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Force Sensitivity of the von Willebrand Factor A2 Domain 

Abstract 

von Willebrand factor (VWF) is a multimeric glycoprotein that critically supports platelet 

aggregation in hemostasis.  Disordered VWF function causes both thrombotic and bleeding disorders, and 

genetic defects in VWF are responsible for von Willebrand’s disease (VWD), the most common inherited 

bleeding disorder in humans.  Very large VWF multimers exhibit the greatest thrombogenic activity, 

which is attenuated by ADAMTS13 cleavage in the A2 domain.  A2 cleavage is regulated by mechanical 

force, and pathologically high shear forces are known to enhance proteolysis and cause bleeding in 

patients.  Enhanced cleavage is also described in patients with VWD 2A mutations.  In contrast, VWF A2 

is stabilized against cleavage by a calcium binding site within A2.  Single molecule studies have 

demonstrated that mechanical unfolding is required for A2 cleavage to expose the scissile bond.  In this 

dissertation, we aim to better understand the mechanosensitivity of A2 cleavage by characterizing the 

force sensitivity of A2 unfolding and refolding.  

We first characterized the interaction between VWF A2 and calcium using bulk isothermal 

calorimetry and thermal denaturation assays.  In parallel, we used single molecule optical tweezers to 

characterize A2 unfolding and refolding.  Calcium was found to bind A2 with high affinity, stabilize A2 

against thermal denaturation, and enhance domain refolding.  In contrast, we found that VWD 2A 

mutations destabilize the A2 domain against thermal denaturation.  R1597W, the most common VWD 2A 

mutation, lies within the calcium binding loop and exhibited diminished calcium stabilization against 

thermal denaturation.  Using optical tweezers, we found that R1597W also diminished A2 refolding.  

R1597W refolding in the presence of calcium was similar to that of wild-type A2 in the absence of 

calcium, suggesting that loss of calcium stabilization contributes to the disease mechanism of R1597W.  

Other VWD 2A mutations lying outside the calcium binding loop also destabilized A2, but retained 
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calcium mediated stabilization.  These studies provide a better understanding of VWD 2A 

pathophysiology and offer structural insights into A2 unfolding and refolding pathways.  By exploring the 

role of mechanical force in regulating VWF cleavage, this work moves towards a better understanding of 

how hydrodynamic forces within the vasculature regulate VWF function in hemostasis and thrombosis. 
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Chapter I:  

Biophysics of VWF in Hemostasis and Thrombosis 

 

Amy J. Xu and Timothy A. Springer 

 

Introduction 

von Willebrand factor (VWF) is an adhesive glycoprotein that critically mediates hemostasis by 

supporting platelet aggregation and stabilizing factor VIII.  Disordered VWF function is implicated in 

both thrombotic and bleeding disorders, and genetic defects in VWF are responsible for the most 

commonly inherited bleeding disorder in humans.  Secreted into the circulation as enormous concatamers, 

VWF experiences significant hydrodynamic forces that regulate its function.  Above a critical shear rate, 

VWF transitions from globular to elongated conformations, which activate its adhesive function.  These 

conformational dynamics are dictated by shear gradients that result in elongational flows.  Elongational 

flows are enhanced in both hemostasis and thrombosis through changes in vessel geometry.  Mechanical 

force also regulates VWF proteolysis by ADAMTS13, which determines the size, and thus 

thrombogenicity, of VWF multimers.  VWF and platelets interact through a structural bond that is 

remarkably specialized for arteriolar flow to remain stable under high shear.  These specialized 

interactions can be studied through single molecule experiments to gain insight into the structural 

specializations of VWF domains that enable force sensitive cleavage and force resistant platelet binding.  

The following review discusses how VWF function is regulated by shear, the hydrodynamic forces 

experienced by VWF, and the structural features of individual domains that render VWF sensitive to 

mechanical force. 
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VWF critically mediates hemostasis 

von Willebrand factor (VWF) is a large, multimeric glycoprotein central to hemostasis.  At sites 

of vascular injury, several mechanisms function to arrest bleeding.  First, damaged blood vessels constrict 

to reduce blood flow, increase shear, and create a shear grdient.  Next, platelets aggregate to plug the 

vessel defect.  Finally, the coagulation cascade stabilizes the initial platelet plug through fibrin cross-

linking.  The structure of VWF highlights its critical function in these hemostatic mechanisms, as 

different domains bind collagen, platelet glycoprotein Ib (GPIb), integrins αIIbβ3 and αVβ3, and clotting 

factor VIII (Fig 1.1A).  VWF mediates platelet plug formation by binding platelets and anchoring to the 

vessel wall through interactions with αVβ3 integrins on endothelial cells (1) and collagen exposed within 

the sub-endothelial matrix (2).  VWF also enhances secondary hemostasis by functioning as a carrier 

protein for factor VIII, increasing its half-life fivefold (3).  Released into the circulation as enormous 

multimers reaching >12 MDa in size and >15 μm in length (4, 5), VWF provides a multivalent platform 

for platelet aggregation at sites of tissue of injury.    

VWF is exclusively synthesized by endothelial cells and megakaryocytes and, as the largest soluble 

protein in vertebrates, undergoes extensive processing to generate its extreme length and to facilitate its 

storage and secretion.  Early in biosynthesis, pro-VWF monomers dimerize in the endoplasmic reticulum 

through inter-monomer disulfide bonds in the C-teminal cystine-knot (CK) domain (Fig 1.1B) (6).  VWF 

then traffics to the Golgi, where the lower pH induces further non-covalent zipping up of proVWF 

dimers.  At the  C-terminus, the A2, A3 and D4 domains zip up into elongated, dimeric bouquets (Fig 

1.1C) (7) that guide assembly of the N-terminal D domains into helical tubules (Fig 1.1D) (8).  At the 

same time, proVWF dimers concatamerize through disulphide linkage at the N-terminus and the 

propeptide sequence is removed by furin cleavage (Fig 1.1E) (9).   

Large VWF concatamers are targeted to cytoplasmic secretory granules, known as Weibel-Palade 

bodies (WPB), within endothelial cells (10).  Thrombogenic stimuli, such as epinephrine, thrombin, 
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fibrin, histamine, and vasopressin, stimulate endothelial cells to release ultralarge VWF, which is secreted 

through a pore formed between WPB and the plasma membrane (11).  Long VWF fibrils have been 

observed to extend from stimulated endothelial monolayers in the direction of flow (12), and it has been 

proposed that these fibrils represent self-assembly of multiple VWF concatamers unfurling in parallel 

from separate tubules (13).  In addition to the ultralarge VWF stored within WPB, endothelial cells and 

megakaryocytes constitutively secrete smaller VWF fragments.  Studies in chimeric pigs found that 

normal pigs engrafted with VWF deficient marrow were capable of normal thrombus formation.  

However, thrombus formation was never observed in VWF deficient pigs engrafted with normal bone 

marrow, suggesting that ultralarge VWF secreted by endothelial cells is the critical mediator of 

hemostasis (14). 
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Fig 1.1  Structure of VWF concatamers.  (A) Domain organization of VWF.  Cysteines and disulfide 

bonds indicated beneath; N- and O-linked sites represented above as filled and open lollipops, 

respectively(15).    (B) Biosynthesis and helical assembly of VWF concatamers.  Homotypic interactions 

in the C-terminus guides helical assembly of proVWF dimers at the N-terminus. 
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VWF functional activity correlates with size 

VWF thrombogenic activity correlates with size, with the largest VWF concatamers exhibiting the 

greatest thrombogenic potential (16).  Ultralarge VWF is secreted from endothelial cells as long fibrils, 

which is then specifically cleaved by the metalloproteinase ADAMTS13 (a disintegrin and 

metalloprotease with a thrombospondin type 1 motif, member 13), producing a distribution of VWF 

concatamer lengths within the circulation. Absence of ADAMTS13 function results in the accumulation 

of ultralarge VWF concatamers, which inappropriately induce platelet aggregation in the life threatening 

condition known as thrombotic thrombocytopenic purpura (TTP) (17).  In TTP, extensive microvascular 

thromboses result in tissue ischemia and infarction in multiple organs, defining a classic pentad of clinical 

features that include thrombocytopenia, microangiopathic hemolytic anemia, fever, neurologic symptoms 

and signs, and renal function abnormalities (18).  TTP is treated with plasma exchange, which presumably 

reestablishes normal VWF size regulation by removing ADAMTS13 inhibitors and replenishing 

functional enzyme (19).   

ADAMTS13 is a constitutively active enzyme whose activity is modulated by conformational 

changes within its VWF substrate.  In particular, ADAMTS13 cleavage requires unfolding of the A2 

domain.  This unique mechanoregulatory mechanism is illuminated by the structure of VWF A2 (Fig 

1.2B).  The ADAMTS13 scissile bond is buried in a central β4 strand within A2 that is inaccessible in the 

native state (20).  Under static conditions, VWF cleavage by ADAMTS13 only occurs in the presence of 

denaturing agents such as urea (21).  Physiologically, VWF A2 unfolding is achieved through application 

of tensile force to the N and C termini (22) to allow enzyme access to the scissile bond.   

VWF size regulation is critical to normal hemostasis and clinically useful for diagnosing thrombotic 

and bleeding disorders.  The VWF multimer assay assesses VWF size distributions by separating VWF 

multimers in agarose gels (23).  Whereas VWF concatamers are shifted to larger size distributions in TTP, 
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the absence of large VWF concatamers confirms a diagnosis of von Willebrand’s disease (VWD), a 

bleeding diathesis resulting from reduced VWF function. 

von Willebrand’s Disease mutations illuminate VWF structural specializations 

VWD encompasses a heterogeneous set of bleeding disorders that arise from various mutations 

within the VWF gene.  Type 1 and 3 VWD describe quantitative deficiencies whereas type 2 VWD 

results from qualitative defects in protein function (24).  VWD type 2 subtypes are defined by increased 

binding to platelets (type 2B), decreased binding to platelets (type 2M), reduced binding and stabilization 

of factor VIII (type 2N), and lack of high molecular weight VWF multimers (type 2A).  Comprising 10% 

of all diagnoses, VWD 2A is the second most common VWD subtype and is characterized by the 

selective loss of high molecular weight multimers.  Patients present with increased bleeding due to 

decreased VWF thrombogenicity.  Type 2A may be further subdivided based on whether abnormal VWF 

size distributions arise from impaired VWF biosynthesis (Group 1) or increased cleavage by ADAMTS13 

despite normal VWF multimer assembly and secretion (Group 2) (25).  Both groups of VWD 2A 

mutations cluster within the A2 domain bearing the scissile bond for cleavage by ADAMTS13.   

The gain of function phenotypes described in VWD 2B (increased platelet binding) and VWD 2A 

(increased VWD 2A proteolysis) provide fascinating insight into domain structure.  VWD 2B mutations 

map to buried sites within VWF A1 (Fig 1.2A) (26) (27) and likely cause increased GPIb binding by 

inducing conformational changes within A1 that destabilize an alternative conformation with weaker 

binding ability.  Such a two state model has yet to be described by crystallography. However, single 

molecule experiments suggest that distinct flexed and extended A1 conformations reflect the unique 

ability of the domain to withstand high shear forces in arteriolar flow (28).  Similarly, VWD 2A 

mutations map to the interior of the A2 domain, and are hypothesized to increase A2 susceptibility to 

cleavage by altering the force sensitivity to A2 unfolding. 
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Paradoxically, gain of function mutations in VWD 2B present with increased bleeding.  Instead of 

the thrombosis one might expect with increased VWF-GPIb binding (29), VWD 2B patients exhibit 

smaller VWF multimers which may be due to increased clearance of large multimers as well as markedly 

elevated VWF proteolysis (29).  Platelet bound VWF is hypothesized to experience greater hydrodynamic 

forces that are transmitted to the A2 cleavage domain to allow unfolding.  The increased susceptibility of 

VWD 2B to proteolysis highlights the remarkable force sensing ability of the A2 cleavage domain.         
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Fig 1.2.  A1 and A2 domain structures.  (A)  Crystal structure of GPIb and VWF A1 complex. 

Disulphides shown with gold sticks.  VWD 2B mutations in A1, marked with red spheres, are buried 

within A1 and do not contact GPIb.  Figure from (13).  (B)  Structural specializations of VWF A2.  The 

scissile bond at Y1605/M1606 (grey sidechains) is buried within a central β4 strand.  Elongational force, 

experienced by VWF concatamers and applied to the N and C termini, as shown by arrows, renders A2 

susceptible to ADAMTS13 cleavage.  A calcium binding site lies within the α3-β4 loop.   
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Shear stress regulates VWF cleavage 

Given its large size, VWF is particularly susceptible to hydrodynamic force and fluid shear stress 

critically regulates VWF size distributions (12).  In addition to the genetic mutations described in von 

Willebarnd’s disease, decreased VWF function has also been attributed to pathologic changes in shear 

environments experienced by VWF.  Acquired VWD is a clinically described bleeding disorder thought 

to arise from increased shear forces inducing increased shear-stress-induced proteolysis of VWF.  The 

clinical association between severe aortic stenosis and gastrointestinal bleeding, known as Heyde’s 

syndrome, is linked to changes in VWF multimer distribution.   

A study of patients being evaluated for aortic valve replacement demonstrated that patients with 

aortic stenosis exhibited bleeding disorders associated with pathologically small VWF multimers.  

Bleeding and VWF size distribution completely normalized upon surgical repair of pathologic shear with 

aortic valve replacement (30).  Acquired VWD has also been described in patients implanted with 

mechanical circulatory support devices (31), which pathologically increase shear forces experienced in 

the circulation.  These characterizations of bleeding disorders arising from mechanical defects underscore 

the role of mechanical force in regulating VWF function.  

