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ABSTRACT

Few transcription factors (TFs) have been studied in the context of an integrative analysis
incorporating genomic datasets from diverse genome regulatory mechanisms. Such an analysis
allows the testing of specific regulatory associations in an unbiased and comprehensive manner.
The promoter binding TF complex NF-Y regulates a diverse set of constitutive, inducible,
developmental, oncogenic and tissue-specific genes. Using cancer models, ChIP-Seq, shRNA,
and genomics, I have undertaken a genome-wide study of NF-Y. NF-Y binds to not only
promoters but also extensively to enhancers, select classes of repetitive elements, inactive
chromatin domains and insulators. NF-Y is a “pioneer”-like factor able to access its motif within
closed, transcriptionally inactive chromatin domains. NF-Y pervasively associates with FOS,
usually in the absence of JUN and the AP-1 motif, and with a group of growth controlling
oncogenic TFs. I also show that NF-Y asymmetrically binds to its motif and stereo-aligns with
specific TFs and their motifs. My results indicate that NF-Y is not merely a commonly-used,
proximal promoter TF, but rather functions at a more diverse set of genomic elements.

The dynamics of TF occupancy, cis-regulatory element (CRE) usage and their linkage to
gene expression during a differentiation process, from a genome-wide perspective, is poorly
understood and is critical to the understanding of fundamental aspects of development and

disease. I utilize a model of inflammation-mediated oncogenic transformation, siRNA, ChIP-
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Seq, FAIRE-Seq, and microarrays to study the genomic aspects of transformation driven by Src-
mediated activation of the inflammatory TF STAT3. I show that CRE usage is static, even in the
presence of induced STAT3 activity, and large-scale transcriptional and phenotypic changes.
STATS3 induced occupancy is tightly associated with FOS, pre-existing CREs, and does not
create CREs de novo. 1 also highlight a putative role of TSC22D3 in inhibiting an epigenetic
switch and in STAT3 and AP-1 factors driving the embryonic-like and bone-like phenotypes of
breast cancer. The research presented here suggests that phenotypic alterations occurring during
disease are not driven by large-scale perturbations of CRE usage.

Overall, this dissertation provides an invaluable resource of genome-scale datasets within

cancer models that will assist in future endeavors of scientific discovery.
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CHAPTER 1: Introduction

The NF-Y transcription factor complex

General: NF-Y (Nuclear Factor Y, also known as CBF, CP1) is a highly conserved [1]
heterotrimeric transcription factor (TF) complex originally identified in Homo sapiens [2] and
yeast [3]. It is composed of: NFYA, NFYB and NFYC in H. sapiens; Hap2 [4], Hap3 [5], and
Hap5 [6] in Saccharomyces cerevisiae. In S. cerevisiae there is an additional 4™ subunit, Hap4
[7], that contains transactivation domains that have been incorporated into other NF-Y subunits
in mammals. NFYB and NFYC form a stable heterodimer, via their histone fold domains (HFDs)
(discussed below), to which NFYA binds with high specificity. The heterotrimeric complex is
then fully capable of binding to its DNA sequence motif, the CCAAT box, which is a common
eukaryotic promoter element. All three subunits are required for DNA binding in vitro [8] and in
vivo, though there are limited exceptions (see below), and this has not been tested in an unbiased
manner by genome-wide studies. All three subunits make contact with DNA [8], and the affinity
for the CCAAT box is extremely high (Kd 10"°-10™" [9, 10]). In general, NF-Y is considered a
mild transactivator, on a level similar to other glutamine-rich (Q-rich) domain containing TFs
(SP1, POU2F1 (OCT1), POU2F2 (OCT?2)), but ~500 fold less than VP16, which contains an
acidic activation domain [11].

