Silver-Mediated Trifluoromethoxylation of Aryl Nucleophiles and Synthesis of 3-Deoxy-3-Fluoromorphine

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:9904007</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
SILVER-MEDIATED TRIFLUOROMETHOXYLATION OF ARYL NUCLEOPHILES AND SYNTHESIS OF 3-DEOXY-3-FLUOROMORPHINE

Abstract

Fluorine incorporation has become increasingly important in pharmaceutical applications. Upon fluorination and incorporation of fluorinated moieties such as trifluoromethoxy groups, many small molecules become more bioavailable and metabolically stable and additionally can better cross the blood-brain-barrier. This thesis describes the development of a method mediated by silver salts for the synthesis of pharmaceutical-like trifluoromethoxylated compounds via C–OCF₃ bond formation. Additionally, the synthesis of 3-deoxy-3-fluoromorphine via late-stage fluorination of morphine is described as well as in vitro and in vivo evaluation of 3-deoxy-3-fluoromorphine as a potential analgesic.
Table of Contents

1. Introduction .. 1

 1.1. Importance of fluorine incorporation ... 1

2. Results and Discussion ... 48

 2.1. Silver-mediated trifluoromethoxylation of aryl nucleophiles ... 48

 2.1.1. Design of the silver-mediated trifluoromethoxylation reaction ... 49

 2.1.2. Optimization of the trifluoromethoxylation reaction .. 52

 2.1.3. Identification of the trifluoromethoxide salt .. 57

 2.1.4. Synthesis of complex, functionalized aryl stannanes ... 58

 2.1.5. Trifluoromethoxylation of aryl stannanes .. 60

 2.1.6. Trifluoromethoxylation of boronic acids ... 61

 2.2. Synthesis of 3-deoxy-3-fluoromorphine .. 63

 2.2.1. Synthetic route to 3-deoxy-3-fluoromorphine ... 66

 2.2.2. Biological activity .. 68

3. Conclusion and Outlook ... 72

4. Experimental .. 73

 4.1. Ag-mediated trifluoromethoxylation of aryl stannanes and arylboronic acids 74
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General procedure for the trifluoromethoxylation of aryl stannanes</td>
<td>74</td>
</tr>
<tr>
<td>General procedure for the trifluoromethoxylation of arylboronic acids</td>
<td>75</td>
</tr>
<tr>
<td>Trifluoromethyl trifluoromethanesulfonate (3)</td>
<td>76</td>
</tr>
<tr>
<td>Tris(dimethylamino)sulfonium trifluoromethoxide (TAS • OCF₃) (1)</td>
<td>77</td>
</tr>
<tr>
<td>Decomposition study of TAS • OCF₃ (1)</td>
<td>77</td>
</tr>
<tr>
<td>Effect of fluoride source on the yield of Ag-mediated trifluoromethoxylation reaction</td>
<td>78</td>
</tr>
<tr>
<td>Effect of Ag salt on the yield of Ag-mediated trifluoromethoxylation reaction</td>
<td>78</td>
</tr>
<tr>
<td>Effect of solvent on the yield of Ag-mediated trifluoromethoxylation reaction</td>
<td>79</td>
</tr>
<tr>
<td>Effect of temperature on the yield of Ag-mediated trifluoromethoxylation reaction</td>
<td>80</td>
</tr>
<tr>
<td>Effect of additives on the yield of Ag-mediated trifluoromethoxylation reaction</td>
<td>80</td>
</tr>
<tr>
<td>Tributyl(4-biphenyl)stannane (10)</td>
<td>83</td>
</tr>
<tr>
<td>4-(Trifluoromethoxy)biphenyl (21)</td>
<td>83</td>
</tr>
<tr>
<td>1-Methoxy-4-(trifluoromethoxy)benzene (24)</td>
<td>84</td>
</tr>
<tr>
<td>(4-Bromophenyl)tributylstannane (12)</td>
<td>85</td>
</tr>
<tr>
<td>1-Bromo-4-(trifluoromethoxy)benzene (25)</td>
<td>85</td>
</tr>
<tr>
<td>Tributyl(3,4,5-trimethoxyphenyl)stannane (14)</td>
<td>86</td>
</tr>
<tr>
<td>1,2,3-Trimethoxy-5-(trifluoromethoxy)benzene (23)</td>
<td>87</td>
</tr>
<tr>
<td>Methyl 6-(tributylstannyl)-2-napthoate (15)</td>
<td>88</td>
</tr>
<tr>
<td>Methyl 6-(trifluoromethoxy)-2-napthoate (27)</td>
<td>88</td>
</tr>
<tr>
<td>5-Tributylstannyl-(N)-Boc-indole (20)</td>
<td>89</td>
</tr>
<tr>
<td>5-Trifluoromethoxy-(N)-Boc-indole (28)</td>
<td>90</td>
</tr>
<tr>
<td>Ethyl 4-(trifluoromethoxy)benzoate (22)</td>
<td>91</td>
</tr>
<tr>
<td>Synthesis of ethyl 4-(trifluoromethoxy)benzoate (22) on gram scale</td>
<td>91</td>
</tr>
</tbody>
</table>
1-Methoxy-2-(trifluoromethoxy)benzene (26) ... 92

N-Boc-4-(trifluoromethoxy)-L-phenylalanine methyl ester (29) ... 93

3-Deoxy-3-trifluoromethoxyestrone (30) ... 94

N-Boc-4-(tributylstannyl)-L-phenylalanyl-L-phenylalanine methyl ester (42) ... 95

N-Boc-4-(trifluoromethoxy)-L-phenylalanyl-L-phenylalanine methyl ester (31) ... 95

3-(Trifluoromethanesulfonyl)morphine (39) ... 96

Methyl 3-(trifluoromethanesulfonfonyl)normorphine-carboxylate (40) .. 97

Methyl 3-deoxy-3-(tributylstannylnormorphine-carboxylate (19) ... 98

Methyl 3-deoxy-3-(trifluoromethoxy)normorphine-carboxylate (32) ... 99

6-(Trifluoromethoxy)quinoline (33) ... 100

1-Fluoro-4-(trifluoromethoxy)benzene (5) ... 101

4-(Trifluoromethoxy)biphenyl (21) ... 101

1-Methoxy-4-(trifluoromethoxy)benzene (24) ... 102

5-Trifluoromethoxy-N-Boc-indole (28) ... 103

2-(Trifluoromethoxy)naphthalene (34) ... 104

Methyl 3-methyl-5-(trifluoromethoxy)benzoate (35) ... 105

4.2. Synthesis of 3-deoxy-3-fluromorphine ... 106

Methyl 3-deoxy-3-fluoro-normorphine-carboxylate (37) .. 106

3-Deoxy-3-fluromorphine (TL-270) ... 107
List of Figures and Schemes

Figure 1. Selected fluorinated brand-name drugs and their ranking by retail sales in the United States for 2010........1

Scheme 1. Nucleophilic radiochemical fluorination with 18F-fluoride to afford $[^{18}\text{F}]$FDG ...5

Scheme 2. Nucleophilic aromatic substitution with 18F-fluoride ..6

Scheme 3. Nucleophilic radiochemical fluorination of aryl(2-thienyl)iodonium bromides ...7

Scheme 4. Oxidative radiochemical fluorination of p-α-t-butyl phenols with 18F-fluoride ..8

Scheme 5. Synthesis of 18F-labelled aryl fluorides with an electrophilic 18F-Pd(IV) fluorinating reagent9

Figure 2. Comparison of the redox potential of crystalline, bench-top stable fluorinating reagents11

Scheme 6. Synthesis of aryl fluorides from aryl Grignard reagents ..13

Scheme 7. N-directed Pd-catalyzed fluorination of arenes ...14

Scheme 8. N-Perfluorotolylamide–directed Pd-catalyzed fluorination of arenes ...14

Scheme 9. Fluorination of Pd(II) benzoquinolyl sulfoamide complexes with F-TEDA-BF$_4$15

Scheme 10. Reductive elimination from Pd(IV) phenylpyridyl sulfoamide complexes ..15

Scheme 11. Ag-catalyzed fluorination of complex aryl stannanes ...16

Scheme 12. Ti-catalyzed asymmetric α-fluorination of β-ketoesters ..18

Scheme 13. Cu-catalyzed asymmetric α-fluorination of β-ketoesters ..18

Scheme 14. Ni-catalyzed asymmetric α-fluorination of β-ketoesters and N-Boc oxindoles19

Scheme 15. Ru-catalyzed asymmetric α-fluorination of β-ketoesters ...19

Scheme 16. Pd-catalyzed asymmetric α-fluorination of β-ketoesters ...20

Scheme 17. Pd-catalyzed asymmetric α-fluorination of oxindoles ..20

Scheme 18. Enantioselective cinchona-alkaloid–mediated fluorination of C–H acidic substrates21

Scheme 19. Enantioselective α-fluorination of oxindoles mediated by N-fluoroammonium salts of cinchona alkaloids...21
Scheme 20. Organocatalytic asymmetric α-fluorination of aldehydes ... 22
Scheme 21. Organocatalytic asymmetric α-fluorination of aldehydes ... 23
Scheme 22. Organocatalytic asymmetric α-fluorination of acid chlorides 23
Scheme 23. Enantioselective α-fluorination of β-ketoesters with quaternary ammonium salts 24
Scheme 24. Enantioselective synthesis of propargyl and allylic fluoride with organocatalysis 25
Scheme 25. (top) Intramolecular Pd-catalyzed aminofluorocyclization of alkene sulfonamides 26

(bottom) Intermolecular aminofluorination of styrenes with NFSI .. 26
Scheme 26. Enantioselective fluorocyclizations mediated and catalyzed by cinchona alkaloids 26
Scheme 27. Enantioselective spiro-cyclizations via chiral anionic PTC ... 27
Scheme 28. Fluorination of tert-butyl alkylperoxoates with NSFI .. 27
Scheme 29. Ag-catalyzed decarboxylative fluorination of aliphatic carboxylic acids with F-TEDA 28
Scheme 30. Nucleophilic aromatic substitution with KF ... 31
Scheme 31. Fluorination of naphthyl bromide via aryne intermediates .. 31
Scheme 32. Pd-catalyzed cross-coupling of aryl triflates with CsF .. 32
Scheme 33. Cu-catalyzed halide exchange on arenes with AgF ... 33
Scheme 34. Cu-mediated fluorination of aryl iodides with AgF ... 33
Scheme 35. Deoxyfluorination of phenols with Phenofluor® ... 34
Figure 3. A selection of nucleophilic fluorinating reagents ... 36
Scheme 36. Deoxyfluorination of various alcohols with perfluorobutanesulfonyl fluoride-trialkylamine adduct and TREAT+HF ... 37
Scheme 37. Deoxyfluorination of alcohols, carbonyls, and carboxylic acids with XtalFluor-E® 38
Scheme 38. Ir-catalyzed fluorination of allylic trichloroacetamidates .. 41
Scheme 39. Pd-catalyzed enantioselective synthesis of branched allylic fluorides 41
Scheme 40. Co(III)-catalyzed asymmetric opening of meso-epoxides with fluoride ... 42
Scheme 41. Synthesis of aryl trifluoromethyl ethers via fluoroformate intermediates ... 43
Scheme 42. Synthesis of aryl trifluoromethyl ethers by fluorodesulfurization of aryl xanthates 44
Scheme 43. O-Trifluoromethylation of phenols to afford aryl trifluoromethyl ethers .. 44
Scheme 44. O-Trifluoromethylation of phenols with Togni reagent II ... 44
Scheme 45. Trifluoromethoxide anion addition to ortho-trimethylsilylnaphthyl triflate via aryne intermediate 45
Scheme 46. Ag-mediated cross-coupling of aryl stannanes with trifluoromethoxide salt 45
Scheme 47. O-Trifluoromethylation of alcohols with Togni reagent II ... 46
Scheme 48. O-Trifluoromethylation of sulfonic acids with Togni reagent II .. 46
Scheme 49. Synthesis of trifluoromethyl ethers via displacement of alkyl triflates with trifluoromethoxide salts 47
Figure 4. Ag-mediated trifluoromethylation of aryl nucleophiles .. 48
Figure 5. Proposed mechanism for the Ag-mediated fluorination of aryl stannanes to afford aryl fluorides 50
Figure 6. Envisioned reaction mechanism for Ag-mediated trifluoromethoxylation of aryl stannanes 51
Figure 7. Liberation of trifluoromethoxide with fluoride source TASF to generate trifluoromethoxide salt 1 51
Figure 8. Main products formed from the Ag-mediated trifluoromethoxylation reaction 52
Scheme 50. Synthesis of 1 from 3 and TASF for characterization and decomposition studies 57
Figure 9. 19F NMR spectrum of the decomposition of TAS • OCF$_3$ (1) to carbonyl difluoride at 45 °C 58
Scheme 53. Ag-mediated trifluoromethoxylation of aryl stannanes ... 60
Figure 10. Potential coordination of quinolyl nitrogen disfavoring reductive elimination 61
Scheme 54. Ag-mediated trifluoromethoxylation of 6-(tributylstannyl)quinoline (13) 61
Scheme 55. Ag-mediated trifluoromethoxylation of arylboronic acids ... 62
Figure 11. Morphine structural numbering of the carbon framework and ring nomenclature 63
Figure 12. Metabolism of morphine to M3G and M6G in humans ... 63
Figure 13. Expected metabolism of 3-deoxy-3-fluoromorphine ..65

Figure 14. Key steps in various total syntheses of morphine ...66

Figure 15. Original proposed route to 3-deoxy-3-fluoromorphine ..67

Scheme 56. Synthetic route to 3-deoxy-3-fluoromorphine (TL-270) from morphine68

Figure 16. Time course for nociceptive behavior and straub tail71

Panel A. Percentage of lethality in each group ..71

Panel B. Time course of hotplate antinociception in surviving mice71

Panel C. Time course of tail withdrawal antinociception in surviving mice71

Panel D. Time course of straub tail in surviving mice ..71
List of Tables

Table 1. Effect of fluoride source on percent yield of trifluoromethoxylation ... 53
Table 2. Effect of silver salt on percent yield of trifluoromethoxylation ... 54
Table 3. Effect of solvent on percent yield of trifluoromethoxylation ... 55
Table 4. Effect of temperature on percent yield of trifluoromethoxylation ... 56
Table 5. Effect of additives on percent yield of trifluoromethoxylation ... 57
Note

Portions of this thesis have been taken from the following publications:

I have been very blessed by the people in my life during my graduate studies. Many people have contributed to the success of my graduate career and for that I am extremely grateful. I would first like to say though that without God’s provision, protection, and blessing, none of this would be possible and I thank Him first and foremost for allowing me to embark on this journey.

I am extremely grateful my adviser, Tobias Ritter, who has taught me how to not fear taking risks, both in research and in life, and to pursue projects that would really make an impact in science. I also thank him for being so patient these past five years as I learned how to think critically about science and also for his guidance, both academically and personally, along the way. He is an adviser that I can have genuine and honest conversations with and a leader that truly desires to be the best he can be for his students. Additionally, a hearty thank you to Eric Jacobsen and Ted Betley for being on my thesis committee and their open-door policy for me to drop by and ask questions.

I am also very grateful to have such a motivated and helpful research group, especially in the last six months of my graduate studies. I would like to thank all Ritter group members past and present especially 310 Mallinkrodt baymates (and adopted baymates) Jessica Wu, Christian Kuttruff, Pingping Tang, Ville Olsson, Jean Reynaud, Charles Reese, Anthony Mazzotti, Greg Boursalian (go Bears!), Nicky Stephenson, Kangsang Lee, Jennifer Murphy, Filippo Sladojevich, and Kasia Hojczyk. I would be remiss not to specifically thank Pingping who has been such a great mentor in the lab and has patiently helped me without reservation in my research. Mike Campbell and Sarah Parker have both made the lab an enjoyable place to work, especially during the beginning years of the group. Additionally, undergrads Weike Wang and Allie Strom were such a joy to work with and have been very close and intimate friends of mine, supporting me throughout the journey. Thank you all for making my Harvard experience so wonderfully memorable and for providing a home away from home.

For the trifluoromethoxylation project, I would like to acknowledge Chenghong Huang, Eunsung Lee, and Shinji Harada for their contributions to the project. I would also like to thank Dr. Aron Lichtman for his work on the in vivo studies for the morphine project. Additionally, Dr. Jianren Mao and Dr. Luke Wang have offered their invaluable advice and support for the morphine project as well.
On a more personal note, I would like to thank the Harvard Graduate Christian Fellowship as well as Citylife Presbyterian Church for being such supportive communities and additionally for all the help (moving around the dorms, listening to practice talks, etc.) and personal growth (bible studies, accountability, and of course fun!) both groups have provided. Every individual in both communities has left a profound impact on me and I will never forget the love, generosity, and support you have all shown me. From those groups, I would like to especially thank Grace Chen, Gary Sing, Catherine Con, Minju Kim, and Bo Zhu for spending time with me, encouraging me, and being amazing brothers and sisters!

Other people I would like to thank include Sirinya Matchacheep and Philippe de Rouffignac for their love and hospitality and for being my second family here in Cambridge. Additionally, the Dunster community especially Art Bartolozzi, Chris Allison, Grecia Gonzalez, and Aixin Wang has provided a wonderful second home to come back to after finishing up in lab each day these past three years. Thank you guys for being so spectacular!

Most importantly, I would like to thank my parents and my brother Andrew for being the best family a girl can ask for. Thank you for loving me when I act unlovable and for listening to me complain about research not progressing and about graduate school woes. To my parents, thank you for teaching me about the most important things in life, especially about God’s faithfulness in my moments of doubt. Without you both, I would never have come to make the most important decision in my life—entrusting my future and beyond to my Lord and Savior—and I thank you for that.
List of Abbreviations

Å: angstrom
Ac: acetyl
Ad: adamantyl
Ar: aryl
Bn: benzyl
Boc: N-tet-butoxycarbonyl
BOX: bisoxazoline ligand
Bu: butyl
Bz: benzoyl
DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene
DMF: N,N-dimethylformamide
DMSO: dimethylsulfoxide
equiv: equivalent
Et: ethyl
EtOH: ethanol
EWG: electron-withdrawing group
F-TEDA-BF₄: 1-chloromethyl-4-fluoro-1,4-diaza-bicyclo[2.2.2]octane bis(tetrafluoroborate)
F-TEDA-PF₆: 1-chloromethyl-4-fluoro-1,4-diaza-bicyclo[2.2.2]octane bis(hexafluorophosphate)
h: hour
i.p.: intraperitoneal
iPr: isopropyl
iPrOH: isopropanol
L: ligand
mCPBA: meta-chloroperoxybenzoic acid
Me: methyl
MeCN: acetonitrile
min: minute
Mor: morphine
MPE: maximal possible effect
MTBE: methyl tert-butyl ether
nBuLi: n-butyl lithium
NFSI: N-fluorobis(phenylsulfonyl)imide
nM: nanomolar
NMP: N-methylpyrrolidine
Ph: phenyl
PTFE: polytetrafluoroethylene
py: pyridine
R: general substituent
rgt: reagent
SEM: standard error of the mean
S₀,1: first-order nucleophilic substitution
S₀,2: second-order nucleophilic substitution
S₀,Ar: nucleophilic aromatic substitution
TADDOL: α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol
tBu: tert-butyl
TEDA: triethylenediamine
Tf: trifluoromethanesulfonyl
THF: tetrahydrofuran
Veh: vehicle
X: anionic counterion, typically halide anion
But now, this is what the Lord says—
he who created you, Jacob,
he who formed you, Israel:
“Do not fear, for I have redeemed you;
I have summoned you by name; you are mine.
When you pass through the waters,
I will be with you;
and when you pass through the rivers,
they will not sweep over you.
When you walk through the fire,
you will not be burned;
the flames will not set you ablaze.
For I am the Lord your God,
the Holy One of Israel, your Savior;
I give Egypt for your ransom,
Cush and Seba in your stead.
Since you are precious and honored in my sight,
and because I love you,
I will give people in exchange for you,
nations in exchange for your life.
Do not be afraid, for I am with you;
I will bring your children from the east
and gather you from the west.
I will say to the north, ‘Give them up!’
and to the south, ‘Do not hold them back.’
Bring my sons from afar
and my daughters from the ends of the earth—
everyone who is called by my name,
whom I created for my glory,
whom I formed and made.”
For my Redeemer, forever my first Love
1. Introduction

1.1. Importance of fluorine incorporation

Pharmaceuticals,¹ agrochemicals,² new materials³ such as electronic/optoelectronic materials (electroluminescent diodes or liquid crystals),⁴ polymers (Teflon or elastomers),⁵ and metal-organic frameworks,⁶ as well as positron emission tomography⁷ have benefited from fluorine incorporation. Over the past thirty years; the number of fluorinated pharmaceuticals has grown to 20% of all developed drugs⁸ while fluorinated agrochemicals² consist of up to 30% of all agrochemicals developed, compared to 4% in the late 1970s.⁹

Figure 1. Selected fluorinated brand-name drugs and their ranking by retail sales in the United States for 2010⁵

⁵ Ranking taken from: http://cbs.arizona.edu/njardarson/group/top-pharmaceuticals-poster (downloaded 07/18/2012)
1.1.1. Fluorine incorporation for medicinal chemistry applications

Fluorine can provide many beneficial properties when incorporated into a molecule. As the most electronegative element of the periodic table, fluorine can increase the Brønsted acidity of nearby functional groups thereby allowing for the modulation of the pKₘH of the functional group\[^{16}\] This is especially useful in medicinal chemistry to attenuate the basicity of amines or other basic residues that can hinder membrane penetration due to protonation at physiological pH.\[^{7}\] Upon fluorine incorporation, arenes are reported to show increased lipophilicity\[^{10}\] which has been advantageously used in drug development.\[^{1,2,c,d,f,g,i}\] Fluorination and incorporation of fluorinated moieties such as \(-\text{CF}_3, \text{OCF}_3,\) and \(-\text{SCF}_3\) groups typically lead to increased bioavailability and blood-brain-barrier penetrability.\[^{9}\] Additionally, the high electronegativity of fluorine contributes to the polar nature of carbon–fluorine bonds and the interaction of the bond with hydrogen bond donors\[^{10}\] (the existence of a genuine hydrogen bond with the fluorinated moiety in molecules is under debate).\[^{11}\] Other fluorinated compounds,\[^{12}\]\[^{c,d,h}\] polar functional groups such as carbonyls,\[^{13}\] and hydrophobic moieties\[^{1}\] The polar nature of the carbon–fluorine bond additionally contributes to its

\[^{1}\] Smart, B. E. J. Fluorine Chem. 2001, 109, 3.

bond strength making carbon–fluorine bonds difficult to fragment. Most fluorinated compounds, but not all, exhibit increased metabolic stability by impedance of undesired oxidative metabolism pathways.

Although fluorine is often used as an isostere for hydrogen in medical chemistry, the van der Waals radius of fluorine is more similar to oxygen (1.47 Å versus 1.52 Å for oxygen and 1.20 Å for hydrogen). Exploting the steric likeness of oxygen and fluorine, alkenyl fluorides have been investigated as isosteres for amide bonds in peptides. Fluorine incorporation has been shown to increase binding affinity to target systems probably due to advantageous polar interactions; however, in many cases this phenomenon is empirically observed and rationalized ex post facto and cannot be predicted or designed a priori. Additionally, fluorinated compounds can be strategically used as transition state inhibitors (i.e. inhibitors that react with the target system and are trapped as the covalently linked inhibitor–target complex), which advantageously use the fluorinated moiety to halt further reactivity in the

Likewise, fluorinated functional groups such as monofluoromethyl and difluoromethyl groups have been used as pseudo-oxygen replacements in molecules such as nucleotides, phosphate esters, and sulphate esters.\(^\text{21}\) Difluoromethyl moieties can act as electrophilic alkylating agents and inhibit target systems via irreversible alkylation.\(^\text{22}\)

1.1.2. Fluorination with fluorine-18 for positron emission tomography (PET)

Positron emission tomography (PET) is the molecular imaging of in vivo processes via detection of positron decay of radioactively tagged molecules called radiotracers\(^\text{22}\). There is continual growing interest in using fluorine-18, the radioactive isotope of sole naturally occurring fluorine isotope fluorine-19, in radiochemistry due to the convenient half-life time of 110 minutes. Methods to introduce fluorine-18 into molecules should occur, if not at the last step, at the latest stage of the radiotracer synthesis as possible. Ideally, the time used to synthesize, purify, and formulate radiotracers for injection should take less than two half-life cycles. The method for fluorine-18 introduction should be highly efficient at nanomolar concentrations such that picomolar amounts of radiotracers can be obtained, which is often difficult; thus, a \(10^3\) - or \(10^4\)-fold excess of the unlabeled precursor is often times used to facilitate the reaction. Multiple fluorinated and non-fluorinated products can arise from non-selective and inefficient radiofluorination reagent reactivity, especially for electrophilic radiofluorination methods. This phenomenon is undesirable because of difficulties in separating the fluorinated products from each other and non-fluorinated products from the fluorinated products. A minimally water-sensitive method that allows for the efficient incorporation of high specific activity \(^{18}\text{F}\) as one single \(^{18}\text{F}\)-fluorinated product would provide the ideal radiofluorination reaction.