Shear stress activates VWF adhesivity 

Large VWF concatamers are critical for platelet aggregation in arteriolar flow.  Though platelets may 

form stable adhesive interactions with collagen (32) and fibrinogen (33), these direct platelet interactions 

do not form under the high shear forces experienced in arterioles.  Stable platelet adhesion at shear rates 

above 500 s
-1

 requires VWF (32), which is specialized to function in high shear environments.   

VWF thrombogenicity increases with increasing shear (32) and circulating VWF does not normally 

bind platelets under low shear.  Shear stress induces conformational changes in VWF structure that were 

first described using atomic force microscopy (34).  Above a critical shear rate, exposure of VWF to shear 

flow induces VWF to transition from collapsed to extended conformations.   
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Dynamic visualization of fluorescently labeled VWF within a microfluidic flow chamber 

demonstrated that VWF globule-stretch transitions are reversible, occur on very short time scales, and 

correlate with adhesive function (5).  Theory from polymer physics predicts the transition at a well-

defined threshold flow rate, εcritical, at which the polymer immediately unravels from a globular to 

stretched conformation (35).  Consistent with this model, VWF adopted a stretched conformation 

reaching 15 μm above a critical shear rate of 5,000 s
-1

.  Once the hydrodynamic shear was reduced below 

this critical shear rate, VWF immediately relaxed back to its compact, globular state.  These 

conformational dynamics were correlated with adhesive function by monitoring binding to a collagen 

coated substrate.  Below the critical shear rate, VWF adhered to the collagen coated surface in a coiled 

state, whereas above the critical shear rate, VWF formed spider like networks, suggesting that shear-

induced unfolding of globular VWF activates adhesion to the vessel wall (35).  This critical transition is 

dictated by hydrodynamic forces, which vary throughout the vasculature but are enhanced during 

hemostasis and in pathologic thrombotic states. 

Hydrodynamic forces within the vasculature  

VWF experiences a range of hydrodynamic forces that regulate its function.  Fluid forces are 

governed by geometry, fluid viscosity, and fluid speed.  In most vessels, flow is laminar (36) and defined 

by parallel fluid layers gliding past each other with a parabolic velocity profile.  Fluid velocity is highest 

in the centerline and decreases to zero along the vessel walls (Fig 1.3A).  The velocity difference between 

adjacent fluid layers is defined by the shear rate (s
-1

), and is zero at the centerline and maximal at the 

vessel wall.  Shear stress (dyn/cm
2
) is the force per unit area exerted by viscous lamina traveling at 

different velocities, and is directly related to shear rate by fluid viscosity.  Accordingly, shear stress is 

zero along the central axis of flow and maximal along the vessel wall.  

Physiologic shear rates are lowest in large veins (< 20 s
-1 

(37)) and highest in narrow arterioles (5000 

s
-1

 (38)).  Extremely high shear stresses are encountered in the setting of severe stenosis and may exceed 
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40,000 s
-1

 (39).  A crude approximation of force experienced by a platelet tethered to the vessel wall may 

be estimated by the wall shear stress experienced by a 2.8 μm sphere.  Given the typical range of fluid 

velocities and vascular dimensions in vivo (40), force estimates range from 0.5-5 pN in veins, 7-20 pN in 

large arteries, 10-40 pN in arterioles, and 20-1000 pN in stenotic vessels.    

 

 

Fig 1.3.  Hydrodynamic forces experienced by VWF.  (A) Shear flow, transitioning to elongational 

flow with changes in vessel geometry.  Round, orange spheres emphasize the effect of elongational flow 

in deforming globular polymer into an elongated chain.  (B) Shear flow tends to rotate and elongate 

polymers.  (C) Schematic of VWF elongating, compressing, and tumbling in shear flow.  (D)  Peak tensile 

force experienced by VWF A2 monomer scales with the square of concatamer length.   



12 
 

VWF is regulated by elongational flow 

Hydrodynamic forces experienced by flexible VWF concatamers may be understood through polymer 

physics.  Shear flow can be conceptualized as the superposition of rotational and elongational components 

(Fig 1.3B).  Rotational flow tends to rotate but not deform particles, causing VWF globules to tumble.  In 

contrast, elongational flow induces large deformations in polymer shape, inducing VWF to stretch from a 

collapsed conformation into an elongated chain (41).  Such elongational flows are responsible for the 

previously described globule to stretch transition required for activating VWF adhesivity. 

Elongational forces develop in regions of shear gradients, which are created by changes in vessel 

geometry and have been implicated in driving thrombus formation.  Fluid escaping from ruptured vessels 

travels orthogonal to the direction of blood flow and undergoes purely elongational flow (Fig 1.3A).  

Elongational flows are also enhanced by changes in vessel shape, which may arise from atherosclerotic 

lesions or bifurcations.  Interestingly, atherosclerotic lesions are known to preferentially develop at sites 

of carotid bifurcation (42), where elongation forces dominate.  Indeed, recent studies have demonstrated 

that shear gradients drive thrombus formation (43).  Applying a blunted needle to stenose the lumen of 

mesenteric arterioles in mice, Nesbitt et. al used high-resolution intravital microscopy to observe resulting 

thrombus formation induced by shear microgradients.  Platelets preferentially adhered in low-shear zones, 

and aggregate size was determined by the magnitude of shear microgradients.  The authors attributed their 

findings to mechanosensory platelet activation.  However, these low shear zones are also significant for 

rapid shear deceleration which greatly enhances elongation forces, and it would be interesting to 

understand the role VWF plays in mediating shear-gradient induced thrombus formation. 

Elongation forces also develop during the natural process of hemostasis.  Healthy endothelium 

produces compounds, such as nitric oxide and prostacyclin, to inhibit platelet aggregation and enhance 

vasodilation.  Upon vessel injury, blood vessels immediately constrict to limit blood flow and minimize 

the surface area of the open lesion.  This initial vasospasm is mediated by sympathetic nerve reflexes, 



13 
 

which stimulate smooth muscle contraction.  Vasoconstriction is also mediated by agonists released by 

endothelial cells and platelets.  As activated platelets aggregate to plug the injured site, several 

compounds are released from their storage granules, including serotonin, epinephrine, platelet activating 

factor, and thromboxane A2 (44).  These agonists reverse the natural vasodilated state by profoundly 

reinforcing vasoconstriction of the affected vessels by promoting intracellular calcium influx within 

vascular smooth muscle cells.  Vasoconstriction itself may also reinforce hemostasis by enhancing 

elongational forces to activate VWF thrombogenicity.   

In addition to functioning as the first step of hemostasis, vasospasm is implicated in thrombotic 

pathologies.  Vasospasm of the coronary arteries, which perfuse heart tissue, causes a variant of chest 

pain known as variant or Prinzmetal’s angina.  Such vasospasms lead to myocardial infarction and are 

thought to be caused by autonomic stimulation (45) and/or endothelial dysfunction (46).  Vasospasm has 

also been implicated in initiating thrombotic occlusions in the absence of coronary atherosclerosis.  A 

study of patients at risk for myocardial infarction found, on post-mortem exam, fresh, laminar thrombi 

that led to complete coronary occlusion at the sites of vasospasm (47).  Vasoconstriction, whether due to 

atherosclerotic narrowing, functioning in hemostasis, or precipitating thrombotic pathologies, plays a 

clear role in hemostasis and thrombosis and may regulate VWF function by enhancing elongational flows.            

Numerical simulations of VWF dynamics confirm the relevance of elongation forces to VWF 

regulation (48).  Modeling VWF concatamers as a series of dimers interconnected by hydrophobic 

interactions, Sing et. al demonstrated that VWF unfolding is strongly regulated by elongational flows.  

They determined the critical flow rates at which VWF globules unfold to a fully extended chain, and 

demonstrated that elongational flows unfold VWF at flow rates that are two orders of magnitude below 

those corresponding to pure shear.   

VWF adhesive function is determined by the structural transiton of globular to stretched 

conformations that respond most sensitively to elongational flows.  Thus, the magnitude of shear 
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gradients (which give rise to elongation forces), rather than absolute shear rates, is most relevant for 

predicting hemostatic activation of VWF function.      

Single molecule force spectroscopy 

In addition to inducing global changes in structure, force regulates VWF function at the level of 

individual domains.  Recent advances in single molecule techniques have yielded powerful insight into 

the mechanisms of VWF mechanoregulation.  In particular, experiments using single molecule optical 

tweezers have elucidated the role of mechanical force in regulating VWF cleavage (22, 49, 50) and A1 

platelet binding (28), and are pioneering new concepts in how mechanical force regulates biological 

processes.        

Understanding how mechanical force effects changes in protein conformation requires control over 

force application and assessment of conformational change.  Bulk experimental methods lack both the 

precision and sensitivity to monitor conformational dynamics.  Conventional techniques for applying 

force to bulk solutions, including vortex and stir, result in a heterogeneous distribution of forces 

experienced by each molecule.  Furthermore, detection of conformational change is limited by the 

averaging of many molecules in different states.  Single molecule techniques overcome these barriers by 

removing the confounding effects of ensemble averaging and offering precise control over individual 

molecules. 

Conventional methods of single molecule force application include Optical Tweezers, Magnetic 

Tweezers, and Atomic Force Microscopy (51).  Optical Tweezers offers high spatial (0.1-2 nm) and 

temporal resolution within a 0.1-100 pN force range that is relevant to hydrodynamic forces experienced 

in the vasculature, as well as typical forces required for protein unfolding (52).  Optical Tweezers rely on 

the balance of optical “scattering” and “gradient” forces which stabilize particles slightly beyond the 

waist of a focused laser beam.  Near the center of the trap, optical forces behave as a linear “Hookean” 

spring (53), exerting a force proportional to the object’s displacement from the center of the trap (Fig 
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1.4A).  Because optical trapping relies on the energy absorbed from highly focused laser beams, 

photodamage is avoided by manipulating biological molecules with functional handles.  DNA handles, 

which function as physical spacers, are a popular strategy for linking functionalized proteins because they 

minimize nonspecific interactions and provide a molecular signature for force calibration via the well-

studied force extension curve of DNA (54).  Several methods for linking DNA to protein have been 

reported, including disulfide exchange (55) and click chemistry to alkyne modified groups (56).  With 

careful calibration, optical trapping functions as a highly sensitive tool for quantitative measurements and 

has proven a powerful tool for probing biological interactions. 

A1-GPIb interactions are specialized to withstand hydrodynamic forces  

VWF is remarkable for its ability to maintain platelet adhesion under high shear, an interaction 

mediated by VWF A1 binding of platelet GPIb.  To test the hypothesis that A1-GPIb is specialized to 

resist mechanical force, single molecule optical tweezers were employed to characterize the response of 

A1-GPIb binding to tensile force.  The bimolecular interaction between VWF A1 and platelet GPIb was 

isolated using a novel method for measuring binding and unbinding of a receptor and ligand in a single 

molecule (ReaLiSM) (Fig 1.4A).  Crystal structures of the A1-GPIb complex demonstrate that the 

globular A1 domain interacts with leucine-rich repeats within the concave face of GPIb (Fig 1.2A) (57, 

58).  Informed by their close proximity and lack of contribution to the complex interface, 43 and 26 

residue polypeptide linkers were attached to the C-terminus of VWF A1 and N-terminus of GPIb to form 

ReaLiSM constructs to investigate using optical tweezers. 

 The mechanical response of A1-GPIb was studied by suspending the ReaLiSM construct between 

functionalized DNA handles attached to polystyrene beads controlled by the laser trap (Fig 1.4A).  During 

repeated cycles of increasing and decreasing force, abrupt increases and decreases in the length of the 

tether reflected unbinding and rebinding events, respectively, (Fig 1.4B) that were verified by fitting the 

extension and contraction lengths to the wormlike chain model of entropic elasticity.  Dissociation 

between A1 and GPIb was monitored over different pulling rates.  Whereas low pulling rates rates yielded 
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narrow, unimodal distributions of bond rupture events, higher pulling rates clearly resolved a bimodal 

distribution of rupture forces.  Taken together, the data collapse onto two exponential decreases in bond 

lifetime with increasing force, with different kinetics dominating at forces below and above a threshold 

force of around 10 pN (Fig 1.4C).  The kinetic model implicates two distinct pathways for dissociation of 

the GPIb-A1 bond, a two state “flex-bond” (Fig 1.4D) that broadens the distribution of forces that A1-

GPIb can withstand.  This model supports the specialized function of VWF A1 over a wide range of shear 

environments.  Interestingly, above 10 pN, the GPIb-A1 exhibits a second state that is more force 

resistant.  Thus, the high shear environment of arteriolar flow reinforces GPIb-A1 binding, underscoring 

the structural specializations of VWF for functioning under high force.    

 

 

Fig 1.4.  A1-GPIb bond is specialized to withstand high force.  (A) Schematic of ReaLiSM fusion 

construct containing the A1 domain, a polypeptide linker, and GPIb.  (B)  Representative cycle of 

unbinding and rebinding, measured as abrupt changes in tether extension during pulling (black) and 

relaxation (red).  (C)  Kinetic measurements from rupture force histograms collapse onto a two state 

model.  (D)  Schematic model of flex bond.   
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A2 unfolding regulates VWF cleavage 

VWF A2 exhibits several structural features that allow it to be regulated by hydrodynamic forces 

in the circulation (Fig 1.2B).  The ADAMTS13 scissile bond is buried in a central β4-strand within A2 

that is inaccessible in its native state.  Compared to neighboring domains, VWF A2 lacks a long-range 

disulfide bond to protect the domain against unfolding by elongational (tensile) force exerted on VWF 

concatamers.  Additional structural features appear to render the domain more sensitive to force.  In place 

of an α4 helix, an “α4-less” loop is thought to slow refolding to promote cleavage site accessibility (20).  

Unlike the neighboring A1 and A3 domains, VWFA2 contains two N-linked glycosylation sites (Asn 

1574 and Asn 1515) which may help confer rigidity, as removal of Asn1574 results in increased 

proteolysis (59).  A2 also features a unique calcium binding site (silver) demonstrated to protect VWF 

against ADAMTS13 cleavage (60) and enhance refolding (50).  These unique features within VWF A2 

promote dynamic accessibility of the buried scissile bond. 

