Entirety on Riemann Surfaces and the Jacobians of Finite Covers

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th>Citation</th>
<th>McMullen, Curtis T. Forthcoming. Entropy on Riemann surfaces and the Jacobians of finite covers. Commentarii Mathematici Helvetici.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:9918807</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Entropy on Riemann surfaces and the Jacobians of finite covers

Curtis T. McMullen

20 June, 2010

Abstract

This paper characterizes those pseudo-Anosov mappings whose entropy can be detected homologically by taking a limit over finite covers. The proof is via complex-analytic methods. The same methods show the natural map \(\mathcal{M}_g \to \prod A_h \), which sends a Riemann surface to the Jacobians of all of its finite covers, is a contraction in most directions.

Contents

1 Introduction 1
2 Odd order zeros 3
3 Siegel space 3
4 Teichmüller space 6
5 Contraction 7
6 Conclusion 8
A The hyperbolic metric via Jacobians of finite covers 9

Research supported in part by the NSF.

2000 Mathematics Subject Classification: 32G15, 37E30.
1 Introduction

Let \(f : S \to S \) be a pseudo-Anosov mapping on a surface of genus \(g \) with \(n \) punctures. It is well-known that the topological entropy \(h(f) \) is bounded below in terms of the spectral radius of \(f^* : H^1(S, \mathbb{C}) \to H^1(S, \mathbb{C}) \); we have

\[
\log \rho(f^*) \leq h(f).
\]

If we lift \(f \) to a map \(\tilde{f} : \tilde{S} \to \tilde{S} \) on a finite cover of \(S \), then its entropy stays the same but the spectral radius of the action on homology can increase. We say the entropy of \(f \) can be detected homologically if

\[
h(f) = \sup \log \rho(\tilde{f} : H^1(\tilde{S}) \to H^1(\tilde{S})),
\]

where the supremum is taken over all finite covers to which \(f \) lifts.

In this paper we will show:

\textbf{Theorem 1.1} The entropy of a pseudo-Anosov mapping \(f \) can be detected homologically if and only if the invariant foliations of \(f \) have no odd-order singularities in the interior of \(S \).

The proof is via complex analysis. Hodge theory provides a natural embedding \(\mathcal{M}_g \to \mathcal{A}_g \) from the moduli space of Riemann surfaces into the moduli space of Abelian varieties, sending \(X \) to its Jacobian. Any characteristic covering map from a surface of genus \(h \) to a surface of genus \(g \), branched over \(n \) points, provides a similar map

\[
\mathcal{M}_{g,n} \to \mathcal{M}_h \to \mathcal{A}_h.
\] \hspace{1cm} (1.1)

It is known that the hyperbolic metric on a Riemann surface \(X \) can be reconstructed using the metrics induced from the Jacobians of its finite covers ([Kaz]; see the Appendix). Similarly, it is natural to ask if the Teichmüller metric on \(\mathcal{M}_{g,n} \) can be recovered from the Kobayashi metric on \(\mathcal{A}_h \), by taking the limit over all characteristic covers \(\mathcal{C}_{g,n} \). We will show such a construction is impossible.

\textbf{Theorem 1.2} The natural map \(\mathcal{M}_{g,n} \to \prod_{\mathcal{C}_{g,n}} \mathcal{A}_h \) is not an isometry for the Kobayashi metric, unless \(\dim \mathcal{M}_{g,n} = 1 \).

It is an open problem to determine if the Kobayashi and Carathéodory metrics on moduli space coincide when \(\dim \mathcal{M}_{g,n} > 1 \) (see e.g. [FM, Prob 5.1]). An equivalent problem is to determine if Teichmüller space embeds holomorphically and isometrically into a (possibly infinite) product of bounded
symmetric domains. Theorem 1.2 provides some support for a negative answer to this question.

Here is a more precise version of Theorem 1.2, stated in terms of the lifted map

$$T_{g,n} \to T_h \to S_h$$

from Teichmüller space to Siegel space determined by a finite cover.

Theorem 1.3 Suppose the Teichmüller mapping between a pair of distinct points $X, Y \in T_{g,n}$ comes from a quadratic differential with an odd order zero. Then

$$\sup d(J(\tilde{X}), J(\tilde{Y})) < d(X, Y),$$

where the supremum is taken over all compatible finite covers of X and Y.