Nucleophilic methods for the incorporation of \(^{18}\text{F}\)

Fluorine-18 is synthesized by the bombardment of oxygen-18–enriched water with protons to afford wet \(^{18}\text{F}\)-fluoride in high specific activity (\(^{18}\text{F}/^{19}\text{F}\) is >100:1). Desolvation of wet \(^{18}\text{F}\)-fluoride to anhydrous \(^{18}\text{F}\)-fluoride is difficult

due to strong hydrogen bonding interaction of the fluoride with water,23 deterring use of anhydrous 18F-fluoride for PET chemistry. In theory, the maximum achievable yield with high specific activity fluorine-18 is 100%. 18F-Fluoride can be diluted with 19F-fluorine gas to generate an 18F-enriched electrophilic fluorinating reagent but would result in low specific activity reagent due 18F dilution with 19F. Reactions with high specific activity 18F are thus more desirable.

Radiofluorinations with 18F-fluoride is the most common for substitution reactions that occur on alkyl or aryl substrates and is dependent on leaving group ability as well as activation by EWGs of the alkane or arene. Because generation of 18F-fluoride occurs in aqueous conditions, cryptands along with alkali salts are typically used to increase fluoride nucleophilicity4 (nucleophilicity is diminished via hydrogen bonding23). Reactions solvents are chosen such that S_N2-type and S_NAr-type reactions are facilitated with the most commonly used solvents being polar aprotic solvents DMF, DMSO, and acetonitrile. Alkyl halides or sulfonates (such as triflates) are substituted via S_N2 reaction with activated 18F-fluoride with no additional EWGs required unlike with nucleophilic aromatic substitution. 18F-Fluoride is basic when rendered more nucleophilic with cryptands and alkali salts4 making protic and some electrophilic functional groups incompatible and leading to elimination side reactions. Tert-butanol may be used to temper the basicity of 18F-fluoride for aliphatic substitution reactions without excessively losing the nucleophilicity of the fluoride.24 The most commonly produced radiotracer for imaging, 2-deoxy-2-$[^{18}$F]fluoro-D-glucose ([18F]FDG), can be made via 18F-fluoride substitution of the triflate leaving group (Scheme 1).25

\begin{figure}
\centering
\includegraphics[width=\textwidth]{scheme1.png}
\caption{Nucleophilic radiochemical fluorination with 18F-fluoride to afford [18F]FDG}
\end{figure}

Nucleophilic aromatic substitution with 18F-fluoride can be used to synthesize 18F-labelled arenes. Substrates that undergo S$_{N}$Ar-type substitutions generally require at least one EWG on the arene ortho or para to the leaving group, which can be nitro, trialkylammonium, halide, or sulfonate leaving groups, and substantial heating, even microwave heating in some instances. Use of polar aprotic solvents is especially important for S$_{N}$Ar reactions, which is drastically impacted by the nucleophilicity of the fluoride. Nicotinic acetylcholine receptor radioligands have been synthesized via nucleophilic aromatic substitution (Scheme 2).

Diaryliodonium salts have also been fluorinated with 18F-fluoride with arene selectivity based on electronics (the more electron-poor arene is fluorinated) and sterics (ortho-substituted arenes are more susceptible to fluorination) (Scheme 3). Currently, 2-thiophene can be advantageously used as a dummy ligand on iodine. The counterion of the iodonium salts also have an effect on the yield of fluorination—the more dissociative and non-nucleophilic counteranions promote higher radiochemical yields (decay-corrected yields, radiochemical yields of 10–50% are useful for imaging). With ortho-substituted substrates, the radiochemical yield can be as high as ~60%. The major drawback to this approach with diaryliodonium salts is that complex, natural product-like substrates are difficult to synthesize as diaryliodonium salts with the current methodologies available. The synthesis of aryl iodonium salts often employs oxidants such as mCPBA or peroxydisulfate salts and strong acids such as sulfuric acid and triflic acid.

Electrophilic methods for the incorporation of ^{18}F

Electrophilic radiofluorination reactions with low specific activity ^{18}F-fluorine gas have a highest achievable yield of 50% due to dilution of ^{18}F with ^{19}F. Many other ^{18}F-electrophilic fluorinating reagents have been synthesized from ^{18}F-fluorine gas such as ^{18}F-acetyl hypofluorite, ^{18}F-xenon difluoride, ^{18}F-N-fluorosulfonamide or imide reagents, ^{18}F-N-fluoropyridinium salts, and ^{18}F-TEDA salts. Electrophilic radiofluorination approaches with the aforementioned reagents are hindered by the use of low specific activity fluorinating reagents. Electrophilic radiofluorination via direct, non-specific fluorination of substrates such as alkenes for the synthesis of $[^{18}F]$FDG and related sugars as well as arenes for the synthesis of $[^{18}F]$fluoro-3,4-dihydroxy phenylalanine ($[^{18}F]$DOPA) commonly leads to multiple fluorinated products and does not demonstrate functional group tolerance. Radiochemical fluorodemetallation has also been used for aryl organometallic reagents, ary silanes, and aryl

stannanes38 and can afford better fluorination selectivity but requires the use of toxic precursor molecules such as stannanes. Oxidative fluorination of \textit{p}-\textit{tert}-butylphenols with replacement of the \textit{p}-\textit{tert}-butyl group with 18F-fluoride is possible in the presence of iodobenzene diacetate and trifluoroacetic acid in dichloromethane [Scheme 4].39 The isolated fluorination radiochemical yields for various \textit{p}-\textit{tert}-butylphenol can range from 7–21\% and tolerates a wide range of electronically-diverse \textit{ortho}-substituents including halides, other \textit{tert}-butyl groups, carbonyls, and olefins.

\textit{Scheme 4.} Oxidative radiochemical fluorination of \textit{p}-\textit{tert}-butyl phenols with 18F-fluoride

A novel approach to electrophilic radiofluorination involves the umpolung of 18F-fluoride with a Pd(IV) complex [Scheme 5].40 The Pd(IV) complex is an efficient scavenger of fluoride and can be used for the radiochemical fluorination of benzoquinolyl sulfonamide Pd(II) complexes to afford 18F-labeled arenes. Direct \textit{S}\textsubscript{N}2 transfer and an electron-coupled fluoride transfer have both been proposed as possible reaction pathways. An advantage of using this method is that 18F-fluoride can be incorporated into high complexity arenes and also high specific activity electrophilic radiochemical fluorination can be achieved in up to 33\% radiochemical yield. Additionally, the

\begin{enumerate}
\item Adam, M. J.; Ruth, T. J.; Jivan, S.; Pate, B. D. \textit{J. Fluorine Chem.} 1984, 25, 329.
\end{enumerate}
Pd(IV)--[^18]F complex is not water-sensitive and is also thermally stable at room temperature. Ortho-substituted arenes are currently not viable substrates for this radiochemical fluorination.

Scheme 5. Synthesis of ^18^F-labelled aryl fluorides with an electrophilic ^18^F–Pd(IV) fluorinating reagent

1.2. Fluorination

Fluorine is the most electronegative element and thus is difficult to oxidize by one electron to fluoronium ("F⁺⁺⁺"); thus, oxidation of fluoride to "F” is difficult transformation. As the thirteenth most abundant element in the earth’s crust, fluorine exists as fluoride.⁴¹ This has direct implications in the chemistry that nature uses for fluorine incorporation—the few naturally occurring fluorinated molecules⁴² such as fluoroacetate are enzymatically synthesized in nature with fluoride.⁴² This is not the case with other halogens such as iodide⁴³ or bromide,⁴⁴ which can accomplish iodination and bromination with an electrophilic haloperoxidase. Fluoride also forms strong

hydrogen bonds45 that diminish its nucleophilicity; in the laboratory setting, nucleophilic and anhydrous sources of fluoride have been established for use in reactions.

Fluorination reactions investigated in the laboratory have utilized both nucleophilic and electrophilic fluorination approaches to afford fluorinated materials. Many different fluoride sources exist, ranging from metal fluoride salts to organic nucleophilic fluorinating reagents. Highly nucleophilic fluoride sources tend to deliver small unsolvated, densely charged fluoride anions that correspondingly are basic. For certain substrates, this basicity is problematic because undesired side products result from deprotonation with fluoride.

The direct chemical oxidation of fluoride to electrophilic fluorine, as mentioned previously, cannot occur due to the highly negative oxidation potential value of fluoride. Conceptually, the closest example of this type of transformation would be oxidative electron-transfer coupled with fluoride incorporation. Electrophilic fluorination approaches involve the use of fluorine gas and various electrophilic fluorinating reagents. Most electrophilic fluorinating reagents are ultimately derived from fluorine gas, the strongest elemental oxidizing agent known, synthesized by electrolysis of potassium bifluoride in hydrogen fluoride.46 Direct use of fluorine gas as the oxidant even with specialized equipment, training, and protocols is hazardous due to the dangers of improper handling—fluorine gas is fatal if inhaled. Use of less-oxidizing electrophilic fluorinating reagents has facilitated the development of more functional group tolerant fluorination methods encompassing a broader substrate scope.

1.2.1. Electrophilic fluorination

Electrophilic fluorination was first reported with highly oxidizing fluorinating reagents such as fluorine gas, hypofluorites, fluoroxy sulfates, and perchloryl fluoride that are explosive if handled incorrectly. Xenon difluoride was examined as a more stable electrophilic fluorination source; however, it still displayed uncontrollable reactivity to many functional groups. The development of crystalline, benchtop-stable fluorinating reagents such as \textit{N}-fluorobis(phenyl)sulfonimide (NFSI)47 and related analogs,48 \textit{N}-fluoropyridinium salts,49 and 1-chloromethyl-4-}

47 Differding, E.; Ofter, H. \textit{Synlett} 1991, 187.

fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(tetrafluoroborate) (F-TEDA-BF₄)⁵⁰ was crucial for the development of selective, functional group tolerant fluorination methods [Figure 2]. Even though N-fluoro reagents can formally behave as source of fluoronium (“F⁺”), the N–F bonds are polarized toward fluorine, with partial negative charge on fluorine. Because the σₓN–F orbital on the nitrogen are sterically not accessible, the nucleophiles attack at the σₓN–F orbital on fluorine. Possibly due to the small orbital coefficient of the σₓN–F on fluorine and the low energy level of the σₓN–F orbital, other reactions such as single-electron transfer can compete with electrophilic fluorination. The process in which these oxidants mediate the two-electron oxidation is under discussion; two single-electron transfers or concerted two-electron transfer for fluorination both have been proposed.⁵¹

![Figure 2. Comparison of the redox potential of crystalline, bench-top stable fluorinating reagents](image)

1.2.1.1. Electrophilic fluorination for the synthesis of fluorinated arenes

Originally, aromatic fluorination was accomplished with fluorine gas, acetyl hypofluorite, and xenon difluoride by functionalization of toxic or moisture-sensitive aryl nucleophiles and later shifted to less-basic, less-toxic main group aryl nucleophiles. The development of transition-metal–based fluorination methods provides functional group

tolerant fluorination of pre-functionalized aryl nucleophiles. Current investigations are focused on the development of functional group tolerant, direct conversion of the C–H bonds of arenes to the corresponding C–F bonds with predictable regioselectivity.

Traditional electrophilic fluorination methods with main-group elements

Aryl carbon–fluorine bonds can be constructed via reaction of an aryl nucleophile with an electrophilic fluorinating reagent. Fluorination via electrophilic aromatic substitution to directly functionalize C–H bonds of arenes is challenging when compared to other halogenations, possibly due to electronegative fluorine atom disfavoring the rate-limiting formation of the Wheland intermediate. Arylmetal reagents including aryltin, -mercury, lead, -germanium, -silicon, and -boron can react with fluorine gas, xenon difluoride, hypofluorites, and fluoroxy sulfates to afford fluorinated arenes; however, the substrate scope is limited due to the high reactivity of the reagents, often resulting in unselective fluorination. On the other hand, aryl nucleophiles with more electropositive

metals, such as aryllithium reagents, can react with less reactive electrophilic fluorinating reagents, such as \(N \)-fluorinated reagents. Such basic nucleophiles can undergo single electron transfer and result in protodemetallation byproducts. Fluorination of Grignard reagents with electrophilic \(N \)-fluorinated reagents is the most reliable method with basic aryl nucleophiles but demonstrates a narrow substrate scope due to the basicity and nucleophilicity of the arylmagnesium reagents. Through appropriate choice of solvent and reagents, undesired protodemetallation products can be minimized.

Scheme 6. Synthesis of aryl fluorides from aryl Grignard reagents

Transition-metal–mediated or –catalyzed electrophilic fluorination

In the past decade, functional-group tolerant and regioselective fluorination with redox active transition metals has been investigated. In contrast to main group organometallic fluorination, transition-metal–mediated electrophilic fluorination often forms metal–carbon bond via transmetallation or direct C–H metatation, followed with oxidation at the metal center with an electrophilic fluorinating reagent. Depending on the reaction conditions, oxidation can result in formation of a monometallic high valent intermediate or a high valent multi-metallic complex. In both instances, aryl fluoride products are produced upon reductive elimination.

The first transition-metal–catalyzed aromatic fluorination reactions were developed by means of utilizing an ortho-directing group \(\text{Scheme 7}\).\(^{63}\) Direct C–H fluorination is desirable, but the necessity of directing groups limits the structural diversity of the substrates that can be fluorinated. An additional challenge was to prevention of double fluorination at both ortho positions on an arene without ortho or meta substituents. Double fluorination was addressed with a benzoic acid-derived, weakly coordinating anionic ortho-directing group \(N\)-perfluorotolylamide that allows for rapid displacement of the monofluorinated product by the substrate, thus affording high selectivity for monofluorination \(\text{Scheme 8}\).\(^{64}\)

\[\begin{align*}
\text{Scheme 7. } N\text{-directed Pd-catalyzed fluorination of arenes}
\end{align*}\]

\[\begin{align*}
\text{Scheme 8. } N\text{-Perfluorotolylamide–directed Pd-catalyzed fluorination of arenes}
\end{align*}\]

Arylboronic acids have been used to synthesize Pd(II) aryl benzoquinoline-sulfonamide complexes that undergo fluorination with F-TEDA-BF\(_4\) in the presence of functional groups ranging from aldehydes to phenols \(\text{Scheme}\).

however, stoichiometric amounts of Pd complex are needed for the transformation of arylboronic acids to aryl fluorides. Mechanistic studies on the oxidation of the benzoquinoline phenylpyridinesulfonamide palladium(II) complex with F-TEDA-BF$_4$ support the presence of a distinct intermediary π^2-sulfonamide Pd(IV) species that undergoes reductive elimination to make aryl carbon–fluorine bonds (Scheme 10).

Scheme 9. Fluorination of Pd(II) benzoquinolyl sulfoamide complexes with F-TEDA-BF$_4$

Scheme 10. Reductive elimination from Pd(IV) phenylpyridyl sulfonamide complexes

Silver-mediated fluorination of aryl stannanes,67 boronic acids,68 and silanes69 has been proposed to proceed through multi-metallic, high valent silver species obtained by oxidation of silver(I) complexes with F-TEDA-PF$_6$ and followed by reductive elimination. Multi-metallic redox synergy of silver may enable fluorination of aryl stannanes and boronic acids at 23 °C. This method displays a broad substrate scope—nitrogenous heteroaryl and mesityl nucleophiles as well as nucleophiles containing electron-rich, electron-poor, electrophilic, and protic functional groups can be successfully fluorinated—to afford fluorinated complex natural product-derived products.

Although the silver catalyzed fluorination of aryl stannanes requires the synthesis of toxic aryl stannanes, it displays the broadest substrate scope and functional group tolerance in the field.

\[
\begin{align*}
\text{R-} \text{SnR}_3 & \quad \xrightarrow{5 \text{ mol\% Ag}_2\text{O, 1 equiv NaOTf,}} \quad \text{R-F} \\
& \quad \text{2 equiv NaHCO}_3, \\
& \quad 1.5 \text{ equiv } \text{F-TEDA-PF}_6 \\
& \quad \text{acelone, 65 °C}
\end{align*}
\]

Scheme 11. Ag-catalyzed fluorination of complex aryl stannanes (names of products refer to non-fluorinated parent structure)

1.2.1.2. Electrophilic fluorination for the synthesis of aliphatic fluorides

Nucleophiles employed in aliphatic electrophilic fluorination reactions are often stabilized carbanions, such as those derived from β-ketocarbonyl compounds. Other methods for the synthesis of aliphatic fluorides can involve fluorination and nucleophile addition cascades across double bonds. Enantioselective variants for both fluorination of C–H acidic substrates and fluorination-addition cascades have been reported and can be promoted with Lewis acids, organocatalysts, or phase-transfer catalysts. Aliphatic C–F bond forming reactions via radicals have been

disclosed and can provide a substrate scope complementary to more commonly used nucleophilic or electrophilic fluorination reactions, making further development in this field desirable.

Electrophilic fluorination of acidic C–H bonds in methylene and methyne units

α-Fluorination of carbonyls, α’-ketocarbonyls, and related carbonyl derivatives with strongly oxidizing fluorinating reagents including gaseous fluorine, \(^\text{72}\) hypofluorite, \(^\text{73}\) perchloryl fluoride, \(^\text{74}\) fluoroxytsulfate, \(^\text{75}\) and XeF\(_2\) \(^\text{76}\) generally give undesired α,α-difluorinated products in addition to the α-monofluorinated products. Less reactive, more functional group tolerant electrophilic fluorinating reagents like \(\text{N}\)-fluoropyridinium salts, NFSI, and F-TEDA-BF\(_4\) have been used to selectively α-monofluorinate carbonyl derivatives without providing difluorinated products. \(^\text{77}\) The asymmetric α-fluorination of carbonyl substrates was explored first with chiral electrophilic fluorinating reagents \(^\text{78}\) and later with chiral catalysts for the generation of chiral enolate intermediates.

Many methods have exploited the two-point binding of dicarboxyl compounds to chiral Lewis acid complexes to control enantioselective fluorination. Asymmetric fluorination of β-ketoesters was achieved with titanium-TADDOLate-based catalysts \(^\text{80}\); Cu(II)- and Ni(II)-BOX complexes \(^\text{81}\).

chiral bis(imino)bis(phosphine)ruthenium(II) complexes [Scheme 15], and scandium binaphthylphosphate complexes. The Ni-catalyzed reaction (10 mol% catalyst) has demonstrated the broadest substrate scope so far, and allows for α-fluorination of a variety of β-ketoesters and N-Boc-protected amides in 71–93% yield and 83–99% ee. The catalytic enantioselective α-fluorination of α-substituted methyl, tert-butyl malonate was accomplished via chiral Lewis acid catalysis with Zn(II) acetate, (R,R)-4,6-dibenzofuran-2,2'-bis(4-phenyloxazoline) ligand, and NFSI. This approach, however, was specifically optimized for the malonate substrate en route to the enantioselective synthesis of fluorinated β-lactams.

![Scheme 12. Ti-catalyzed asymmetric α-fluorination of β-ketoesters](image)

![Scheme 13. Cu-catalyzed asymmetric α-fluorination of β-ketoesters](image)

Chiral Pd-BINAP complexes catalyze the enantioselective fluorination of α-ketoesters, β-ketoesters, β-ketophosphonates, oxindoles, and α-ester lactones/lactams. The use of chiral palladium complexes was particularly successful for the α-fluorination of acyclic α-ketoesters, cyclic and acyclic tert-butyl β-ketoester as well as oxindoles α-substituted with an electronically diverse range of aryl and alkyl groups. Chiral palladium-bound enolates are proposed to induce facial selectivity; stronger bonds between the palladium complex and the oxindole, α-ketoester, or β-ketoester enolate, respectively, may explain the higher enantiomeric excess as compared to those obtained for β-ketophosphonates or α-ester lactones/lactams.

Organocatalysts provide enantioinduction by participating as a chiral fluorinating reagent or by activating of the substrate to generate a chiral nucleophile during the course of the reaction. The chiral fluorinating reagent approach is challenging in that potential background reaction with achiral fluorinating reagents leads to a racemic mixture. Catalytic asymmetric fluorination via chiral fluorinated organocatalysts intermediates has been challenging to accomplish but can be achieved with fluorinating reagents such as NFSI at temperatures ≤ 0°C.

Cinchona alkaloids have been used to enantioselectively fluorinate nucleophiles in the presence of achiral fluorinating reagent. Enantioselective fluorination of the activated methyne groups was accomplished using stoichiometric amounts of cinchona alkaloid derivatives \(\text{Scheme 18} \) \(^{90} \)

mediate enantioselective α-fluorination of silylenol ethers, α,α-cyanoester C–H acids, β-ketoesters, and oxindoles. The methodology was applied to the synthesis of BMS-204352 (Scheme 19). Cinchona-alkaloid–derived thiourea catalyst have also been used to enantioselectively α-fluorinate β-ketoesters. The substrate scope with cinchona alkaloids when compared to the Lewis acid–catalyzed approach for β-ketoesters and oxindoles is rather limited; however, with cinchona alkaloids, silylenol ethers can be enantioselectively α-fluorinated, which is not possible with the Lewis acid–catalyzed two-point binding approach.

Scheme 18. Enantioselective cinchona-alkaloid–mediated fluorination of C–H acidic substrates

Scheme 19. Enantioselective α-fluorination of oxindoles mediated by N-fluoroammonium salts of cinchona alkaloids

Enantioselective organocatalytic α-fluorination of aldehydes was accomplished by Enders, MacMillan and Barbas (Scheme 20). Similarly, enantioselective α-fluorination of ketones has

been accomplished with enamine catalysis. The method described by MacMillan demonstrates a broader substrate scope; the method described by Jørgensen uses lower catalyst loading and does not require five equivalents of NFSI. Branched aldehyde substrates for enantioselective α-fluorination are currently challenging; Barbas reported 98–99% yield but only 45–66% ee for such substrates. The fluorinated aldehyde products are especially useful for the synthesis of enantiopure β-fluoroamines, which can be accomplish by a chiral sulfynylimine condensation, directed reduction sequence of the enantioenriched fluorinated aldehyde.

\[
\text{H} \quad \overset{\text{catalyst}^* = \text{Me}_2\text{N}}{\text{O}} \quad \text{Me} \quad \text{N} \quad \text{Ph} \quad \overset{\text{N-CHCl}}{\text{HO-CHCl}} \quad \text{R} \\
1. \ 20 \text{ mol\% catalyst}^*, \ 5 \text{ equiv NFSI,} \\
\quad \text{9:1 THF/iPrOH, 10–12 h, } -0 \ ^\circ \text{C} \\
2. \ \text{NaBH}_4, \ \text{CH}_2\text{Cl}_2 \\
\overset{\text{MacMillan}}{\text{HO-F}} \quad \text{R} \quad \text{54–96\%} \\
\quad \text{91–99\% ee}
\]

\[
\text{H} \quad \overset{\text{catalyst}^* = \text{Me}_2\text{N}}{\text{O}} \quad \text{Me} \quad \text{N} \quad \text{Ph} \quad \overset{\text{N-CHCl}}{\text{HO-CHCl}} \quad \text{R} \\
1. \ 1 \text{ mol\% catalyst}^*, \ 1 \text{ equiv NFSI,} \\
\quad \text{MTBE, 2–28 h, } 23 \ ^\circ \text{C} \\
2. \ \text{NaBH}_4, \ \text{MeOH, } 23 \ ^\circ \text{C} \\
\overset{\text{Jorgensen}}{\text{HO-F}} \quad \text{R} \quad \text{55–95\%} \\
\quad \text{91–97\% ee}
\]

Scheme 20. Organocatalytic asymmetric α-fluorination of aldehydes

The enantioselective α-fluorination of acid chlorides was accomplished by combining a palladium catalyst, a chiral nucleophile, and an alkali metal (Scheme 22). The cinchona alkaloid-based nucleophile reacts with the acid chloride in the presence of the palladium catalyst to generate a chiral zwitter amide–enolate intermediate. Both catalysts work cooperatively such that a chiral enolate can be generated for fluorination. The alkali metal catalyst is hypothesized to play a role in the activation of NFSI through chelation of the sulfonyl oxygens with the cation, thus activating the reagent for nucleophilic attack by the chiral enolate. After fluorination, addition of an amine nucleophile affords the α-fluorinated amide product in >99% ee and de. Thiourea catalysts derived from cinchona alkaloids can also be used as synergistic bifunctional catalysts for the asymmetric α-fluorination of cyclic and acyclic β-ketoesters with NFSI. The catalyst is able to act as a base (via the quinuclidine moiety) and also as a hydrogen-bond donor (via the thiourea moiety), and is proposed to have proper hydrogen-bonding interactions with the substrate and NFSI to afford good enantioselectivity.