Single molecule studies have demonstrated that ADAMTS13 cleavage requires unfolding of the 

A2 domain to expose the scissile bond (22).  To mimic the transmission of tensile force within intact 

VWF through the A1 and A3 domains, DNA handles were covalently linked to the N and C termini of A2 

(Fig 1.5A).  The single molecule construct was suspended between polystyrene beads, one suctioned onto 

the tip of a micropipette and another trapped within the focus of an infrared laser beam.  In response to 

repeated cycles of force increase, force decrease, and force clamping, the A2 domain exhibited robust 

unfolding and refolding behavior that manifested as abrupt tether extensions (Fig 1.5B).  These force 

extension discontinuities were confirmed as full unfolding of the A2 domain by fitting to the worm-like 

chain model of entropic elasticity.  Even under different optical setups, the length increases at different 

forces agreed well with the expected length of an unfolded polymer chain of 177 residues (22, 50).   

At a given force application (loading) rate, A2 unfolded across a distribution of forces.  

Histograms of A2 unfolding forces across increasing loading rates were well modeled by biophysical 
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theory that predicts the most likely unfolding force to exhibit a logarithmic dependence on loading rate 

(61).  Refolding was investigated by clamping the tether at a low force between each cycle of force 

increase and decrease to allow the A2 domain an opportunity to refold. 

Refolding was found to be sensitive to time, force, and calcium conditions.  The probability of 

refolding significantly increased with decreased force and increased time. Calcium chelation significantly 

decreased the probability of refolding (49, 50).  Calcium binding has been demonstrated to protect the 

domain from cleavage by ADAMTS13 (60) and calcium mediated stabilization against thermal 

denaturation has also been described (49, 50).  Loss of calcium stabilization in enhancing A2 refolding 

may contribute to the mechanism of R1597 VWD 2A mutations, which reside in the calcium binding loop 

and form a critical salt bridge interaction with Asp1498, the only reside that binds calcium outside of the 

α3β4 loop (Fig 1.2B).  VWD 2A mutations destabilize the domain and may increase susceptibility to 

cleavage by altering the force sensitivity to unfolding and refolding (A. Xu and T.A. Springer, 

unpublished). 

The requirement of A2 unfolding for ADAMTS13 cleavage was demonstrated by mechanically 

unfolding A2 in the absence or presence of ADAMTS13, and then clamping at 5 pN to wait for 

ADAMTS13 cleavage to manifest as a drop of the force on the tether to 0 pN (Fig 1.5D).  No cleavage of 

folded A2 was observed, and fits of the cleavage rates at three different enzyme concentrations to the 

single-molecule Michaelis-Menten equation yielded cleavage kinetics comparable to bulk phase 

experiments on ADAMTS13 cleavage of peptide substrates (62, 63).  Studies on the A1-A2-A3 tridomain 

are consistent with studies on isolated A2, demonstrating that force-induced A2 unfolding is required for 

cleavage in the presence of neighboring domains as well (64, 65).     

Under the rate of force loading on VWF concatamers in plasma, unfolding of single wild-type A2 

molecules is predicted to be most likely at 11 pN.  Hydrodynamic forces roughly scale with dimension, as 

larger molecules cross more shear lamina when extended.  Tensile force on the center of an extended 
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VWF concatamer in shear scales with N
2
, where N is the number of monomers.  Estimation of the force 

on VWF concatamers in vivo in shear flow are consistent with the maximal length of VWF concatamers 

found in plasma (Fig 1.3D).  The second power dependence of force exerted on the center of the 

concatamer predicts that cleavage occurs near the center, optimizing VWF for the most efficient 

proteolysis into smaller multimers (22).   
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Fig 1.5.  Single Molecule demonstration of A2 domain unfolding, refolding and mechanoenzymatic 

cleavage.  (A)  Schematic of single molecule A2 construct.  Tensile force controlled by movement of 

micropipette and reported by displacement of bead from center of optical trap.  (B)  Repeated cycles of 

force increase and decrease reveal reversible A2 unfolding.  (C)  Force extension curves discriminate 

between folded (red) and unfolded (black) constructs.  (D)  Representative traces demonstrating 

requirement of A2 unfolding for ADAMTS13 cleavage.   
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Hydrodynamic forces dictate several layers of VWF function 

 VWF is a remarkable molecule that is structurally specialized to respond to its hydrodynamic 

environment.  Mechanical force regulates several layers of VWF function.  Elongational forces mediate 

the global transition from quiescent VWF in a collapsed state, to adhesive, elongated VWF chains.  

Tensile force experienced by the A2 cleavage domain offers protective feedback regulation against 

overactive thrombogenicity, exposing a scissile bond for ADAMTS13 cleavage that attenuates VWF 

thrombogenicity.  The A1 domain features a unique “flex-bond” with two conformational states to 

increase its dynamic range of force resistance and enable stable interactions with platelets even under the 

high shear environment of arteriolar flow.   

 VWF’s force sensitive functions are governed by elongational flows arising from shear gradients.  

Simulations have demonstrated that VWF is exquisitely sensitized to elongational flow, as VWF unfolds 

at flow rates two orders of magnitude lower for elongational flow compared to pure shear.  During 

physiologic vasoconstriction in hemostasis, elongational flows are enhanced and may help reinforce the 

hemostatic process.  Elongational flows may also be implicated in thrombotic pathologies, as they are 

induced by certain geometries known to be prothrombotic, such as carotid artery bifurcations.  

Furthermore, existing pathologies, such as stenosis due to atherosclerotic narrowing, may be reinforced 

by increased elongational flow.  In future studies, it will be interesting to understand the role VWF plays 

in mediating shear-gradient induced thrombus formation to gain deeper insight into hemodynamic 

conditions that result in thrombotic pathologies. 
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Chapter II:  

Single Molecule Optical Tweezers 

Amy J. Xu 

Introduction and Theory 

First reported by Arthur Ashkin and Steven Chu in 1986 (1), optical trapping has since 

enjoyed a range of applications leading to many important insights in biology and physics.  The 

principles governing optical tweezers may be understood through a simple balance of optical 

forces.  Dielectric particles near the waist of a focused laser beam experience (1) a “scattering 

force” from the transfer of momentum from impinging photons, pushing the particle axially 

away from the laser focus, as well as (2) a “gradient force” pointing in the direction of the 

intensity gradient when the refractive index of the particle exceeds that of the medium.  When a 

highly focused laser beam creates a steep enough intensity gradient, the pull of the “gradient 

force” towards the laser focus counters the push of the “scattering force”, stabilizing the 

dielectric particle at an equilibrium position slightly beyond the waist of the laser beam.   

Theoretical calculations of these optical forces are well established in the limits of spherical 

Mie (diameter >> wavelength) and Raleigh (diameter << wavelength) particles.  Mie particles 

may be treated with a ray optics approach.  When the refractive index of the particle exceeds the 

refractive index of the medium, the particle acts as a weak positive lens, with refraction exerting 

a net backwards pull on the particle towards the beam focus (Fig 2.1) to counter the scattering 

force acting in the opposite direction. 
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Figure 2.1.  Ray Optics description of "gradient force" for Mie particle.   

A typical pair of rays A from a highly focused laser beam principally refract through a particle of 

higher refractive index to emerge as rays A’, resulting in forces FA directed towards the laser 

focus (1). 

 

Raleigh particles experience a scattering force from the re-radiation of absorbed light, 

pointing in the direction of incident light.  The “gradient” force results from induced dipoles 

interacting with the inhomogeneous electric field, and for particles with refractive indices greater 

than the medium, points towards the laser focus.  These forces may be directly calculated 

(Equations 1-3) and their ratio strongly depends on wavelength (λ
5
), particle size (r

-3
) and focal 

spot size (ωo
-2

).  There is a weaker dependence on refractive indices, with optimal trapping 

occurring for high refractive indices (nb
2
) but with nparticle only slightly higher than nmedium (small 

m=nparticle/nmedium >1 to maintain direction).  Thus, the gradient force most effectively overcomes 

scattering when particles are small, refractive indices are large, lasers are highly focused, and 

wavelengths are long.   
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Equations 1-3:  Optical Forces for Raleigh Particles.   

Stable trapping requires Fgrad: Fscat to be greater than 1. (1) 

 

 

Laser power does not factor into the balance of optical forces, but is critical for overcoming 

Brownian motion.  The potential of the gradient force, U=nbαE
2
/2, is directly proportional to the 

particle’s polarizability α (defined in Equation 2), which strongly depends on laser power (E
2
) 

and particle size (r
3
).  Similar to the balance of optical forces, there is a weaker dependence on 

refractive indices.  Thus, the gradient force most effectively overcomes thermal fluctuations with 

powerful lasers and large particles.   

Accounting for these two requirements for stable trapping, it may be shown that gradient 

forces most effectively overcome scattering and Brownian motion for (i) highly focused (small 

ωo), powerful (high E), long wavelength (high λ) , (ii) operating in a high refractive index 

medium, (iii) acting on a particle with a refractive index slightly greater than that of the medium 

(small m >1).  Particle size is bound by the opposing effects of particle radius on the 

gradient/scattering ratio (r
-3

 dependence) vs. gradient force potential (r
3
 dependence).   The 
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particle must be small enough for gradient forces to dominate scattering, yet large enough for the 

gradient force potential to overcome Brownian motion.   

Practically, these constraints allow stable optical trapping for 25nm-10μm particles (1).  

Although refractive indices affect trapping stability, most biologic applications dictate water as 

the relevant media.  The strong dependence of trapping stability on wavelength is limited by 

increasing absorption by water towards the infrared.  Thus, increased power for stable trapping 

must be balanced by the potential for photodamage.  For most applications, stable trapping is 

best achieved with 25nm-10μm particles (with refractive indices slightly greater than water) 

using moderately powerful near-IR lasers sharply focused through objectives with high 

numerical aperture.       

Ashkin and Chu’s first report of a single-beam gradient force optical trap in 1986 described 

the stable trapping of particles in water using a 514.5 nm laser, ranging from a 10 μm glass 

sphere (100 mW) to 26 nm silica particles (1.4 W) (1).  In addition to maximum laser power, 

small particle trapping was also limited by extensive photodamage, assessed by drastic changes 

in scattering intensity, to latex, polystyrene, and viral particles (2).  Shifting to a 1.06 μm IR laser 

resulted in much improved optical traps with less optical damage, allowing the “damage-free” 

(as assessed by reproductive viability and maintenance of cellular integrity) trapping of bacteria, 

yeast, red blood cells, and organelles (3).   

With these advances in damage-free trapping, optical tweezers have been used for 

manipulation of the microscopic world.  Optical tweezers have been used to isolate new high 

temperature enzymes from a heterogeneous population (4) and are even being investigated for 

clinical applications of in vitro fertilization (5).  Alternatively, precise control of photodamage in 
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so called “laser scissors” has been applied as a tool for intracellular surgery to modify the 

chromosomes of living cells (6).  The advent of new technologies, such as holographic (7) and 

zone plate optical tweezers (8), allow for multiplexed optical trapping with exciting high 

throughput applications, such as particle sorting.   

Quantitative Optical Trapping 

Despite these advances in optical traps, optical forces remain generally insufficient to stably 

trap biological macromolecules themselves.  An alternative method of handling biological 

specimens biochemically couples the molecule of interest to microscopic dielectric particles, 

which (i) enables stable trapping, (ii) protects the specimen from photodamage and (iii) functions 

as a probe for quantitative measurements.  Near the center of the trap, optical forces behave as a 

linear “Hookean” spring (9), exerting a force proportional to the object’s displacement, ∆x , from 

the center of the trap.  With careful calibration, optical trapping functions as a highly sensitive 

tool for quantitative measurements.     

Force calibration of quantitative optical trapping relies on the careful determination of trap 

stiffness.  Given a bead of known radius free in solution (far from any surface), trap stiffness 

may be determined by exploiting Stokes relation for viscous drag.  Trap stiffness may also be 

determined by measuring positional variance and applying the equipartition theorem (
1
/2 kBT= 

1
/2 

ktrap<x
2
>), or by directly measuring the momentum transfer from scattered light (9).  Excursions 

of the bead from the center of the trap report the force exerted or experienced by the molecule of 

interest.  Because optical trapping optimally measures piconewton forces, the range most 

relevant for protein dynamics, optical tweezers as force spectroscopy has proven a powerful tool 

for probing biological interactions.   
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Single Molecule Applications 

 Optical Tweezers enable the application and measurement of force on single particles, 

thus allowing for direct observation of molecular events no longer obscured by bulk ensemble 

averaging.    By elucidating the individual fluctuations hidden within bulk measurements, 

important insights have been gained into a wide range of biophysical mechanisms, including 

motor proteins, nucleic acid enzymes, and protein unfolding. 

An early target for single molecule study using optical tweezers was the motor protein 

kinesin, a mechanoenzyme that couples ATP hydrolysis for linear movement along 

microtubules.  Kinesins are dimer molecules known to produce active movement against a load.  

Cellular functions include cargo transport and cytoskeletal force generation during mitosis.  

Initial studies on kinesin directly coupled silica beads to kinesin motor molecules, followed by 

careful placement onto microtubules immobilized on a coverslip (Fig 2.2A).  Careful titration of 

kinesin molecule concentrations during silica bead coupling favored observations of single 

kinesin molecules.  The force produced by kinesin molecules was estimated by applying an 

opposing optical trap force to try to stop bead movement (10).  Improving upon these initial 

studies, Svoboda and Block introduced an optical trapping interferometer allowing for feedback 

stabilization of a three-axis piezoelectric stage.  In this way, they effectively damped the 

Brownian motion of the sphere to achieve the resolution of detailing the discrete 8nm steps of a 

single kinesin molecule (11).  Thermal noise may also be reduced with a dual trap system (Fig 

2.2B).  Taking advantage of the dramatic increase in resolution upon discarding noise caused by 

symmetric motion (12), such a dual-trap system allowed the direct observation of individual 0.34 

nm base-pair steps of transcribing RNA polymerase translocating on a DNA dumbbell suspended 

between trapped polystyrene beads (13). 
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A     B                       

 

Figure 2.2.  Optical Tweezer Studies of Kinesin Motors and Bacteriophage   

 (A) Molecular motor activity monitored by directly attaching the motor to the bead (14).  