NF-Y is ubiquitously expressed, found in all human and murine tissues, cell lines and
tumors assayed. There are a few exceptions, however. NFYA protein is not detectable by
Western blot in myocytes [12, 13], heart muscle [12, 13] or circulating monocytes [14]. This
regulation is not at the mRNA level, but rather happens post transcriptionally as NFY4 mRNA is

clearly present. Both myocytes and heart muscle are post-mitotic and terminally differentiated,



and, as such, are not actively dividing. NF-Y has a role in regulating many cell-cycle genes, and,
on one level, it is not surprising that NFYA is not required in these non-cycling cells. However,
NF-Y regulates many other critical cellular processes such as DNA repair, apoptosis and
cholesterol metabolism. It is intriguing to postulate that NFYB and NFYC may bind DNA and
regulate transcription in the absence of NFYA.

The importance of NF-Y is underscored by the early embryonic lethality of an NFYA
knockout mouse model [15] due to defects in cell proliferation and massive apoptosis, and a D.
melanogaster knockout also shows early embryonic lethality [16]. In addition, functional
inactivation of NF-Y subunits or the use of a dominant negative NFYA mutant, indicates that
NF-Y-DNA binding is important for transcriptional activation and the pattern of histone

modifications at promoters (reviewed by [17]).

Structure of the NF-Y complex

NFYA: The 3D structure of NFYA is unknown as the crystal structure has not yet been
published. However structural modeling and biochemical experimentation has shed light on its
structure and the function of specific domains. The N-terminal region of NFYA contains a large
Q-rich domain, rich in hydrophobic residues, but lacking in charged residues. NFYC has a
similar Q-rich domain at its C-terminus. As assayed by LexA and Gal4 fusion proteins, these Q-
rich domains serve as the transcriptional activation domains of NF-Y [11, 18-20]. In addition,
NFYA has two small juxtaposed domains, which are highly conserved, in its C-terminus that
mediate NFYB-NFYC dimer interaction and DNA binding [21]. While NFYB and NFYC are
known to contact DNA, the sequence specific CCAAT recognition domain is contained within

the C-terminus of NFYA [22-25].



NFYB and NFYC: NFYB and NFYC were found to be related to the core histones, H2B and

H2A, respectively, as they contain conserved HFDs [26, 27]. NFYB is 30% identical to H2B and
NFYC is 21% identical to H2A, though similarity is a lot higher [26]. The NF-Y subunits are
part of a small disparate family of non-histone HFD containing proteins in humans: e.g. NC2a
and NC2B (for review see [28]); TAF3/-4/-6/-9/-10/-11/-12/-13 of the TFIID and SAGA
complexes (for review see [29, 30]); and CHRACI16/-14, YEATS2 and POLE3 of the DNA
Polymerase ¢, ATAC and CHRAC complexes [31-33]. The sequence identity within the HFDs of
histones (14-18%) [34] is comparable to that between the HFDs of NF-Y and histones (~15%)
[26, 35] and key residues within it are well conserved. In general, DNA and protein sequence
similarity is low, but secondary and tertiary structural similarity is exceptionally well conserved.
In histones, the HFDs are responsible for both octameric protein—protein complex formation and
non-sequence-specific protein-DNA interactions. They have a similar function within the NF-Y
complex, as elucidated by many biochemical and mutagenic experiments over the years. The
HFDs mediate both dimerization of NFYB and NFYC, and non-sequence-specific protein-DNA
interactions [22-25]. The crystal structure of NFYB-NFYC has been solved, and confirmed the
presence and role of HFDs mediating heterodimer formation, and, via modeling, the HFD-DNA

interaction [25].