Conversely, if the Teichmüller map from X to Y has only even order singularities, then there is a double cover such that $d(J(\tilde{X}), J(\tilde{Y})) = d(X, Y)$ (cf. [Kra]). In particular, the complex geodesics generated by squares of holomorphic 1-forms map isometrically into A_g. The only directions contracted by the map $M_g \rightarrow \prod A_h$ are those identified by Theorem 1.3.

Theorem 1.1 follows from Theorem 1.3 by taking X and Y to be points on the Teichmüller geodesic stabilized by the mapping-class f. It would be interesting to find a direct topological proof of Theorem 1.1.

As a sample application, let $\beta \in B_n$ be a pseudo-Anosov braid whose monodromy map $f : S \to S$ (on the n-times punctured plane) has an odd order singularity. Then Theorem 1.1 implies the image of β under the Burau representation satisfies

$$\log \sup_{|q|=1} \rho(B(q)) < h(f).$$

Indeed, $\rho(B(q))$ at any d-th root of unit is bounded by $\rho(\tilde{f}^*)$ on a \mathbb{Z}/d cover S [Mc2]. This improves a result in [BB]. Similar statements hold for other homological representations of the mapping–class group.

Notes and references. For C^∞ diffeomorphisms of a compact smooth manifold, one has $h(f) \geq \log \sup_i \rho(f^*|H^i(X))$ [Ym], and equality holds for holomorphic maps on Kähler manifolds [Gr]. The lower bound $h(f) \geq \log \rho(f^*|H^1(X))$ also holds for homeomorphisms [Mn]. For more on pseudo-Anosov mappings, see e.g. [FLP], [Bers] and [Th].

A proof that the inclusion of $T_{g,n}$ into universal Teichmüller space is a contraction, based on related ideas, appears in [Mc1].
2 Odd order zeros

We begin with an analytic result, which describes how well a monomial z^k of odd order can be approximated by the square of an analytic function.

Theorem 2.1 Let $k \geq 1$ be odd, and let $f(z)$ be a holomorphic function on the unit disk Δ such that $\int |f(z)|^2 = 1$. Then

$$\left| \int_{\Delta} f(z)^2 \left(\frac{\overline{z}}{|z|} \right)^k \right| \leq C_k = \frac{\sqrt{k+1} \sqrt{k+3}}{k+2} < 1.$$

Here the integral is taken with respect to Lebesgue measure on the unit disk.

Proof. Consider the orthonormal basis $e_n(z) = a_n z^n$, $n \geq 0$, $a_n = \sqrt{n+1}/\sqrt{\pi}$, for the Bergman space $L^2_\alpha(\Delta)$ of analytic functions on the disk with $\|f\|^2 = \int |f(z)|^2 < \infty$. With respect to this basis, the nonzero entries in the matrix of the symmetric bilinear form $Z(f, g) = \int f(z)g(z)|z|^k/|z|^k$ are given by

$$Z(e_n, e_{k-n}) = a_n a_{k-n} \int_{\Delta} |z|^k = \frac{2\sqrt{n+1} \sqrt{k-n+1}}{k+2}.$$

In particular, $Z(e_i, e_i) = 0$ for all i (since k is odd), and $Z(e_i, e_j) = 0$ for all $i, j > k$.

Note that the ratio above is less than one, by the inequality between the arithmetic and geometric means, and it is maximized when $n < k/2 < n + 1$. Thus the maximum of $|Z(f, f)|/\|f\|^2$ over $L^2_\alpha(\Delta)$ is achieved when $f = e_n + e_{n+1}$, $n = (k-1)/2$, at which point it is given by C_k.

3 Siegel space

In this section we describe the Siegel space of Hodge structures on a surface S, and its Kobayashi metric.