Phase-transfer catalysis (PTC) for enantioselective fluorination can often benefit from simple operation procedures and high yield and enantioselectivity. The formation of a tight chiral ion pair is important for enantioinduction;

thus, solvents in which the ion pairs remain associated such as dichloromethane and toluene are preferred for PTC. Chiral quaternary ammonium salts have been used as cationic phase-transfer catalysts for enantioselective fluorination of β-ketoesters with ion pairing between the enolate and chiral ammonium counterion \(\text{Scheme 23} \). The α-fluorination of β-ketoesters is reported in 69% ee or less, most likely resulting from poor ion pairing between the chiral ammonium salt and the enolate or fast α-fluorination background reaction.

\[\text{Scheme 23. Enantioselective α-fluorination of β-ketoesters with quaternary ammonium salts} \]

A non-traditional approach to chiral allylic fluorides and chiral propargylic fluorides utilizes organocatalysis to facilitate the asymmetric fluorination step with subsequent olefination or introduction of the propargyl group \(\text{Scheme 24} \). The organocatalytic approach can give >90% ee by avoiding the \(S_N1 \) racemization pathway that encumbers chiral allylic alcohol fluorination; however, it can only afford ethynyl-substituted propargylic fluorides and α,β-unsaturated ester allylic fluorides \(\text{Scheme 24} \). Fluorination of α-methylstyrene can occur via oxidative fluorination of the allylic C–H bond with a \(N \)-fluoropyridinium salt promoted by catalytic amounts of ytterbium(III) triflate. \(\text{Scheme 24} \). Electrophilic fluorodesilylation of allenyl and allylsilanes was reported to yield propargylic and allylic fluoride products. \(\text{Scheme 24} \). Acyclic secondary allylic fluorides can be prepared via a cross-metathesis–electrophilic

Chiral tertiary allylic fluorides have been prepared via cinchona alkaloid-mediated electrophilic fluorodesilylation.107

\begin{equation}
\text{MeO}_2C\text{C}==\text{C}R \quad \text{cat}^* = \begin{array}{c}
\text{Ph}_3\text{P}==\text{CHCO}_2\text{Me} \\
\text{K}_3\text{CO}_3, \text{MeOH}, \\
4-8 \text{ h, } 25 \text{ °C}
\end{array}
\end{equation}

\textit{Scheme 24.} Enantioselective synthesis of propargyl and allylic fluoride with organocatalysis

Fluorination–nucleophile addition cascades across double bonds

For activated alkenes like enamines, fluorination can occur without catalysts; for example, fluorocyanation of enamines is hypothesized to occur via electrophilic fluorination of the enamine with NFSI followed by trapping of the iminium intermediate with cyanide.71b With unactivated alkenes, fluorination–nucleophile addition reactions need to be assisted by a catalyst. Both the intramolecular aminofluorination of unactivated alkenes\textsuperscript{ Scheme 25107a } and the intermolecular aminofluorination of styrenes\textsuperscript{ Scheme 25107b } were facilitated by the use of palladium catalysts. Although both reactions accomplish aminofluorination of alkenes, different approaches and reaction mechanisms are hypothesized for each case. The intramolecular variant utilizes an iodine(III) oxidant coupled with fluoride to accomplish the oxidative fluorination of the resultant complex after the intramolecular amino-palladation step with the alkene. For the intermolecular case with styrenyl substrates, fluoro-palladation with NFSI and the active Pd catalyst is proposed to occur first, followed by oxidation to a putative Pd(IV) species, and subsequent reductive elimination to form the carbon–nitrogen bond. The reactivity of high valent transition-metal complexes to induce C–F reductive elimination at sp3 carbon centers108 has also been investigated with Pt(IV) complexes108c.

Oxidation of stoichiometric alkyl Au(I) complexes with XeF₂ to Au(III) intermediates followed by reductive elimination also affords the corresponding aliphatic fluorides. The propensity for β-hydride elimination with Au(III) complexes and the use of XeF₂ has limited the substrate scope to mostly β,β-disubstituted alkanes.

![Scheme 25](image)

\textit{Scheme 25.} (top) Intramolecular Pd-catalyzed aminofluorocyclization of alkene sulfonamides (bottom) Intermolecular aminofluorination of styrenes with NFSI

For enantioselective fluorocyclization of indole substrates mediated or catalyzed by cinchona alkaloids, the enantioselectivity is proposed to arise from the chiral fluorinating reagent generated by reaction of the fluorinating reagent with the cinchona alkaloid catalyst.

![Scheme 26](image)

\textit{Scheme 26.} Enantioselective fluorocyclizations mediated and catalyzed by cinchona alkaloids

Enantioselective fluoro-spiro cyclization reactions via chiral anionic PTC have been reported by using chiral anion pairing with cationic F-TEDA to provide a source of chiral electrophilic fluorinating reagent. Because

the F-TEDA-BF$_4$ is sparingly soluble in the solvent, resulting in a negligible rate of background reaction, the chiral anion acts as a shuttle to solubilize the cationic F-TEDA as a chiral fluorinating reagent in the fluorination-spiro cyclization reaction. Enantiomeric excess of 79–96% can be achieved using this approach. Similarly, with chiral anionic PTC, enamines can be enantioselectively fluorinated to afford α-fluoroimines.111

\begin{center}
\textbf{Scheme 27.} Enantioselective spiro-cyclizations via chiral anionic PTC
\end{center}

\textbf{1.2.1.3. Fluorination via radical mechanisms}

The N–F bonds in electrophilic fluorinating reagents have relatively low bond dissociation energies (2.84 V for N-fluorosultam).112 Under either photolysis or thermolysis, a variety of tert-butyl alkylperoxoates afforded the corresponding alkyl fluorides upon treatment with NSFI (Scheme 28).113 The generality of this reaction was not reported and primary alkyl fluoride formation was not efficient which supports a mechanism via radicals.

\begin{center}
\textbf{Scheme 28.} Fluorination of tert-butyl alkylperoxoates with NSFI
\end{center}

More recently silver-catalyzed decarboxylative fluorination of secondary and tertiary aliphatic carboxylic acids with F-TEDA-BF$_4$ was reported.\footnote{Yin, F.; Wang, Z.; Li, Z.; Li, C. \textit{J. Am. Chem. Soc.} 2012, \textit{10401}.} This approach is complementary to traditional nucleophilic fluorination reactions with DAST-type reagents. Involvement of Ag-mediated decarboxylation to form an alkyl radical during the reaction was demonstrated, but the detailed mechanism for the key C–F bond formation is still indeterminate.

\begin{equation*}
\begin{array}{c}
\text{R}^+\text{CO}_2\text{H} \\
\text{OH} \\
\rightarrow \\
\text{F} \\
\end{array}
\end{equation*}

\begin{equation*}
\begin{array}{c}
\text{R}^+\text{F} \\
\text{10 mol\% AgNO}_3, \\
\text{1:1 acetone/H}_2\text{O or H}_2\text{O}_2, \\
\text{10 h, 23–55 °C} \\
\text{40–95\%} \\
\end{array}
\end{equation*}

\begin{equation*}
\begin{array}{c}
\text{O} \\
\text{CO}_2\text{H} \\
\text{71\%} \\
\end{array}
\end{equation*}

\begin{equation*}
\begin{array}{c}
\text{HO}_2\text{C} \\
\text{F} \\
\text{95\%} \\
\end{array}
\end{equation*}

\begin{equation*}
\begin{array}{c}
\text{Me} \\
\text{Me} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\end{array}
\end{equation*}

\begin{equation*}
\begin{array}{c}
\text{O} \\
\text{H} \\
\text{80\%} \\
\end{array}
\end{equation*}

\begin{equation*}
\begin{array}{c}
\text{F} \\
\end{array}
\end{equation*}

\begin{equation*}
\begin{array}{c}
\text{Scheme 29. Ag-catalyzed decarboxylative fluorination of aliphatic carboxylic acids with F-TEDA}
\end{array}
\end{equation*}

1.2.2. Nucleophilic fluorination

The challenges associated with nucleophilic fluorination ultimately derive from the high electronegativity of fluorine, which contributes to the high kinetic barriers in forming carbon–fluorine bond despite the thermodynamic driving force of forming the strongest carbon–heteroatom bond. Propensity of fluoride to form strong hydrogen bond attenuates its nucleophilicity under standard reaction conditions. Rigorous exclusion of potential hydrogen bond donors can make fluoride nucleophilic but also basic which often leads to side reactions.

Use of alkali metal fluoride salts is desirable due to low cost especially compared to electrophilic fluorinating reagents.\footnote{McPake, C. B.; Sandford, G. \textit{Org. Process Res. Dev.} 2012, \textit{16}, 844.} The strong lattice energy of such salts makes them weak nucleophiles and poorly soluble in organic
solvents. Crown ethers in combination with alkali metal fluorides such as 18-crown-6 can be used to increase solubility of fluoride salts such as KF and therefore often increases reactivity. Aprotic solvents especially polar aprotic solvents are preferred for nucleophilic fluorination such that nucleophilicity of fluoride anions is not attenuated by hydrogen bonding interactions; however, consequently fluoride is highly basic and leads to elimination byproducts. The addition of tertiary alcohols such as tert-butanol has been shown to retain the fluoride nucleophilicity while diminishing fluoride basicity, thereby reducing undesired byproduct formation. Tetrabutylammonium difluorotriphenylsilicate (TBAT), tetrabutylammonium fluoride (TBAF), and tetrabutylammonium fluoride (TBAF) are commonly used soluble inorganic fluoride sources but generally exhibit lower nucleophilicity.

Fluorodeoxyxygenation of carbon centers commonly requires specialized fluorinating reagents that are dually used for oxygen activation/deoxyxygenation and as the fluoride source. Various aryl and aminosulfur trifluorides and derivatives thereof as well as 2,2-difluorimidazoline–type reagents participate in fluorodeoxyxygenation reactions. Several hydrogen fluoride–based reagents have been developed to assist sulfur displacement with fluoride in fluorodesulfurization reactions. Electrochemical fluorination with alkali metal–fluorides has been explored as an approach for the synthesis of organofluorides. Catalysis has enabled many nucleophilic fluorination reactions that are otherwise kinetically difficult to accomplish; uncatalyzed nucleophilic aromatic fluorination is problematic for electron-rich substrates because the rate-determining step is typically the addition of fluoride to form a

Meisenheimer–type complex.122 Additionally, chiral transition-metal complexes and organocatalysts can be used for nucleophilic fluorination reactions to afford enantioenriched fluorinated compounds.

\textbf{1.2.2.1. Nucleophilic fluorination for the synthesis of fluorinated arenes}

S_nAr reactions are currently used on an industrial scale in the Halex process,123 although one or more electron-withdrawing groups on the arene are typically required. Aromatic substitution, catalyzed and non-catalyzed, is one of the most direct methods for nucleophilic fluorination at this time with control of regioselectivity. Improvement in the substrate scope is desirable because nucleophilic fluorination is preferred both on industrial scale for cost efficiency and for radiochemical fluorination methods in positron emission tomography imaging because of the availability of 18F-fluoride.

\textit{Traditional nucleophilic fluorination methods with main group elements}

Balz and Schiemann first developed the nucleophilic fluorination of arenes via thermal decomposition of aryl diazonium tetrafluoroborate salts in 1927,124 a process which was improved.125 Displacement of chloride in 1-chloro-2,4-dinitrobenzene under forcing conditions with anhydrous potassium fluoride (the Halex process) was developed in 1936126 followed by fluorodenitration of arenes, by \textit{ipso}-attack at the carbon bearing the nitro group [Scheme 30].127 More recent work in this area has allowed for the fluorination of electron-poor, chloro-, nitro-, or trimethylammonium arenes with anhydrous tetrabutylammonium fluoride at room temperature in up to $>95\%$ yield.128 Aryl fluorides can be accessed from reaction of aryl bromides with anhydrous tetrabutylammonium

122 Meisenheimer, J. \textit{Justus Liebigs Ann. Chem.} 1902, 323, 205.

123 Langlois, B.; Gilbert, L.; Forat, G. Fluorination of aromatic compounds by halogen exchange with fluoride anions (“Halex” reaction). In \textit{Industrial Chemistry Library}; Jean-Roger, D.; Serge, R., Eds.; Elsevier: Amsterdam, 1996; Vol. 8, pp 244-293.

128 Sun, H.; DiMagno, S. G. \textit{Angew. Chem. Int. Ed.} 2006, 45, 2720.
fluoride; however, the process actually occurs through fluoride trapping of aryne intermediates generated from the elimination of the bromide with the strongly basic anhydrous fluoride and therefore provides a mixture of regioisomers. Other approaches that have been explored involve two-step nucleophilic fluorodemetallation of toxic organothallium(III) substrates as well as diaryliodonium substrates. Although simple fluorinated arenes can be synthesized with some of the aforementioned reactions, even on industrial processes, none of these methods are tolerant of many functional groups or exhibit broad substrate scope such that densely functionalized substrates may be nucleophilically fluorinated.

Scheme 30. Nucleophilic aromatic substitution with KF

Scheme 31. Fluorination of naphthyl bromide via aryne intermediates

Transition-metal–catalyzed nucleophilic fluorination

Transition-metal–catalyzed cross-coupling with fluoride as nucleophile has been investigated with late transition metals such as nickel, copper, ruthenium, rhodium, palladium, iridium, and platinum. Reductive elimination from

Pd(II) is challenging because a stable fluoride-bridge dimer complex formation is favored due to the high basicity of the fluoride ligand. Cross-coupling fluorination of aryl triflates with fluoride via palladium catalysis \[\text{Scheme 32}\] was developed with the key use of bulky monodentate phosphine ligand \(\text{fBuBrettPhos}\) that afford mononuclear, tri-coordinate palladium(II) complexes positioned for successful C–F reductive elimination. This method displays a broad substrate scope and tolerates nucleophilic functional groups that are often not tolerated in electrophilic fluorination methods due to competing fluorination of the nucleophile. Protic functional groups are not yet tolerated under the reaction conditions and constitutional isomers were formed in some cases, which may result from the use of basic fluoride salts\[133\].

![Scheme 32. Pd-catalyzed cross-coupling of aryl triflates with CsF](image)

An oxidative addition—C–F reductive elimination sequence was established via a Cu(I)-Cu(III) cycle using a contrived substrate that allowed for isolation of the intermediates \[\text{Scheme 33}\] \[133\]. Oxidative addition of copper(I) into the aryl halide supported by the tris(amine) ligand generates a copper(III) complex which upon ligand metathesis with silver fluoride gives a copper(III) fluoride complex that undergoes reductive elimination to extrude

the aryl fluoride product. Copper-mediated fluorination of aryl iodides was subsequently reported with 3 equivalents of copper(I) complex and AgF.

Scheme 33. Cu-catalyzed halide exchange on arenes with AgF

\begin{equation}
\text{Scheme 33. Cu-catalyzed halide exchange on arenes with AgF}
\end{equation}

\begin{equation}
\text{Scheme 34. Cu-mediated fluorination of aryl iodides with AgF}
\end{equation}

Nucleophilic aromatic deoxyfluorination

The ability to directly substitute the hydroxy group in phenols with fluoride avoids pre-functionalization of the phenol. Catechol can be monodeoxyfluorinated by oxidation of the catechol to the ortho-quinone followed by
nucleophilic fluorination with Deoxo-Fluor®.134 This oxidation-fluorination method affords a mixture of ortho-fluorinated phenol isomers. One of the first examples of deoxyfluorination of nitro-substituted phenol was accomplished with \(N,N'\)-dimethyl-2,2-difluorimidazolidine.136 A general method for the ipso-deoxyfluorination of phenols was subsequently accomplished with the sterically hindered difluorimidazole reagent shown in Scheme 35 (PhenoFluor®) and cesium fluoride.119 Electron-poor, -neutral, and -rich aryl fluorides in addition to heteroaromatic fluorides can be synthesized from the corresponding phenol precursors using this method but requires a stoichimetric amount of the reagent.

\begin{align*}
\text{Scheme 35. Deoxyfluorination of phenols with PhenoFluor®}
\end{align*}

\textbf{1.2.2.2. Nucleophilic fluorination for the synthesis of aliphatic fluorides}

Through appropriate selection of fluoride source, leaving group, and solvent, nucleophilic fluorination at a primary carbon center is well established.135 Nucleophilic fluorination at a secondary or tertiary carbon center is inherently more difficult. Deoxyfluorination with sulphur tetrafluoride or derivatives thereof can afford fluoride from

secondary or tertiary carbinols, but competing elimination and rearrangement reactions are often problematic. Halofluorination of alkenes were accomplished via treatment of the alkene with N-iodosuccinimide and tetraalklylammonium hydrogen fluoride. Epoxide and aziridine openings with fluoride afford vicinal fluoroalcohols and fluoroamines respectively which have been elaborated to multivincial multi-fluoroalkanes.

Deoxy/dethiofluorination via nucleophilic fluorination

Carbonyl compounds were first converted to geminal difluoromethylene functional groups with sulphur tetrafluoride. The toxicity and volatility of sulfur tetrafluoride discouraged its use and lead to the use of less volatile reagents such as aryl and aminosulfur trifluorides. Diethylaminosulfur trifluoride (DAST) has most commonly been used to fluorinate oxygenated (carbonyl, hydroxyl) or sulfur-containing (thiocarbonyl, sulfide) substrates. The mechanism of DAST-mediated fluorination is proposed to be initiated by a nucleophilic attack

of a hydroxyl group to the sulphur atom of DAST to form an alkoxyaminodifluorosulfane intermediate145 that is activated for a S_N2 attack by fluoride. In some cases, however, fluoride attack afford products consistent with an S_N1 intermediate144 Additional drawbacks of DAST include moisture sensitivity as well as potential explosion upon heating118.

Figure 3. A selection of nucleophilic fluorinating reagents

Besides with DAST, deoxyfluorination and dethiofluorination can be accomplished with many different fluoride sources 147 Figure 3: pyridinium poly(hydrogen fluoride) (Olah’s reagent), 146 nitrosonium tetrafluoroborate/pyridinium poly(hydrogen fluoride), 147 triethylamine tris(hydrogen fluoride) (TREAT•HF), 148 perfluoro-1-butanesulfonyl fluoride (PBSF), 149 sulfonyl fluoride/TREAT•HF mixture Scheme 36, 150 Yarovenko’s reagent, 151 Ishikawa’s reagent, 152 TFEDMA, 153 N,N‘-dimethyl-2,2,-diflurolimidazolidine119 4-morpholinosulfur

151 Yarovenko, N. N.; Raksha, M. A. Zh. Obshch. Khim. 1959, 29, 2159.
Deoxo-Fluor® has been the most commonly used reagent for fluorination reactions and is considered a safer, more thermally stable alternative to DAST but is similarly moisture-sensitive and prone to decomposition to generate toxic HF. Likewise, Olah’s reagent exhibits corrosive properties and toxicity due to presence of HF; TREAT•HF has been used as a less hazardous replacement and is mild enough to be used in borosilicate glassware.

Scheme 36. Deoxyfluorination of various alcohols with perfluorobutanesulfonyl fluoride-trialkylamine adduct and TREAT•HF

Development of non-explosive crystalline, less moisture-sensitive deoxyfluorinating reagent XtalFluor-E® (diethylaminodifluorosulfonium tetrafluoroborate)157 and related reagents158 has resulted in fluorodeoxygneration with less byproducts [Scheme 37]. Unlike DAST or Deoxo-Fluor®, addition of amine hydrogen fluoride such as triethylamine tris(hydrogen fluoride) is required as a fluoride source for fluorination with XtalFluor-type reagents because after addition of the alcohol to XtalFluor, the diethylamino group is fully protonated and release the fluoride does not occur. Instead of adding an external fluoride source, addition of DBU can also promote release of fluoride by deprotonation of ammonium.

\[\text{R}^+\text{OH} \xrightarrow{1.5 \text{equiv}} \text{BF}_4^- \xrightarrow{\text{NET}_3, 3\text{HF}, \text{CH}_2\text{Cl}_2, 4-18 \text{ h, } 23^\circ \text{C}} \text{R}^-\text{F} \]

Scheme 37. Deoxylfluorination of alcohols, carbonyls, and carboxylic acids with XtalFluor-E®

Preparation of propargylic and allylic fluorides

The synthesis of propargylic fluorides can be accomplished via deoxyfluorination of propargylic alcohols with DAST159 or fluorination of variety of activated propargylic substrates160 such as propargylic mesylates and silyl ethers. Commonly used fluoride sources besides DAST for the synthesis of propargylic fluorides include

dialkylaminosulfur trifluorides161 Yarovenko’s reagent,162 and Ghosez’s reagent (\textit{N},\textit{N}-diisopropyl-1-fluoro-2-methylpropenamine).163 For the synthesis of chiral propargylic fluorides, Grée used chiral propargylic alcohols and introduced fluoride via \textit{S}\textsubscript{N}2 displacement.164 This approach is substrate dependent as many chiral propargylic alcohols can give enantiomeric excess–eroded or racemized products through alternate \textit{S}\textsubscript{N}1 pathways. Most reported methods utilize nucleophilic fluorination to give propargylic fluorides; Hammond165 and Gouverneur166 have investigated electrophilic fluorination routes to propargylic fluorides.

Middleton first reported the dehydroxyfluorination of allylic alcohols with DAST167 which later was used to study the fluorination of allylic alcohol substrates containing different substituents and substitution patterns.167 Complexation of the double bonds using stoichiometric amount of rhenium168 and iron169 complexes were developed for allylic alcohols and dienols, respectively. This strategy successfully prevented transposition of the double bonds with complete retention of the stereochemistry of deoxyfluorination but the use of stoichiometric amounts of transition-metal complex as well as additional protection-deprotection steps has limited utility of the complexation

approach. Besides DAST, other fluoride sources can be used, for example, bis(dialkylamino)sulfur difluorides.170 Yarovenko’s reagent,,171 Ghosez’s reagent,172 and IF\textsubscript{5} in NEt\textsubscript{3}•3HF.173 Other activated allylic substrates besides allylic alcohols were also employed.174 An attractive route to allylic fluorides is the Tsuji-Trost-type fluoride displacement of a leaving group catalyzed by a transition-metal complex. As fluoride serves as a better leaving group than the typically used acetate in the Tsuji-Trost reaction,175 selection of an appropriate leaving group is important. Cinnamyl allylic carbonates can be transformed to terminal allylic fluorides via palladium catalysis176 as well as secondary and tertiary allylic fluorides from allylic trichloroacetamidates under iridium catalysis(a) (Scheme 38).177 The enantioselective fluorination of cyclic(b) and acyclic(c) allylic chlorides in the presence of a chiral Pd catalyst was reported; from acyclic (linear) allylic chlorides, branched or linear allylic fluorides can be synthesized. The selectivity reported for the linear allylic chloride substrates is for branched products and is >20:1 for most substrates. Additionally, a variety of functional groups can be tolerated; however, this method requires the use of three equivalents of silver fluoride.