The CCAAT box

NF-Y binds to the core pentanucleotide sequence CCAAT, commonly referred to as the CCAAT
box. An estimated 30-60% of human proximal promoters contain CCAAT boxes [36-39], which
is similar to the frequency of the TATA element (~35-70%), but less than the GC box (~95%),
which is ubiquitous in mammalian promoters [36, 40]. The CCAAT box is found both in TATA-

containing and TATA-less promoters. As found by in silico studies [36-40], and confirmed by
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limited genomic ChIP experiments [41, 42], the CCAAT box is highly positioned approximately
80 bp upstream of the transcriptional start site (TSS), with the motif in either orientation, which
is similar to the TATA element which observes a closer distribution (approximately -35 bp) to
the TSS [40]. This biased distribution suggests that the location of NF-Y in relation to the TSS is
important for the function of NF-Y, though this has not been specifically tested [43]. At
promoters, specific distance and orientation requirements [43-45] between cooperating TFs [44-
49], adjacent NF-Y binding sites [50], and the TSS is required for optimal transcriptional
activation by NF-Y. In essentially all promoters tested, mutation of the CCAAT box reduces or
eliminates both constitutive and/or inducible transcriptional activity [51]. In this regard, NF-Y
can be thought of as having an “architectural” role in positioning protein factors in the correct
location at promoters in respect to the transcriptional machinery, though this has only been
observed on single promoter studies with a limited number of motifs and TFs. It is not known if
this architectural function of NF-Y translates genome-wide and if it occurs outside of core
promoters within other genomic contexts.

Though mutation of any of the core pentanucleotides greatly reduces NF-Y binding to the
CCAAT box and associated transcription [52-54], the specific flanking sequences are also
important for NF-Y binding. Many in silico [36-40], in vivo foot-printing [10, 54], SELEX [10],
and ChIP-chip [41, 42, 55] studies defining the CCAAT box have repeatedly found specific
flanking sequences to be preferred, and mutation of these sequences affect NF-Y occupancy and
transcription from the associated promoter [10, 43, 54]. Purines are favored at positions 3 and 4,
pyrimidines predominate at 2, C/G at 10 and 12, and purines at 11 (Figure 1). In limited
instances, NF-Y can associate with chromatin in the absence of a recognizable CCAAT box:

mainly recruited by hormone receptors: estrogen receptor (only NFYA was present) [56]; and



mineralocorticoid receptor (only NFYC was present) [57]. The lack of unbiased genome-wide
maps of NF-Y subunit binding sites hinders the study of the biology of NF-Y binding in the

absence of the CCAAT box.

How does NF-Y regulate transcription?

Given that CCAAT boxes are found in 30-60% of human proximal promoters, including
inducible, constitutive and cell-type specific promoters, it is not surprising that NF-Y has been
documented interacting with a plethora of transcriptional regulators. Sequence specific DNA
binding TFs, co-activators and co-repressors, and, given its close proximity to the TSS, many
general RNA Pol II factors interact with NF-Y. Indeed, a recent review [17] listed 42
transcriptional regulators that interact with at least one NF-Y subunit, and this count doesn’t
include kinases (CDK2 [58]), splicing factors (e.g. SF1 and YBXI1 [59]), structural molecules
(ACTIN4 [60]) and polymerases (PAPOLG [59]). It is not known how extensive the association
of NF-Y is with any one particular TF, let alone 10s of TFs and the complexes they form at NF-
Y bound sites. One exception is that of SP1 which has been documented in a promoter ChIP-chip
study closely associating with NF-Y [61].

I will use the example of the MHC class II gene promoters, which have been extensively
studied, to highlight a mode of transactivation by NF-Y, i.e. TF cooperativity mediated by
conserved spacing between DNA motifs for the activation of transcription.

Motif and TF cooperativity: NF-Y was originally discovered as a factor binding to the Y box

motif (a CCAAT box), one of multiple conserved motifs common to all MHC class II gene
promoters [2, 54] and controlling their expression. A second of these motifs, which partners
intimately with the CCAAT box, is the X box. NF-Y binding to the CCAAT box cooperates