Hodge structures. Let S be a closed, smooth, oriented surface of genus g. Then $H^1(S) = H^1(S, \mathbb{C})$ carries a natural involution $C(\alpha) = \overline{\alpha}$ fixing $H^1(S, \mathbb{R})$, and a natural Hermitian form

$$\langle \alpha, \beta \rangle = \frac{\sqrt{-1}}{2} \int_S \alpha \wedge \overline{\beta}$$
of signature \((g, g)\). A **Hodge structure** on \(H^1(S)\) is given by an orthogonal splitting

\[H^1(S) = V^{1,0} \oplus V^{0,1} \]

such that \(V^{1,0}\) is positive-definite and \(V^{0,1} = C(V^{1,0})\). We have a natural norm on \(V^{1,0}\) given by \(\|\alpha\|^2 = \langle \alpha, \alpha \rangle\).

The set of all possible Hodge structures forms the **Siegel space** \(\mathcal{H}(S)\). To describe this complex symmetric space in more detail, fix a splitting \(H^1(S) = W^{1,0} \oplus W^{0,1}\). Then for any other Hodge structure \(V^{1,0} \oplus V^{0,1}\), there is a unique operator \(Z : W^{1,0} \to W^{0,1}\) such that \(V^{1,0} = (I + Z)(W^{1,0})\). This means \(V^{1,0}\) coincides with the graph of \(Z\) in \(W^{1,0} \oplus W^{0,1}\).

The operator \(Z\) is determined uniquely by the associated bilinear form

\[Z(\alpha, \beta) = \langle \alpha, CZ(\beta) \rangle \]

on \(W^{1,0}\), and the condition that \(V^{1,0} \oplus V^{0,1}\) is a Hodge structure translates into the conditions:

\[Z(\alpha, \beta) = Z(\beta, \alpha) \quad \text{and} \quad |Z(\alpha, \alpha)| < 1 \quad \text{if} \quad \|\alpha\| = 1. \quad (3.1) \]

Since the second inequality above is an open condition, the tangent space at the base point \(p \sim W^{1,0} \oplus W^{0,1}\) is given by

\[T_p\mathcal{H}(S) = \{ \text{symmetric bilinear maps} \ Z : W^{1,0} \times W^{1,0} \to \mathbb{C} \}. \]

Comparison maps. Any Hodge structure on \(H^1(S)\) determines an isomorphism

\[V^{1,0} \cong H^1(S, \mathbb{R}) \quad (3.2) \]

sending \(\alpha\) to \(\text{Re}(\alpha) = (\alpha + C(\alpha))/2\). Thus \(H^1(S, \mathbb{R})\) inherits a norm and a complex structure from \(V^{1,0}\).

Put differently, (3.2) gives a **marking** of \(V^{1,0}\) by \(H^1(S, \mathbb{R})\). By composing one marking with the inverse of another, we obtain the real-linear **comparison map**

\[T = (I + Z)(I + CZ)^{-1} : W^{1,0} \to V^{1,0} \quad (3.3) \]

between any pair of Hodge structures. It is characterized by \(\text{Re}(\alpha) = \text{Re}(T(\alpha))\).
Symmetric matrices. The classical Siegel domain is given by
\[\mathcal{H}_g = \{ Z \in M_g(\mathbb{C}) : Z_{ij} = Z_{ji} \text{ and } I - ZZ^* \gg 0 \}. \]

(cf. [Sat, Ch. II.7]). It is a convex, bounded symmetric domain in \(\mathbb{C}^N, N = g(g + 1)/2 \). The choice of an orthonormal basis for \(W^{1,0} \) gives an isomorphism \(Z \mapsto Z(\omega_i, \omega_j) \) between \(\mathcal{H}(S) \) and \(\mathcal{H}_g \), sending the basepoint \(p \) to zero.

The Kobayashi metric. Let \(\Delta \subset \mathbb{C} \) denote the unit disk, equipped with the metric \(|dz|/(1 - |z|^2) \) of constant curvature \(-4\). The Kobayashi metric on \(\mathcal{H}(S) \) is the largest metric such that every holomorphic map \(f : \Delta \to \mathcal{H}(S) \) satisfies \(\|Df(0)\| \leq 1 \). It determines both a norm on the tangent bundle and a distance function on pairs of points [Ko].

