adiponectin action
238

.  Therefore it is still possible that IRF3 may influence glucose 

homeostasis through affecting the level of high molecular weight adiponectin, but the 

ELISA assay used in this study was unable to distinguish between the different isoforms 

of adiponectin. 

 In summary, we identified IRF3 to be a transcriptional suppressor of the 

expression of the Glut4 glucose transporter in adipocytes.  Deletion of IRF3 resulted in 

up to four-fold up-regulation of the gene and protein, which points to the importance of 

IRF3 in glucose homeostasis.  
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Chapter 5  

Conclusions and future directions 
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Conclusions 

In the past 20 years there has been a growing recognition of the close link 

between the immune and the metabolic systems
97

.  Obesity has been found to be 

associated with chronic low-grade systemic inflammation as well as inflammation of 

peripheral metabolic tissues including adipose tissue, liver, and muscle.  This state of 

inflammation is a crucial contributing factor to the comorbidities of obesity, including 

insulin resistance and T2D
97

. 

Numerous studies have shown that obesity results in elevated expression of 

inflammatory cytokines such as TNF-α, IL-6, IL-10, and IL-1β in the adipose tissue, which 

contribute to obesity-induced insulin resistance
4
.  Additionally, many kinases involved in 

the proinflammatory signaling pathway, such as JNK, IKKβ, and PKC are also activated 

during obesity and act to promote insulin resistance
141, 143-145

.  However, few studies 

have looked into the transcriptional pathways that regulate the immune-metabolic 

interaction.  Here we show that IRF3, an important transcription factor in the viral-

mediated interferon response pathway, is a player in this transcriptional pathway 

crosstalk. 

First of all, using whole genome microarray and Q-RTPCR analysis we found IRF3 

to be a potent inducer of immune response genes in adipocytes.  Unexpectedly, 

however, we did not see altered MCP-1 levels or a decrease in the extent of 

macrophage infiltration in the WAT of Irf3-/-
 mice.  Despite this, we did in fact find that 

IRF3 has potent effects on adipose tissue biology and metabolism. 
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Upon examination of the adipose tissue of Irf3-/-
 mice, we found IRF3 to be a 

potential suppressor of beige cell development from poised precursors in inguinal WAT.  

Specifically, Irf3-/-
 mice were found to have increased number of UCP-1-expressing beige 

cells in the inguinal WAT compared to WT mice at room temperature and 

thermoneutral conditions, but not in cold challenged conditions.  When exposed to cold 

challenge, Irf3
-/-

 mice exhibited short-term protection from a sharp drop in body 

temperature.  These mice also exhibited increased food intake and energy expenditure 

as well as a shift away from glucose toward fatty acid as a source of fuel in Irf3
-/-

 mice on 

HFD.  Together these data suggest that IRF3 is a regulator of energy homeostasis by 

suppressing the “browning” of adipocytes.   

 Lastly we found IRF3 to be a transcriptional regulator of glucose homeostasis.  

Specifically, Irf3
-/-

 mice exhibited enhanced insulin sensitivity and glucose tolerance on 

HFD.  In vitro experiments in cultured adipocytes found this phenomenon to be at least 

partially due to an adipocyte-specific role of IRF3 to suppress the expression of Glut4 

(Figure 5.1). 
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Figure 5555....１１１１IRF3 regulates glucose and energy homeostasis by suppressing adipocyte 

browning and Glut4 expression. 

  

Because of the close link between the immune and the metabolic systems, is it 

possible that some of the phenotypes manifested in the Irf3
-/-

 mice are in part due to 

IRF3’s role in immune response?  Nguyen et al. recently showed that M2 macrophages 

are required to sustain adaptive thermogenesis
246

.  They found cold exposure to be an 

inducer of adipocyte M2 macrophages.  These macrophages produce catecholamines 

that promote upregulation of Pgc1α, Ucp1, and Acsl1.  Disruption of the IL-4/IL-13 

pathway, which is required for M2 macrophage polarization, resulted in blunted 

adaptive thermogenesis, and thus these mice were unable to maintain core body 

temperature in response to cold challenge246. 
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 IRF3 is a strong positive regulator of M1 macrophage activation54, 61.  Therefore 

Irf3
-/-

 mice may exhibit elevated M2 macrophage polarization accompanied by 

decreased M1 macrophage polarization in the adipose tissue.  This can lead to increased 

catecholamine in the adipose tissue, which may lead to the increased thermogenesis 

and adipocyte “browning” phenotype of the Irf3-/-
 mice.  To determine whether M2 

macrophage activation is indeed contributing to the increased thermogenesis and 

adipocyte “browning” in Irf3-/-
 mice, we can study whether there is increased M2 

macrophage activation in the adipose tissue of Irf3
-/-

 mice.  This can be done by 

fractionating the adipose tissue and using FACS sorting to count the number of M1 

macrophages, which are CD11c+ and M2 macrophages, which are CD11c-.  If Irf3
-/-

 mice 

have increased CD11c- macrophages in the white adipose tissue then M2 macrophage 

polarization is a contributing factor to the increased beige adipocyte phenotype in Irf3
-/-

 

mice. 