synergistically with the TF RFX binding to the X box [46, 62, 63], to recruit the co-activator
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CIITA [46, 64]. Mutation of the CCAAT box inhibits interaction of the X box with RFX, but the
opposite is not true, suggesting that NF-Y is a prerequisite for RFX recruitment. There is a well
conserved distance preference (19-20 bp) between the X and CCAAT boxes across multiple
MHC class II promoters. Altering the distance between the motifs by half helical turns (~5 bp),
but not by full helical turns, severely disrupts gene expression [44, 45, 47, 65]. Both NF-Y and
RFX are required for the recruitment of CIITA, which in turn is required for the recruitment of
the histone acetyltransferases (HATs) KAT3A (p300/CBP) and KAT2B (p300/PCAF) [66, 67].
BRGI1, of the SWI/SNF chromatin remodeling complex, is also recruited by CIITA and is
required for CIITA mediated expression of MHC class II genes. This was shown by the failure of
exogenous CIITA to induce gene expression in cells lacking BRG1 (SMARCA4) [68, 69]. NF-
Y/RFX binding also facilitates the direct interaction of CIITA with the basal transcription factors
TAF9, TAF6 and TFIIB [70, 71]. These orchestrated events ultimately lead to the induction of
MHC class II gene expression in a time and cell-type specific manner that is absolutely
dependent on NF-Y and the CCAAT box.

Direct interaction with the basal transcriptional machinery: NF-Y and RNA Pol II basal

factor interactions are important for promoter activation. CCAAT boxes and the TBP binding
TATA and Initiator (Inr) motifs are common promoter elements, with biased and
transcriptionally important spacing requirements, both with respect to the TSS and between each
other. Thus, at most CCAAT box containing promoters, NF-Y, TBP and TBP-associating factors
(TAFs) are located in close physical proximity. The experimental dissection of the MHC class II
Eo promoter in mice showed that the CCAAT box was required for the correct use of the +1 TSS
[72] and NF-Y binding increases the affinity of holo-TFIID to the promoter [73]. In vitro, studies

have shown that NFYA is required for pre-initiation complex formation at the Eo promoter, but



not once it is formed, nor for the re-initiation of transcription [74]. Additionally, NF-Y binding to
the CCAAT box in the y-globin promoter is required for TBP-TFIIB recruitment in vivo [75].
The HFDs of NF-Y allow it to interact with the HFD containing subunits of the basal
transcriptional machinery. Many of the TAFs contain HFDs [76, 77] which allow them to
interact with NF-Y (TAF4/-11/-12/-13) [73] and other HFD containing TFs (e.g. NC2). NFYB
and NFYC, but not NFYA, co-immuno-precipitate with TBP and TAFS5 [35] in solution and the
NFYB-NFYC-TBP interaction domains have been identified [35] and are the same as those that
interact with NC2. The Q-rich transactivation domain of NFYA has also been shown to interact
with TAFS5 in vitro [78].

Interaction with co-activators: NF-Y can also associate with co-activators (KAT2A (GCNS),

KAT2B (P/CAF), EP300 (p300), SUBI (PC4)) and co-repressors (HDACI, PcG complex)
which are functionally important for transcription from CCAAT box containing promoters. The
histone acetylase complex KAT2B physically interacts with NF-Y in vitro and CCAAT box
mutations and dominant negative NFYA constructs prevent induction of the MDRI gene
promoter by KAT2B overexpression [79]. NF-Y was also found in a complex composed of
SP1/EP300/KAT2B/HDACI, that induces the transcriptional activity of the TGFBR2 promoter
upon trichostatin A treatment and is modulated by a mechanism where KAT2B (a histone
acetylase that activates) or HDACI (a histone deacetylase than inhibits) predominate in the
complex [80]. The HFDs of NFYB/NFYC dimer can stably associate with KAT2A in vitro and
in vivo and overexpression of KAT2A potentiates NF-Y activation of the collagen, type I, a2
(COL1A42) promoter [81].