Proposition 3.1 The Kobayashi norm on \(T_p \mathcal{H}(S) \) is given by
\[\|Z\|_K = \sup\{Z(\alpha, \alpha) : \|\alpha\| = 1\}, \]
and the Kobayashi distance is given in terms of the comparison map (3.3) by
\[d(V^{1,0}, W^{1,0}) = \log \|T\|. \]

Proof. Choosing a suitable orthonormal basis for \(W^{1,0} \), we can assume that
\[Z(\omega_i, \omega_j) = \lambda_i \delta_{ij} \]
with \(\lambda_1 \geq \lambda_2 \geq \cdots \lambda_g \geq 0 \). Since \(\mathcal{H}_g \) is a convex symmetric domain, the Kobayashi norm at the origin and the Kobayashi distance satisfy
\[\|Z\|_K = r \quad \text{and} \quad d(0, Z) = \frac{1}{2} \log \frac{1 + r}{1 - r}, \]
where \(r = \inf\{s > 0 : Z \in s\mathcal{H}_g\} \) (see [Ku]). But clearly \(r = \lambda_1 = \sup |Z(\alpha, \alpha)|/\|\alpha\|^2 \), and by (3.3), we have
\[\|T\|^2 = \|T(\sqrt{-1}\omega_1)\|^2 = \left\| \frac{\omega_1}{1 - \lambda_1} + \frac{\lambda_1 \omega_1}{1 - \lambda_1} \right\|^2 = \frac{1 + \lambda_1}{1 - \lambda_1}, \]
which gives the expressions above. \(\square \)
4 Teichmüller space

This section gives a functorial description of the derivative of the map from Teichmüller space to Siegel space.

Markings. Let \mathcal{S} be a compact oriented surface of genus g, and let $S \subset \mathcal{S}$ be a subsurface obtained by removing n points.

Let $\text{Teich}(S) \cong \mathcal{T}_{g,n}$ denote the Teichmüller space of Riemann surfaces marked by S. A point in $\text{Teich}(S)$ is specified by a homeomorphism $f : S \rightarrow X$ to a Riemann surface of finite type. This means there is a compact Riemann surface $\overline{X} \supset X$ and an extension of f to a homeomorphism $\overline{f} : \overline{S} \rightarrow \overline{X}$.

Metrics. Let $Q(X)$ denote the space of holomorphic quadratic differentials on X such that

$$\|q\|_X = \int_X |q| < \infty.$$

There is a natural pairing $(q, \mu) \mapsto \int_X q\mu$ between the space $Q(X)$ and the space $M(X)$ of L^∞-measurable Beltrami differentials μ. The tangent and cotangent spaces to Teichmüller space at X are isomorphic to $M(X)/Q(X)^\perp$ and $Q(X)$ respectively.

The Teichmüller and Kobayashi metrics on $\text{Teich}(S)$ coincide [Roy1], [Hub, Ch. 6]. They are given by the norm

$$\|\mu\|_T = \sup \left\{ \left| \int_X q\mu \right| : \|q\|_X = 1 \right\}$$

on the tangent space at X; the corresponding distance function

$$d(X, Y) = \inf \frac{1}{2} \log K(\phi)$$

measures the minimal dilatation $K(\phi)$ of a quasiconformal map $\phi : X \rightarrow Y$ respecting their markings.

Hodge structure. The periods of holomorphic 1-forms on X serve as classical moduli for X. From a modern perspective, these periods give a map

$$J : \text{Teich}(S) \rightarrow \mathfrak{H}(\mathcal{S}) \cong \mathfrak{H}_g,$$

sending X to the Hodge structure

$$H^1(\mathcal{S}) \cong H^1(X) \cong H^{1,0}(X) \oplus H^{0,1}(X).$$

Here the first isomorphism is provided by the marking $\overline{f} : \overline{S} \rightarrow \overline{X}$. We also have a natural isomorphism between $H^{1,0}(X)$ and the space of holomorphic
1-forms $\Omega(X)$. The image $J(X)$ encodes the complex analytic structure of the Jacobian variety $\text{Jac}(X) = \Omega(X)^*/H_1(X,Z)$. (It does not depend on the location of the punctures of X.)