177 Topczewski, J. J.; Tewson, T. J.; Nguyen, H. M. J. Am. Chem. Soc. 2011, 133, 19318.

Scheme 38. Ir-catalyzed fluorination of allylic trichloroacetamidates

Scheme 39. Pd-catalyzed enantioselective synthesis of branched allylic fluorides

Fluoride addition olefins and epoxides

In addition to S_N2 reactions, fluoride addition to olefins can occur through bromofluorination of olefins, which can be done efficiently on large scale to afford simple fluorinated aliphatic products. Epoxide opening with fluoride can provide access to secondary or tertiary fluorinated aliphatic molecules as well. Asymmetric opening of meso-epoxides with fluoride was first reported with stoichiometric amounts of chiral Lewis acid complexes and later with a Co(III)-salen catalyst (Scheme 40) for non-linear meso-epoxides and terminal epoxides. In situ fluoride release from benzoyl fluoride was employed to suppress background reactions and catalyst inhibition. Mechanistic studies suggest that the rate-determining epoxide opening proceeds via a bimetallic complex, which led to the design of a more efficient dimeric catalyst with two cobalt-salen complexes tethered together (Scheme 40).

scheme 40. Co(III)-catalyzed asymmetric opening of meso-epoxides with fluoride

1.3. Trifluoromethoxylation

Trifluoromethoxylated molecules have been used as agrochemicals, pharmaceuticals, and electro-optical materials.182 The increase in lipophilicity183 from trifluoromethoxy group incorporation has made this functional group an attractive substituent to use in medicinal chemistry. Additionally, the ability to induce molecular conformation changes with the trifluoromethoxy substituent, which in arenes sits orthogonal to the plane of the arene184 compared to a methoxy group which normally rests in plane of the arene, attests to the added value of trifluoromethoxy group incorporation into molecules.

The formation of the oxygen–CF\textsubscript{3} bond as well as the carbon–OCF\textsubscript{3} bond has been difficult to accomplish for two main reasons: reactivity of the trifluoromethylating reagents with carbon sites of the oxygenated nucleophile leading to formation of byproducts and the thermal instability of many trifluoromethoxide salts. Consequently, many nucleophilic fluorodesulfurization and fluorodeoxygenation of functionalized alcohols and phenols have been established for the synthesis of trifluoromethyl ethers whereas fewer methods for the formation of oxygen–CF\textsubscript{3} and carbon–OCF\textsubscript{3} bonds have been successfully accomplished. Most approaches for the synthesis of trifluoromethyl ethers have low functional group tolerance because of the use of hydrogen fluoride, Lewis acids, or thermally unstable, reactive trifluoromethylation reagents. Synthesis of aryl trifluoromethyl ethers via O-trifluoromethylation of phenols has not been a successful approach due to carbon trifluoromethylation side reactions or use of impractical

reaction conditions with thermally unstable O-(trifluoromethyl)dibenzo[43]

(trifluoromethyl)dibenzo[43]

reaction conditions with thermally unstable O-(trifluoromethyl)dibenzo[43]

In contrast, O-trifluoromethylation of primary and secondary alcohols with thermally stable Togni reagent affords the desired trifluoromethyl ethers.

1.3.1. Aryl trifluoromethyl ethers

Nucleophilic fluorination of phenols functionalized as aryl trichloromethyl ethers, 185 aryl chlorothionoformates, 186 phenyl fluoroformates, 187 and aryl xanthates 188 constitutes most of the methods developed for the synthesis of trifluoromethoxyarenes. The development of a broad substrate scope, functional group tolerant method with the phenol functionalization-fluorination approach has yet to come due to the use of HF and antimony-based Lewis acids. Aryl trichloromethyl ethers 185, synthesized in situ or prior to the reaction by chlorination of the aryl methyl ether 185 as well as aryl chlorothionoformates 185,186 can be nucleophilically fluorinated with hydrogen fluoride, 185 SbF$_5$, SbF$_3$ in the presence of SbF$_5$ and molybdenum hexafluoride. 185

Likewise, phenol fluoroformates can be treated with SbF$_3$ or SF$_4$/HF to afford desired trifluoromethoxyarenes

Scheme 41

Furthermore, aryl xanthates were used as substrates for fluorodesulfurization with HF/pyridine and dibrominated hydantoin Scheme 42. 185 These aforementioned reactions conditions cannot be used to synthesize complex, functionalized trifluoromethoxyarenes.

![Scheme 41](image)

Scheme 41. Synthesis of aryl trifluoromethyl ethers via fluoroformate intermediates

Simple phenol derivatives can undergo trifluoromethylation with O-(trifluoromethyl)dibenzofuranium reagents in the presence of alkyl amine bases to afford simple trifluoromethoxyarenes. The reagent requires photochemical decomposition of the trifluoromethoxybiaryl diazonium salt at −100 to −90 °C to generate the active O-(trifluoromethyl)dibenzofuranium reagent. Trifluoromethylation of phenols with Togni reagent II was investigated but O-trifluoromethylation only occurred with 2,4,6-trimethylphenol in 15% yield along with carbon trifluoromethylation products.

The use of trifluoromethoxide anion to form the aryl carbon–oxygen bond has not been as widely explored as other approaches. S_NAr reaction with trifluoromethoxide was attempted but does not occur; S_NAr with fluoride abstraction from trifluoromethoxide to generate volatile carbonyl difluoride occurs instead to afford aryl fluorides. Phenyl and naphthyl carbon–OCF_3 formation occurred when trifluoromethoxide anion was added into the corresponding benzenes to afford aryl trifluoromethyl ethers.

Scheme 45. Trifluoromethoxide anion addition to ortho-trimethylsilylnaphthyl triflate via aryne intermediate

With silver salts, aryl stannanes and boronic acids can undergo cross-coupling with tris(dimethylamino)sulfonium trifluoromethoxide to afford functionalized aryl trifluoromethyl ethers [Scheme 46]. This method affords the cross-coupling products of complex, functionalized aryl stannanes with trifluoromethoxide but is limited to non-heteroaryl nucleophiles and additionally cannot tolerate nucleophilic amine and protic substituents.

Scheme 46. Ag-mediated cross-coupling of aryl stannanes with trifluoromethoxide salt

1.3.2. Aliphatic trifluoromethyl ethers

Alkyl trifluoromethyl ethers can be synthesized via the trifluoromethylation of alcohols or displacement of a leaving group on alkyl electrophiles by trifluoromethoxide anion. Primary and secondary alcohols can be

45
trifluoromethylated with Togni reagent in the presence of Zn(NTf₂)₂ \textit{Scheme 47}.195 The soluble zinc catalyst with non-nucleophilic triflimide anions is proposed to activate Togni reagent for attack by coordinating to the carboxy group of the reagent.

\[R-OH + 0.25-1 \text{ equiv Zn(NTf}_2\text{)}_2 \rightarrow R-OCF_3 \]

\[24 \text{ h-3 d, 23 } ^\circ \text{C} \]

5 equiv or as solvent

\[1 \text{ equiv} \]

12–99%

\[R = \text{alkyl, -CH}_2\text{Ar, etc.} \]

\textit{Scheme 47. O-Trifluoromethylation of alcohols with Togni reagent II}

Ring-opening polymerization of tetrahydrofuran in the presence of Lewis or Brønsted acids and Togni reagent II affords trifluoromethyl ethers196 while additionally Togni reagent II reacts with sulfonic acids to afford O-trifluoromethylated sulfonic acids \textit{Scheme 48}.197 2-Phenylethanol, \textit{n}-decanol, and (2-naphthyl)methanol were reported to react with \textit{O}-(trifluoromethyl)dibenzofuranium reagents (shown in \textit{Scheme 43} with phenols) to afford the corresponding trifluoromethylated alcohols.197 Analogous to the method for the fluorination of aryl xanthates,188 alkyl xanthates were treated with BrF₃ to afford alkyl trifluoromethyl ethers198 while simple alkyl triflates can be substituted with trifluoromethoxide anion to afford alkyl trifluoromethyl ethers as well \textit{Scheme 49}.199

\[R-SO_2-OH + F_3C-I \rightarrow R-SO_2-OCF_3 \]

\[\text{CHCl}_3, \text{23 } ^\circ \text{C} \]

67–99%

\textit{Scheme 48. O-Trifluoromethylation of sulfonic acids with Togni reagent II}

Scheme 49. Synthesis of trifluoromethyl ethers via displacement of alkyl triflates with trifluoromethoxide salts
2. Results and Discussion

2.1. Silver-mediated trifluoromethoxylation of aryl nucleophiles

Silver salts are used to catalyze chemical transformations spanning asymmetric catalysis to C–H functionalization. Much of the homogenous silver reaction chemistry for organic transformations involve the use of silver(I) as Lewis acids or as a one-electron chemistry participant. Examples of redox participation of homogenous high valent silver intermediates are rare compared to abundance of silver(I) chemistry that has been developed. Silver-catalyzed aziridination as well as C–H amidation and amination have been reported with disilver complexes and are postulated to proceed via high valent silver intermediates. Putative Ag(II)–Ag(II) intermediates have also been suggested in the aminofluorination of allenes catalyzed by AgNO₃. A silver-mediated trifluoromethoxylation reaction of aryl nucleophiles with trifluoromethoxide salt has been developed and is postulated to occur through high valent silver intermediates as proposed for the analogous fluorination reaction of aryl stannanes. The general approach for the trifluoromethoxylation of aryl nucleophiles is summarized in

\[R \quad [M] = SnBu₃, B(OH)₂ \quad Ag-mediated \quad R \quad OCF₃ \]

\[Me₂N\(\overset{\cdot}{O}\)NMe₂ \quad Me₂N \quad OCF₃ \]

\[TAS-OFC₃(1) \quad F-TEDAPF₆(2) \]

Figure 4. Ag-mediated trifluoromethoxylation of aryl nucleophiles

2.1.1. Design of the silver-mediated trifluoromethoxylation reaction

Methods to synthesize aryl trifluoromethyl ethers have mainly relied on pre-functionalization of phenols as aryl trichloromethyl ethers,10 aryl chlorothionoformates,11 phenyl fluoroformates,12 and aryl xanthates13 followed with exhaustive nucleophilic fluorination at the carbonyl carbon with various harsh fluorinating reagents such as SF\textsubscript{4} and HF to afford the trifluoromethoxy group (for other methods, please see Chapter 1.3). Cross-coupling reactions have been strategically used to form aryl carbon–heteroatom bonds14 and have resulted in successful formation of aryl C–N, C–O, C–S, and C–F bonds. Transition-metal–mediated cross-coupling was proposed as an alternative to traditional methods for the synthesis of aryl trifluoromethyl ethers from an aryl equivalent and a trifluoromethoxy group source. One possible combination involves the oxidative cross-coupling of aryl nucleophiles with trifluoromethoxide; however, this cross-coupling reaction would most likely need to occur below room temperature because trifluoromethoxide reversibly decomposes to fluoride and carbonyl difluoride (b.p. −84 °C) above room temperature.15 Additionally, β-fluoride elimination16 from transition-metal–trifluoromethoxide complexes could also potentially obstruct successful aryl carbon–OCF\textsubscript{3} bond formation. Reductive elimination of C–OCF\textsubscript{3} is considered more difficult than reductive elimination of C–OCH\textsubscript{3} due to the inductively electron-withdrawing nature of the

fluorine in the trifluoromethoxy group, as observed in cross-coupling with weaker nucleophiles.17 Identification of a transition metal capable of accomplishing difficult aryl carbon–OCF\textsubscript{3} bond formation at \(\leq 25 \) °C was key for the successful development of oxidative cross-coupling between aryl nucleophiles and trifluoromethoxide.

Aryl carbon–fluorine bonds have been difficult to form through cross-coupling reactions with transition metals due to difficulties in reductive elimination.18 Our research group has advantageously utilized the reactivity of silver salts to mediate the fluorination of aryl stannanes19 aryl boronic acids,19 and aryl silanes,20 which can be accomplished at room temperature with stannanes and boronic acids. Additionally, silver catalysis allowed for the development of the most functional group tolerant fluorination method with the broadest substrate scope to date for the synthesis of complex aryl fluorides.21 These silver-mediated and -catalyzed fluorination reactions are hypothesized to proceed via high valent multi-metallic silver complexes generated upon oxidation of the aryl silver complex from transmetalation of the aryl nucleophile to silver \(\text{Figure 5} \). This proposed multi-metallic silver redox activity is rationalized to be the enabling factor for aryl carbon–fluorine bond formation at 23 °C and may be a consequence of synergistic metal–metal interactions that can lower activation barriers, as identified for bimetallic catalysis.22 Thus, the synergistic reactivity of high valent silver for fluorination offered a promising avenue to explore trifluoromethoxylation.

\[
\begin{align*}
\text{Ar} - \text{SnBu}_3 & \rightarrow \overset{\text{transmetalation}}{2 \text{ equiv AgOTf}} \rightarrow \overset{\text{oxidation}}{\left[\text{ArAg}^I \right] \cdot \left(\text{Ag}^I \text{OTf} \right)} \rightarrow \overset{\text{reductive elimination}}{\left[\text{Ar} \left\{ \text{Ag}^{II} \right\} \right]} \rightarrow \text{Ar-F} + 2 \text{ Ag}^I
\end{align*}
\]

\textit{Figure 5.} Proposed mechanism for the Ag-mediated fluorination of aryl stannanes to afford aryl fluorides

The envisioned system for the silver(I)-mediated trifluoromethoxylation of aryl nucleophiles is outlined in Figure 6. Transmetalation of the aryl nucleophile to silver(I) would give aryl silver complexes adducted with one or more additional silver(I) species. Subsequent oxidation with an oxidant such as F-TEDA salts would then give a high valent multi-metallic silver complex that could undergo fluoride ligand exchange with trifluoromethoxide to arrive at a silver-trifluoromethoxide complex. Reductive elimination from this multi-metallic high valent silver-trifluoromethoxide complex would then afford the trifluoromethoxy arene. With this design in mind, aryl stannanes would be treated with a silver(I) salt, F-TEDA-PF₆, and a trifluoromethoxide salt to afford trifluoromethoxy arenes.

Figure 6. Envisioned reaction mechanism for Ag-mediated trifluoromethoxylation of aryl stannanes

Trifluoromethyl trifluoromethanesulfonate

\[\text{TASF} \] (3) was identified as a “masked” source of trifluoromethoxide anion

Figure 7. Liberation of trifluoromethoxide with fluoride source TASF to generate trifluoromethoxide salt

23 Professor Tobias Ritter and Mr. Chenghong Huang conceived the design of this method while Mr. Chenghong Huang discovered the first silver-mediated trifluoromethoxylation reaction of aryl stannanes and performed all initial reaction optimization (not discussed in thesis).
2.1.2. Optimization of the trifluoromethoxyl reaction

The reaction conditions for the trifluoromethoxyl reaction were optimized with substrate 4-fluorophenyl tributylstannane (4) and monitored by 19F NMR spectroscopy with 3-nitrofluorobenzene as an internal standard. The products formed from the reaction include trifluoromethoxylated product 5 as well as fluorinated product 6, biaryl homo-coupling 7, hydroxylation product 8, and protodestannylated product 9 (Figure 8). The mass balance of the starting material was unidentified fluorinated byproducts.

![Figure 8: Main products formed from the Ag-mediated trifluoromethoxyl reaction](image)

Effect of fluoride source on trifluoromethoxyl reaction

The source of fluoride for in situ trifluoromethoxide salt generation was optimized (Table 1). As shown in Table 1, the identity of the trifluoromethoxide salt was imperative for trifluoromethoxyl reaction. Salts with larger organic cations afforded higher yields than inorganic cations. This phenomenon is hypothesized to come from the stability of the trifluoromethoxide salt; unstable salts may decompose prior to participation in the course of the reaction. TASF was the best fluoride source screened and thus it was used as the fluoride source in subsequent optimizations.
Effect of fluoride source on percent yield of trifluoromethoxylation

<table>
<thead>
<tr>
<th>Fluoride Source</th>
<th>Percent Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>KF</td>
<td><1</td>
</tr>
<tr>
<td>CsF</td>
<td>3</td>
</tr>
<tr>
<td>AgF</td>
<td><1</td>
</tr>
<tr>
<td>TMAF</td>
<td>16</td>
</tr>
<tr>
<td>TASF</td>
<td>41</td>
</tr>
<tr>
<td>TBAT</td>
<td>18</td>
</tr>
<tr>
<td>FCF3</td>
<td>-117.0 ppm</td>
</tr>
<tr>
<td>FCF3</td>
<td>-121.7 ppm</td>
</tr>
<tr>
<td>FCF3</td>
<td>-118.0 ppm</td>
</tr>
<tr>
<td>FCF3</td>
<td>-128.4 ppm</td>
</tr>
<tr>
<td>FCF3</td>
<td>-115.4 ppm</td>
</tr>
</tbody>
</table>

Table 1. Effect of fluoride source on percent yield of trifluoromethoxylation

Effect of silver salt on trifluoromethoxylation

Different silver salts were evaluated for the trifluoromethoxylation reaction (Table 2). As shown in Table 2, the choice of silver salt was less critical for trifluoromethoxylation. Although the silver salt producing the highest yield of trifluoromethoxylated product 5 was AgSbF$_6$, trifluoromethoxylation with AgSbF$_6$ afforded multiple additional uncharacterized broad fluorine signals in the 19F NMR spectrum while AgPF$_6$ afford the second highest trifluoromethoxylation yield without additional fluorine signals. Use of AgOTf led to mostly fluorinated product 6, which was the optimized silver salt reported for the silver-mediated fluorination of aryl stannanes. Subsequent optimization of the trifluoromethoxylation reaction was performed with AgPF$_6$ as the silver salt of choice.
Table 2. Effect of silver salt on percent yield of trifluoromethoxylation

<table>
<thead>
<tr>
<th>AgOTf</th>
<th><1</th>
<th>22</th>
<th><1</th>
<th>5</th>
<th><1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag₂O</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td><1</td>
<td>8</td>
</tr>
<tr>
<td>AgNO₃</td>
<td>29</td>
<td>6</td>
<td>7</td>
<td><1</td>
<td>8</td>
</tr>
<tr>
<td>AgBF₄</td>
<td>32</td>
<td>4</td>
<td>2</td>
<td><1</td>
<td>2</td>
</tr>
<tr>
<td>AgSbF₆</td>
<td>44</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>AgPF₆</td>
<td>41</td>
<td>2</td>
<td>1</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

Effect of solvent on trifluoromethoxylation

Different solvents and solvent combinations were evaluated for optimization of the trifluoromethoxylation reaction. Table 3 shows critical dependence of the trifluoromethoxylation reaction on solvent. Acetone was found to decompose TAS·OCF₃, which explains the lack of successful trifluoromethoxylation (see Chapter 2.1.3 for decomposition studies of TAS·OCF₃). Use of only THF does not afford products in general most likely due to F-TEDA-PF₆ not dissolving in THF. A 1:3 mixture of THF/acetone was found to be the optimal solvent mixture screened; a potential explanation for this observation is that addition of THF in a 1:3 ratio to acetone slows down the decomposition of TAS·OCF₃ but still allows for trifluoromethoxylation to proceed. Both acetonitrile and acetone promote the formation of fluorination product 6. A 1:3 mixture of THF/acetone was used in subsequent optimization reactions.

24 Trifluoromethoxylation with AgSbF₆ afforded multiple additional uncharacterized broad fluorine signals in the ¹⁹F NMR spectrum.
Table 3. Effect of solvent on percent yield of trifluoromethoxylation

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Yield of Trifluoromethoxylation (%)</th>
<th>Yield of Fluorination (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeCN</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>DMF</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Acetone</td>
<td><1</td>
<td>23</td>
</tr>
<tr>
<td>THF</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>1:3 THF/acetone</td>
<td>41</td>
<td>2</td>
</tr>
</tbody>
</table>

Effect of temperature on trifluoromethoxylation

A range of reaction temperatures were evaluated for the trifluoromethoxylation reaction. Fluorination yields decrease as reaction temperature is decreased; however, trifluoromethoxylation yields peak at ±50 °C and then fall at ±70 °C. This observation may be explained by our hypothesized mechanism for silver-mediated trifluoromethoxylation, which proposes the oxidation of the arylsilver species with F-TEDA-PF$_6$ followed by fluoride ligand exchange with trifluoromethoxide. At temperatures lower than ±50 °C, it is possible that ligand exchange is too slow for productive trifluoromethoxylation to proceed while fluorination pathways are also suppressed. The temperature chosen for further optimization of the trifluoromethoxylation reaction was ±30 °C because the ratio of trifluoromethoxylated product 5 versus the sum of all byproducts was 8.2:1 at ±30 °C compared to 7.5:1 at ±50 °C.
Effect of temperature on percent yield of trifluoromethoxylation

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Product 4</th>
<th>Product 5</th>
<th>Product 6</th>
<th>Product 7</th>
<th>Product 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 °C</td>
<td>117.0 ppm</td>
<td>121.7 ppm</td>
<td>118.0 ppm</td>
<td>128.4 ppm</td>
<td>115.4 ppm</td>
</tr>
<tr>
<td>0 °C</td>
<td>21</td>
<td>16</td>
<td>2</td>
<td><1</td>
<td>3</td>
</tr>
<tr>
<td>−30 °C</td>
<td>15</td>
<td>5</td>
<td>1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>−50 °C</td>
<td>41</td>
<td>2</td>
<td>1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>−70 °C</td>
<td>68</td>
<td>2</td>
<td>3</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

Effect of additives on trifluoromethoxylation

The effect of additives on the yield for trifluoromethylation was evaluated (Table 5). With the addition of NaOTf, an increase of undesired fluorinated product 6 was observed along with 1% formation of trifluoromethoxylated product 5. The triflate counterion seems to play an important role in facilitating fluorination but the role has not been clearly established. The use of sodium bicarbonate is important for trifluoromethoxylation. Sodium bicarbonate was chosen as an additive based on the empirical observation of protodestannylation suppression in the silver-catalyzed fluorination of aryl stannanes.

25 The ratio of trifluoromethoxylated product to byproducts is superior at −30 °C than at −50 °C (8.2:1 versus 7.5:1). With other substrates, suppressed byproduct formation was also empirically observed at −30 °C compared to at −50 °C. Accordingly, −30 °C was chosen as the general trifluoromethoxylation reaction temperature such that byproduct formation could be minimized.

26 Special acknowledgement to Dr. Pingping Tang who suggested the additive from his own work on the silver-catalyzed fluorination of aryl stannanes.
Table 5. Effect of additives on percent yield of trifluoromethoxylation

<table>
<thead>
<tr>
<th>Additive</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td><1</td>
</tr>
<tr>
<td>NaOTf</td>
<td>1</td>
<td>37</td>
<td><1</td>
<td>13</td>
<td><1</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>1</td>
<td>9</td>
<td><1</td>
<td>14</td>
<td><1</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>41</td>
<td>2</td>
<td>1</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

2.1.3. Identification of the trifluoromethoxide salt

Trifluoromethoxide salt 1 was typically prepared in situ during the course of the reaction outside of the glovebox. For characterization purposes and decomposition studies, 1 was synthesized, isolated, and purified within a glovebox [Scheme 50]. The decomposition of 1 at 45 °C was monitored with 3-nitrofluorobenzene as an internal standard by ¹⁹F NMR spectroscopy to afford carbonyl difluoride (COF₂) and an unknown byproduct within 15 min at 45 °C as shown in Figure 9 (vide infra).