Motions of biological systems may also be revealed via length changes between two coupled 

beads.  (B) Bacteriophage protein activity assessed through changes in DNA length assessed by 

the relative motion of beads from two optical traps(14).  The dual trap geometry exploits 

symmetric motion to limit the effect of thermal noise on force spectroscopy measurements (12). 

 

Optical force spectroscopy has also been applied to characterize folding-unfolding 

transitions in single molecules of titin, a filamentous protein fundamental for maintaining passive 

tension within sarcomeres of muscle (15).  The precision of sensitivity of optical tweezers have 

made it an attractive platform for studying the mechanosensitivity of VWF, and is the basis for 

the single molecule experiments presented in this thesis. 

Until recently, biological systems have mainly been characterized through chemical 

interactions.  Optical tweezers offer a compelling system for understanding the effects of force 

on molecular interactions.  Driven by technological advances in the field, commercial optical 

trapping systems are becoming increasingly sophisticated and versatile.  As they become more 
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and more accessible to biologists, they are sure to change the way in which we understand 

biomolecular interactions and the role of force in biological systems.  
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Chapter III:  

Calcium Stabilizes the von Willebrand Factor A2 Domain by Promoting Refolding 

 

Amy J. Xu and Timothy A. Springer 

 

Abstract 

von Willebrand Factor (VWF) is a large, multimeric plasma glycoprotein that critically mediates 

hemostasis at sites of vascular injury.  Very large VWF multimers have the greatest thrombogenic 

activity, which is attenuated by cleavage in the A2 domain by ADAMTS13.  ADAMTS13 proteolysis 

requires mechanical force to expose the scissile bond and is regulated by a calcium binding site within 

A2.  In this study, we characterized the interaction between VWF A2 and calcium by examining the effect 

of calcium on VWF A2 stability and mechanical unfolding and refolding.  Isothermal calorimetry yielded 

a calcium binding Kd = 3.8  1.0 μM and reversible thermal denaturation showed that 5 mM calcium 

stabilized the unfolding transition from 56.7  0.1 to 69.1  0.1 
o
C.  Using optical tweezers to apply 

tensile force to single domains, we found that calcium did not affect VWF A2 unfolding, but rather 

enhanced refolding kinetics 5-fold, resulting in a 0.9 kcal/mol stabilization in the folding activation 

energy in the presence of calcium.  Taken together, our data demonstrate that VWF binds calcium at 

physiologic calcium concentrations, and that calcium stabilizes VWF A2 by accelerating refolding. 
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Introduction 

von Willebrand Factor (VWF) is a large plasma glycoprotein that critically mediates hemostasis 

at sites of vascular injury.  Secreted by endothelial cells and platelets in response to thrombogenic stimuli, 

VWF circulates as ultralong, disulfide-bonded concatamers (1) reaching >12 MDa and >15 μm in size (2, 

3).  Each VWF monomer is comprised of multiple domains, including domains that bind clotting factor 

VIII, collagen, platelets, and integrins (1).  The A2 domain contains a cleavage site recognized by the 

enzyme ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 

13), which regulates VWF length.  The largest VWF concatamers mediate the formation of a platelet plug 

through multivalent binding to collagen and platelet membrane glycoprotein Ib.  Mutations within VWF 

cause von Willebrand’s disease (VWD), a heterogeneous set of bleeding disorders that underscore VWF 

function in normal physiology (4). 

VWF function is critically determined by concatamer length.  Healthy individuals exhibit a 

heterogeneous distribution of VWF concatamers, whose size is regulated through specific cleavage by 

ADAMTS13.  Absence of ADAMTS13 function causes thrombocytic thrombocytopenic purpura (TTP), a 

life threatening condition characterized by extensive microvascular thromboses that result in tissue 

ischemia and infarction.  Neurologic symptoms and renal failure are often described, and the condition 

resolves upon replenishment of ADAMTS13 with plasma exchange (5).  In contrast, genetic mutations 

that shift the VWF size distribution to smaller multimers, comprising Type 2 VWD, present with 

increased bleeding due to reduced VWF thrombogenicity (6).  Subtype 2A VWD mutations cluster within 

the A2 domain, which bears the ADAMTS13 cleavage site, and whose structure illuminates mechanisms 

that regulate VWF cleavage (7). 

Fluid shear stress is critical for VWF size regulation (8) and VWF A2 is remarkable for several 

structural features that render the domain sensitive to hydrodynamic forces exerted on VWF concatamers 

in the circulation.  The ADAMTS13 scissile bond is buried in a central β4-strand within A2 that is 

inaccessible in the native state (Fig. 3.1A).  Compared to neighboring domains, VWF A2 lacks a long-
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range disulfide bond to protect the domain against unfolding by elongational (tensile) force exerted on 

VWF concatamers.  Single molecule studies have demonstrated that ADAMTS13 cleavage requires 

unfolding of the A2 domain (7, 9)  to expose the scissile bond.  Furthermore, in place of an α4-helix, 

VWF A2 contains an “α4-less” loop which is thought to slow refolding to promote cleavage site 

accessibility (7).  Thus, structural specializations within VWF A2 predict that reversible unfolding and 

refolding regulate VWF cleavage via dynamic accessibility of a buried scissile bond.    

 

 

Figure 3.1.  VWF A2 structure.  A) A2 structural specializations.  The scissile bond at Y1605/M1606 

(grey sidechains) is buried within a central β4-strand.  Elongational force experienced by VWF 

concatamers applied to the N and C termini renders A2 susceptible to ADAMTS13 cleavage.  A calcium 

binding site in the α3-β4 loop lies at the junction between windings 1 and 2, topologically defined by their 

sequential arrangements of secondary structures in opposite directions.  B) A2 calcium coordination.  

VWF A2 coordinates (red dashes) calcium (silver sphere) in octahedral geometry by six ligands, 

including a water molecule (small red sphere).  Stabilizing hydrogen bonds are shown in green.  The 

structure shown is a chimera containing residues 1495-1578 and 1602-1672 of 3GXB (9) and residues 

1579-1601 of 3PPV (10).  Figure made with PYMOL.   
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Recent studies have described a novel calcium binding site that is unique amongst VWF A 

domains, and likely another structural specialization that regulates VWF A2 force sensing.  VWF 

coordinates calcium by four residues from the α3-β4 loop and a single residue from the N-terminal β1-

strand (Fig. 3.1B) (10, 11).  Calcium binding was not seen in an earlier structure due to a lattice contact 

that enforced a conformation of the α3-β4 that precluded calcium binding (7, 10).  Unfolding of A2 is 

predicted to proceed from the C-terminus because, whereas the N-terminal β1-strand is clamped by 

hydrogen bonds in the center of the β-sheet, the C-terminal α6-helix is exposed and only locally hydrogen 

bonded (Fig. 3.1A).  Furthermore, unfolding from the C-terminus of secondary structure elements in the 

sequence of α6, β6, α5, β5, α4-less loop and β4 exposes the minimal portion of the A2 domain required 

for maximal ADAMTS13 cleavage, as shown in peptide substrates (12).  VWF A domains feature a 

“doubly wound” topology that juxtaposes two regions of sequentially arranged secondary structures.  The 

α3-β4 loop lies at the junction between these two windings (Fig. 3.1A) and is thus in a strategic position 

to regulate A2 folding.  In the sequential process of unfolding, the β4-strand bearing the scissile bond 

immediately precedes the α3-β4 loop.  Cleavage assays of isolated A2 demonstrate that calcium binding 

protects the domain from cleavage by ADAMTS13 (10, 11), and protection against unfolding has also 

been reported (11).  However, the quantitative details of how calcium stabilizes A2 remain to be defined. 

In this study, we characterized the mechanisms underlying calcium stabilization of VWF A2.  We 

derived thermodynamic parameters to quantitatively describe the interaction of calcium with VWF A2 

and establish physiologic relevance.  In parallel, we applied single molecule optical tweezers to 

functionally characterize the effect of calcium on A2 conformational dynamics.  Combining such bulk 

and single molecule approaches, we gain a quantitative understanding of the conformational dynamics 

that regulate VWF cleavage.       
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Results  

VWF A2 Binds Calcium with High Affinity 

We employed isothermal calorimetry to determine the binding affinity of VWF A2 for calcium.  

Calcium was injected into a sample cell containing VWF A2 maintained at 25
o
C.  The A2 had been 

dialyzed against 5 mM EDTA, which was removed by gel filtration immediately before the experiment.  

The enthalpy of calcium binding monitored by measuring reaction heats after each calcium injection (Fig. 

3.2A) was ∆H = -2.3  0.1 kcal/mol.  Binding of 0.84 moles calcium per mole of A2 suggested a single 

calcium binding site within A2.  Fitting the binding isotherms to a single binding site model (Fig. 3.2B) 

yielded Kd = 3.8  1.0 μM.  The relationships ∆G = -RTln(1/Kd) and ∆S = (∆H-∆G)/T yield ∆G = -7.4  

0.3 kcal/mol and ∆S = 17  1 cal/mol/K.  Our results demonstrate that VWF A2 binds calcium with high 

affinity and that the free energy of the A2-calcium complex is substantially lower than that of its isolated 

components.   
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Figure 3.2.  Calcium binding measurement by Isothermal Calorimetry.  A) Calorimetry.  Reaction heats 

measured from stepwise calorimetry performed at 25
o
C with 1.4 mM CaCl2 injected against 140 μM A2 

in the cell.  B) Binding isotherm.  Calcium binding affinity determined from calorimetry assuming single 

site binding.     
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Calcium Stabilizes A2 in Native Conformation  

To assess the effect of calcium on VWF A2 thermodynamic stability, we obtained CD spectra to 

monitor changes in secondary structure.  At 4
o
C, the CD spectra exhibited two negative bands at 222 and 

208 nm (Fig. 3.3A, squares), a characteristic alpha helical spectrum (13) consistent with the high alpha 

helical content of VWF A2.  Upon thermal denaturation, the spectra at 90
o
C lost alpha helical signature 

(Fig. 3.3A, triangles).  Thermal denaturation changes were reversible. Cooling the protein back down to 

4
o
C restored the alpha helical spectrum (Fig. 3.3A, circles).  Similar changes in the native and denatured 

spectra were obtained in the presence and absence of calcium.   

Calcium stabilized the native state of the A2 domain against thermal denaturation, monitored at 

222 nm over a stepwise increase in temperature under equilibrium conditions of 3 minutes per 
o
C (Fig. 

3.3B).  In the absence of calcium, VWF A2 remained stable until 50
o
C, with a midpoint melting 

temperature, Tm = 56.7  0.1 
o
C.  Chelating calcium with 1 mM EDTA did not change this transition, 

whereas 5 mM calcium stabilized the transition by 12
o
C (Tm = 69.1  0.1 

o
C, Fig. 3.3B).  No change was 

observed between 30 and 150 mM NaCl.  Increasing calcium from 2mM to 5mM slightly increased 

thermal stability by 1.3 
o
C  0.1 

o
C, consistent with predictions for a two-state equilibrium (14).     

To estimate changes in Gibbs free energy, thermal melts were analyzed according to Greenfield 

(15).  Taking the 4
o
C and 90

o
C spectra to reflect the folded and unfolded states, respectively, the ratio of 

folded to unfolded A2 was determined from the signal at 222 nm.  Experiments performed in the absence 

and presence of calcium were independently fit to the Gibbs Helmholtz equation of free energy (Fig. 

3.3C; R
2 

= 0.99).  Extrapolating the fits to 25
o
C yielded Gibbs free energies of folding of -3.6  0.8 

kcal/mol in 5 mM calcium, and -2.3  0.1 kcal/mol in the absence of calcium. 
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Figure 3.3.  Calcium stabilization of VWF A2 against thermal unfolding measured by CD.  (A) CD 

spectra of VWF A2 in native and denatured states reflect α-helical content.  Representative wavelength 

scans at 4
o
C and 90

o
C reflect secondary structure of VWF A2 in native (squares) and denatured 

(triangles) states, respectively.  Structural changes are similar in the presence (filled symbols) and absence 

of calcium (open symbols) and are reversible (gray circles). (B) Calcium stabilizes VWF A2 against 

thermal denaturation.  CD signal at 222 nm monitored over a stepwise increase in temperature at 

equilibrium (3 minutes per 
o
C).  (C) Calcium decreases free energy of VWF A2 protein folding.  Thermal 

melts were analyzed according to Greenfield (15).  Equilibrium data shown over theoretical fits (R
2
 = 

0.99) with 95% confidence interval boundaries for free energy of protein folding.  
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Figure 3.3 (Continued) 
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Calcium Does Not Affect VWF Unfolding 

We used optical tweezers to examine the effect of calcium on the mechanoregulation of A2 by 

tensile force.  VWF A2 was covalently linked to DNA handles and suspended between two polystyrene 

beads, one anchored to the tip of a micropipette and another trapped within the infrared dual beam laser 

focus of the optical tweezers (Fig. 3.4A).  Changes in light momentum reflected excursions of the bead 

from the center of the trap, dx (Fig. 3.4A), and reported the force experienced by the protein-DNA tether 

with pN sensitivity.  A2 unfolding was studied by monitoring force extension profiles of single tethers 

(Fig. 3.4B). 