Proposition 4.1 The derivative of the period map sends $\mu \in M(X)$ to the quadratic form $Z = DJ(\mu)$ on $\Omega(X)$ given by

$$Z(\alpha, \beta) = \int_X \alpha \beta \mu.$$

This is a basis-free reformulation of Ahlfors' variational formula [Ah, §5]; see also [Ra], [Roy2] and [Kra, Prop. 1]. Note that $\alpha \beta \in Q(X)$.

5 Contraction

This section brings finite covers into play, and establishes a uniform estimate for contraction of the mapping $T_{g,n} \to T_h \to H_h$.

Jacobians of finite covers. A finite connected covering space $S_1 \to S_0$ determines a natural map

$$P : \text{Teich}(S_0) \to \text{Teich}(S_1)$$

sending each Riemann surface to the corresponding covering space $X_1 \to X_0$. By taking the Jacobian of X_1, we obtain a map $J \circ P : \text{Teich}(S_0) \to H(S_1)$.

Let $q_0 \in Q(X_0)$ be a holomorphic quadratic differential with a zero of odd order k, say at $p \in X_0$. Let $\mu = \overline{q_0}/|q_0| \in M(X_0)$; then $||\mu||_T = 1$. Let $\pi : X_1 \to X_0$ denote the natural covering map, and let $q_1 = \pi^*(q_0)$.

We will show that $J(X_1)$ cannot change too rapidly under the unit deformation μ of X_0. Indeed, if $J(X_1)$ were to move at nearly unit speed, then $\pi^*(\mu) = \overline{q_1}/|q_1|$ would pair efficiently with α^2 for some unit-norm $\alpha \in \Omega(X_1)$, which is impossible because of the many odd-order zeros of q_1.

To make a quantitative estimate, choose a holomorphic chart $\phi : (\Delta, 0) \to (X_0, p)$ such that $\phi^*(\mu) = z^k/|z|^k d\overline{z}/dz$. Let $U = \phi(\Delta)$, and let

$$m(U) = \inf \{||q||_U : q \in Q(X_0), ||q||_X = 1\}.$$

(Here $||q||_U = \int_U |q|$.) Since $Q(X_0)$ is finite-dimensional, we have $m(U) > 0$.

Theorem 5.1 The image Z of the vector $[\mu]$ under the derivative of $J \circ P$ satisfies

$$||Z||_K \leq \delta < 1 = ||\mu||_T,$$

where $\delta = \max(1/2, 1 - (1 - C_k)m(U)/2)$ does not depend on the finite cover $S_1 \to S_0$.
Proof. The derivative of \(P \) sends \(\mu \) to \(\pi^*(\mu) \). By Proposition 3.1, to show \(\|Z\|_K \leq \delta \) it suffices to show that
\[
|Z(\alpha, \alpha)| = \left| \int_{X_1} \alpha^2 \pi^* \mu \right| \leq \delta
\]
for all \(\alpha \in \Omega(X_1) \) with \(\|\alpha^2\|_{X_1} = 1 \). Setting \(q = \pi_*(\alpha^2) \), we also have
\[
|Z(\alpha, \alpha)| = \left| \int_{X_0} q \mu \right| \leq \|q\|_{X_0},
\]
so the proof is complete if \(\|q\|_{X_0} \leq 1/2 \). Thus we may assume that
\[
\|\alpha^2\|_V \geq \|q\|_V \geq \frac{m(U)}{2} \geq \frac{m(U)}{2},
\]
where \(V = \pi^{-1}(U) = \bigcup V_i \) is a finite union of disjoint disks. Using the coordinate charts \(V_i \cong U \cong \Delta \) and Theorem 2.1, we find that on each of these disks we have
\[
\left| \int_{V_i} \alpha^2 \pi^* (\mu) \right| = \left| \int_{\Delta} \alpha(z)^2 \left(\frac{z}{|z|} \right)^k \right| \leq C_k \|\alpha^2\|_{V_i}.
\]
Summing these bounds and using the fact that \(\|\alpha^2\|_{(X_1-V)} + \|\alpha^2\|_V = 1 \), we obtain
\[
\left| \int_{X_1} \alpha^2 \pi^*(\mu) \right| \leq \|\alpha^2\|_{(X_1-V)} + C_k \|\alpha^2\|_V \leq 1 - \frac{(1-C_k)m(U)}{2} \leq \delta.
\]

6 Conclusion

It is now straightforward to establish the results stated in the Introduction.