Scheme 50. Synthesis of 1 from 3 and TASF for characterization and decomposition studies

27 See Experimental Section (Chapter 4.1) for detailed procedures. Dr. Eunsung Lee synthesized and isolated 1 for characterization and decomposition purposes according to literature precedent: Farnham, W. B.; Smart, B. E.; Middleton, W. J.; Calabrese, J. C.; Dixon, D. A. J. Am. Chem. Soc. 1985, 107, 4565.
Figure 9. 19F NMR spectrum of the decomposition of TAS \cdot OCF$_3$ (1) to carbonyl difluoride at 45 °C

2.1.4. Synthesis of complex, functionalized aryl stannanes

After reaction optimization, the substrate scope was evaluated. Aryl stannanes of various complexities were synthesized and subjected to the optimized trifluoromethoxylation reaction conditions. Methods for the synthesis of aryl stannanes can be divided into two main classes: (1) functionalization of aryl lithium or Grignard-type reagents (usually generated from the corresponding aryl halides) with an electrophilic trialkylstannane source such as tributyltin chloride, suitable for arenes containing non-electrophilic, base insensitive functional groups; (2) functionalization of aryl halides and sulfonates with tributylstannyl groups via cross-coupling with transition-metals, suitable for complex, functionalized arenes.

Simple aryl stannanes containing non-electrophilic, base insensitive functional groups shown in Scheme 51 were synthesized via lithiation of the aryl bromide with nBuLi followed by reaction with tributyltin chloride.28

28 14 was synthesized by Mr. Chenghong Huang, 10–13 were synthesized according to procedures described within the group
Synthesis of simple aryl stannane via lithiation-stannylation route

Complex, functionalized aryl stannanes shown in Scheme 52 were synthesized by Pd-catalyzed cross-coupling of aryl halides or sulfonates with hexabutylditin. Other aryl stannanes were prepared according to literature precedent and are described and referenced in Experimental (Chapter 4.1).

Scheme 51. Synthesis of simple aryl stannane via lithiation-stannylation route

Scheme 52. Synthesis of functionalized aryl stannanes via Pd-catalyzed stannylation of aryl bromides or triflates

29 15 was synthesized by Mr. Chenghong Huang while 16, 17, 18, and 20 were synthesized according to procedures described within the group.
2.1.5. Trifluoromethoxylation of aryl stannanes

After synthesizing desired aryl stannanes 10–20, the stannanes were trifluoromethoxylated using the optimized reaction conditions [Scheme 53].\(^{30}\) TAS • OCF\(_3\) (1) was generated in situ in the presence of NaHCO\(_3\) and the stannane of interest at –30 °C by addition of trifluoromethyl trifluoromethanesulfonate (3) to a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) in anhydrous THF. A solution of AgPF\(_6\) and F-TEDA-PF\(_6\) in dry acetone was added dropwise to the prior described suspension at –30 °C and then stirred at –30 °C for 2–4 hours. As shown in Scheme 53, electron-rich, neutral, and poor aryl stannanes were trifluoromethoxylated in 75–88% yield. Stannane 19 was added dropwise as a solution in dry acetone as the last operation in the sequence due to potential reaction of TASF with stannane 19. As discussed in Chapter 2.1.2, solvent and TAS • OCF\(_3\) (1) significantly impact the yield; deviations from optimized conditions leads to byproducts resulting from fluorodestannylation, hydroxydestannylation, protodestannylation, and biaryl formation via homocoupling. Trifluoromethoxylation of stannane 19 afforded 59% trifluoromethoxylation yield in addition to 24% and 10% of the corresponding fluorodestannylated and protodestannylated product.

\[\text{Scheme 53. Ag-mediated trifluoromethoxylation of aryl stannanes (percentages are isolated yields)}\]

\(^{30}\) Yields for trifluoromethoxylated products 21–23 and 27–30 were obtained by Mr. Chenghong Huang
When 6-(tributylstannyl)quinoline was subjected the standard trifluoromethoxylation conditions, <1% yield was obtained by 19F NMR spectroscopy. One possible explanation for this phenomenon is the stabilization of the putative high valent silver species via coordination of the quinolyl nitrogen lone pair31 and potentially breaking the Ag–Ag interaction necessary for reductive elimination $^{[\text{Figure 10}]}$, leading to decomposition of the trifluoromethoxide-silver complex.

![Figure 10. Potential coordination of quinolyl nitrogen disfavoring reductive elimination](image)

Lowering the reaction temperature to ± 50 °C while concurrently increasing the amount of TAS • OCF$_3$ (1) to four equivalents and F-TEDA-PF$_6$ to two equivalents afforded 6-trifluoromethoxyquinoline in 16% yield $^{[\text{Scheme 54}]}$. Nitrogenous heteroaryl substrates remain a limitation for this trifluoromethoxylation method.

![Scheme 54. Ag-mediated trifluoromethoxylation of 6-(tributylstannyl)quinoline (13)](image)

2.1.6. Trifluoromethoxylation of boronic acids32

Commercially available arylboronic acids were treated with one equivalent of NaOH in MeOH at 23 °C and then reacted with two equivalents of silver hexafluorophosphate at 0 °C to afford the putative aryl silver complex shown in $^{[\text{Scheme 55}]}$. After evaporation of MeOH and co-evaporation with THF, TAS • OCF$_3$ (1) was generated in situ in anhydrous THF at ± 30 °C by addition of trifluoromethyl trifluoromethanesulfonate (3) to a thick suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF). A solution of F-TEDA-PF$_6$ was added at ± 30 °C to

32 The trifluoromethoxylation of arylboronic acids was discovered by Dr. Shinji Harada. Compounds 21, 24, and 28 were synthesized by Dr. Shinji Harada and compounds 5, 34, and 35 were synthesized by Dr. Eunsung Lee.
the prior solution and reacted for 1 hour at −30 °C. Typically, trifluoromethoxylation reactions with arylboronic acids afford yields lower than with aryl stannanes.

Scheme 55. Ag-mediated trifluoromethoxylation of arylboronic acids
2.2. Synthesis of 3-deoxy-3-fluoromorphine

Since its isolation in 1805, morphine (shown in Figure 11) has been used as an analgesic for relief from severe pain associated with cancer and surgical operations. Along with analgesia, morphine elicits side effects such as respiratory depression, constipation, nausea, tolerance, and addiction due to unselective agonism of \(\mu \) opioid receptors thus compromising its use as a clinical treatment for chronic pain. Morphine metabolism limits its bioavailability via enzymatic glycosylation by glycoprotein UDT2B7 at the phenol to morphine-3-glucuronide (M3G, 50%), a biologically inactive metabolite excreted through the kidneys, and at the allylic alcohol to morphine-6-glucuronide (M6G, 10%), a biologically active metabolite that cannot effectively penetrate the blood-brain barrier.

\[\text{Morphine} \xrightarrow{\text{metabolism}} \text{M3G, 50\%} \quad \text{M6G, 10\%} \]

![Figure 11. Morphine structural numbering of the carbon framework and ring nomenclature](image)

![Figure 12. Metabolism of morphine to M3G and M6G in humans](image)

Glucuronidation can occur after entry into the brain with an enzyme that also glucuronidates congeners such as codeine, indicating promiscuity for the functional group identity at the 3 position. Although the phenol at the 3 position has been implicated in hydrogen bonding at the receptor pocket, oxycodone and dihydrocodeine with methoxy substituents at the 3 position show analgesic activity with studies showing that these parent compounds and not the O-demethylated metabolites are responsible for pharmacological activity. With the rationale that fluorine is an isostere to a hydroxyl group and can also participate in polar interactions, replacement of the hydroxyl at the 3 position of morphine is expected to block metabolism at the 3 position and prevent formation of the biologically inactive metabolite M3G, which would lead to a therapeutic with better bioavailability. Additionally, fluorination of morphine to afford 3-deoxy-3-fluoromorphine may provide a therapeutic with better pharmacological properties than morphine.

Carbon–fluorine bond replacement of the phenol at the 3 position in morphine is not trivial. Many past total syntheses of morphine utilize the phenol or phenol equivalents to direct the construction of the carbon scaffold of morphine \(^{(v)}\). As such, prior syntheses do not allow for access of 3-deoxy-fluoromorphine by a simple switch of starting materials to the fluorinated analogs, meaning a new total synthesis using fluorinated starting materials would need to be conceived. Designing a new synthesis would not expediently access 3-deoxy-3-fluoromorphine for in vitro and in vivo studies; the most expedient approach would involve direct deoxyfluorination of morphine or late-stage fluorination of a substrate derived from morphine.

2.2.1. Synthetic route to 3-deoxy-3-fluoromorphine

Our research group has developed methodology for the late-stage fluorination of aryl stannanes and arylboronic acids with silver salts. Our original route to 3-deoxy-3-fluoromorphine (TL-270) is shown in Figure 15 and involved pre-functionalization of morphine as arylboronic acid 36 or aryl stannane 19 followed by fluorination. Despite screening a variety of conditions for fluorination, silver-mediated fluorination of aryl stannane 19 and congeners only afforded protodestannylated products while the silver-mediated fluorination of arylboronic acid 36 and congeners gave low yields of fluorinated product, circa 10%. With the method for deoxyfluorination of phenols developed within our group,46 morphine and protecting group–functionalized derivatives were not viable substrates for aromatic deoxyfluorination.47

47 Experiments for the deoxyfluorination of morphine and protected derivatives were done by Dr. Pingping Tang.
To our surprise, when the products of the trifluoromethoxylation of stannane 19 were obtained, we observed fluorination product 37 in 24% yield. The formation of 37 is intriguing mainly because the analogous silver-mediated fluorination reaction of substrate 19 afforded no desired fluorinated product. This phenomenon may be due to the occurrence of a different fluorination pathway during the trifluoromethoxylation reaction; potentially, exogenous fluoride liberated from ligand exchange with trifluoromethoxide may be assisting in carbon–fluorine bond formation. With 37 in hand, we proceeded to synthesize 3-deoxy-3-fluoromorphine and other fluorinated morphine derivatives for in vitro and in vivo studies.
Scheme 56: Synthetic route to 3-deoxy-3-fluoromorphine (TL-270) from morphine

The full synthetic route to TL-270 is summarized in Scheme 56. Morphine was first functionalized at the 3 position with \(N\)-phenylbis(trifluoromethane)sulfonamide as trifluoromethanesulfonate 38 and subsequently demethylated at the tertiary amine with concurrent protection as the methyl carbamate with methyl chloroformate to afford 39. Pd-catalyzed stannylation of 39 with hexabutylditin afforded stannane 19 which upon trifluoromethoxylation conditions produced fluorinated product 37 in 24% yield. Reduction of the carbamate group in 37 with lithium aluminum hydride afforded the final desired product TL-270.

2.2.2. Biological activity

In vitro studies have shown that the concentrations necessary for agonist–stimulated binding for oxycodone was three to eight times higher than that of morphine.\(^{48}\) Additionally, the morphine affinity for the \(\mu\)-opioid receptor in vitro is twenty-six times higher than for oxycodone.\(^{48}\) Despite this, the observed potency when administered to

postoperative patients intravenously was equivalent for both oxycodone and morphine.49 This discrepancy between oxycodone and morphine in vitro and in vivo has been investigated through rat model studies of blood versus brain concentrations of opiate drugs and demonstrated that oxycodone was two to three times higher in concentration in the brain than in blood50 while the concentration of morphine in the brain is two to three times less than in blood.51 Thus, blood-brain barrier transport plays an important role in in vivo potency and cannot simply be established with in vitro IC\textsubscript{50} (concentration causing a half-maximal inhibition of control specific binding) or EC\textsubscript{50} values (concentration causing a half-maximal effect response), as demonstrated with oxycodone and morphine.51

First, in vitro cellular functional assays were performed by Cerep to confirm that TL-270 functions as an agonist of the \(\mu\)-opioid receptor and not as an antagonist. The agonist response rate reported by Cerep was 70.3\% with rat recombinant CHO (Chinese hamster ovary) cells. Response rates greater than 50\% are considered significant effects for test compounds and generally the cut-off value for further investigation. In vitro binding assays performed by Cerep were then used to determine IC\textsubscript{50} values of TL-270. The IC\textsubscript{50} value as reported by Cerep for TL-270 was 8.0 \(\times\) 10-7 M or 800 nM. When compared to the literature IC\textsubscript{50} values for morphine of 53 nM,52 TL-270 is about ten-fold less effective than morphine at providing inhibition. This observance is similar to the three to eight-fold concentration difference observed for agonist–stimulated binding of oxycodone and morphine. Subsequent in vivo studies of brain–plasma partitioning with fasted male Sprague-Dawley rats with injections at 0.952 mg/kg intravenously (i.v.) and 4.78 mg/kg per orem (p.o. or orally) demonstrated that partitioning was 2.91 times greater in the brain than in the plasma after four hours. With the aforementioned in vitro data, an antinociceptive study was next logical step for the determination of in vivo potency of TL-270.

The antinociceptive effects of TL-270 were evaluated by Lichtman and coworkers with traditional warm water tail withdrawal and hotplate assays of nociception. In addition, the mice were observed for straub tail, an opioid sensitive measure in which the tail stands up at a near 90 degree angle. The results of the antinociceptive tests are

50 Bostrom, E.; Simonsson, U. S. H.; Hammarlund-Udenaes, M. Drug Metab. Dispos. 2006, 34, 1624.

depicted in Figure 16 (page 71). As indicated in Figure 16A, 100 mg/kg of each TL compound produced some lethality within minutes of administration, most likely from respiratory depression, in contrast to no lethality being observed for the saline or morphine groups. The time courses of the antinociceptive effects of surviving mice are shown in Figure 16B (hotplate) and Figure 16C (tail withdraw) while Figure 16D depicts the percentage of surviving mice showing straub tail. Figure 16B shows that at 100 mg/kg TL-270 exhibits a response greater than morphine with an induction period of 60 minutes while for the tail withdraw test (Figure 16C), TL-270 at 100 mg/kg exhibits a response comparable to morphine with loss of efficacy after 120 minutes. While TL-270 indicates good response, loss of efficacy of TL-270 over 120 minutes in the straub tail tests has discouraged further development of TL-270 as a therapeutic.
Figure 16. Mice were given an i.p. injection of TL-270 (100 mg/kg), TL-286 (100 mg/kg), TL-288 (100 mg/kg), TL-289 (100 mg/kg), morphine (20 mg/kg), or saline (n = 6 mice/group). The time course for nociceptive behavior (hotplate and tail withdrawal assays) and straeb tail were evaluated over a 4 h period. Panel A. Percentage of lethality in each group. The respective numbers of deaths for the TL-270 (100 mg/kg), TL-286 (100 mg/kg), TL-288 (100 mg/kg), and TL-289 (100 mg/kg) conditions were 3 of 6, 4 of 6, 1 of 6, and 2 of 6. Panel B. Time course of hotplate antinociception in surviving mice. Panel C. Time course of tail withdrawal antinociception in surviving mice. Panel D. Time course of straub tail in surviving mice. Values represent mean (panels A-D) and error bars represent SEM (panels B & C).
3. Conclusion and Outlook

In summary, a novel silver-mediated cross-coupling reaction has been developed for the trifluoromethoxylation of aryl stannanes and arylboronic acids. While the use of aryl stannanes and low trifluoromethoxylation yields for nitrogenous heterocyclic substrates are limitations, this method establishes a proof of principle that aryl trifluoromethyl ethers can be synthesized via a cross-coupling approach, specifically oxidative cross-coupling of aryl nucleophiles with trifluoromethoxide. The use of silver salts as well as more stable TAS • OCF₃ trifluoromethoxide salt has enabled challenging aryl carbon–OCF₃ bond formation. Future endeavors for the synthesis of aryl trifluoromethyl ethers should focus on developing operationally simple, functional group tolerant methods using benign aryl substrates such as aryl halides and boronic acids with bench-top stable trifluoromethoxide salts or trifluoromethoxide precursors.

Additionally, 3-deoxy-3-fluoromorphine was synthesized via late-stage fluorination methods starting from morphine. The potential of 3-deoxy-3-fluoromorphine as a therapeutic was assessed with in vitro and in vivo studies. While 3-deoxy-3-fluoromorphine localizes in the brain of male Sprague-Dawley rats three times higher than in plasma after four hours, in vivo studies showed the loss of antinociceptive effects after 120 minutes. Future work in analgesics development should focus on creating therapeutics that have prolonged efficacy without side effects such as respiratory depression, constipation, nausea, tolerance, and addiction.
4. Experimental

Materials and Methods

All reactions were carried out under an inert nitrogen atmosphere unless otherwise indicated. Dichloromethane was dried by passage through alumina.1 Except as indicated otherwise, reactions were magnetically stirred and monitored by thin layer chromatography (TLC) using EMD TLC plates pre-coated with 250 μm thickness silica gel 60 F254 plates and visualized by fluorescence quenching under UV light. In addition, TLC plates were stained using ceric ammonium molybdate or potassium permanganate stain. Flash chromatography was performed on Dynamic Adsorbents Silica Gel 40–63 μm particle size using a forced flow of eluent at 0.3–0.5 bar pressure.2

Concentration under reduced pressure was performed by rotary evaporation at 25–30 °C (and at 5 °C when specified) at appropriate pressure. Purified compounds were further dried under vacuum (0.01–0.2 Torr depending on volatility of compound). NMR spectra were recorded on a Varian Mercury 400 (400 MHz for 1H, 100 MHz for 13C, and 375 MHz for 19F acquisitions) or Unity/Inova 500 (500 MHz for 1H, 125 MHz for 13C, and 470 MHz for 19F acquisitions). 13C NMR spectra are recorded 1H decoupled. 19F NMR spectra are recorded 1H coupled. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl$_3$, 23 °C, 1H NMR: 7.26 ppm, 13C NMR: 77.16 ppm). Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling constants in Hz; integration. High-resolution mass spectra were obtained on Jeol AX-505 or SX-102 spectrometers at the Harvard University Mass Spectrometry Facilities. Anhydrous THF was obtained by distillation over sodium/benzophenone. Dry acetone was obtained by distillation over B$_2$O$_3$. Triethylamine and N,N-diisopropylethylamine were distilled over calcium hydride. nButyllithium, tris(dimethylamino)sulfonium difluorotrimethylsilicate, silver hexafluorophosphate, tetrakis(triphenylphosphine)palladium, lithium chloride, hexabutyltinditin, 1,4-dioxane (anhydrous, 99.8% in Sure/Seal™), 4-(dimethylamino)pyridine, 1-(3-dimethylaminopropyl)-3-ethylcarboxiimide hydrochloride (EDCI), 1-hydroxybenzotriazole (HOBt), N-phenylbis(trifluoromethane)sulfonimide, and methyl chloroformate were purchased from Aldrich and used as received. Sodium bicarbonate and sand were purchased from Mallinckrodt Chemicals and used as received. 1-Chloromethyl-4-fluoro-1,4-diazaonabicyclo[2.2.2]octane bis(tetrafluoroborate), ammonium hexafluorophosphate, 1Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* 1996, 15, 1518.

and tributyltin chloride were purchased from Alfa Aesar and used as received. Trifluoromethanesulfonic acid was purchased from Oakwood Products, Inc. and used as received. Phosphorus pentoxide was purchased from Acros Organics and used as received. NMR spectroscopic data of known compounds correspond to the data given in the appropriate references. Arylstannanes were prepared and used within 1 week and 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) was prepared and used within one month for the trifluoromethoxylation reactions.

Experimental procedures and compound characterization

4.1. Ag-mediated trifluoromethoxylation of aryl stannanes and arylboronic acids

General procedure for the trifluoromethoxylation of aryl stannanes

To a 25 mL oven-dried two-neck round-bottom flask charged with a magnetic bar, tris(dimethylamino)sulfonium difluorotrimethylsilicate (222 mg, 1.00 mmol, 2.00 equiv) in an one dram vial (prepared in a glove box), sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv), and aryl stannane (0.500 mmol, 1.00 equiv) were added under low nitrogen flow. Anhydrous THF (2.00 mL) was added to the flask at −30 °C under nitrogen flow using a 3 mL syringe. Trifluoromethyl trifluoromethanesulfonate (3) (0.450 g, 0.300 mL, 2.10 mmol, 4.10 equiv) in a Schlenk flask cooled to −50 °C under nitrogen flow was subsequently added using a 1 mL syringe (cooled by crushed dry ice wrapped in aluminum foil) while the suspension was stirred vigorously at −30 °C. The reaction mixture was stirred at −30 °C for 30 minutes and then a solution of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) cooled to −30 °C (prepared in a glovebox in a 25 mL round-bottom flask) was added by cannula. The reaction mixture was stirred for 2 to 4 hours in the dark and then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel to afford the desired trifluoromethoxylated compound.

Note 1: Most reagents were stored in a glovebox for optimal results. The reaction could also be performed without the use of a glovebox when fresh reagents were used.

Note 2: The use of 1-chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(hexafluorophosphate) gave highest results. The reaction can also be performed with commercially available 1-chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(tetrafluoroborate) but yields are generally around 10% lower.

General procedure for the trifluoromethoxylolation of arylboronic acids

To an anhydrous solution sodium hydroxide in methanol (1.00 N, 0.500 mL, 1.00 equiv) in an oven-dried 4 dram vial with a resealable PTFE/silicone disc charged with a magnetic bar was added under nitrogen flow arylboronic acid (0.500 mmol, 1.00 equiv) at 23 ºC and stirred for 15 minutes. The reaction mixture was then cooled to 0 ºC and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) (prepared in an oven-dried 0.5 dram vial in a glovebox) was added quickly and the suspension was stirred for 30 minutes at 0 ºC. The solvent was removed under reduced pressure at 0 ºC and the residual methanol removed under reduced pressure by co-evaporation with anhydrous THF (2 × 0.500 mL). To the residue was added tris(dimethylamino)sulfonium difluorotrimethylsilicate (276 mg, 1.00 mmol, 2.00 equiv) and sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv) (prepared in a one dram vial in a glove box) and then anhydrous THF (2.0 mL) was added to the mixture at −30 ºC. Trifluoromethyl trifluoromethanesulfonate (3) (0.600 g, 0.400 mL, 2.80 mmol, 5.50 equiv) in a Schlenk flask cooled to −50 ºC under nitrogen flow was subsequently added using a 1 mL syringe, cooled by crushed dry ice wrapped in aluminum foil, to the suspension stirring vigorously at −30 ºC. The suspension was stirred at −30 ºC for 30 minutes. A solution of 1-chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) in dry acetone (6.0 mL) cooled to −30 ºC was added to the prior suspension. The resulting suspension was then stirred for 1 hour and filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo.

The residue was purified via column chromatography to afford the desired trifluoromethoxylation compound.

Note 1: Most reagents were stored in a glovebox for optimal results. The reaction could also be performed without the use of a glovebox when fresh reagents were used.

Note 2: Although arylboronic acids are generally preferred reagents over aryl stannanes, for the trifluoromethoxylation reaction reported here we generally recommend the stannane version of the method due to a simpler procedure and higher observed yields in general.
Trifluoromethyl trifluoromethanesulfonate\(^4\) (3)

Note: Trifluoromethyl trifluoromethanesulfonate (3) is commercially available from Oakwood Products, Inc.\(^5\). It can be prepared in 80% yield by a procedure published by Taylor and Martin in one step from trifluoromethanesulfonic anhydride and SbF\(_5\) as a catalyst.\(^6\) We recommend the procedure by Taylor and Martin but provide an additional procedure that affords the product in lower yield (56%). The method presented here however does not require the use of SbF\(_5\):

A 250-mL round-bottomed flask charged with a magnetic stir bar, 30-cm Vigreux column, and 100-mL round-bottomed receiving flask were dried in an oven for 12 hours at 135 °C. The system was assembled while the glass was hot and cooled under vacuum to 25 °C and then backfilled with N\(_2\) and kept under a N\(_2\) atmosphere. To the dry 250-mL round-bottomed flask charged with a magnetic stir bar was added sequentially sand (10.0 g), phosphorous pentoxide (25.0 g, 180 mmol, 0.310 equiv), and trifluoromethanesulfonic acid (50.0 mL, 84.8 g, 565 mmol, 1.00 equiv). The receiving flask was cooled to −78 °C. The reaction mixture was stirred at room temperature for 3 hours, then heated until reaching 110 °C (30 °C every 15 minutes) for a total of 8 hours. The distillate collected in the 100-mL round-bottomed Schlenk flask was then sealed and attached to a N\(_2\) line. To the 100-mL round-bottomed flask at 0 °C was added a precooled solution of 3 M KOH (50 mL) at 0 °C. To the 100-mL round-bottomed flask at 0 °C was attached a short-path distillation apparatus with a 100-mL round-bottomed Schlenk flask as the collection flask was cooled to −78 °C. The 100-mL round-bottomed flask was warmed with a water bath to 25 °C and the distillate collected via short-path distillation in the 100-mL round-bottomed Schlenk flask cooled to −78 °C. The 100-mL round-bottomed Schlenk flask was then sealed after all the distillate was collected, allowed to warm to 25 °C, and attached to a vacuum transfer apparatus with a 50-mL long-bodied Schlenk flask. The vacuum transfer apparatus was flamed dried under vacuum and allowed to cool to 25 °C. The distillate was then transferred via vacuum transfer at 0 °C (frozen solid with liquid nitrogen first, then during vacuum transfer allowed to warm to

0 °C) over 15 minutes and the liquid collected in the 50-mL long-bodied Schlenk flask, cooled with liquid nitrogen, to give 34.5 g of the target compound as a colorless liquid (56%). The compound was stored in the 50-mL long-bodied Schlenk flask at −20 °C.