 In this study we observed both increased adipose tissue “browning” and 

enhanced glucose handling in Irf3-/-
 mice.  Although we have identified increased Glut4 

expression as a direct cause for enhanced glucose handling, it is still possible that the 

increase in adipose tissue “browning” is also a contributor to the glucose handling 

phenotype.  Previous studies have shown that diabetes is associated with decreased 

expression of the brown adipocyte-selective gene Pgc1α
247

, while resveratrol treatment, 

which increases Pgc1α activity, protects mice from diet induced obesity and insulin 

resistance
248

.  Clinical observations also show that insulin resistant patients exhibit 

reduction in a panel of brown adipogenic genes including Pgc1α, Ucp1, Rxrγ, etc
249

. 
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 To determine how much the increase in adipocyte “browning” is contributing to 

the enhanced insulin sensitivity in Irf3
-/-

 mice, we can assess how much lack of IRF3 

increases insulin sensitivity in the absence of browning.  This can be achieved by mating 

Irf3
-/-

 mice onto an adipocyte-specific Prdm16 knockout background.  Since lack of 

Prdm16 in the adipocyte will inhibit the development of brown adipocytes, we can 

compare the insulin sensitivity of the double-knockout mice with those expressing IRF3 

to determine the extent to which IRF3 can affect insulin sensitivity without adipocyte 

“browning”. 

  

Future directions 

One might wonder whether hyperactivation of IRF3 is involved in the onset of 

obesity since obesity is closely associated with the dysregulation of glucose and energy 

homeostasis.  We have studied the expression of IRF3 in lean and obese mice and found 

no difference, consistent with the observation that IRF3 is constitutively expressed, and 

is not typically regulated at the transcriptional level
57

.  IRF3 is, however, highly regulated 

by post-translational modifications75.  Latent IRF3 resides in the cytoplasm, and under 

stimulation it is phosphorylated at the C-terminus, dimerizes, and translocates into the 

nucleus to activate transcription of downstream genes63, 68, 69, 71.  Therefore the best way 

to study IRF3 activity is to look at its phosphorylation or translocation.  Unfortunately 

there is currently no usable mouse-specific antibody on the market that specifically 

detects phosphorylated IRF3.  We have also attempted to isolate the nuclear fraction 

from adipose tissue to detect nuclear IRF3.  However, since obese adipose tissue is filled 
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with infiltrating macrophages, which also highly express IRF3, one must fractionate the 

adipose tissue to separate the adipocytes from the macrophages.  Due to the low 

amount of nuclear protein in the obese adipocyte and the loss of yield from the 

fractionation process we have, as yet, been unable to detect adipose nuclear IRF3.  We 

are now pursuing a mass-spectroscopy-based strategy to address the question of 

whether adipose IRF3 activity is elevated in obesity. 

 In this study we identified two important roles for IRF3 in the adipose tissue.  

However, it still remains a question whether some of the phenotypes we observed are 

entirely due to IRF3’s role in the adipocyte or if there were confounding effects from 

other cell types.  The lack of a floxed IRF3 mouse model limits our ability to completely 

work out IRF3’s role in metabolism.  A tissue specific knockout model would allow us to 

dissect the role of IRF3 in each metabolic tissue, especially its differential role in WAT 

and BAT.  To this end, we plan to create a floxed IRF3 mouse model as the next stage of 

this project. 

We are also interested in the pathways that lead to IRF3 activation in adipocytes.  

IRF3 activation is well studied in immune cells, where IRF3 acts downstream of TLR4.  

Activation of TLR4 after viral or bacterial infection results in activation of the kinases 

Tbk1 and Ikkε, which together phosphorylate and activate IRF3
91

.  Both TLR4 and Ikkε 

have been found to be expressed in adipocytes.  TLR4 has been shown to be a direct 

target of free fatty acids
80

.  Metabolic characterization of Tlr4
-/-

 mice and mice lacking 

TLR4 in hematopoietic cells show increased insulin sensitivity
80, 250

.  Ikkε is also linked to 

metabolism in that obesity increases liver and adipose Ikkε expression
95

.  Ikkε
-/-

 mice are 
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protected from diet induced obesity and insulin resistance.  Additionally, they exhibit 

increased food intake, body temperature, and energy expenditure
95

.  These data 

correlate with our observations in the Irf3-/- mice in vivo as well as in Irf3-/- adipocytes in 

vitro.  This suggests that IRF3 may act downstream of TLR4 and Ikkε in adipocytes.  We 

plan to begin by performing in vitro experiments in 3T3-L1 adipocytes to study if 

overexpression or knockdown of TLR4 or Ikkε results in similar effects as that of IRF3.  

Then use epistasis experiments to determine if knockdown of IRF3 in 3T3-L1 adipocytes 

abolishes the effects of TLR4 and Ikkε. 

 In the process of characterizing the Irf3-/- mouse, we found them to be resistant 

to HFD-induced liver steatosis.  This points to a potential role for IRF3 in liver 

metabolism.  Seo et al. recently found viperin, a viral response protein encoded by the 

Rsad2 gene, to have a role in inhibiting fatty acid oxidation
251

.  Interestingly, viperin 

expression was significantly up-regulated by IRF3 overexpression and down-regulated 

by IRF3 knockdown in our microarray in 3T3-L1 adipocytes.  Therefore we hypothesize a 

potential pathway where IRF3 acts through viperin to regulate fatty acid oxidation in the 

liver.  This will be one of our new directions in the study of IRF3 in metabolism. 

 In conclusion we found IRF3 to be a regulator of adipose metabolism, specifically 

suppressing adipocyte “browning” and insulin-stimulated glucose handling.  Although 

further studies are still needed to fully delineate IRF3’s role in metabolism, these results 

clearly indicate that IRF3 is a critical transcriptional regulator of the crosstalk between 

the immune and the metabolic systems. 
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