To quantitatively characterize VWF A2 mechanoregulation, 1881 pulls were analyzed under three 

experimental calcium conditions.  A2 unfolding was reversible and robust (Fig. 3.4C) and the extension 

profiles of folded vs. unfolded constructs were well discriminated (Fig. 3.4B).  In a representative trace, a 

folded construct was pulled at constant speed from 2 to 20 pN (Fig. 3.4B, black).  At 14 pN, an abrupt 

discontinuity was observed with 37.4 nm extension (Fig. 3.4B, circle).  Relaxation of the tether back 

down to the resting force (Fig. 3.4B, gray) retraced the force-extension profile of the unfolded construct.  

Once returned to a low force, tethers were held at constant position to allow refolding.  At a moderate 

force of 3 pN, refolding was directly observed (Fig. 3.4D).  However, at forces lower than 3 pN, the lower 

signal to noise ratio did not allow direct observations of refolding, and in most cases, refolding was 

measured indirectly from the presence or absence of unfolding in the subsequent pull (Fig. 3.4C). 

Over a range of pulling rates, unfolding extensions displayed excellent agreement with full 

unfolding of VWF A2 when fit to the worm like chain (WLC) model of polymer elasticity (Fig.3.5A-D).  

Single molecule data obtained in the absence of calcium (Fig. 3.5A), under calcium chelating conditions 

(1 mM EDTA, Fig. 3.5B), and in the presence of 5 mM Ca (Fig. 3.5C) yielded contour lengths, or lengths 

of maximum extension, of 76.3  1.3 nm, 75.0  1.6 nm and 74.9  1.3 nm, respectively.  These results 

agreed with statistical significance within 4% (p<0.05) and demonstrate that calcium does not affect the 
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compliance of VWF A2 in the unfolded state.  Fit to a global WLC model, the contour length was 75.6  

0.2 nm (Fig. 3.5D).  In the crystal structure, the N-terminal and C-terminal residues Met1495 and Ser1671 

are 1 nm apart (7).  Thus, our data predict a 0.4 nm contour length per residue (75.6 + 1 = 76.6 nm 

divided by 177 residues), which agrees well with reported values (16), confirming the force extension 

discontinuities observed as full A2 unfolding under all calcium conditions.   

Unfolding kinetics were determined by examining the forces at which A2 unfolding was 

observed.  The force dependence of unfolding was extracted from rupture-force histograms obtained over 

a range of pulling speeds (20-160 nm/s), corresponding to force application rates  of 0.1-10 pN/s, 

according to the Dudko-Hummer-Szabo method (17).  Data were fit to a single-barrier kinetic model, k = 

k0exp(f∆x/kbT), where the unfolding rate is determined by the unfolding rate at zero force, k0, and an 

exponential dependence on force, f, multiplied by the distance to the transition state, ∆x (18).  Fit 

independently, the intrinsic unfolding rates at zero force, k0, were 0.0034 s
-1

 (95% confidence interval 

0.0032 to 0.0037 s
-1

) and 0.0036 s
-1

 [0.0032 to 0.0042 s
-1

] in the presence and absence of calcium, 

respectively, agreeing with statistical significance within 20% (p<0.05).  A fit to all data in the presence 

and absence of calcium yielded k0 = 0.0035 s
-1

 [0.0030 to 0.0041 s
-1

] with a barrier to activation ∆x = 2.5 

 0.2 nm (R
2 
= 0.97, Fig. 3.5E).   
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Figure 3.4.  Monitoring protein unfolding using optical tweezers.  (A) Experimental setup.  Force 

spectroscopy performed on single A2 domains suspended between two polystyrene beads by DNA 

handles.  Excursions of the bead from the center of the trap reported the force experienced by the single 

molecule construct.  (B) Force extension profiles discriminate between unfolded and refolded constructs.  

Black trace follows ascent to 20 pN; gray curve follows relaxation to 2 pN.  An abrupt force extension 

discontinuity during the ascent resolves the force extension profile of a folded vs. unfolded construct 

(circle). (C) A2 folding is reversible and robust.  Representative pulling protocol: 40 nm/s pulling and 

relaxation rate (corresponding to force application rates of 0.5-2 pN/s) between 2 and 20 pN with 10 s 

pause at 2 pN.  Force extension discontinuities are highlighted.  No unfolding is seen in the third pull of 

this trace but protein refolds before the subsequent fourth pull.  (D)  Direct visualization of refolding.  

When the trap was held at a constant position, giving a force of 3 pN prior to refolding, refolding was 

observed directly (dashed box) as a change to ~4 pN in force during the refolding pause cycle.   
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Figure 3.4 (Continued) 
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Figure 3.5.  Lack of effect of calcium on A2 unfolding.  (A-C) Lack of effect of calcium on the increase 

in extension upon A2 unfolding.  Independent WLC fits for data collected in the absence of calcium (A), 

in the presence of calcium (B), and under calcium chelating conditions (C) demonstrate that calcium does 

not affect A2 compliance in the unfolded state, and that A2 exhibits full unfolding behavior under all 

three conditions.  (D) Force extension discontinuities from all experiments fit to a single WLC model.  

Individual fits agreed within 4% (p<0.05).  (E) Calcium does not affect kinetics of A2 unfolding.  The 

force dependence of unfolding was derived from rupture-force histograms obtained over a range of 

pulling speeds according to the Hummer-Szabo-Dudko method (19).  Errors shown are based on Poisson 

noise. 
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Calcium Enhances VWF Refolding 

Refolding kinetics were assessed by monitoring the probability of refolding across consecutive 

pulling cycles on the same construct (Fig.3.4C).  Single tethers were pulled then relaxed with loading 

rates of 0.1-10 pN/s.  Once returned to a low force, the construct was held in constant position, 

corresponding to a constant force, to allow refolding (Fig. 3.4D).  Protein refolding was monitored by 

force extension profiles (Fig. 3.4B) and the presence or absence of unfolding in a subsequent pull (Fig. 

3.4C).   

Observations of A2 refolding over many cycles (N = 786) demonstrated that A2 refolding was 

sensitive to force, time, and calcium.  The probability of refolding significantly increased with decreased 

force (Fig 3.6A) and increased time (Fig. 3.6B). Calcium chelation significantly decreased the probability 

of refolding (Fig. 3.6C).  Both in the presence and absence of calcium, the kinetics of refolding, kf, were 

well fit by a single exponential dependence on the refolding rate at zero force, k0, the square of force, f
2
, 

and the compliance of the unfolded state, κ (18) (Fig. 3.6D-E).  Under each calcium condition, data 

obtained at 1 pN, 2 pN and 3 pN were globally fit to a single set of parameters.  The intrinsic kinetics of 

refolding at zero force, k0, in the presence and absence of calcium were 0.65  0.09 s
-1 

and
 
0.14  0.03 s

-1
, 

respectively.  This 5-fold difference in refolding kinetics yields a 0.9 kcal/mol difference in the folding 

activation energy (∆G
U-TS

Ca - ∆G
U-TS

no Ca = 0.9 kcal/mol) (Fig. 3.7A).   

At moderate force, refolding was observed directly (Fig. 3.4D).  In the presence of calcium at 3 

pN, the lifetime of the unfolded state was 41 s (95% confidence interval 32 to 101 s, N = 40, 12 events 

observed directly), agreeing well with the unfolded state lifetime of 31 s expected from the kinetic model.  

In the absence of calcium, the 3 pN unfolded state lifetime was 96 s ([47 to 296 s], N = 23, 5 events 

observed directly), compared with 144 s predicted by the kinetic model.  Thus, our direct observations of 

refolding agree well with the kinetic fits obtained from the much larger dataset of refolding probabilities.    
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Figure 3.6.  Calcium enhances kinetics of VWF A2 refolding.  (A-C) Binary refolding statistics 

demonstrate that probability of refolding was sensitive to force (A), time (B), and calcium (C).  (D-E) 

Force dependence of refolding kinetics.  Refolding probabilities fit to a single exponential dependence of 

refolding kinetics on the square of applied force (18).  
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Figure 3.7.  Proposed A2 energy landscape.  Our proposed free energy landscape describing calcium 

stabilization of A2 features a calcium binding native state (N); a calcium-binding transition state (TS 1) 

that binds calcium with native-like coordination and is rate-limiting in both the unfolding and refolding 

directions; a high energy, calcium binding intermediate (I); a calcium free transition state (TS 2) in the 

refolding pathway; and a non-calcium binding unfolded state (U). 
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Discussion  

In this study, we report quantitative bulk measurements of calcium binding and folding 

thermodynamics, and single molecule measurements of unfolding and refolding kinetics, to understand 

the mechanisms underlying calcium stabilization of VWF A2 against cleavage.  Isothermal calorimetry 

yielded a 3.8 μM binding affinity between A2 and calcium.  The ~1.1-1.3 mM free calcium in healthy 

human blood is greatly above this measured Kd.  Thus, the calcium binding site is predicted to be 

saturated, establishing the relevance of calcium binding in VWF A2 under physiologic concentrations.  

Reversible thermal denaturation monitored using CD showed that calcium stabilized VWF A2 in the 

native state.  We measured a thermodynamic stability shift of 12
o
C in 5 mM calcium, which is consistent 

with the apparent 19
o
C shift reported using fluorescent dye binding (11).  Because our data were obtained 

under reversible conditions, we were able to estimate a folding free energy of -2.3 ± 0.1 kcal/mol in the 

absence of calcium, and -3.6 ± 0.8 kcal/mol in 5 mM calcium.  The difference between these A2 

unfolding energies predicts that 5 mM calcium stabilized the folded state by 1.3  0.8 kcal/mol at 25
o
C.  

Single molecule measurements of A2 unfolding and refolding demonstrated that calcium stabilizes A2 by 

promoting refolding.  Unfolding measurements revealed that calcium had little if any effect on unfolding 

behavior.  In contrast, calcium accelerated refolding ~5-fold, lowering the activation barrier to refolding 

by 0.9 kcal/mol.  Thus, we conclude that calcium stabilizes VWF A2 by promoting refolding.     

Our thermodynamic and single molecule data allow us to postulate a free energy landscape for 

A2 unfolding (Fig. 3.7).  Folding free energies determined by CD thermal denaturation indicate that 

native A2 (N) is stabilized by calcium (gray).  Similar unfolding kinetics in the presence and absence of 

calcium dictate similar activation energies from N to the unfolding transition state (TS 1).  As a result, 

calcium stabilizes TS 1 to the same extent as N.  These similar energetics are a consequence of calcium 

occupying similar structural environments within TS 1 and N (20).  Thus, our results indicate that TS 1 

binds calcium with native-like coordination.   
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In the refolding direction, we assume that A2 does not bind calcium in the unfolded state (U), 

consistent with coordination of calcium by residues far apart in sequence, from residue 1498 to 1602.  

Going from calcium-free U to calcium-bound N, the significant binding energy between calcium and A2 

measured by ITC precludes the calcium binding event from occurring during a transition state.  Given that 

TS 1 binds calcium, such a calcium-free transition state in the refolding direction (TS 2) requires a 

calcium binding intermediate (I).  Indeed, an unfolding intermediate has been previously described at 

1,000 Hz with a 1.2 ms lifetime (9), too transient to be characterized by our data acquired at 500 Hz but 

consistent with an intermediate structure with high energy relative to N and U (Fig.3.7). Further insight 

into TS 2 is gleaned from the dependence of refolding on calcium.  Our single molecule data demonstrate 

that calcium accelerates refolding.  Thus, the rate limiting transition state from calcium-free U to calcium-

bound N must also bind calcium, and cannot be TS 2.  Instead, TS 1 functions as the kinetically relevant 

transition state by occupying a higher energy level than TS 2 in the refolding pathway.  In our model, the 

disparate effects of calcium on unfolding and refolding kinetics are accounted for by an unfolding 

transition state, TS 1, that binds calcium with native-like coordination, and that is rate limiting in both 

unfolding and refolding pathways. 

The known three-dimensional structure of A2 (Fig. 3.1) places some limits on the structure of 

calcium-binding TS 1.  As previously introduced, calcium binds A2 at the junction between two 

topologically defined windings (Fig. 3.1A).  Both windings begin near the center of the β-sheet but 

proceed in opposite directions.  Winding 1 proceeds from the central β1-strand to the α3-helix, whereas 

winding 2 proceeds from the central β4-strand to the α6-helix (Fig. 3.1A).  The calcium binding site 

includes Asp-1498 in the β1-strand, residues 1596, 1597, and 1600 in the α3-β4 loop, and Asn-1602 in 

the β4-strand (Fig. 3.1B).  Similar unfolding kinetics implicate native-like coordination of calcium within 

the unfolding transition state, and locate the boundary between native-like and unfolded regions of A2 

between the β4-strand and the C-terminus.  This region includes the α4-less loop which, like the calcium 

binding site, might be important in regulating the kinetics of A2 refolding.  Such a model is also 
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consistent with the idea that unpopping of the rigid C-terminal vicinal disulfide plug could be rate 

limiting for unfolding, as previously proposed (1).   