NMR Spectroscopy: 13C NMR (100 MHz, CDCl$_3$, 23 °C, δ): 118.8 (q, $J = 273$ Hz), 118.4 (q, $J = 320$ Hz). 19F NMR (375 MHz, CDCl$_3$, 23 °C, δ): −73.5 (q, $J = 4.5$ Hz), −52.9 (q, $J = 3.0$ Hz). The previously reported spectroscopic data are 19F NMR (CFCl$_3$, 23 °C, G): −74.0 (q, $J = 3.5$ Hz), −53.3 (q, $J = 3.5$ Hz).

Tris(dimethylamino)sulfonium trifluoromethoxide7 (TAS • OC$_3$F$_3$) (1)

Typically, 1 was prepared in situ outside a glovebox (vide infra). For characterization purposes, we also synthesized it independently as follows:

All manipulations were carried out in a dry box under a N$_2$ atmosphere. To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) (330 mg, 1.20 mmol, 1.00 equiv) in anhydrous THF (12 mL) in a 20 mL vial with a resealable PTFE/silicone disc at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.392 g, 0.261 mL, 1.80 mmol, 1.5 equiv) using a syringe (both 3 and the syringe were cooled to −30 °C). The suspension was stirred vigorously at −30 °C and at 23 °C for 15 min and 30 min, respectively. The suspension was filtered off and washed with THF (3×3 mL) to afford 243 mg of the title compound as a colorless solid (82% yield).

NMR Spectroscopy: 1H NMR (500 MHz, CD$_2$Cl$_2$, 23 °C, δ): 2.93 (s, 18H). 13C NMR (125 MHz, CD$_2$Cl$_2$, 23 °C, δ): 38.7. 19F NMR (470 MHz, CD$_2$Cl$_2$, 23 °C, δ): −20.5 (s, br). These spectroscopic data correspond to the reported data in reference7.

Decomposition study of TAS • OC$_3$F$_3$ (1)

In a glove box, 0.60 mL of d_6-acetone was added to a J. Y. tube, which contained TAS • OC$_3$F$_3$ (1) (5.9 mg, 24 mmol) and 3-nitrofluorobenzene (1.0 μL) at 0 °C. The solution was warmed to 23 °C and immediately placed into the

NMR machine and the 19F NMR resonances followed by 19F NMR spectroscopy at 45 °C. TAS • OCF$_3$ was completely decomposed to difluorophosgene (COF$_2$) and an unknown byproduct within 15 min at 45 °C.

Effect of fluoride source on the yield of Ag-mediated trifluoromethoxylation reaction

To a suspension of fluoride source (0.400 mmol, 2.00 equiv), sodium bicarbonate (33.6 mg, 0.400 mmol, 2.00 equiv), and (4-fluorophenyl)tributylstannane (4) (77.0 mg, 0.200 mmol, 1.00 equiv) in anhydrous THF (0.800 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.18 g, 0.12 mL, 0.83 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (113 mg, 0.240 mmol, 1.20 equiv) and silver hexafluorophosphate (101 mg, 0.400 mmol, 2.00 equiv) in dry acetone (2.4 mL) was added. The reaction mixture was stirred for 2 hours in the dark, then warmed to 23 °C. To the reaction mixture was added 3-nitrofluorobenzene (20.0 µL, 0.188 mmol, 0.939 equiv). The yield was determined by comparing the integration of the 19F NMR (375 MHz, acetone-d_6, 23 °C) resonance of 1-fluoro-4-(trifluoromethoxy)benzene (−117.0 ppm, −59.9 ppm), 1,4-difluorobenzene (−121.7 ppm), 4,4′-difluorobiphenyl (−118.0 ppm), 4-fluorophenol (−128.4 ppm), and fluorobenzene (−115.4 ppm) with that of 3-nitrofluorobenzene (−112.0 ppm). Yields are reported as percentages (by 19F NMR).

Effect of Ag salt on the yield of Ag-mediated trifluoromethoxylation reaction

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (110 mg, 0.400 mmol, 2.00 equiv), sodium bicarbonate (33.6 mg, 0.400 mmol, 2.00 equiv), and (4-fluorophenyl)tributylstannane (4) (77.0 mg, 0.200 mmol, 1.00 equiv) in anhydrous THF (0.800 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.18 g, 0.12 mL, 0.83 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was
stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-diaziobiacyclo[2.2.2]octane bis(hexafluorophosphate) (2) (113 mg, 0.240 mmol, 1.20 equiv) and silver salt (0.400 mmol, 2.00 equiv) in dry acetone (2.4 mL) was added. The reaction mixture was stirred for 2 hours in the dark, then warmed to 23 °C. To the reaction mixture was added 3-nitrofluorobenzene (20.0 µL, 0.188 mmol, 0.939 equiv). The yield was determined by comparing the integration of the 19F NMR (375 MHz, acetone-d_6, 23 °C) resonance of 1-fluoro-4-(trifluoromethoxy)benzene (−117.0 ppm, −59.9 ppm), 1,4-difluorobenzene (−121.7 ppm), 4,4'-difluorobiphenyl (−118.0 ppm), 4-fluorophenol (−128.4 ppm), and fluorobenzene (−115.4 ppm) with that of 3-nitrofluorobenzene (−112.0 ppm). Yields are reported as percentages (by 19F NMR).

Effect of solvent on the yield of Ag-mediated trifluoromethoxylatation reaction

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (110 mg, 0.400 mmol, 2.00 equiv), sodium bicarbonate (33.6 mg, 0.400 mmol, 2.00 equiv), and (4-fluorophenyl)tributylstannane (4) (77.0 mg, 0.200 mmol, 1.00 equiv) in anhydrous solvent (0.800 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.18 g, 0.12 mL, 0.83 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-diaziobiacyclo[2.2.2]octane bis(hexafluorophosphate) (2) (113 mg, 0.240 mmol, 1.20 equiv) and silver hexafluorophosphate (101 mg, 0.400 mmol, 2.00 equiv) in anhydrous solvent (2.4 mL) was added. The reaction mixture was stirred for 2 hours in the dark, then warmed to 23 °C. To the reaction mixture was added 3-nitrofluorobenzene (20.0 µL, 0.188 mmol, 0.939 equiv). The yield was determined by comparing the integration of the 19F NMR (375 MHz, acetone-d_6, 23 °C) resonance of 1-fluoro-4-(trifluoromethoxy)benzene (−117.0 ppm, −59.9 ppm), 1,4-difluorobenzene (−121.7 ppm), 4,4'-difluorobiphenyl (−118.0 ppm), 4-fluorophenol (−128.4 ppm), and fluorobenzene (−115.4 ppm) with that of 3-nitrofluorobenzene (−112.0 ppm). Yields are reported as percentages (by 19F NMR).
Effect of temperature on the yield of Ag-mediated trifluoromethoxilation reaction

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (110 mg, 0.400 mmol, 2.00 equiv), sodium bicarbonate (33.6 mg, 0.400 mmol, 2.00 equiv), and (4-fluorophenyl)tributylstannane \((\text{4})\) (77.0 mg, 0.200 mmol, 1.00 equiv) in anhydrous THF (0.800 mL) at the corresponding temperature was added trifluoromethyl trifluoromethanesulfonate \((\text{3})\) (0.18 g, 0.12 mL, 0.83 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at the corresponding temperature for 30 minutes, then a solution cooled to the corresponding temperature of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) \((\text{2})\) (113 mg, 0.240 mmol, 1.20 equiv) and silver hexafluorophosphate (101 mg, 0.400 mmol, 2.00 equiv) in dry acetone (2.4 mL) was added. The reaction mixture was stirred for 2 hours in the dark, then warmed to 23 °C. To the reaction mixture was added 3-nitrofluorobenzene \((20.0 \mu \text{L}, 0.188 \text{ mmol}, 0.939 \text{ equiv})\). The yield was determined by comparing the integration of the \(^{19}\text{F} \text{NMR} (375 \text{ MHz, acetone-}\text{d}_6, 23 ^\circ \text{C})\) resonance of 1-fluoro-4-(trifluoromethoxy)benzene \((-117.0 \text{ ppm}, -59.9 \text{ ppm})\), 1,4-difluorobenzene \((-121.7 \text{ ppm})\), 4,4'-difluorobiphenyl \((-118.0 \text{ ppm})\), 4-fluorophenol \((-128.4 \text{ ppm})\), and fluorobenzene \((-115.4 \text{ ppm})\) with that of 3-nitrofluorobenzene \((-112.0 \text{ ppm})\). Yields are reported as percentages (by \(^{19}\text{F} \text{NMR})

Effect of additives on the yield of Ag-mediated trifluoromethoxilation reaction

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (110 mg, 0.400 mmol, 2.00 equiv), additive (0.400 mmol, 2.00 equiv), and (4-fluorophenyl)tributylstannane \((\text{4})\) (77.0 mg, 0.200 mmol, 1.00 equiv) in anhydrous THF (0.800 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate \((\text{3})\) (0.18 g, 0.12 mL, 0.83 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) \((\text{2})\) (113 mg, 0.240 mmol, 1.20 equiv) and silver hexafluorophosphate (101 mg, 0.400
mmol, 2.00 equiv) in dry acetone (2.4 mL) was added. The reaction mixture was stirred for 2 hours in the dark, then warmed to 23 °C. To the reaction mixture was added 3-nitrofluorobenzene (20.0 μL, 0.188 mmol, 0.939 equiv). The yield was determined by comparing the integration of the 19F NMR (375 MHz, acetone-d_6, 23 °C) resonance of 1-fluoro-4-(trifluoromethoxy)benzene (−117.0 ppm, −59.9 ppm), 1,4-difluorobenzene (−121.7 ppm), 4,4′-difluorobiphenyl (−118.0 ppm), 4-fluorophenol (−128.4 ppm), and fluorobenzene (−115.4 ppm) with that of 3-nitrofluorobenzene (−112.0 ppm). Yields are reported as percentages (19F NMR).
Representative 19F NMR spectrum (375 MHz, CDCl$_3$, 23 ºC) for the trifluoromethylation of 4 to give 5.
Tributyl(4-biphenyl)stannane

To 4-bromobiphenyl (3.00 g, 12.9 mmol, 1.00 equiv) in anhydrous THF (30 mL) at −78 °C was added nBuLi (2.5 M in hexanes, 5.1 mL, 13 mmol, 1.0 equiv). The reaction mixture was stirred at −78 °C for 30 min before the addition of Bu₃SnCl (4.20 g, 3.50 mL, 12.9 mmol, 1.00 equiv). After stirring for 1.0 hr at −78 °C, the reaction mixture was warmed to 23 °C and the solvent was removed in vacuo. The residue was dissolved in 20 mL of Et₂O and filtered through a plug of neutral alumina. The filtrate was concentrated in vacuo and the residue purified via column chromatography on silica gel eluting with hexanes to afford 3.76 g of the title compound as a colorless oil (88% yield).

Rᵣ = 0.58 (hexanes). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃, 23 ºC, δ): 7.69–7.57 (m, 6H), 7.58–7.51 (m, 2H), 7.44–7.38 (m, 1H), 1.75–1.59 (m, 6H), 1.52–1.40 (m, 6H), 1.27–1.09 (m, 6H), 0.99 (t, J = 7.3 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃, 23 ºC, δ): 141.5, 140.0, 137.0, 128.9, 127.3, 127.2, 127.1, 126.8, 29.3, 27.6, 13.9, 9.8.

These spectroscopic data correspond to previously reported data.

4-(Trifluoromethoxy)biphenyl

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (222 mg, 1.00 mmol, 2.00 equiv), sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv), and tributyl(4-biphenyl)stannane (10) (253 mg, 0.500 mmol, 1.00 equiv) in anhydrous THF (2.00 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.45 g, 0.30 mL, 2.1 equiv) in anhydrous THF (2.00 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.45 g, 0.30 mL, 2.1 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-

1,4-diazeniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) was added by cannula. The reaction mixture was stirred for 2.5 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with hexanes/CH₂Cl₂ 19:1 (v/v) to afford 104 mg of the title compound as a white solid (88% yield).

Rₚ = 0.53 (hexanes/CH₂Cl₂ 19:1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.64–7.59 (m, 4H), 7.51–7.48 (m, 2 H), 7.41 (t, J = 7.3 Hz, 1H), 7.34 (d, J = 8.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, 23 °C, δ): 148.8 (q, J = 2 Hz), 140.1, 140.0, 129.0, 128.6, 127.8, 127.3, 121.4, 120.7 (q, J = 256 Hz). ¹⁹F NMR (375 MHz, CDCl₃, 23 °C, δ): −58.2. These spectroscopic data correspond to previously reported data.

1-Methoxy-4-(trifluoromethoxy)benzene (24)

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (275 mg, 1.00 mmol, 2.00 equiv), sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv), and tributyl(4-methoxyphenyl)stannane⁹ (11) (199 mg, 0.500 mmol, 1.00 equiv) in anhydrous THF (2.00 mL) at −30 °C was added trifluoromethyl trifluoromethanesulphonate (3) (0.45 g, 0.30 mL, 2.1 mmol, 4.1equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) was added by cannula. The reaction mixture was stirred for 2 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo at 5 °C. The residue was purified via column chromatography on silica gel eluting with pentane/CH₂Cl₂ 9:1 (v/v) to afford 84 mg of the title compound as a clear liquid (87% yield).

R_f = 0.48 (pentane/CH_2Cl_2 9:1 (v/v)). NMR Spectroscopy: ^1^H NMR (500 MHz, CDCl_3, 23 °C, δ): 7.15 (d, J = 9.2 Hz, 2H), 6.89 (dd, J = 9.2 Hz, 3.7 Hz, 2H), 3.81 (s, 3H). ^13^C NMR (125 MHz, CDCl_3, 23 °C, δ): 158.3, 142.9 (q, J = 2 Hz), 122.6, 120.8 (q, J = 256 Hz), 114.8, 55.7. ^19^F NMR (470 MHz, CDCl_3, 23 °C, δ): ±58.9. These spectroscopic data correspond to those obtained from an authentic sample purchased from Strem.

(4-Bromophenyl)tributylstannane (12)

To 1,4-dibromobenzene (1.2 g, 5.0 mmol, 1.0 equiv) in THF (13 mL) at −78 °C was added nBuLi (1.6 M in hexane, 3.1 mL, 5.0 mmol, 1.0 equiv). The reaction mixture was stirred at −78 °C for 30 min before the addition of Bu_3SnCl (1.6 g, 1.4 mL, 5.0 mmol, 1.0 equiv). After stirring for 1 hr at −78 °C, the reaction mixture was warmed to 23 °C and the solvent was removed in vacuo. The residue was dissolved in 20 mL of Et_2O and filtered through a plug of neutral alumina. The filtrate was concentrated in vacuo and the residue purified via column chromatography on silica gel eluting with hexanes to afford 2.1 g of the title compound as a colorless oil (95% yield).

R_f = 0.50 (hexanes). NMR Spectroscopy: ^1^H NMR (500 MHz, CDCl_3, 23 °C, δ): 7.48 (d, J = 7.8 Hz, 2H), 7.35 (d, J = 7.8 Hz, 2H), 1.59–1.53 (m, 6H), 1.40–1.32 (m, 6H), 1.10–1.07 (m, 6H), 0.92 (t, J = 7.3 Hz, 9H). ^13^C NMR (125 MHz, CDCl_3, 23 °C, δ): 140.7, 138.0, 131.1, 122.9, 29.2, 27.5, 13.8, 9.8. These spectroscopic data correspond to previously reported data.

1-Bromo-4-(trifluoromethoxy)benzene (25)

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (275 mg, 1.00 mmol, 2.00 equiv), sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv), and (4-bromophenyl)tributylstannane (12) (223 mg, 0.500 mmol, 1.00 equiv) in anhydrous THF (2.00 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.45 g,
0.30 mL, 2.1 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-diazaonabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) was added by cannula. The reaction mixture was stirred for 2.5 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH$_2$Cl$_2$ and the filtrate concentrated in vacuo at 5 °C. The residue was purified via column chromatography on silica gel eluting with pentane/CH$_2$Cl$_2$ 1:1 (v/v) to afford 101 mg of the title compound as a clear liquid (84% yield).

$R_f = 0.86$ (pentane/CH$_2$Cl$_2$ 1:1 (v/v)). NMR Spectroscopy: 1H NMR (400 MHz, CDCl$_3$, 23 °C, δ): 7.52 (dd, $J = 8.8$ Hz, 1.8 Hz, 2H), 7.10 (d, $J = 8.8$ Hz, 2H). 13C NMR (100 MHz, CDCl$_3$, 23 °C, δ): 148.4 (q, $J = 2$ Hz), 133.1, 122.9, 120.3, 120.5 (q, $J = 258$ Hz). 19F NMR (375 MHz, CDCl$_3$, 23 °C, δ): −58.5. These spectroscopic data correspond to those obtained from an authentic sample purchased from Strem.

Tributyl(3,4,5-trimethoxyphenyl)stannane10 (14)

To 5-bromo-1,2,3-trimethoxybenzene (1.2 g, 4.9 mmol, 1.0 equiv), in anhydrous THF (12 mL) at −78 °C was added nBuLi (2.5 M in hexanes, 2.1 mL, 5.3 mmol, 1.1 equiv). The reaction mixture was stirred at −78 °C for 30 min before the addition of Bu$_3$SnCl (1.6 g, 1.3 mL, 4.9 mmol, 1.0 equiv). After stirring for 1.0 hr at −78 °C, the reaction mixture was warmed to 23 °C and the solvent was removed in vacuo. The residue was dissolved in 20 mL of Et$_2$O and filtered through a plug of neutral alumina. The filtrate was concentrated in vacuo and was purified by chromatography on silica gel eluting with hexanes/EtOAc 5:1 (v/v) to afford 1.6 g of the title compound as a colorless oil (73% yield).

$R_f = 0.47$ (hexanes/EtOAc 5:1 (v/v)). NMR Spectroscopy: 1H NMR (400 MHz, CDCl$_3$, 23 °C, δ): 6.66 (s, 2H), 3.88 (s, 6H), 3.86 (s, 3H), 1.59–1.55 (m, 6H), 1.38–1.33 (m, 6H), 1.09–1.05 (m, 6H), 0.91 (t, $J = 7.2$ Hz, 9H). 13C

NMR (100 MHz, CDCl₃, 23 °C, δ): 153.0, 138.4, 136.7, 113.0, 60.8, 56.2, 29.2, 27.4, 13.7, 9.9. These spectroscopic data correspond to previously reported data.

1,2,3-Trimethoxy-5-(trifluoromethoxy)benzene (23)

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (275 mg, 1.00 mmol, 2.00 equiv), sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv), and tributyl(3,4,5-trimethoxyphenyl)stannane (14) (229 mg, 0.500 mmol, 1.00 equiv) in anhydrous THF (2.00 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.45 g, 0.30 mL, 2.1 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) was added by cannula. The reaction mixture was stirred for 4 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with hexanes/CH₂Cl₂ 1:2 (v/v) to afford 94 mg of the title compound as a clear oil (75% yield).

Rₛ = 0.28 (hexanes/CH₂Cl₂ 1:2 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 6.45 (s, 2H), 3.84 (s, 6H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 23 °C, δ): 153.7, 145.3 (q, J = 2 Hz), 136.8, 120.6 (q, J = 257 Hz), 99.0, 61.0, 56.3. ¹⁹F NMR (470 MHz, CDCl₃, 23 °C, δ): −58.4. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C₁₆H₁₂F₃O₄ [M + H]⁺, 253.0682. Found, 253.0685.
Methyl 6-(tributylstannyl)-2-naphthoate (15)

To a suspension of lithium chloride (635 mg, 15.0 mmol, 5.00 equiv), hexabutylditin (3.44 g, 3.00 mL, 6.00 mmol, 2.50 equiv), and methyl 6-bromo-2-naphthoate (795 mg, 3.00 mmol, 1.00 equiv) in anhydrous dioxane (30.0 mL) at 25 °C was added palladium tetrakis triphenylphosphine (173 mg, 0.150 mmol, 0.0500 equiv). The reaction mixture was heated to 100 °C and stirred for 12 hours, then cooled to room temperature. The reaction mixture was filtered through a pad of celite eluting with CH$_2$Cl$_2$, and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with hexanes/EtOAc 3:1 (v/v) to afford 741 mg of the title compound as a clear oil (52% yield).

_Rf = 0.75 (hexanes/EtOAc 3:1 (v/v)). NMR Spectroscopy: 1H NMR (400 MHz, CDCl$_3$, 23 °C, δ): 8.61 (s, 1H), 8.08 (dd, J = 8.8 Hz, 1.6 Hz, 1H), 8.01 (s, 1H), 7.96–7.86 (m, 2H), 7.66 (d, J = 8.1 Hz, 1H), 3.99 (s, 3H), 1.70–1.53 (m, 6H), 1.43–1.30 (m, 6H), 1.29–1.09 (m, 6H), 0.93 (t, J = 7.3 Hz, 9H). 13C NMR (125 MHz, CDCl$_3$, 23 °C, δ): 167.4, 143.7, 136.4, 135.1, 134.0, 132.4, 131.2, 128.1, 127.9, 127.3, 125.2, 52.2, 29.2, 27.5, 13.8, 9.8. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C$_{24}$H$_{37}$O$_2$Sn [M + H]$^+$, 477.1810. Found, 477.1795.

Methyl 6-(trifluoromethoxy)-2-naphthoate (27)

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (275 mg, 1.00 mmol, 2.00 equiv), sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv), and methyl 6-(tributylstannyl)-2-naphthoate (15) (238 mg, 0.500 mmol, 1.00 equiv) in anhydrous THF (2.00 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.45 g, 0.30 mL, 2.1 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-
diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) was added by cannula. The reaction mixture was stirred for 2.5 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH$_2$Cl$_2$ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with hexanes/CH$_2$Cl$_2$ 1:2 (v/v) to afford 102 mg of the title compound as a clear oil (76% yield).

R$_f$ = 0.52 (hexanes/CH$_2$Cl$_2$ 1:2 (v/v)). NMR Spectroscopy: 1H NMR (400 MHz, CDCl$_3$, 23 °C, δ): 8.61 (s, 1H), 8.11 (dd, J = 8.7 Hz, 1.8 Hz, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.86 (d, J = 8.7 Hz, 1H), 7.68 (s, 1H), 7.39 (dd, J = 9.2 Hz, 1.8 Hz, 1H), 3.99 (s, 3H). 13C NMR (100 MHz, CDCl$_3$, 23 °C, δ): 167.0, 148.7 (q, J = 2 Hz), 135.9, 131.7, 130.9, 130.8, 128.2, 128.1, 126.6, 120.9, 120.7 (q, J = 257 Hz), 117.8, 52.5. 19F NMR (375 MHz, CDCl$_3$, 23 °C, δ): -58.0. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C$_{13}$H$_{10}$F$_3$O$_3$ [M + H]$^+$, 271.0577. Found, 271.0573.