Interactions with nucleosomes: NF-Y, either the HFD dimer or the trimer, have been shown

to directly interact with chromatin in vitro and/or in vivo and that this function is important for



transcription. The NF-Y trimer can successfully bind to a CCAAT box containing promoter both
during and after reconstitution of nucleosomal DNA using purified histones [82]. NF-Y forms
higher-ordered NF-Y-nucleosome-DNA structures in vitro, in a CCAAT box dependent manner,
importantly, with preformed nucleosomes and even in the presence of free naked non-
nucleosomal CCAAT box containing DNA fragments [82]. In a similar study using a more
purified system of recombinant histones, the NFYB/NFYC HFD containing dimer, associates
with H3-H4 tetramers in vitro both in the presence of DNA and in solutions free of DNA [83].
The same study also tracked down the H3-H4 interaction region to the HFD of NFYB. However,
nucleosomal, octameric-like structures on DNA were not formed with clear differences in the
DNase I, MNase and exonuclease III digestion patterns. The NF-Y-nucleosome interaction
affects choice of TSS used in an in vitro transcription system [84], and in general, lack of NF-Y
at the core promoter of CCAAT box regulated genes is associated with a closed nucleosomal
structure in vivo [85, 86]. How NF-Y-CCAAT-nucleosome interactions behave outside of core
promoters in vivo is incompletely understood. The association between CCAAT boxes, their
occupancy by NF-Y, the degree of nucleosome depletion and the histone modifications present
in the immediate vicinity has never been studied in vivo or in vitro.

NF-Y and repression: NF-Y can also repress transcription, and the mechanisms are quite

varied. A previous partial genomic study utilizing ChIP-chip, found NF-Y bound to the
promoters of genes with the repressive H3K27me3 and H4K20me3 histone post translational
modifications (PTMs) [42] which confirmed previous studies on single promoters showing a role
of NF-Y in repression [87-92]. A report with Caenorhabditis elegans showed a role of NF-Y in
maintaining the repression of the Hox gene eg/-5 during development [93]. This repression was

dependent on the CCAAT box in the eg/-5 promoter and NF-Y directly interacted with the MES-



2/MES-6 PcG repression complex, therefore implicating a direct role for NF-Y in repression.
Another mechanism of NF-Y repression involves a multi-protein complex composed of NF-
Y/HMGA1/KLF9/SIN3A that forms on, deacetylates, and inhibits the GHR promoter [90]. In
response to DNA damage, G(2)/M promoters are repressed by direct association of acetylated
TP53 (p53) with NF-Y and the CCAAT box, resulting in the recruitment of HDAC1/4/5 and
transcriptional repression [94]. A complete map of NF-Y binding sites in the human genome, the
associated histone PTMs, and RNA expression level, would greatly increase our understanding
of NF-Y’s repressive function.

Probably the most interesting aspects of NF-Y repression are those that involve CCAAT-
less promoters. As mentioned earlier, there are reports of hormone receptor recruitment of NF-Y
to CCAAT-less promoters and the induction of transcriptional repression. It was shown that the
mineralocorticoid receptor recruits NFYC, but not NFYA or NFYB, to the ENaC promoter, as a
cofactor, which prevents the N- and C-termini of mineralocorticoid receptor from interacting
upon hormone binding which prevents activation of transcription [57]. ChIP-Seq for NFYC was
not undertaken in this dissertation due to the poor performance of the antibody. Another study
[56] showed that NFY A mutants, devoid of DNA binding or trimer formation ability, can inhibit
the ERo mediated transcriptional induction of the FI2 (FXII) and VIT promoters, via a
mechanism that involves interaction of the NFY A C-terminus directly with ERa and not with the
CCAAT box. Neither promoter contains a canonical CCAAT motif and NFYB may be involved.
These methods of repression are probably limited to hormone receptors and the genes they
target, however they show an interesting, and largely unexplored, aspect of NF-Y biology, that of

the individual subunits functioning outside of the trimer complex.