A very recent study used optical tweezers to report that A2 unfolding requires higher forces in the 

presence of calcium, and primarily proceeds through a mechanically stable intermediate (11).  Force 

extension behavior in this study was measured at 50 Hz and exhibited slow unfolding and refolding (on 

the order of seconds) with unfolding intermediates lasting 1-3 s.  This behavior clearly differs from the 

highly cooperative unfolding and refolding (within ms) previously reported (9) and observed in our study, 

as well as the 1.2 ms lifetimes previously reported for A2 unfolding intermediates (9).  Because we did 

not observe such slow phenomena in our thousands of characterized events, we think it is unlikely that A2 

follows an alternative unfolding pathway, but rather attribute these discrepancies to different methods for 

suspending single molecules of A2 between beads.  Whereas we attached DNA handles to both ends of 

A2, holding A2 approximately 260 nm away from each bead and preventing nonspecific interactions, the 

other study attached DNA at only one end of the A2 construct.  Their A2 N-terminus contained a (c-

myc)4 tag that directly bound an anti-c-myc antibody-coated bead, placing A2 approximately 840 nm 

away from the DNA-bound bead but only 0-30 nm away from the (c-myc)4 tag-bound bead (depending on 

whether the antibody coupled through its Fab or Fc region to the bead, which of the four c-myc tags the 

antibody (21) bound to, and fluctuations in the flexible c-myc tags and antibody at low force).  DNA 

handles are not only much longer but also much stiffer than the c-myc tags.  We speculate that direct 

physisorption of the A2 protein to the anti-c-myc bead could have occurred, and that sequential force 

discontinuities summing to the overall contour length of the polypeptide could have been convoluted with 

A2 unfolding and refolding.  Robustness of the 28 measured events (11) was not tested by fits to 

biophysical models that predict exponential dependence of unfolding and refolding rates on applied force 

(17, 19).  In contrast, our 1881 events were fit to such models, and we have reported estimates of k0 and 

Δx for unfolding, and k0 and κ for refolding.      
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VWF is a multidomain protein and interdomain interactions are likely important for regulating 

function.  Thus, our study is limited in characterizing conformational dynamics within isolated VWF A2.  

However, studies on the A1-A2-A3 tridomain have demonstrated that force-induced A2 unfolding is 

required for cleavage in the presence of neighboring domains as well (22, 23), and that calcium mediated 

stabilization against thermal denaturation is exclusive to the A2 domain (11), affirming the relevance of 

understanding the unfolding dynamics within the isolated A2 domain.   

ADAMTS13 circulates in the body as a constitutively active enzyme, with cleavage regulated by 

conformational changes within its substrate.  Much attention on A2 conformational regulation has focused 

exclusively on unfolding (22, 23).  However, given the slow kinetics of refolding, at equilibrium, VWF 

A2 is predicted to be fully unfolded at forces above 5 pN (Fig. 3.8), significantly lower than the 10 pN 

peak force estimated to be experienced by a 200-mer VWF at the highest shear stress measured in 

arteriolar flow (9).  The concentration of ADAMTS13 in vivo is estimated at 6 nM (24), well below the 

estimated Km of 160 nM (9) required for saturation binding to its unfolded substrate.  Therefore, the time 

required for refolding regulates the availability of unfolded A2 for cleavage.  Our data suggest that 

refolding plays a critical role in regulating VWF proteolysis and highlights the dynamic nature of A2 

conformational change in dictating VWF function.   
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Figure 3.8.  Fraction of unfolded A2 under applied force.  The population of unfolded A2 under 

equilibrium predicted from the ratio of unfolding to refolding kinetics.  In the absence of calcium, slowed 

refolding kinetics account for the increased fraction of unfolded A2.  Our quantitative parameters predict 

that A2 is fully unfolded at forces above 5 pN.   
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Materials and methods 

Circular Dichroism   

Circular dichroism (CD) spectra were obtained on an Aviv 62 DS spectropolarimeter equipped 

with a Peltier temperature control unit (Aviv Associates, Lakewood, NJ).  A2 protein (2 μM) in 20 mM 

Tris pH 7.50, 30 or 150 mM NaCl, and varying concentrations of EDTA or CaCl2 was monitored within a 

1.0 cm pathlength quartz cuvette with a magnetic stirrer.  Baseline spectra of the folded and unfolded 

states were obtained at 4
o
C and 90

o
C, respectively, with 5 accumulations scanned from 260 to 195 nm at 

1.0 nm intervals.  Thermal denaturation was monitored at 222 nm from 4
o
C to 90

o
C at 1

o
C intervals, 

equilibrating for 2 minutes at each temperature before signal averaging for 1 minute.  Spectra shown are 

corrected for background contribution of buffer.  Thermal unfolding curves were derived from linear fits 

to thermal denaturation signal before and after the unfolding transition.  Single wavelength CD 

temperature melts were fit to a Gibbs-Helmholtz equation as described by Greenfield (15).     

Isothermal Calorimetry   

Isothermal calorimetry was conducted on an iTC200 (Microcal, Piscataway, NJ) in a 200 μL 

reaction cell loaded with 140 μM protein at 25
o
C.  To ensure complete removal of calcium, protein was 

dialyzed for 3 days against 5 mM EDTA, which was then removed via gel filtration on a Superdex 75 

10/300 column (GE Lifesciences) immediately before the experiment.  Titration was performed using 20 

x 2 μL injections of 1.4 mM CaCl2 in the same buffer (20 mM Tris, pH 7.5; 30 mM NaCl) at 180 s 

intervals, stirring at 1000 rpm.  Binding isotherms were analyzed using the Microcal Origin version 7 

software package and fit to a single site binding model.   

Protein Expression and Purification   

VWF A2 domain was prepared as previously described (9). 
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Single Molecule Sample Preparation   

802 base pair DNA handles were PCR-amplified using forward primers with a 5’thiol group and 

reverse primers with either 5’biotin or 5’digoxigenin, and activated with 2,2’-dithio-dipyridine (DTDP) as 

described previously (9).  For protein-DNA coupling, 50 μL of 12 μM of protein was reduced with 1 mM 

DTT for 1 hour at room temperature, followed by three sequential passages through 0.5 mL Zeba 

desalting columns (Pierce).  Freshly reduced A2 (5 μM) was reacted with 3 μM DTDP activated handles 

in 20 μL 0.2 M sodium acetate, pH 5; 1 M NaCl, 1 mM EDTA.  Reaction components were quickly 

mixed before incubating under argon in a 1.5 mL eppendorf for 16 hours at room temperature.  In our 

hands, coupling was tricky and highly sensitive to DNA : protein ratios.  Due to small volumes and rapid 

oxidation, precise concentrations were difficult to predict and thus coupling was performed in parallel 

across a range of protein:DNA ratios (Fig. 3.9B).  Different handle preparations varied in coupling 

efficiency and the preparations were selected as described below and used for experiments.  Coupling 

efficiency was assayed by running reaction products on 4-20% polyacrylamide gels.  Ethidium bromide 

staining reported shifts in DNA handles upon successful coupling to A2, which was specifically verified 

via western blot analysis on the same gel (Fig. 3.9A).  As final verification, constructs were tested on 

single molecule optical tweezers.  For constructs with poor coupling efficiency, only DNA handle dimers 

or nonspecific extension lengths were observed with great effort.  Successful coupling yielded constructs 

with reliable observations of single A2 unfolding events (>50% of tethers).  Verified DNA/protein 

coupled constructs were aliquoted and stored at -80
o
C.   
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Figure 3.9.  Coupling of vWF A2 to DNA handles.  (A) Trimolecular construct verified by running the 

reaction on a 4-20% polyacrylamide gel and staining for DNA and vWF A2 in parallel.  Following 

ethidium bromide (EtBr) staining, the same gel was subjected to Western blotting (WB) against the A2 

histidine tag.  (B)  Full view of gels highlighted in A.  Coupling efficiency, assessed via the presence of a 

trimolecular construct, was sensitive to DNA/protein ratio.  Both too much protein (lane 2) and too much 

DNA (lane 3) resulted in poor yields of the trimolecular construct.  Coupling efficiency varied with DNA 

handle preparations (four batches shown) and did not seem to be affected by NaCl concentrations (lanes 

1-7, black bar).  The best coupling (lane 8), visualized by the presence of a trimolecular construct, 

translated to reliable observations of unfolding events on single molecular optical tweezers.   
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Single Molecule Force Experiments   

Polystyrene beads (4.2 μM, Spherotech) functionalized with anti-digoxigenin Fab (Roche) were 

incubated with 10 pM protein-DNA constructs for 30 min at room temperature (optimized for single 

tethers).  Single beads were then trapped in the laser tweezers and brought close to a streptavidin-

functionalized polystyrene bead (2.1 μM) suctioned onto the tip of a micropipette.  Single tether 

formation was verified by overstretching the construct past 65 pN to confirm the signature force extension 

curve plateau corresponding to the S to B form DNA transition (25).  The average tether lasted 80 cycles 

with force extension discontinuities observed in 75% of pulls.  All pulls from each tether were used for 

analysis.  The instrument used for optical trapping has been previously described (26).  Experiments were 

conducted in 20 mM Tris pH 7.5, 150 mM NaCl, 0.02% Tween 20.  Experiments were conducted with no 

added calcium (buffer confirmed as <20 μM Ca via a QuantiChrom Calcium Assay Kit; Bioassay 

Systems, Hayward, CA), with 5 mM CaCl2, and with 1 mM EDTA. 

Statistical Analysis   

Errors are estimated errors based on χ
2
 minimized fits using Origin 6.1 (OriginLab Corporation, 

Northampton, MA).  Data were noted to be statistically similar by comparing the maximal spread of 95% 

confidence intervals. 
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Chapter IV:  

Mechanism of A2 Domain Destabilization by Von Willebrand Disease Type 2A Mutations  

 

Amy J. Xu and Timothy A. Springer 

 

Abstract  

von Willebrand Factor (VWF) thrombogenic activity is critically regulated through cleavage in 

the A2 domain by ADAMTS13, a proteolysis event that requires mechanical force to expose the scissile 

bond.  Patients with von Willebrand Disease (VWD) type 2A present with increased bleeding due to 

mutations within A2 that enhance cleavage.  In this study, we investigated the impact of three VWD type 

2A mutations on A2 stability.  Reversible thermal denaturation monitored using circular dichroism 

revealed that, under 1.25 mM Ca
2+

, all three mutants reduced A2 thermal stability, shifting the melting 

temperature Tm 10-18 
o
C lower.  Furthermore, R1597W, which resides within a calcium binding loop, 

diminished the shift in Tm by calcium from 11
 o
C more stable in wild-type A2, to only 2

 o
C.  In contrast, 

M1528V retained calcium mediated stabilization, exhibiting a 15
 o
C shift in Tm, whereas E1638K required 

calcium for structural integrity, losing native structure even at 4
o
C in the absence of calcium.  Single 

molecule optical tweezers demonstrated that R1597W altered the force sensitivity of A2 unfolding and 

refolding in response to calcium.  Whereas calcium enhanced refolding but not unfolding of wild-type 

A2, calcium slightly enhanced unfolding with little change in refolding kinetics for R1597W.  These data 

demonstrate that VWD mutations destabilize VWF A2 and highlight structural features that govern the 

force sensitivity of VWF A2 unfolding and refolding. 
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Introduction 

von Willebrand Factor (VWF) is a polymeric glycoprotein that critically mediates hemostasis 

through multivalent binding of integrins, clotting factor VIII, platelet glycoprotein Ib (GPIb), and 

collagen.  Endothelial cells and platelets secrete VWF at sites of vascular injury as ultralong, disulfide-

bonded concatamers (1) reaching >12 MDa in mass and >15 μm in length (2, 3).   VWF functional 

activity correlates with size, with the largest VWF concatamers most avidly binding platelets and collagen 

in scaffolding a platelet plug. 

VWF concatamer length, and hence thrombogenic activity, is regulated through cleavage by 

ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13).  In the 

absence of ADAMTS13 activity, extensive microvascular thromboses cause tissue ischemia and 

infarction, a life threatening condition known as thrombotic thrombocytopenic purpura (TTP).  

Conversely, increased VWF cleavage causes bleeding diatheses, and is known to result from mutations 

within the VWF gene that cluster within the VWF A2 cleavage domain.      

ADAMTS13 circulates as a constitutively active protease whose activity is regulated by structural 

changes within A2.  The ADAMTS13 cleavage site is buried within a central β4 strand that is 

inaccessible in the native state (Fig 4.1A).  Hydrodynamic forces experienced by VWF concatamers in 

the vasculature apply tensile force to the N and C termini of A2, and single molecule studies have 

demonstrated that ADAMTS13 cleavage requires unfolding of the A2 domain to expose the scissile bond 

(4).   
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Fig 4.1.  A2 structure.  (A) The A2 domain is comprised of two windings.  Winding 1 (wheat) proceeds 

from the N terminus and features a parallel arrangement of beta strands that confer mechanical resistance.  

Winding 2 (pale green) defines the C-terminal half of the domain and is predicted to be unraveled when 

tensile force is applied to the N and C temini (5), exposing the Y1605/M1606 scissile bond (grey) buried 

within the central β4 strand.  A2 binds Ca
2+

 (silver sphere) within the α3β4 loop at the junction of these 

two windings.   (B) E1638, within the α5 helix, forms a network of hydrogen bonds with buried water 

molecules and A1612 in the α4-less loop.  (C) R1597, within the α3-β4 loop, directly coordinates calcium 

via its backbone carbonyl, and the arginine side chain forms a salt bridge with the sidechain of the Ca
2+

-

coordinating residue, Asp1498 within the β1 strand.  (D) M1528 resides at the end of the α1 helix and is 

surrounded by hydrophobic residues.  The structure shown is a chimera containing residues 1495-1578 

and 1602-1672 of 3GXB (4) and residues 1579-1601 of 3PPV (6).  Figure made with PYMOL.   
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VWF A2 is comprised of two topologically distinct windings (Fig 4.1A) and exhibits several 

structural features that enable sensitivity to force.  Compared to neighboring A1 and A3 domains, A2 

lacks a long-range disulfide bond to protect the domain against unfolding.  Unfolding is predicted to 

proceed from the C terminus within winding 2 (pale green), where the alternating arrangement of beta 

strands and alpha helices favors stepwise unfolding.  In contrast, winding 1 (wheat) features a parallel 

arrangement of beta strands that tightly locks the N terminus through hydrogen bond clamps within the 

A2 core.  Molecular dynamic simulations also predict stepwise unfolding proceeding from the C terminus 

(5), and this model is consistent with biochemical characterizations of the minimal C-terminal portion 

required for maximal ADMTS13 cleavage (7).  Within winding 2, A2 features an “α4-less” loop in place 

of an α4 helix that is thought to slow refolding to promote cleavage site accessibility (8).  At the junction 

between winding 1 and winding 2, A2 also features a unique calcium binding site (silver) demonstrated to 

protect VWF against ADAMTS13 cleavage (6) and enhance refolding (9).  These unique features within 

VWF A2 promote dynamic, force-dependent accessibility of the buried scissile bond.   