5-Tributylstannyl-N-Boc-indole (20)

To a suspension of lithium chloride (297 mg, 7.00 mmol, 2.00 equiv), hexabutylditin (3.05 g, 2.65 mL, 5.25 mmol, 1.50 equiv), and 5-bromo-N-Boc-indole (1.04 g, 3.50 mmol, 1.00 equiv) in anhydrous dioxane (17.5 mL) at 25 °C was added palladium tetrakis triphenylphosphine (75.0 mg, 0.175 mmol, 0.0500 equiv). The reaction mixture was heated at 100 °C and stirred for 2.5 hours at this temperature, then cooled to room temperature. The reaction mixture was filtered through a pad of celite eluting with CH$_2$Cl$_2$, and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with hexanes/EtOAc 9:1 (v/v) and further purified by evaporation of impurities via kugelrohr at 150 °C to afford 1.50 g of the title compound as a clear oil (85% yield).

R$_f$ = 0.50 (hexanes/EtOAc 9:1 (v/v)). NMR Spectroscopy: 1H NMR (500 MHz, CDCl$_3$, 23 °C, δ): 8.15 (d, J = 6.0 Hz, 1H), 7.70 (s, 1H), 7.60 (d, J = 3.2 Hz, 1H), 7.44 (d, J = 6.0 Hz, 1H), 6.59 (d, J = 3.2 Hz, 1H), 1.70 (s, 9H), 1.67–1.55 (m, 6H), 1.43–1.35 (m, 6H), 1.20–1.06 (m, 6H), 0.96 (t, J = 6.0 Hz, 9H). 13C NMR (100 MHz, CDCl$_3$, 23 °C,
δ): 150.0, 135.4, 132.0, 134.7, 130.8, 129.2, 125.5, 114.9, 107.2, 83.6, 29.3, 28.3, 27.5, 13.8, 9.8. These spectroscopic data correspond to previously reported data.

5-Trifluoromethoxy-N-Boc-indole (28)

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilylate (275 mg, 1.00 mmol, 2.00 equiv), sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv), and 5-tributylstannyl-N-Boc-indole (20) (253 mg, 0.500 mmol, 1.00 equiv) in anhydrous THF (2.00 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.45 g, 0.30 mL, 2.1 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) was added by cannula. The reaction mixture was stirred for 2.5 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with hexanes/CH₂Cl₂ 1:1 (v/v) to afford 108 mg of the title compound as a clear oil (72% yield).

R_f = 0.70 (hexanes/CH₂Cl₂ 1:1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 8.17 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 3.4 Hz, 1H), 7.42 (s, 1H), 7.18 (d, J = 7.3 Hz, 1H), 6.57 (d, J = 3.4 Hz, 1H), 1.68 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 149.4, 145.0 (q, J = 2 Hz), 133.6, 131.3, 127.8, 123.9 (q, J = 256 Hz), 117.8, 116.1, 113.4, 107.2, 84.3, 28.3. ¹⁹F NMR (375 MHz, CDCl₃, 23 °C, δ): −58.5. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C₁₉H₁₃F₃NO [M – C₃H₅O₂ (Boc) + H]^⁺, 202.0480. Found, 202.0485.
Ethyl 4-(trifluoromethoxy)benzoate11 (22)

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (275 mg, 1.00 mmol, 2.00 equiv), sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv), and ethyl 4-(tributylstannyl)benzoate9 (16) (220 mg, 0.500 mmol, 1.00 equiv) in anhydrous THF (2.00 mL) at \(-30^\circ C\) was added trifluoromethyl trifluoromethanesulfonate (3) (0.45 g, 0.30 mL, 2.1 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at \(-30^\circ C\) for 30 minutes, then a solution cooled to \(-30^\circ C\) of 1-chloromethyl-4-fluoro-1,4-diazaoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) was added by cannula. The reaction mixture was stirred for 2 hours in the dark, then warmed to 23 \(^\circ C\). The reaction mixture was filtered through a pad of celite eluting with CH\(_2\)Cl\(_2\) and the filtrate concentrated in vacuo at 5 \(^\circ C\). The residue was purified via column chromatography on silica gel eluting with pentane/CH\(_2\)Cl\(_2\) 1:1 (v/v) to afford 92 mg of the title compound as a light yellow oil (79\% yield).

\(R_f = 0.89\) (pentane/CH\(_2\)Cl\(_2\) 1:1 (v/v)). NMR Spectroscopy: \(^1\)H NMR (400 MHz, CDCl\(_3\), 23 \(^\circ C\), \(\delta\)): 8.09 (d, \(J = 9.2\) Hz, 2H), 7.26 (d, \(J = 9.2\) Hz, 2H), 4.39 (q, \(J = 7.2\) Hz, 2H), 1.40 (t, \(J = 6.8\) Hz, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 23 \(^\circ C\), \(\delta\)): 165.6, 152.7 (q, \(J = 2\) Hz), 131.6, 129.1, 120.5, 120.4 (q, \(J = 257\) Hz), 61.4, 14.4. \(^{19}\)F NMR (375 MHz, CDCl\(_3\), 23 \(^\circ C\), \(\delta\)): \(-58.1\). These spectroscopic data correspond to previously reported data11.

Synthesis of ethyl 4-(trifluoromethoxy)benzoate11 (22) on gram scale

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (1.65 g, 6.00 mmol, 2.00 equiv), sodium bicarbonate (594 mg, 6.00 mmol, 2.00 equiv), and ethyl 4-(tributylstannyl)benzoate16 (1.32 g, 3.00 mmol, 1.00 equiv) in anhydrous THF (12.0 mL) at \(-30^\circ C\) was added trifluoromethyl trifluoromethanesulfonate (3) (2.6 g, 1.8 mL, 12 mmol, 4.0 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at \(-30^\circ C\) for 30 minutes, then a solution cooled to \(-30^\circ C\) of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (1.69 g, 3.60 mmol, 1.20 equiv) and silver hexafluorophosphate (1.52 mg, 6.00 mmol, 2.00 equiv) in dry acetone (36.0 mL) was added by cannula. The reaction mixture was stirred for 2 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH\(_2\)Cl\(_2\) and the filtrate concentrated in vacuo at 5 °C. The residue was purified via column chromatography on silica gel eluting with pentane/CH\(_2\)Cl\(_2\) 1:1 (v/v) to afford 563 mg of the title compound as a light yellow oil (80% yield).

R\(_f\) = 0.89 (pentane/CH\(_2\)Cl\(_2\) 1:1 (v/v)). NMR Spectroscopy: \(^1\)H NMR (400 MHz, CDCl\(_3\), 23 °C, \(\delta\)): 8.09 (d, \(J = 9.2\) Hz, 2H), 7.26 (d, \(J = 9.2\) Hz, 2H), 4.39 (q, \(J = 7.2\) Hz, 2H), 1.40 (t, \(J = 6.8\) Hz, 2H). \(^13\)C NMR (100 MHz, CDCl\(_3\), 23 °C, \(\delta\)): 165.6, 152.7 (q, \(J = 2\) Hz), 131.6, 129.1, 120.5, 120.4 (q, \(J = 257\) Hz), 61.4, 14.4. \(^19\)F NMR (375 MHz, CDCl\(_3\), 23 °C, \(\delta\)): \(-58.1\). These spectroscopic data correspond to previously reported data17.

\textbf{1-Methoxy-2-(trifluoromethoxy)benzene12 (26)}

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (275 mg, 1.00 mmol, 2.00 equiv), sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv), and tributyl(2-methoxyphenyl)stannane13 (41) (199 mg, 0.500 mmol, 1.00 equiv) in anhydrous THF (2.00 mL) at \(-30^\circ C\) was added trifluoromethyl trifluoromethanesulfonate (3) (0.45 g, 0.30 mL, 2.1 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at \(-30^\circ C\) for 30 minutes, then a solution cooled to \(-30^\circ C\) of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane

bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) was added by cannula. The reaction mixture was stirred for 2.5 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo at 5 °C. The residue was purified via column chromatography on silica gel eluting with pentane/CH₂Cl₂ 9:1 (v/v) to afford 74 mg of the title compound as a clear oil (77% yield).

Rᵣ = 0.57 (pentane/CH₂Cl₂ 9:1 (v/v)). NMR Spectroscopy:

1H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.24–7.23 (m, 2H), 6.99 (d, J = 7.8 Hz, 1H), 6.93 (t, J = 7.8 Hz, 1H), 3.87 (s, 3H).

13C NMR (125 MHz, CDCl₃, 23 °C, δ): 152.2, 138.3 (q, J = 2 Hz), 128.0, 123.0, 120.8 (q, J = 257 Hz), 120.7, 113.1, 56.1.

19F NMR (470 MHz, CDCl₃, 23 °C, δ): –58.6. These spectroscopic data correspond to previously reported data.

$\text{N-}\text{Boc-4-(trifluoromethoxy)-L-phenylalanine methyl ester (29)}$

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (275 mg, 1.00 mmol, 2.00 equiv), sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv), and $\text{N-}\text{Boc-4-(tributylstannyl)-L-phenylalanine methyl ester (17)}$ (284 mg, 0.500 mmol, 1.00 equiv) in anhydrous THF (2.00 mL) at –30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.45 g, 0.30 mL, 2.1 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at –30 °C for 30 minutes, then a solution cooled to –30 °C of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) was added by cannula. The reaction mixture was stirred for 2.5 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with CH₂Cl₂ to afford 136 mg of the title compound as a white solid (75% yield).
Rf = 0.29 (CH2Cl2). NMR Spectroscopy: 1H NMR (500 MHz, CDCl3, 23 °C, δ): 7.17–7.12 (m, 4H), 4.99 (d, J = 7.7 Hz, 1H), 4.60–4.58 (m, 1H), 3.71 (s, 3H), 3.17–3.00 (m, 1H), 1.41 (s, 9H). 13C NMR (125 MHz, CDCl3, 23 °C, δ): 172.2, 155.1, 148.5, 135.0, 130.8, 121.1, 120.6 (q, J = 255 Hz), 80.2, 54.4, 52.5, 38.0, 28.4. 19F NMR (470 MHz, CDCl3, 23 °C, δ): −58.3. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C16H20F3NO5Na [M + Na]+, 386.1186. Found, 386.1190.

3-Deoxy-3-trifluoromethoxyestrone (30)

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (275 mg, 1.00 mmol, 2.00 equiv), sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv), and 3-deoxy-3-(tributylstannyl)estrone (18) (272 mg, 0.500 mmol, 1.00 equiv) in anhydrous THF (2.00 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.45 g, 0.30 mL, 2.1 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) was added by cannula. The reaction mixture was stirred for 4 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH2Cl2 and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with CH2Cl2 to afford 122 mg of the title compound as a white solid (72% yield).

Rf = 0.42 (CH2Cl2). NMR Spectroscopy: 1H NMR (500 MHz, CDCl3, 23 °C, δ): 7.29 (d, J = 8.7 Hz, 1H), 6.99 (d, J = 8.7 Hz, 1H), 6.94 (s, 1H), 2.92 (dd, J = 8.5 Hz, 3.5 Hz, 2 H), 2.51 (dd, J = 18.5 Hz, 8.5 Hz, 1 H), 2.42–2.39 (m, 1 H), 2.30–2.26 (m, 1 H), 2.19–2.11 (m, 1 H), 2.09–2.02 (m, 2 H), 1.99–1.96 (m, 1 H), 1.66–1.44 (m, 6 H), 0.92 (s, 3 H). 13C NMR (125 MHz, CDCl3, 23 °C, δ): 220.7, 147.4 (q, J = 2 Hz), 138.6, 138.5, 126.8, 121.1, 120.5 (q, J = 255 Hz), 118.3, 50.5, 48.0, 44.2, 38.1, 35.9, 31.7, 29.5, 26.4, 25.9, 21.7, 13.9. 19F NMR (375 MHz, CDCl3, 23 °C, δ): −58.2. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C20H22F3O2 [M + H]+, 339.1566. Found, 339.1565.
N-Boc-4-(tributylstannyl)-L-phenylalanyl-L-phenylalanine methyl ester (42)

To N-Boc-4-(tributylstannyl)-L-phenylalanine (422 mg, 0.742 mmol, 1.00 equiv) and L-phenylalanine methyl ester hydrochloride (160 mg, 0.742 mmol, 1.00 equiv) in CH$_2$Cl$_2$ (30 mL) at 0 ºC was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) (427 mg, 2.23 mmol, 3.00 equiv), 1-hydroxybenzotriazole (HOBt) (201 mg, 1.49 mmol, 2.00 equiv), N,N-diisopropylethylamine (288 mg, 388 µL, 2.23 mmol, 3.00 equiv) and 4-(dimethylamino)pyridine (9.1 mg, 0.074 mmol, 0.10 equiv). After stirring for 1 hr at 0 ºC, the reaction mixture was warmed to 23 ºC and further stirred for 12 hr. The reaction mixture was quenched with water (10 mL), and CH$_2$Cl$_2$ (5 mL) was added. The phases were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (2 × 5 mL). The combined organic phases were washed with brine (5 mL) and dried (Na$_2$SO$_4$). The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 3:1 (v/v), to afford 389 mg of the title compound as a colorless foam (73% yield).

R$_f$ = 0.30 (hexanes/EtOAc 3:1 (v/v)). NMR Spectroscopy: 1H NMR (500 MHz, CDCl$_3$, 23 ºC, δ): 7.39 (d, J = 7.3 Hz, 2H), 7.23–7.21 (m, 3H), 7.15 (d, J = 6.9 Hz, 2H), 6.97 (dd, J = 7.3 Hz, 1.8 Hz, 2H), 6.38 (d, J = 6.9 Hz, 1H), 4.90 (br s, 1H), 4.80 (br s, 1H), 4.35 (br s, 1H), 3.68 (s, 3H), 3.09–2.99 (m, 4H), 1.55–1.50 (m, 6H), 1.38 (s, 9H), 1.36–1.29 (m, 6H), 1.05–1.01 (m, 6H), 0.87 (t, J = 7.3 Hz, 9H). 13C NMR (125 MHz, CDCl$_3$, 23 ºC, δ): 171.5, 171.0, 155.4, 140.4, 136.9, 136.2, 135.8, 129.3, 129.1, 129.0, 128.6, 127.2, 80.3, 55.6, 53.4, 52.4, 38.1, 29.1, 28.3, 27.5, 13.8, 9.7. These spectroscopic data correspond to previously reported data.

N-Boc-4-(trifluoromethoxy)-L-phenylalanyl-L-phenylalanine methyl ester (31)
To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (273 mg, 0.992 mmol, 2.00 equiv), sodium bicarbonate (83.0 mg, 0.992 mmol, 2.00 equiv), and N-Boc-4-(tributylstannyl)-L-phenylalanyl-L-phenylalanine methyl ester (42) (355 mg, 0.496 mmol, 1.00 equiv) in anhydrous THF (2.00 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (0.45 g, 0.30 mL, 2.1 mmol, 4.1 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) in dry acetone (6.0 mL) was added by cannula. The reaction mixture was stirred for 2 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH$_2$Cl$_2$ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with hexanes/acetone 3:1 (v/v) to afford 170 mg of the title compound as a white solid (67% yield).

R$_f$ = 0.45 (hexanes/acetone 3:1 (v/v)). NMR Spectroscopy: 1H NMR (500 MHz, CDCl$_3$, 23 °C, δ): 7.25–7.23 (m, 3H), 7.20 (d, J = 8.3 Hz , 1H), 7.12 (d, J = 7.8 Hz , 1H), 7.01 (dd, J = 7.8 Hz, 2.0 Hz, 1 H), 6.26–6.24 (m, 1H), 4.93–4.91 (m, 1H), 4.78–4.77 (m, 1H), 4.32–4.31 (m, 1H), 3.69 (s, 3H), 3.12–2.99 (m, 5H), 1.40 (s, 9H). 13C NMR (125 MHz, CDCl$_3$, 23 °C, δ): 171.5, 170.6, 155.4, 148.4, 135.6, 130.9, 129.3, 128.7, 127.3, 120.6 (q, J = 255 Hz), 121.2, 115.6, 80.5, 55.7, 53.3, 52.5, 38.0, 37.8, 28.3. 19F NMR (375 MHz, CDCl$_3$, 23 °C, δ): −58.3. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C$_{25}$H$_{30}$F$_3$N$_2$O$_6$ [M + H]$^+$, 511.2051. Found, 511.2040.

3-(Trifluoromethanesulfonyl)morphine14 (39)

To morphine (23.7 g, 83.1 mmol, 1.00 equiv) in CH$_2$Cl$_2$ (500 mL) was added N-phenyltriflimide (30.0 g, 84.0 mmol, 1.01 equiv) and triethylamine (24.8 g, 34.0 mL, 0.245 mol, 2.95 equiv). The reaction mixture was stirred at reflux for 10 hours. The reaction was cooled to 23 °C and diluted with CH$_2$Cl$_2$ (250 mL). The organic phase was

washed with NaHCO₃ (30 mL) and the aqueous layer was extracted with CH₂Cl₂ (3 × 150 mL). The combined organic phases were washed with brine (500 mL) and dried with Na₂SO₄. The filtrate was concentrated in vacuo and the resulting residue the residue was purified by chromatography on silica gel eluting with CH₂Cl₂/MeOH 9:1 (v/v) to afford 30.5 g of the title compound as a light beige solid (88% yield).

R_f = 0.53 (CH₂Cl₂/MeOH 9:1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 6.89 (d, J = 8.4 Hz, 1H), 6.64 (d, J = 8.4 Hz, 1H), 5.72–5.69 (m, 1H), 5.30–5.26 (m, 1H), 5.02 (d, J = 6.4 Hz, 1H), 4.24–4.16 (m, 1H), 3.38 (dd, J = 5.9 Hz, 3.3 Hz, 1H), 3.08 (d, J = 18.8 Hz, 1H), 2.92–2.90 (m, 1H), 2.70 (t, J = 2.6 Hz, 1H), 2.61 (dd, J = 13.2, Hz, 4.6 Hz, 1H), 2.44 (s, 3H), 2.42–2.28 (m, 2H), 2.10 (dt, J = 12.4 Hz, 5.1 Hz, 1H), 1.90 (d, J = 7.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, 23 °C, δ): 149.7, 135.8, 133.9, 130.8, 129.7, 128.3, 121.3, 120.4, 118.8 (q, J = 323 Hz), 93.7, 66.6, 58.7, 46.2, 43.5, 43.2, 40.6, 35.3, 21.1. ¹⁹F NMR (375 MHz, CDCl₃, 23 °C, δ): –73.4. These spectroscopic data correspond to previously reported data.

Methyl 3-(trifluoromethanesulfonyl)normorphine-carboxylate (40)

To 3-trifluoromethanesulfonyl morphine (39) (4.50 g, 10.8 mmol, 1.00 equiv) in CHCl₃ (110 mL) was added NaHCO₃ (13.6 g, 0.162 mol, 15.0 equiv) and methyl chloroformate (17.4 g, 14.2 mL, 0.183 mol, 17.0 equiv). The reaction mixture was stirred at reflux for 18 h. The reaction was cooled to 23 °C and quenched with H₂O (100 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL). The combined organic phases were washed with brine (100 mL) and dried with Na₂SO₄. The filtrate was concentrated in vacuo and the resulting residue the residue was purified by chromatography on silica gel eluting with hexanes/EtOAc 2:3 (v/v) to afford 4.67 g of the title compound as a pale yellow solid (94% yield).

R_f = 0.29 (hexanes/EtOAc 2:3 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 6.93 (d, J = 8.3 Hz, 1H), 6.65 (d, J = 8.3 Hz, 1H), 5.76 (d, J = 9.2 Hz, 1H), 5.31–5.28 (m, 1H), 5.02 (d, J = 6.5 Hz, 1H), 4.85–4.84 (m, 1H), 4.20–4.03 (m, 2H), 3.75 (s, 3H)*, 3.00–2.87 (m, 3H), 2.79 (d, J = 19.0 Hz, 1H), 2.57 (s, 1H), 2.00–1.91 (m,
13C NMR (125 MHz, CDCl$_3$, 23 °C, δ): 149.8, 135.0, 134.7, 132.8, 131.0, 127.1, 126.9, 121.8, 120.4, 118.8 (q, $J = 320$ Hz), 93.5, 66.3, 53.0, 50.0, 43.9, 39.6*, 37.3, 35.1, 30.1*. 19F NMR (470 MHz, CDCl$_3$, 23 °C, δ): ±73.4.

Mass Spectrometry: HRMS-FIA (m/z): Calcd for C$_{19}$H$_{18}$F$_3$NO$_7$SNa [M + Na]$^+$, 484.0648. Found, 484.0664. *Two signals attributed to a mixture of rotamers

Methyl 3-deoxy-3-(tributylstannyl)normorphine-carboxylate (19)

To a suspension of lithium chloride (551 mg, 13.0 mmol, 3.00 equiv), hexabutylditin (5.03 g, 4.38 mL, 8.67 mmol, 2.00 equiv), and methyl 3-(trifluoromethanesulfonyl)normorphine-carboxylate (40) (2.00 g, 4.33 mmol, 1.00 equiv) in anhydrous dioxane (40.0 mL) at 25 °C was added palladium tetraakis triphenylphosphine (250 mg, 0.217 mmol, 0.0500 equiv). The reaction mixture was heated and stirred at 105 °C for 24 hours, then cooled to room temperature. The reaction mixture was filtered through a pad of celite eluting with CH$_2$Cl$_2$, and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with hexanes/EtOAc 1:1 (v/v) to afford 1.51 g of the title compound as a light yellow oil (58% yield).

R$_f$ = 0.85 (hexanes/EtOAc 2:3 (v/v)). NMR Spectroscopy: 1H NMR (500 MHz, CDCl$_3$, 23 °C, δ): 7.08 (d, $J = 7.3$ Hz, 1H), 6.62 (d, $J = 7.3$ Hz, 1H), 5.72 (d, $J = 9.2$ Hz, 1H), 5.32–5.26 (m, 1H), 4.96 (s (rotamers), 1H), 4.76 (dd, $J = 6.6$ Hz, 1.1 Hz, 1H), 4.18–4.11 (m, 1H), 4.00 (dd, $J = 13.5$ Hz, 4.0 Hz, 1H), 3.73 (s, 3H)*, 3.06–2.69 (m, 4H), 2.53 (s, 1H), 1.96–1.85 (m, 2H), 1.61–1.42 (m, 6H), 1.37–1.24 (m, 6H), 1.15–0.98 (m, 6H), 0.88 (t, $J = 5.3$ Hz, 9H). 13C NMR (100 MHz, CDCl$_3$, 23 °C, δ): 165.3, 155.9, 136.2, 134.6, 134.4, 127.3, 126.3, 119.6, 116.4, 89.3, 66.6, 52.9, 53.6, 42.8, 40.1*, 37.6, 35.7, 30.2*, 29.3, 27.4, 13.8, 9.8. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C$_{30}$H$_{45}$NO$_4$SnNa [M + Na]$^+$, 626.2262. Found, 626.2251. *Two signals attributed to a mixture of rotamers
Methyl 3-deoxy-3-(trifluoromethoxy)normorphine-carboxylate (32)

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (497 mg, 1.80 mmol, 2.00 equiv), and sodium bicarbonate (151 mg, 1.80 mmol, 2.00 equiv) in anhydrous THF (3.60 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (786 mg, 524 µL, 3.6 mmol, 4.0 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −30 °C for 30 minutes, then a solution cooled to −30 °C of 1-chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (509 mg, 1.08 mmol, 1.20 equiv) and silver hexafluorophosphate (456 mg, 1.80 mmol, 2.00 equiv) in dry acetone (8.0 mL) was added by cannula. Immediately afterwards, a solution of methyl 3-deoxy-3-tributylstannyl-normorphine-carboxylate (19) (543 mg, 0.901 mmol, 1.00 equiv) in dry acetone (2.8 mL) is added dropwise. The reaction mixture was stirred for 4 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH$_2$Cl$_2$ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with hexanes/acetone 3:1 (v/v) to afford 212 mg of the title compound as a white foam (59% yield).