It is clear that NF-Y, sitting at -80 bp upstream of the TSS in between upstream
transactivating motifs and the TATA/Inr elements, efficiently penetrates nucleosomal structures,
via its HFDs. From this position NF-Y recruits and cooperates with upstream transactivators, to
recruit TFIID and the pre-initiation complex to CCAAT containing core promoters to initiate
transcription. The associated HATs serve to modulate NF-Y transactivation potential by aiding

disruption of local chromatin structure thereby enhancing transcription.

Regulation of NF-Y

Splicing: NFYA and NFYC are known to express multiple isoforms, while NFYB is not known
to be alternatively spliced in H. sapiens, which has been confirmed by GENCODE (the
ENCODE related group annotating human genes) [95]. NFYA has at least two confirmed
isoforms (GENCODE, [18, 95, 96]), NFYAs (short) and NFYAI (long), which differ in only 28
amino acids within the Q-rich transcriptional activation domain. There are known instances in
the literature where these isoforms switch during differentiation [97] or show cell type specific
biases [18, 98]. Indeed, these isoforms have different functions as shown by the ability of a
specific isoform to drive a specific phenotype and co-operate in transcription with a specific
partnering TF [98, 99].

NFYC is much more complex, with the human genome encoding 13 splice isoforms
(GENCODE, [95]). By northern blots, 4 isoforms have been observed in Rattus norvegicus
tissues [100], and 2 in H. sapiens tissues [101]. The functions of some of these isoforms are
starting to be described [102]. In keeping with the findings from NFYA, two H. sapiens NFYC
splice isoforms differ in the Q-rich transactivation domain and have cell type specific biases.
There functions are unknown, however their RNA levels do differ in their response to DNA

damage [102]. A third splice variant, which lacks the HFD and therefore cannot interact with
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NFYB, has a specific function in acting as a negative regulator of TGFp signaling by interacting
with SMAD2/-3 [103].

Expression and post translational modification of NF-Y: NFYA protein levels are known to

fluctuate during the cell-cycle [104] and in certain cells during differentiation [12-14], while the
protein levels of NFYB and NFYC (and the mRNA of all three subunits) remain constant. This
fluctuation in NFYA protein levels modulates the complex’s transactivation function, making
NFYA the regulatory subunit. A post-transcriptional process involving NFYA acetylation [105]
by EP300 (p300) [81] on conserved lysine residues (K283, K289) located in the trimerization
and DNA binding domains, has been shown to increase NFY A protein stability by preventing the
poly-ubiquitination of overlapping lysine residues (K283, K289, K292, K296) [106]. This
acetylation-ubiquitination dynamic regulates proteasomal degradation and accumulation of
NFYA protein in the cell. In Xenopus, NFYB can also be acetylated, by EP300, though the
residues are unknown and the function unclear [107].

A second common modification of TFs is phosphorylation. NFYA contains two CDK2
phosphorylation sites in its C-terminus (S292 and S298) [58, 108, 109], near the trimerization
and DNA binding domains, that are phosphorylated in a cell-cycle dependent manner. CDK2
interacts with and phosphorylates NFYA in vitro and in vivo. Phosphorylation does not impair
heterotrimer formation [58] but does prevent NF-Y-DNA interaction [58]. This is functionally
important as CDK2-dependent phosphorylation of NFY' A is essential for expression of cell-cycle
genes (e.g. CDC2, CDK?2) and cell-cycle progression [108]. NFYB and NFYC are not known to
be phosphorylated.

Cellular _redox: A common process of reversible regulation of proteins is the post-

translational reduction of cysteine (Cys) thiol groups (-SH) to moieties such as disulphide (-S—
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S-) and S-nitrosothiol (SNO), that can alter protein structure and effect signaling, respectively
(for review see [62]). The activity of many TFs are known to be modulated by cellular redox
state at Cys residues (e.g. FOS [110], JUN [110], NFkB [111], and MYB [112]), one of the best
studied being the S. cerevisiae Yapl protein [113, 114]. Pertinently, all known NFYB
orthologues have three conserved Cys residues in the HFD that are not present in histone HFDs,
and histones are not known to be regulated by cellular redox. Nakshatri et al.1996 [115] showed
by mutagenesis studies and by the alteration of redox potential, that reduction of two of these
Cys residues modulates NFYB covalent-multimerization and NF-Y DNA binding ability. Further
work by Thon et al. 2010 [116] on the NF-Y orthologue AnCF of Aspergillus nidulans
confirmed these findings. Given the highly conserved nature of this phenomenon, redox

regulation of NF-Y is likely a general mechanism.