Mutations within the VWF gene cause von Willebrand’s disease (VWD), the most commonly 

inherited bleeding disorder in humans.  Patients with type 2A VWD present with increased bleeding due 

to the decreased thrombogenicity of smaller VWF multimers (10).  VWD type 2A mutations cluster 

within the A2 domain.  Certain mutations have been described to impair VWF biosynthesis (Group 1) 

(11), whereas other mutations increase VWF proteolysis despite normal VWF multimer assembly and 

secretion (Group 2) (12, 13).  Specifically, Group 2 mutations are thought to enhance cleavage by 

disrupting the stability of the folded A2 structure. 

Previous studies have investigated the conformational stability of VWF A2 relative to 

neighboring domains.  Consistent with the absence of a long-range disulfide bond, A2 was found to be 

more susceptible to chemical denaturation compared to A1 and A3 (14).  In this study, we seek to 

understand the impact of VWD type 2A mutations on A2 conformational stability, and in particular, the 

dynamics of unfolding and refolding.     
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R1597W is by far the most common VWD type 2A mutation described in patients (15) and 

resides within the α3β4 calcium binding loop (Fig 4.1C).  Though the backbone carbonyl directly binds 

calcium, R1597 forms a critical salt bridge with Asp1498, which resides within the β1 strand and is the 

only residue that coordinates calcium outside of the α3β4 loop.  Previous studies using alanine 

substitution of calcium coordinating residues suggest that calcium stabilizes the A2 domain by 

neutralizing electrostatic repulsion between D1498 and D1596 (6, 16).  We thus sought to understand the 

impact of R1597W on calcium mediated stabilization of A2.     

We also explored the impact of two additional VWD type 2A mutations within the N and C 

terminal halves of the A2 domain.  E1638K has been clinically described as a VWD type 2A mutant (17-

19) and resides within the α5 helix, C-terminal to the scissile bond and within winding 2 (Fig 4.1B).  

M1528V has also been described to enhance A2 cleavage (13), and resides at the end of the α1 helix 

within winding 1 (Fig 4.1D).   

Mutations were chosen to reflect disease prevalence as well as sample a range of structural 

environments.  We first sought to characterize the impact of these mutations on conformational stability 

using thermodynamic denaturation.  In parallel, we utilized single molecule optical tweezers to 

characterize the effect of VWD mutations on the force dependence of A2 conformational dynamics.  The 

results demonstrate the impact of VWD 2A mutations on A2 stability, and provide insight into structural 

features regulating A2 unfolding and refolding dynamics that dictate ADAMTS13 cleavage.   
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Results  

Thermal stability of VWD mutants under physiologic calcium concentrations 

Circular dichroism (CD) spectra monitor changes in secondary structure.   In the presence of 

calcium, all three VWD mutants exhibited spectra similar to wild-type A2 in Ca
2+

 at 4
o
C (Fig 4.2, black 

symbols).  The spectra reflect the strong alpha helical content of the A2 domain, with double minima at 

222 nm and 208 nm (20).  Spectra remained stable for all constructs until at least 30
o
C, after which the 

native spectra lost alpha helical signature over a transition region spanning ~15
o
C until again becoming 

stable in a thermally denatured state (Fig 4.2, white symbols). 

 

 

Fig 4.2. CD spectra of VWD A2.   Under physiologic calcium concentrations, all VWD mutants 

exhibited similar native spectra compared to wild-type at 4
o
C (black).  After thermal denaturation (white), 

the spectra lost alpha helical signature.  Upon removal of calcium with 1 mM EDTA (grey), WT, 

R1597W, and M1528V retained native spectra whereas E1638K lost its native structure even at 4
o
C. 
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 Thermal denaturation was quantitated at 222 nm, the wavelength of greatest contrast between 

native and denatured states (Fig 4.2), over a stepwise increase in temperature under equilibrium 

conditions (3 minutes per 
o
C).  Under physiologic 1.25 mM Ca

2+
, all three VWD mutants were less stable 

against thermal denaturation compared to wild-type (Fig 4.3A).  Whereas the half-point melting 

temperature Tm of wild-type A2 was 67.7 
o
C, M1528V, R1597W and E1638K exhibited decreased Tm 

temperatures of 57.9, 53.9, and 50.2 
o
C, respectively (Table 1).   

 

 

Fig 4.3.  VWD A2 thermal denaturation.  Thermal denaturation monitored at 222 nm over a stepwise 

increase in temperature at equilibrium (3 minutes per 
o
C).  (A) Under physiologic calcium concentrations 

(1.25 mM Ca
2+

), all three mutants unfolded at lower temperatures compared to wild-type.   (B) Wild-type 

A2 was stabilized against thermal denaturation in the presence of 1.25 mM Ca
2+

 compared to 1 mM 

EDTA.  (C)  R1597W diminished calcium stabilization.  (D)  M1528V was stabilized by calcium but at 

lower overall stabilities compared to wild-type.     
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Table 1.  Tm values determined using CD.   

 
Tm, 

o
C 

 

 

WT R1597W M1528V E1638K 

1.25 mM Ca 67.7 ± 0.1 53.9 ± 0.1 57.9 ± 0.1 50.2 ± 0.1 

1 mM EDTA 56.7 ± 0.1 51.5 ± 0.1 42.6 ± 0.2 
 

Δ 11.0 2.4 15.3 
 

 

 

Calcium stabilization in VWD mutants 

To monitor the effect of calcium on stabilizing A2 mutants, thermal denaturation was similarly 

monitored in the presence and absence of calcium (Fig 4.3B-D, Table 1).  Wild-type A2 exhibited an 11 

o
C decrease in Tm in 1 mM EDTA compared to 1.25 mM Ca

2+
 (Fig 4.3B).  The Tm of M1528V also 

exhibited a large decrease of 15 
o
C in the absence of calcium (Fig 4.3C, Table 1).  E1638K, featuring the 

lowest Tm in the presence of calcium (Fig 4.3A), exhibited a sharp change in spectrum upon calcium 

removal at 4 
o
C.  The  E1638K 4 

o
C spectrum in 1 mM EDTA  differed little from the 90 

o
C spectrum 

obtained in the  presence of calcium (Fig 4.2D), and remained in this altered state throughout the stepwise 

temperature increase to 90
o
C (data not shown).  The large shift in Tm observed in M1528V, and loss of 

secondary structure observed in E1638K at 4
o
C, suggest that, similar to its effect on wild-type A2, 

calcium plays an important role in stabilizing the native state of the M1528V and E1638K.  In contrast, 

the R1597W mutant exhibited only a 2
 o

C decrease in Tm in the absence of calcium (Fig 4.3C, Table 1).  

This loss of calcium mediated stabilization strongly suggests that the R1597W mutation destabilizes the 

calcium-binding loop in which it resides.   
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Force-induced unfolding of R1597W  

The effect of R1597W on force-dependent A2 unfolding and refolding was investigated using 

single molecule optical tweezers.  VWF A2 was covalently linked through its N and C termini to DNA 

handles and suspended between two polystyrene beads, one anchored to the tip of a micropipette, and 

another trapped within the infrared dual beam laser focus of the optical tweezers (Fig 4.4A).  Changes in 

light momentum reflected excursions of the bead from the center of the trap, dx (Fig 4.4A), and reported 

the force experienced by the protein-DNA tether with pN force sensitivity.  Force extension profiles 

reported the stiffness of the single molecule construct, and A2 unfolding manifested as abrupt decreases 

in force (dashed circles, Fig 4.4B).  Refolding was monitored by the presence or absence of unfolding in 

the subsequent pull (Fig 4.4B).  Clamping at a low force between pulls provided time for A2 refolding.   

Over a range of pulling rates, R1597W unfolding was similar to wild-type in displaying excellent 

agreement with full unfolding of VWF A2 (Fig 4.4C).  The amount of extension over the range of forces 

where unfolding occurred (symbols, Fig 4.4C) was fit to the Worm-like Chain model of polymer 

elasticity (solid black line, Fig 4.4C).  The fit yielded a persistence length, Lp, of 0.49 ± 0.02 nm.  The 

contour length, or length of maximal extension, Lc, derived from the fit was 70.5 ± 1.18 nm.  These results 

agree with previous measurements of wild-type A2 unfolding (dotted grey line, Fig 4.4C;  Lp = 0.41 nm; 

Lc, = 75.6 nm) (9), and suggest full unfolding of R1597W A2 under all calcium conditions.    

M1528V and E1638K coupling to DNA handles was verified via biochemical assay.  However, 

repeated attempts were unsuccessful in finding multiple cycles of unfolding and refolding over many 

single molecule tethers with these mutant domains.  
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Fig 4.4.  Monitoring protein unfolding using optical tweezers.  (A) Experimental setup.  Force 

spectroscopy performed on single A2 domains suspended between two polystyrene beads by DNA 

handles.  Excursions of the bead from the center of the trap, dx, report the force experienced by the single 

molecule construct.  (B) Representative unfolding events observed under 40 nm/s pulling and relaxation 

rates (corresponding to 0.5-2 pN/s force application rates) between 2 and 20 pN with 10 s pause at 2 pN 

to allow refolding.  Force extension discontinuities are highlighted.  (C) Worm Like Chain model fit to 

R1597W unfolding in the presence of no added Ca
2+

, 5 mM Ca
2+

, and 1 mM EDTA.  Global fit for 

R1597W (black, solid) is compared with wild-type WLC fit (doted, grey) determined previously (21).  
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Calcium slightly stabilizes R1597W against unfolding 

Unfolding kinetics were determined by examining the forces at which A2 unfolding was 

observed.  R1597W (Fig 4.5A) and wild-type A2 (Fig 4.5B) exhibited a logarithmic dependence of 

unfolding force on loading rate, consistent with biophysical models of protein unfolding (22). Wild-type 

A2 exhibited similar unfolding kinetics in the presence and absence of calcium (within 20%, p<0.05, (9), 

Fig 4.5B).  In contrast, R1597W exhibited a change in the response of unfolding to calcium, reflected in 

the force sensitivity parameter, σ, where k=ku
0
exp(σF/kbT), and σ is given by the slope of the lines in Fig 

4.5A.  R1597W was more force resistant in the presence of calcium, as the folded state lifetimes 

decreased more slowly upon application of increasing force (Fig 4.5A, black line).  In contrast, upon 

removal of calcium with 1 mM EDTA, R1597W exhibited a greater decrease in folded state lifetimes 

with increasing force (Fig 4.5A, dashed line).  The extrapolated off-rate in the absence of force (ku
0
) was 

similar for R1597W in the presence and absence of force.  Furthermore, the ku
0
 values for the R1597W 

mutant and wild-type in all conditions were indistinguishable (see ku
0
 values in Fig 4.5).  Therefore, 

unfolding kinetics alone were not sufficient to account for the impact of R597W in destabilizing A2, 

observed as the decrease in Tm between R1597W wild-type A2 measured in the absence of force. 
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Fig 4.5.  R1597W Unfolding.  R1597W unfolding kinetics determined from the distribution of unfolding 

forces using the Hummer- Szabo-Dudko method (23).  In contrast to wild-type A2, which fit similar 

unfolding kinetics in the presence and absence of Ca
2+

 (bottom), R1597W exhibited greater force 

resistance to unfolding (σ) in the presence of calcium (black) compared to EDTA (dotted).  
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R1597W refolding  

To complement the measurements of R1597W unfolding, refolding kinetics were also measured 

over a range of forces.  Compared to wild-type A2, R1597W exhibited significantly decreased probability 

of refolding in the presence of calcium (Fig 4.6A).  In contrast to wild-type A2 refolding, which was 

significantly decreased in the absence compared to the presence of calcium, R1597W refolding remained 

similar upon calcium removal.  Under both 5 mM  Ca
2+

 and 1 mM EDTA, R1597W refolding was similar 

to wild-type A2 with calcium removed (Fig 4.6A).   

Unfolded state lifetimes were determined from maximum likelihood estimations of refolding probabilities 

across different pause times over a range of forces.  Each data point reflects the maximum likelihood 

estimation based on all refolding data obtained at a given minimum force.  Theoretical fits were based on 

a single exponential dependence on the square of applied force, f
2
, and the compliance of the unfolded 

state, κ (4) (Fig 4.6B).  R1597W exhibited similar refolding kinetics in the presence and absence of 

calcium.  At zero force, the intrinsic unfolded state lifetimes, τ0, of R1597W were similar (7.2 and 9.2 s in 

the presence and absence of calcium, respectively, Fig 4.6B).  R1597W refolding contrasted with wild-

type A2, which exhibited enhanced refolding in the presence of calcium (τ0 = 7.1 and 2.5 s in the presence 

and absence of calcium, respectively, Fig 4.6B).  In both the presence and absence of calcium (dark gray 

and dashed gray, respectively), R1597W refolding was similar to wild-type A2 refolding with calcium 

removed (dotted black). 
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Fig 4.6.  R1597W Refolding.  A)  Binary refolding statistics collected for 10 s pauses at 1 pN.  In the 

presence of calcium, R1597W significantly decreased the probability of refolding compared to wild-type.  