Proof of Theorems 1.3. Assume the Beltrami coefficient of the Teichmüller mapping between \(X, Y \in T_{g,n} \) has the form \(\mu = k \eta / q \), where \(q \in Q(X) \) has an odd order zero. Then the same is true for the tangent vectors to the Teichmüller geodesic \(\gamma \) joining \(X \) to \(Y \). Theorem 5.1 then implies that \(D(J \circ P)|_{\gamma} \) is contracting by a factor \(\delta < 1 \) independent of \(P \), and therefore
\[
d(J \circ P(X), J \circ P(Y)) = d(J(\tilde{X}), J(\tilde{Y})) < \delta \cdot d(X, Y).
\]
Proof of Theorem 1.2. The contraction of $\mathcal{M}_{g,n} \rightarrow \prod_{\mathcal{C}_{g,n}} \mathcal{A}_h$ in some directions is immediate from the uniformity of the bound in Theorem 1.3, using the fact that the Kobayashi metric on a product is the sup of the Kobayashi metrics on each term, and that there exist $q \in \mathcal{Q}(X)$ with simple zeros whenever $X \in \mathcal{M}_{g,n}$ and $\dim \mathcal{M}_{g,n} > 1$.

Proof of Theorem 1.1. Let $f : S_0 \rightarrow S_0$ be a pseudo-Anosov mapping. If f has only even order singularities, then its expanding foliation is locally orientable, and hence there is a double cover $\tilde{S} \rightarrow S$ such that $\log \rho(\tilde{f}^*) = h(f)$.

Now suppose f has an odd-order singularity. Let $X_0 \in \text{Teich}(S_0)$ be a point on the Teichmüller geodesic stabilized by the action of f on $\text{Teich}(S_0)$. Then $d(f \cdot X_0, X_0) = h(f) > 0$ (see e.g. [FLP] and [Bers]).

Let $f : S_1 \rightarrow S_1$ be a lift of f to a finite covering of S_0, and let $X_1 = P(X_0) \in \text{Teich}(S_1)$. Using the marking of X_1 and the isomorphism $H^1(X_1, \mathbb{R}) \cong H^{1,0}(X_1)$, we obtain a commutative diagram

$$
\begin{array}{ccc}
H^1(S_1, \mathbb{R}) & \overset{\tilde{f}^*}{\longrightarrow} & H^1(S_1, \mathbb{R}) \\
\downarrow & & \downarrow \\
H^{1,0}(X_1) & \overset{T}{\longrightarrow} & H^{1,0}(X_1)
\end{array}
$$

where T is the comparison map between $J(X_1)$ and $J(\tilde{f} \cdot X_1)$ (see equation (3.3)). Then Theorem 1.3 and Proposition 3.1 yield the bound

$$
\log \rho(\tilde{f}^*) \leq \log \|T\| = d(J(X_1), \tilde{f} \cdot J(X_1)) \leq \delta d(X_0, f \cdot X_0) = \delta h(f),
$$

where $\delta < 1$ does not dependent on the finite covering $S_1 \rightarrow S_0$. Consequently, $\sup \log \rho(\tilde{f}^*) < h(f)$.

A The hyperbolic metric via Jacobians of finite covers

Let $X = \Delta/\Gamma$ be a compact Riemann surface, presented as a quotient of the unit disk by a Fuchsian group Γ. Let $Y_n \rightarrow X$ be an ascending sequence of finite Galois covers which converge to the universal cover, in the sense that

$$
Y_n = \Delta/\Gamma_n, \quad \Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \Gamma_3 \cdots, \quad \text{and} \quad \bigcap \Gamma_i = \{e\}. \quad (A.1)
$$
The Bergman metric on Y_n (defined below) is invariant under automorphisms, so it descends to a metric β_n on X. This appendix gives a short proof of:

Theorem A.1 (Kazhdan) The Bergman metrics inherited from the finite Galois covers $Y_n \to X$ converge to a multiple of the hyperbolic metric; more precisely, we have

$$\beta_n \to \frac{\lambda_X}{2\sqrt{\pi}}$$

uniformly on X.