Cellular localization: Many TFs are actively transported into the nucleus upon an activating
stimulus (usually a kinase cascade), however, NF-Y nuclear import seems to be constitutive and
not a major method of regulation. There are reports of TGFP signaling, through SMAD
interactions and TSC2 dependent [117-119] regulation of NFYA nuclear import. This latter
mechanism could be important for tumorigenesis as 7SC2 (also known as tuberin) is a tumor
suppressor gene. The proteins responsible for nuclear import have been identified: importin 3 for

NFYA; and importin 13 for NFYB and NFYC, which are imported together [120-124].

NF-Y and disease

There are no known mutations within the NF-Y subunits that manifest in disease. This is likely
due to the absolute requirement for NF-Y for cellular growth and development, as seen by the
early embryonic lethality of NFYA deficient mice. However, indirect perturbations of NF-Y

function and in silico findings have associated NF-Y with disease.
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Impressively, a number of studies have found that the CCAAT box is enriched, in concert
with the E2F motif, in cancer signature genes [125-132]. Three methodologically independent
studies of gene expression sets from 1,000s of diverse H. sapiens tumor samples found the
CCAAT box and E2F motifs, either separately or in combination, to be commonly enriched
across many tumor types in the promoters of genes misregulated in cancer [133-135]. This is not
surprising, as NF-Y is required for cellular proliferation and transcriptionally controls, along
with E2Fs, many cell-cycle genes, at some of which NF-Y is required for E2F binding [136].
Tabach et al. 2005 [125] found a promoter module of p21/NF-Y/E2F motifs in the
transcriptional response of transformation induced genes by the inactivation of TP53 (p53) and
pl6(INK4A) tumor suppressors. Many of the genes were cell-cycle genes. In a meta-analysis of
8 breast cancer metastasis gene expression datasets, Thomassen et al. 2008 [137] identified
E2F/NF-Y/YY1 as the TFs involved in metastasis, with cell-cycle and metabolism related genes
being significantly enriched in metastasizing tumors. NF-Y is known to be involved in regulating
metabolic biosynthetic processes [61].

NF-Y has also been linked to polyglutamine-based neurological disorders, Leigh
syndrome, schizophrenia and diabetes; however, these will not be discussed here as they are not

relevant to this dissertation.

The biology of STAT3

The signal transducer and activator of transcription 3 (STAT3) was originally identified as a
factor that regulated the acute phase response genes, an inflammatory process of transcriptional
induction upon treatment with the inflammatory cytokine IL6 [138]. As such, STAT3 has been

intimately linked to inflammation from its discovery, yet the direct transcriptional targets and the
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genomic sites of occupation of STAT3, especially during inflammation-mediated oncogenic

transformation, are poorly characterized.

Structure and function of STAT3

STAT3 functions as a latent monomeric cytoplasmic TF whose activation is tightly regulated by
tyrosine705 (Tyr) phosphorylation and its subsequent homo- or hetero-dimerization and nuclear
localization. STAT3 contains a SRC homology 2 (SH2) domain that recognizes phosphotyrosine
residues on other molecules (e.g. STAT3, STATI1, EGF [139]) and mediates reciprocal SH2-
phosphotyrosine dimerization. A second function of the SH2 domain is to serve as a specificity
domain as the peptide sequence adjacent to the phosphotyrosine residue is recognized and affects
affinity [140]. STAT3 contains a DNA binding domain based on the immunoglobulin fold and is
structurally similar to that of NFkB and TP53 [141]. STAT3 phosphorylation and dimerization is
obligatory for DNA binding to the consensus motif TTCCNGGAA. STAT dimers can
themselves dimerize, and these dimer-dimer interactions allow STATs to strongly interact with
adjacent low affinity motifs that would poorly mediate occupancy of a single STAT dimer [142-
145].