R1597W refolding was similar in the presence and absence of calcium.  Under both 5 mM Ca and 1 mM 

EDTA, R1597W refolding was significantly decreased compared to wild-type A2 in the presence of 

calcium, similar to wild-type A2 refolding in 1 mM EDTA.   B)  Predicted unfolded state lifetimes 

determined from maximum likelihood estimates of refolding probabilities obtained at different minimum 

pause forces for varying lengths of time.  Theoretical fits based on an exponential dependence of 

refolding on the square of applied force (4).  Whereas wild-type refolding was enhanced with 5 mM Ca
2+

 

compared to 1 mM EDTA (dotted and solid black lines, respectively), little difference was observed 

between 5 mM Ca
2+

 and 1 mM EDTA in R1597W (solid and dashed grey lines, respectively).  
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Discussion  

In this study, we investigated the mechanisms by which mutations in VWF A2 cause VWD type 

2A using bulk measurements of thermodynamic denaturation combined with single molecule 

measurements of unfolding and refolding kinetics.  Specifically, we demonstrated the impact of three 

VWD type 2A Group 2 mutations, R1597W, M1528V and E1638K, in destabilizing VWF A2.  Under 

physiologic calcium concentrations, these mutants exhibited alpha-helical content similar to wild-type 

A2, suggesting that A2 structure remained intact prior to thermal denaturation.  However, all three 

mutations exhibited decreased stability to thermal denaturation compared to wild-type A2, suggesting that 

these clinical mutations enhance ADAMTS13 proteolysis by destabilizing the A2 domain.   

We further probed the impact of these VWD mutations on calcium mediated stabilization of 

VWF A2 by monitoring thermal denaturation in the presence and absence of calcium.  M1528V and 

E1638K, outside of the calcium binding loop, retained stabilization by calcium binding.  M1528V 

exhibited a 15.3 
o
C stabilization against thermal denaturation in the presence of calcium (Fig 4.3C) 

whereas E138K required calcium to stabilize the native structure at 4
o
C (Fig 4.2D).  M1528V resides 

within the more mechanically stable winding 1 that is predicted to remain folded and confer resistance 

against rupture.  The methionine sidechain protrudes into a hydrophobic environment that is presumably 

destabilized upon substitution with the less bulky valine sidechain.  M1528V retained calcium 

stabilization but at overall lower thermodynamic stabilities, consistent with the mutation decreasing the 

force resistance of the domain but not disrupting the native state.  In contrast, the Glu
1638

 side chain 

resides within the less force resistant winding 2, and forms multiple H bonds with the backbone of the α4-

less loop and a network of buried water molecules (Fig 4.1B).  The loss of E1638K native structure upon 

removal of calcium demonstrates that both the α4less network of hydrogen bonds and calcium binding 

loop critically stabilize the folded state.  
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In contrast, to wild-type A2 and mutations residing outside the calcium binding loop, R1597W, 

exhibited only a 2 
o
C Tm shift in the presence of calcium, demonstrating significant disruption of calcium 

mediated stabilization.  Residing within the calcium binding loop, Arg1597’s backbone carbonyl directly 

coordinates calcium while the sidechain forms a salt bridge with Asp 1498, the only residue outside of the 

α3β4 loop involved in A2 calcium coordination (Fig 4.1C).   The diminished calcium stabilization 

observed with R1597W under thermal denaturation (Fig 4.3C) is likely due to loss of Asp1498 

stabilization.  R1597W and R1597Q are the two most frequently reported VWD 2A mutations and 

account for 65% of all VWD type 2A mutations described in the ISTH database (15).  The disruption of 

calcium-mediated stabilization in R1597W thus highlights the importance of calcium stabilization for 

VWF function.   

Previous studies have demonstrated that calcium modulates wild-type A2 stability and 

ADAMTS13 sensitivity.  VWF A2 binds calcium with µM affinity (9) and calcium binding has been 

shown to protect the domain against cleavage (6, 16) and enhance A2 refolding (9).  The mechanism of 

calcium mediated stabilization has also been studied through alanine substitutions of calcium coordinating 

residues (6, 16).  Consistent with loss of calcium binding, D1596A and N1602 mutations abolished 

calcium mediated increases in A2 thermal stability.  In both the presence and absence of calcium, 

N1602A destabilized thermal stability similar to calcium-free wild-type A2.  In contrast, D1596A 

paradoxically increased A2 thermal stability in the absence of calcium, presumably due to the 

neutralization of electrostatic repulsion between D1498, within the β1 strand, and D1596, within the α3β4 

loop.  These characterizations of thermal stability correlate with ADAMTS13 sensitivity, suggesting that 

calcium mediates increased A2 stability and cleavage resistance by neutralizing electrostatic repulsion 

within the calcium-binding pocket  (16).   

To further probe the mechanism of calcium-mediated stabilization, we explored R1597W 

unfolding and refolding dynamics in the presence and absence of calcium using single molecule optical 

tweezers.  Similar to wild-type A2, R1597W extension lengths were consistent with full domain 
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unfolding under all calcium conditions (Fig 4.4C).  The similar contour lengths preclude calcium binding 

in the unfolded state, especially since calcium binding involves residues far apart in sequence.  Consistent 

with almost complete loss of calcium stabilization observed with thermal denaturation, there was little 

influence of calcium on R1597W refolding kinetics.  Under both 5 mM Ca
2+

 and 1 mM EDTA, R1597W 

refolding kinetics were similar to those of calcium free wild-type A2.  Thus, loss of calcium-dependent 

stabilization contributes to the decreased stability observed in the most frequently observed substitution in 

VWD type 2A, R1597W.   

R1597W was also distinct from wild-type A2 in exhibiting different force-dependent unfolding 

kinetics in the presence and absence of calcium (Fig 4.5).  In the absence of calcium, R1597W exhibited a 

greater susceptibility to unfolding upon application of force.  This difference manifested as an increase in 

σ, reflecting the sensitivity to force, or distance to the transition state, indicating that the mutant is more 

easily deformed.  The change in A2 compliance may result from loss of the stabilizing interaction 

between the sidechains of Arg-1597 and Asp-1498 in the wild-type structure, or perturbation by Trp-1597 

of the unfolding pathway in the mutant structure.  The expected unfolded fractions under force 

equilibrium demonstrate how this change in force sensitivity affects overall stability (Fig 4.7).   

The discrepancy between calcium affecting R1597W but not wild-type unfolding suggests 

differences between R1597W and wild-type in the rate limiting transition state for unfolding.  Several 

studies implicate an intermediate state in the VWF A2 unfolding pathway (4, 9, 16) and molecular 

dynamic simulations predict an unfolding intermediate after the unraveling of α6, β6 and α5 (5).  The 

contour lengths of unfolded R1597W and wild-type A2 are essentially identical, and consistent with full 

unfolding of A2.  The difference in the role of calcium between wild-type and R1597W unfolding 

suggests that R1597W differentially affects calcium binding in the native and intermediate states.  

Specifically, the ability of calcium to stabilize R1597W, but not wild-type A2, against unfolding, suggests 

that R1597W is more disruptive to calcium binding in the intermediate state than the native structure.    
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Figure 4.7.  Fraction of unfolded A2 under applied force.   

The population of unfolded A2 under equilibrium predicted from the ratio of unfolding to refolding 

kinetics.  Under physiologic calcium conditions, our quantitative parameters predict that A2 is fully 

unfolded at forces above 3 pN for R1597W (solid gray), and 5 pN for wild-type A2 (solid black).   
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The three VWD mutations studied here each point out important features of the A2 domain that 

help specialize it for force-dependent size regulation of VWF.  The α3β4 loop bearing the calcium 

binding site appears to be critical in regulating the force sensitivity of A2 unfolding.  Loss of calcium 

stabilization accounts for the destabilization observed in the most commonly described site of VWD type 

2A mutations, R1597.  Under physiologic calcium conditions, R1597W exhibits similar unfolding 

kinetics compared to wild-type.  The main difference is that R1597W refolding resembles the calcium 

free wild-type phenotype, underscoring the importance of refolding kinetics to VWF function.  The 

importance of refolding is also highlighted by A2’s remarkable absence of a homologous α4 loop, a 

structural specialization hypothesized to slow refolding.  E1638 forms multiple hydrogen bonds with 

A1612 and buried water molecules within the α4-less loop.  Upon E1638K substitution, the α4-less loop 

loses a stabilizing contact with the α5 helix (Fig 4.1B).  The low stability of E1638K, especially upon 

removal of calcium, highlights the destabilizing structural feature that the α4-less loop provides the A2 

domain.   The force resistance conferred by the N terminal winding 1 is highlighted by the overall 

decrease in thermal stability, but not loss of native structure, observed in M1528V.  The impact of these 

VWD type 2A mutations on A2 stability highlights the structural features of calcium binding, the α4-less 

loop, and the mechanically stabilized N-terminal beta sheets that render VWF A2 remarkably sensitive to 

hydrodynamic forces experienced in the vasculature. 
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Materials and methods 

Circular Dichroism   

Circular dichroism (CD) spectra were obtained on an Aviv 62 DS spectropolarimeter equipped with a 

Peltier temperature control unit (Aviv Associates, Lakewood, NJ).  A2 protein (2 μM) in 20 mM Tris pH 

7.50, 30 mM NaCl, and either 1 mM EDTA or 1.25 mM CaCl2 was monitored within a 1.0 cm pathlength 

quartz cuvette with a magnetic stirrer.  Baseline spectra of the folded and unfolded states were obtained at 

4
o
C and 90

o
C, respectively, with 5 accumulations scanned from 260 to 195 nm at 1.0 nm intervals.  

Thermal denaturation was monitored at 222 nm at 1
o
C intervals, equilibrating for 2 minutes at each 

temperature before signal averaging for 1 minute.  Spectra shown are corrected for background 

contribution of buffer.  Thermal unfolding curves were derived from linear fits to thermal denaturation 

signal before and after the unfolding transition.  Single wavelength CD temperature melts were fit to a 

Gibbs-Helmholtz equation as described by Greenfield (24).     

Protein Expression and Purification   

VWF A2 was prepared as previously described (4).  VWD mutations were introduced using overlap PCR. 

Single Molecule Force Experiments   

Single molecule constructs (Fig 4.8) and optical tweezers experiments were prepared as previously 

described (9).  

Statistical Analysis   

Errors were estimated by χ
2
 minimized fits using Origin 6.1 (OriginLab Corporation, Northampton, MA).   
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Figure 4.8.  R1597W DNA Coupling. 

DNA coupling.  4-20% TBE gel stained for DNA using EtBr.  (A) DNA handles only; (B) DNA handles 

+ R1597W. Gel shift due to coupling of A2 domain; (C) DNA+R1597W+aA2 antibody.  Gel shift upon 

A2 antibody binding to A2 domain; (*) Both interactions abolished under reducing conditions (1 mM 

DTT).   
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Summary and Future Directions 

VWF is a fascinating protein that plays critical roles in hemostasis and is remarkably sensitive to 

hydrodynamic forces within the vasculature.  This thesis focused on the structural specializations that 

render the A2 cleavage domain sensitive to force.  We used bulk thermodynamic assays to demonstrate 

that VWF binds calcium at physiologic calcium concentrations and that calcium stabilizes VWF A2 

against thermal denaturation.  Single Molecule Optical Tweezers were employed to demonstrate that 

calcium stabilizes VWF A2 by accelerating refolding.  These findings emphasize the importance of 

refolding to dynamically regulating VWF accessibility to proteolysis by ADAMTS13.     

VWF A2 stability was also studied in the context of patient mutations known to cause the 

bleeding diathesis of VWD.  Three VWD 2A mutations were studied, all of which destabilized A2 against 

thermal denaturation under physiologic calcium concentrations.  The relevance of calcium binding to 

physiology was emphasized by demonstrating that R1597W, the most commonly reported VWD 2A 

mutation, diminishes calcium mediated stabilization.  In contrast, other VWD 2A mutations outside the 

calcium binding site maintained stabilization by calcium.  On optical tweezers, calcium slightly stabilized 

R1597W against unfolding but did not affect R1597W refolding.  The similarity of R1597W refolding to 

calcium-free wild-type A2 refolding highlights the critical role of refolding, not just unfolding, for 

regulating VWF cleavage by ADAMTS13.  The difference in the role of calcium between wild-type and 

R1597W unfolding suggests that R1597W differentially affects calcium binding in the native and 

intermediate state.  In addition to monitoring mechanical unfolding and folding kinetics using single 

molecule optical tweezers, unfolding and refolding in response to chemical dentaurants such as urea or 

guanidine hydrochloride would also be interesting to minitor using stopped flow fluorescence of circular 

dichroism.  Such structural insights may prove useful in designing modulators of VWF function.   

It will be interesting to directly assess VWF cleavage kinetics under force using multiplexed 

single molecule assays.  Though single molecule optical tweezers offer precise control over the 



 

88 

 

mechanical force applied to each molecule, they are intractable for obtaining bulk statistics to characterize 

enzyme kinetics.  Systems optimized for massively parallel single molecule observations, such as 

Centrifugal Force Microscopy (CFM), allow for the numerics of ensemble measurements while retaining 

single molecule mechanical control.  It will be interesting to study VWF mechanoregulation using CFM 

to characterize the kinetics of ADAMTS13 cleavage over a range of forces.  Below the threshold for 

complete unfolding of the A2 domain, we expect ADAMTS13 cleavage to increase with greater force.  

Furthermore, we expect VWD mutants to be cleaved at lower forces.  Quantitative analysis of single 

molecule cleavage kinetics will provide a better understanding of how pathology arises from disordered 

VWF A2 mechanoregulation.   

The studies in this thesis were isolated to the A2 domain.  Interdomain interactions between A2 

and neighboring domains likely play a role in regulating A2 function, and the inclusion of these 

interactions will enhance the understanding of A2 function.  In addition, ADAMTS13 has binding sites 

outside of the A2 domain which may be important in the force regulation of A2 cleavage.  It will be 

intriguing to directly test the role of elongational force in activating VWF function, and confirm these 

force regulatory mechanisms in vivo.   

VWF is a large, concatameric polymer exposed to a range of hydrodynamic forces in the 

vasculature.  In addition to providing a better understanding of VWD pathophysiology and A2 unfolding 

and refolding dynamics, these studies enhance the understanding of how mechanical forces experienced 

within the vasculature regulate processes of hemostasis and thrombosis.  Characterizing the force 

sensitivity of the VWF A2 domain provides an intriguing glimpse into the power of mechanical force in 

regulating biological processes.  