$R_f = 0.24$ (hexanes/acetone 3:1 (v/v)). NMR Spectroscopy: 1H NMR (500 MHz, CDCl$_3$, 23 °C, δ): 6.94 (d, $J = 8.3$ Hz, 1H), 6.62 (d, $J = 8.3$ Hz, 1H), 5.75 (d, $J = 8.8$ Hz, 1H), 5.31–5.26 (m, 1H), 4.98–4.82 (m, 2H), 4.19–4.02 (m, 2H), 3.73 (s, 3H), 3.02–2.76 (m, 3H), 2.55 (s, 1H), 2.00–1.90 (m, 2H). 13C NMR (100 MHz, CDCl$_3$, 23 °C, δ): 155.9, 150.2, 134.4, 133.2, 131.8, 130.5, 127.2, 123.1, 120.8 (q, $J = 257$ Hz), 120.5, 92.4, 66.2, 53.0, 50.0, 43.6, 39.5*, 37.4, 35.3, 29.9*. 19F NMR (375 MHz, CDCl$_3$, 23 °C, δ): −59.2. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C$_{18}$H$_{19}$F$_3$NO$_2$ [M + H]$^+$, 398.1210. Found, 398.1212. *Two signals attributed to a mixture of rotamers

99
6-(Trifluromethoxy)quinoline (33)

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (511 mg, 2.00 mmol, 4.00 equiv), and sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv) in anhydrous THF (2.00 mL) at −50 °C was added trifluoromethyl trifluoromethanesulfonate (3) (600 mg, 400 µL, 2.8 mmol, 5.5 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −50 °C for 30 minutes, then a solution of silver hexafluorophosphate (253 mg, 1.00 mmol, 2.00 equiv) in dry acetone (1.25 mL) was added dropwise concurrently as a separate solution of 6-(tributylstannyl)quinoline (13) (209 mg, 0.500 mmol, 1.00 equiv) in dry acetone (1.75 mL) was added dropwise at −50 °C. A solution of 1-chloromethyl-4-fluoro-1,4-diaziobicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (471 mg, 1.00 mmol, 2.00 equiv) in dry acetone (3 mL) was then slowly added dropwise over 5 minutes at −50 °C. The reaction mixture was stirred for 3 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with hexanes/acetone 3:1 (v/v) to afford 15.0 mg of the title compound as a clear oil (14% yield). The experiment was repeated to give 16% yield.

Rᶠ = 0.40 (hexanes/acetone 3:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃, 23 °C, δ): 8.96 (d, J = 2.7 Hz, 1H), 8.19–8.16 (m, 2H), 7.66 (s, 1H), 7.59 (d, J = 9.2 Hz, 1H), 7.48 (dd, J = 8.2 Hz, 4.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 150.8, 147.2, 146.4, 136.3, 131.8, 128.6, 123.9, 122.2, 117.9. The OCF₃ carbon was not observed in the ¹³C NMR due to insufficient quantity of the product. ¹⁹F NMR (375 MHz, CDCl₃, 23 °C, δ): −58.2. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C₁₀H₇F₃NO [M + H]+, 214.0481. Found, 214.0480.
1-Fluoro-4-(trifluoromethoxy)benzene (5)

To a solution of sodium hydroxide in anhydrous methanol (1.00 N, 0.500 mL, 1.00 equiv) at 23 ºC was added 4-fluorophenylboronic acid (34) (86.0 mg, 0.500 mmol, 1.00 equiv) and stirred for 15 minutes. The reaction mixture was then cooled to 0 ºC and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) was added and the suspension was stirred for 30 minutes at 0 ºC. The solvent was removed under reduced pressure at 0 ºC, and the residual methanol was removed under reduced pressure by co-evaporation with anhydrous THF (2 × 0.500 mL). To the residue was added anhydrous THF (2.0 mL) and then tris(dimethylamino)sulfonium difluorotrimethylsilicate (276 mg, 1.00 mmol, 2.00 equiv) and sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv) successively. The reaction was cooled to −30 ºC and to the suspension was added trifluoromethyl trifluoromethanesulfonate (3) (0.60 g, 0.40 mL, 2.8 mmol, 5.5 equiv) and the suspension was then stirred at −30 ºC for 30 minutes. A solution of 1-chloromethyl-4-fluoro-1,4-diaziobicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv.) in dry acetone (6.0 mL) was added. The suspension was stirred for 1 hour and 3-nitrofluorobenzene (20.0 µL, 0.188 mmol) was added to the reaction mixture. The yield (67 %) was determined by comparing integration of the peak of 1-fluoro-4-(trifluoromethoxy)benzene (−117.0 ppm) with that of 3-nitrofluorobenzene (−112.0 ppm).

4-(Trifluoromethoxy)biphenyl (21)

To a solution of sodium hydroxide in anhydrous methanol (1.00 N, 0.500 mL, 1.00 equiv) at 23 ºC was added biphenyl boronic acid (99.0 mg, 0.500 mmol, 1.00 equiv) and stirred for 15 minutes. The reaction mixture was then cooled to 0 ºC and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) was added and the suspension was
stirred for 30 minutes at 0 °C. The solvent was removed under reduced pressure at 0 °C, and the residual methanol was removed under reduced pressure by co-evaporation with anhydrous THF (2 × 0.500 mL). To the residue was added anhydrous THF (2.0 mL) and then tris(dimethylamino)sulfonium difluorotrimethylsilicate (276 mg, 1.00 mmol, 2.00 equiv) and sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv) successively. The reaction was cooled to −30 °C and to the suspension was added trifluoromethyl trifluoromethanesulfonate (3) (0.60 g, 0.40 mL, 2.8 mmol, 5.5 equiv) and the suspension was then stirred at −30 °C for 30 minutes. A solution of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv.) in dry acetone (6.0 mL) was added. The suspension was stirred for 1 hour and then filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with pentane/CH₂Cl₂ 20:1 (v/v) to afford 86.2 mg of the title compound as a white solid (72% yield).

\[R_f = 0.53 \text{ (hexanes/CH}_2\text{Cl}_2 \ 19:1 \text{ (v/v)). NMR Spectroscopy: } ^1\text{H NMR (500 MHz, CDCl}_3 , 23 \degree \text{C, } \delta): 7.64–7.59 \text{ (m, 4H), 7.51–7.48 \text{ (m, 2 H), 7.41 \text{ (t, } J = 7.3 \text{ Hz, 1H), 7.34 \text{ (d, } J = 8.2 \text{ Hz, 2H). } ^13\text{C NMR (100 MHz, CDCl}_3 , 23 \degree \text{C, } \delta): 148.8 \text{ (q, } J = 2 \text{ Hz), 140.1, 140.0, 129.0, 128.6, 127.8, 127.3, 121.4, 120.7 \text{ (q, } J = 256 \text{ Hz). } ^19\text{F NMR (375 MHz, CDCl}_3 , 23 \degree \text{C, } \delta): –58.2. These spectroscopic data correspond to previously reported data.} \]

To a solution of sodium hydroxide in anhydrous methanol (1.00 N, 0.500 mL, 1.00 equiv) at 23 °C was added 4-methoxyphenylboronic acid (76.0 mg, 0.500 mmol, 1.00 equiv) and stirred for 15 minutes. The reaction mixture was then cooled to 0 °C and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) was added and the suspension was stirred for 30 minutes at 0 °C. The solvent was removed under reduced pressure at 0 °C, and the residual methanol was removed under reduced pressure by co-evaporation with anhydrous THF (2 × 0.500 mL). To the residue was added anhydrous THF (2.0 mL) and then tris(dimethylamino)sulfonium difluorotrimethylsilicate (276 mg, 1.00 mmol, 2.00 equiv) and sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv) successively. The

\[\text{MeO} \quad \text{B(OH)}_2 \quad \text{NaOH, MeOH; 2.0 equiv AgPF}_6; 0 \degree \text{C; evaporation; 2.0 equiv TAS \cdot OCF}_3, \text{THF 2.0 equiv NaHCO}_3, –30 \degree \text{C then 1.2 equiv F-TEDA-PF}_6, \text{acetone} \quad \text{MeO} \quad \text{OCF}_3 \quad 63\% \]

1-Methoxy-4-(trifluoromethoxy)benzene (24)

To a solution of sodium hydroxide in anhydrous methanol (1.00 N, 0.500 mL, 1.00 equiv) at 23 °C was added 4-methoxyphenylboronic acid (76.0 mg, 0.500 mmol, 1.00 equiv) and stirred for 15 minutes. The reaction mixture was then cooled to 0 °C and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) was added and the suspension was stirred for 30 minutes at 0 °C. The solvent was removed under reduced pressure at 0 °C, and the residual methanol was removed under reduced pressure by co-evaporation with anhydrous THF (2 × 0.500 mL). To the residue was added anhydrous THF (2.0 mL) and then tris(dimethylamino)sulfonium difluorotrimethylsilicate (276 mg, 1.00 mmol, 2.00 equiv) and sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv) successively. The
reaction was cooled to −30 ºC and to the suspension was added trifluoromethyl trifluoromethanesulfonate (3) (0.60 g, 0.40 mL, 2.8 mmol, 5.5 equiv) and the suspension was then stirred at −30 ºC for 30 minutes. A solution of 1-chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv.) in dry acetone (6.0 mL) was added. The suspension was stirred for 1 hour and then filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with pentane/Et₂O 5:1 (v/v) to afford 60.5 mg of the title compound as a pale yellow oil (63% yield).

Rᵣ = 0.48 (pentane/CH₂Cl₂ 9:1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 ºC, δ): 7.15 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 23 ºC, δ): 158.3, 142.9 (q, J = 2 Hz), 122.6, 120.8 (q, J = 254 Hz), 114.8, 55.7. ¹⁹F NMR (470 MHz, CDCl₃, 23 ºC, δ): −58.9. These spectroscopic data correspond to those obtained from an authentic sample purchased from Strem.

To a solution of sodium hydroxide in anhydrous methanol (1.00 N, 0.500 mL, 1.00 equiv) at 23 ºC was added N-Boc-indol-5-ylboronic acid (130.5 mg, 0.500 mmol, 1.00 equiv) and stirred for 15 minutes. The reaction mixture was then cooled to 0 ºC and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) was added and the suspension was stirred for 30 minutes at 0 ºC. The solvent was removed under reduced pressure at 0 ºC, and the residual methanol was removed under reduced pressure by co-evaporation with anhydrous THF (2 × 0.500 mL). To the residue was added anhydrous THF (2.0 mL) and then tris(dimethylamino)sulfonium difluorotrimethylsilicate (276 mg, 1.00 mmol, 2.00 equiv) and sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv) successively. The reaction was cooled to −30 ºC and to the suspension was added trifluoromethyl trifluoromethanesulfonate (3) (0.60 g, 0.40 mL, 2.8 mmol, 5.5 equiv) and the suspension was then stirred at −30 ºC for 30 minutes. A solution of 1-chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) in dry acetone (6.0 mL) was added. The suspension was stirred for 1 hour and then filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with pentane/Et₂O 5:1 (v/v) to afford 60.5 mg of the title compound as a pale yellow oil (63% yield).

Rᵣ = 0.48 (pentane/CH₂Cl₂ 9:1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 ºC, δ): 7.15 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 23 ºC, δ): 158.3, 142.9 (q, J = 2 Hz), 122.6, 120.8 (q, J = 254 Hz), 114.8, 55.7. ¹⁹F NMR (470 MHz, CDCl₃, 23 ºC, δ): −58.9. These spectroscopic data correspond to those obtained from an authentic sample purchased from Strem.

5-Trifluoromethoxy-N-Boc-indole (28)

To a solution of sodium hydroxide in anhydrous methanol (1.00 N, 0.500 mL, 1.00 equiv) at 23 ºC was added N-Boc-indol-5-ylboronic acid (130.5 mg, 0.500 mmol, 1.00 equiv) and stirred for 15 minutes. The reaction mixture was then cooled to 0 ºC and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) was added and the suspension was stirred for 30 minutes at 0 ºC. The solvent was removed under reduced pressure at 0 ºC, and the residual methanol was removed under reduced pressure by co-evaporation with anhydrous THF (2 × 0.500 mL). To the residue was added anhydrous THF (2.0 mL) and then tris(dimethylamino)sulfonium difluorotrimethylsilicate (276 mg, 1.00 mmol, 2.00 equiv) and sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv) successively. The reaction was cooled to −30 ºC and to the suspension was added trifluoromethyl trifluoromethanesulfonate (3) (0.60 g, 0.40 mL, 2.8 mmol, 5.5 equiv) and the suspension was then stirred at −30 ºC for 30 minutes. A solution of 1-chloromethyl-4-fluoro-1,4-diazeniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) in dry acetone (6.0 mL) was added. The suspension was stirred for 1 hour and then filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with pentane/Et₂O 5:1 (v/v) to afford 60.5 mg of the title compound as a pale yellow oil (63% yield).

Rᵣ = 0.48 (pentane/CH₂Cl₂ 9:1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 ºC, δ): 7.15 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 23 ºC, δ): 158.3, 142.9 (q, J = 2 Hz), 122.6, 120.8 (q, J = 254 Hz), 114.8, 55.7. ¹⁹F NMR (470 MHz, CDCl₃, 23 ºC, δ): −58.9. These spectroscopic data correspond to those obtained from an authentic sample purchased from Strem.
equiv.) in dry acetone (6.0 mL) was added. The suspension was stirred for 1 hour and then filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with pentane/CH₂Cl₂ 10:1 (v/v) to afford 114 mg of the title compound as a pale yellow oil (76% yield).

Rᵣ = 0.70 (hexanes/CH₂Cl₂ 1:1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 8.17 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 3.4 Hz, 1H), 7.42 (s, 1H), 7.18 (d, J = 7.3 Hz, 1H), 6.57 (d, J = 3.4 Hz, 1H), 1.68 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 149.4, 145.0 (q, J = 2 Hz), 133.6, 131.3, 127.8, 123.9 (q, J = 256 Hz), 117.8, 116.1, 113.4, 107.2, 84.3, 28.3. ¹⁹F NMR (375 MHz, CDCl₃, 23 °C, δ): ±58.5. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C₉H₇F₃NO [M + C₅H₉O₂(Boc) + H]⁺, 202.0480. Found, 202.0485.

2-(Trifluoromethoxy)naphthalene¹⁵ (34)

To a solution of sodium hydroxide in anhydrous methanol (1.00 N, 0.500 mL, 1.00 equiv) at 23 °C was added 2-naphthylboronic acid (30) (86.0 mg, 0.500 mmol, 1.00 equiv) and stirred for 15 minutes. The reaction mixture was then cooled to 0 °C and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) was added and the suspension was stirred for 30 minutes at 0 °C. The solvent was removed under reduced pressure at 0 °C, and the residual methanol was removed under reduced pressure by co-evaporation with anhydrous THF (2 × 0.500 mL). To the residue was added anhydrous THF (2.0 mL) and then tris(dimethylamino)sulfonium difluorotrimethylsilicate (276 mg, 1.00 mmol, 2.00 equiv) and sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv) successively. The reaction was cooled to −30 °C and to the suspension was added trifluoromethyl trifluoromethanesulphonate (3) (0.60 g, 0.40 mL, 2.8 mmol, 5.5 equiv) and the suspension was then stirred at −30 °C for 30 minutes. A solution of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv.) in dry acetone (6.0 mL) was added. The suspension was stirred for 1 hour and then filtered through a pad of

celite eluting with CH$_2$Cl$_2$ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with pentane/CH$_2$Cl$_2$ 9:1 (v/v) to afford 68.2 mg of the title compound as a pale yellow oil (64% yield).

$R_f = 0.75$ (pentane/CH$_2$Cl$_2$ 9:1 (v/v)). NMR Spectroscopy: 1H NMR (500 MHz, CDCl$_3$, 23 ºC, δ): 7.89–7.83 (m, 3H), 7.68 (s, 1H), 7.56–7.52 (m, 2H), 7.35 (d, J = 7.3 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$, 23 ºC, δ): 147.0 (q, J = 2 Hz), 133.7, 131.9, 130.2, 127.9, 127.2, 126.5, 120.8 (q, J = 258 Hz), 120.3, 118.3.* 19F NMR (375 MHz, CDCl$_3$, 23 ºC, δ): -59.2. These spectroscopic data correspond to previously reported data.\footnote{Only 9 aromatic carbon signals observed due to overlap of two carbon signals.}

Methyl 3-methyl-5-(trifluoromethoxy)benzoate (35)

To a solution of sodium hydroxide in anhydrous methanol (1.00 N, 0.500 mL, 1.00 equiv) at 23 ºC was added 3-methoxycarbonyl-5-methylphenylboronic acid (32) (97.0 mg, 0.500 mmol, 1.00 equiv) and stirred for 15 minutes. The reaction mixture was then cooled to 0 ºC and silver hexafluorophosphate (252 mg, 1.00 mmol, 2.00 equiv) was added and the suspension was stirred for 30 minutes at 0 ºC. The solvent was removed under reduced pressure at 0 ºC, and the residual methanol was removed under reduced pressure by co-evaporation with anhydrous THF (2 × 0.500 mL). To the residue was added anhydrous THF (2.0 mL) and then tris(dimethylamino)sulfonium difluorotrimethylsilicate (276 mg, 1.00 mmol, 2.00 equiv) and sodium bicarbonate (84.0 mg, 1.00 mmol, 2.00 equiv) successively. The reaction was cooled to −30 ºC and to the suspension was added trifluoromethyl trifluoromethanesulfonate (3) (0.60 g, 0.40 mL, 2.8 mmol, 5.5 equiv) and the suspension was then stirred at −30 ºC for 30 minutes. A solution of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv.) in dry acetone (6.0 mL) was added. The suspension was stirred for 1 hour and then filtered through a pad of celite eluting with CH$_2$Cl$_2$ and the filtrate concentrated in vacuo. The residue was
purified via column chromatography on silica gel eluting with pentane/CH₂Cl₂ 4:1 (v/v) to afford 75.6 mg of the title compound as a colorless oil (65% yield).

Rₐ = 0.57 (pentane/CH₂Cl₂ 3:1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.80 (s, 1H), 7.69 (s, 1H), 7.22 (s, 1H), 3.93 (s, 3H), 2.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 166.1, 149.3 (q, J = 2 Hz), 140.6, 131.9, 128.8, 126.2, 120.6 (q, J = 258 Hz), 119.3, 52.6, 21.4. ¹⁹F NMR (470 MHz, CDCl₃, 23 °C, δ): −59.4.

4.2. Synthesis of 3-deoxy-3-fluoromorphine

Methyl 3-deoxy-3-fluoro-normorphine-carboxylate (37)

To a suspension of tris(dimethylamino)sulfonium difluorotrimethylsilicate (551 mg, 2.00 mmol, 4.00 equiv), and sodium bicarbonate (84.0 mg, 1.80 mmol, 2.00 equiv) in anhydrous THF (2.00 mL) at −30 °C was added trifluoromethyl trifluoromethanesulfonate (3) (763 mg, 510 μL, 3.5 mmol, 7.0 equiv), and the suspension was stirred vigorously. The reaction mixture was stirred at −50 °C for 30 minutes, then a solution cooled to −50 °C of 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (2) (282 mg, 0.600 mmol, 1.20 equiv) and silver hexafluorophosphate (253 mg, 1.00 mmol, 2.00 equiv) in dry acetone (4.00 mL) was added by cannula. Immediately afterwards, a solution of methyl 3-deoxy-3-tributylstannyl-normorphine-carboxylate (19) (301 mg, 0.500 mmol, 1.00 equiv) in dry acetone (2.00 mL) is added dropwise. The reaction mixture was stirred for 4 hours in the dark, then warmed to 23 °C. The reaction mixture was filtered through a pad of celite eluting with CH₂Cl₂ and the filtrate concentrated in vacuo. The residue was purified via column chromatography on silica gel eluting with hexanes/acetone 3:1 (v/v) and then by prepTLC with EtOAc/hexanes 3:2 (v/v) as the eluent to afford 39.0 mg of the title compound as a clear foam (24% yield).

Rₐ = 0.29 (EtOAc/hex 3:2 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 6.83 (dd, J = 2.3 Hz, 9.5 Hz, 1H), 6.56 (dd, J = 5.5 Hz, 11.5 Hz, 1H), 5.77 (d, J = 8.5 Hz, 1H), 5.33–5.27 (m, 1H), 4.98–4.82 (m, 2H),
4.22–4.00 (m, 3H), 3.75 (s, 3H),* 3.03–2.73 (m, 3H), 2.55 (s, 1H), 1.99–1.90 (m, 2H). 13C NMR (100 MHz, CDCl$_3$, 23 °C, δ): 155.6, 145.6 (d, J = 244 Hz), 134.4, 134.2, 131.9, 129.1, 127.0 (d, J = 19.8 Hz), 120.3, 116.6 (d, J = 18.3 Hz), 92.2, 66.1, 52.9, 50.2, 43.6, 39.6,* 37.3, 34.6, 29.6.* 19F NMR (280 MHz, CDCl$_3$, 23 °C, δ): –139.2. Mass Spectrometry: HRMS-FIA (m/z): Calcd for C$_{18}$H$_{18}$FNO$_4$ [M + H]$^+$, 332.1292. Found, 332.1286. *Two signals attributed to a mixture of rotamers

3-Deoxy-3-fluoromorphine (TL-270)

To methyl 3-deoxy-3-fluoro-normorphine-carboxylate (37) (34.5 mg, 0.104 mmol, 1.00 equiv) in THF (0.5 mL) is added lithium aluminum hydride (1.0 M solution in THF) (520 μL, 0.521 mmol, 5.00 equiv). The reaction mixture is stirred for 30 min at 23 °C. The reaction is quenched with 1.0 M solution of Rochelle’s salt. The resulting solution is diluted with Et$_2$O (2 mL) and stirred vigorously overnight. The aqueous layer is extracted with Et$_2$O (10 × 1 mL), washed with brine (5 mL), dried (Na$_2$SO$_4$), and the filtrate is concentrated in vacuo. The resulting residue is purified by chromatography on silica gel eluting with CH$_2$Cl$_2$/MeOH 9:1 (v/v) to afford 23.4 mg of the title compound as a white solid (78% yield).

R$_f$ = 0.05 (CH$_2$Cl$_2$/MeOH 9:1 (v/v)). NMR Spectroscopy: 1H NMR (500 MHz, CDCl$_3$, 23 °C, δ): 6.81 (dd, J = 8.5 Hz, 5.35 Hz, 1H), 6.55 (dd, J = 3.5 Hz, 3.8 Hz, 1H), 5.71 (dd, J = 1.5 Hz, 5.0 Hz, 1H), 5.30–5.28 (m, 1H), 4.95 (d, J = 6.0 Hz, 1H), 4.21–4.20 (m, 1H), 3.37 (dd, J = 3.0 Hz, 2.8 Hz, 1H), 3.07 (d, J = 18.5 Hz, 1H), 2.68 (s, 1H), 2.62 (dd, J = 4.5 Hz, 6.0 Hz, 1H), 2.43 (s, 3H), 2.40 (dt, J = 3.5 Hz, 12.3 Hz, 6.1 Hz, 1H), 2.31 (dd, J = 5.5 Hz, 9.3 Hz, 1H), 2.11 (dt, J = 5.0 Hz, 12.4 Hz, 6.1 Hz, 1H), 1.89–1.87 (m, 1H). 13C NMR (125 MHz, CDCl$_3$, 23 °C, δ): 146.4 (d, J = 244 Hz), 144.3 (d, J = 10.1 Hz), 133.26, 133.1 (d, J = 2.75 Hz), 130.3, 128.4, 119.8 (d, J = 4.58 Hz), 115.97 (d, J = 17.4 Hz), 92.4, 66.4, 58.7, 46.2, 43.2, 43.0, 40.7, 35.6, 20.6. 19F NMR (280 MHz, CDCl$_3$, 23 °C, δ): –139.8. Mass Spectrometry: HRMS-FIA (m/z): Calcd for [C$_{19}$H$_{25}$FNO$_4$ + H]$^+$, 288.1394. Found, 288.1396.