The argument below is based on [Kaz, §3]; for another, somewhat more technical approach, see [Rh].

Metrics. We begin with some definitions. Let $\Omega(X)$ denote the Hilbert space of holomorphic 1-forms on a Riemann surface X such that

$$\|\omega\|^2_X = \int_X |\omega|^2 < \infty.$$

The area form of the Bergman metric on X is given by

$$\beta^2_X = \sum |\omega_i|^2,$$

where (ω_i) is any orthonormal basis of $\Omega(X)$. Equivalently, the Bergman length of a tangent vector $v \in T_X$ is given by

$$\langle \beta_X, v \rangle = \sup_{\omega \neq 0} \frac{|\omega(v)|}{\|\omega\|_X}.$$

This formula shows that inclusions are contracting: if Y is a subdomain of X, then $\beta_Y \geq \beta_X$.

Now suppose X is a compact surface of genus $g > 0$. Then (A.2) shows its Bergman area is given by

$$\int_X \beta^2_X = \dim \Omega(X) = g.$$

In this case β_X is also the pullback, via the Abel–Jacobi map, of the natural Kähler metric on the Jacobian of X.

Finally suppose $X = \Delta/\Gamma$. Then the hyperbolic metric of constant curvature -1,

$$\lambda_{\Delta} = \frac{2|dz|}{1 - |z|^2},$$

descends to give the hyperbolic metric λ_X on X. Using the fact that $\|dz\|_\Delta = \pi$, it is easy to check that $4\pi \beta^2 = \lambda^2$.

Proof of Theorem A.1. We will regard the Bergman metric β on Y as a Γ-invariant metric on Δ. It suffices to show that $\beta_n/\beta \to 1$ uniformly on Δ.

Let g and g_n denote the genus of X and Y_n respectively, and let d_n denote the degree of Y_n/X; then $g_n - 1 = d_n(g - 1)$. By (A.1), the injectivity radius of Y_n tends to infinity. In particular, there is a sequence $r_n \to 1$ such that $\gamma(r_n \Delta)$ injects into Y_n for any $\gamma \in \Gamma$. Since inclusions are contracting, this shows

$$\beta_n \leq (1 + \epsilon_n)\beta$$

where $\epsilon_n \to 0$.

Next, note that both β_n and β are Γ-invariant, so they determine metrics on X. By (A.4), we have

$$\int_X \beta_n^2 = \frac{1}{d_n} \int_{Y_n} \beta_n^2 = \frac{g_n}{d_n} \to (g - 1) = \int_X \beta^2$$

(since $\int_X \lambda^2_X = 2\pi (2g - 2)$ by Gauss-Bonnet). Together with (A.5), this implies

$$\int_X |\beta_n - \beta|^2 \to 0. \quad \text{(A.6)}$$

To show $\beta_n \to \beta$ uniformly, consider any sequence $p_n \in \Delta$ and let $x \in [0, 1]$ be a limit point of $(\beta_n/\beta)(p_n)$. It suffices to show $x = 1$.

Passing to a subsequence and using compactness of X, we can assume that $p_n \to p \in \Delta$ and that $\beta_n(p_n) \to x\beta(p)$. By changing coordinates on Δ, we can also assume $p = 0$. By (A.6) we can find $q_n \to 0$ such that $\beta_n(q_n) \to \beta(0)$. Then by (A.3), there exist Γ_n-invariant holomorphic 1-forms $\omega_n(z)\,dz$ on Δ such that $\int_{Y_n} |\omega_n|^2 = 1$ and

$$|\omega_n(q_n)| = \beta_n(q_n) \to \beta(0) = \frac{|dz|}{\pi}.$$

Since ω_n is holomorphic and $\int_{r_n \Delta} |\omega_n|^2 < 1$, the equation above easily implies that $|\omega_n| \to |dz|/\pi$ uniformly on compact subsets of Δ. But we also have

$$\beta_n(p_n) \geq |\omega_n(p_n)| \to \beta(0),$$

and thus $\beta_n(p_n) \to \beta(0)$ and hence $x = 1$. \[\square\]
References

Mathematics Department
Harvard University
1 Oxford St
Cambridge, MA 02138-2901