STATS3 interacts with TFs and co-factors to mediate transcriptional activation. The C-
terminal of STAT3 contains the transactivation domain (TAD) and a small peptide motif within
it (Pro-Met-Ser-Pro) is highly conserved and its phosphorylation (serine’) is required for
maximal transactivation by STAT3. Almost all STATs interact with and recruit to promoters the
histone HAT EP300 via their TAD [146]. HATs acetylate conserved residues in histones to
create negatively charged residues that form a repulsive force which opens the chromatin
structure to facilitate transcription. STAT3 itself is reversibly acetylated on lysine685 by KAT3A

[147] which is required for DNA binding and transcriptional activation of STAT3 target genes
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[148]. Not all STAT3 interactions are mediated by the C-terminal TAD. The STAT3-JUN
interaction have been well characterized, mapped to the N-terminal regions of STAT3, and the
complex specifically targets a subset of STAT3 regulated genes [149, 150]. Negative interactions
have also been documented. SIN3A [151] and HDACI1 [152] have been shown to interact with
and deacetylate STAT3 to promote its nuclear exclusion.

New mechanisms of STAT3 gene regulation are emerging, particularly involving repression
and a body of research on unphosphorylated STAT3 (U-STAT3). A recent study has shown that
acetylated STAT3 plays a role in methylating and repressing the promoters of tumor suppressors
by interaction with DNA methyltransferase-1 [153]. Additionally, Drosophila melanogaster
STAT has been implicated in HP1 localization and heterochromatic gene silencing [154, 155].
Traditionally, all of the regulatory potential of STAT3 has been thought to be due to
phosphorylated STAT3, however, there is now a large body of evidence showing that U-STAT3
can bind DNA [156], regulate genes distinct from phosphorylated STAT3 (44), and interact with
NF«kB [157, 158] to activate [157] or inhibit [159] transcription [157, 160]. These new aspects of
STATS3 biology complicate the interpretation of results involving STAT3, as it can’t be thought
of as just an inducible TF involved in gene activation. To this regards, the ChIP-Seq derived
STAT3 genomic locations produced by dissertation and the integration with ChIP-Seq datasets

of other TFs, can be used to explore these aspects of STAT3 biology.

STAT3, inflammation and cancer

There are many cytokines and external stimuli that can signal to and activate STAT3. A recent
review [161] has catalogued 19 cytokines (e.g. IL6, IFNy, and TNFa), 5 growth factors (e.g.
EGF, CSF2 (GMCSF) and PDGF) and 16 miscellaneous external stimuli/chemicals (e.g. UVB,

tobacco and diesel exhaust particles). STAT3 is phosphorylated by receptor tyrosine kinases (e.g.
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PDGF, EGF, CSF1R) and by members of the JAK family of kinases (JAK1, JAK2, TYK?2) that
are resident on cell surface receptors. Upon stimulating cells with a cytokine, STATs are
phosphorylated within 10mins. The oncoproteins Src [162] and Ras ([163]) have also been
shown to phosphorylate and/or activate STAT3. STAT3 activity is modulated by Ser’”’
phosphorylation which enhances transactivation [164, 165] and by EP300 mediated acetylation
which stabilizes dimer formation [148]. Ultimately, STAT3 serves to induce transcription, and
the transactivation domain located within the C-terminus is essential for this function, as when it
is deleted, STAT3 cannot activate transcription [166] and acts as a dominant negative.
Inflammation and the production of an inflammatory milieu, composed of cytokines,
chemokines, reactive oxygen species and growth factors, is commonly associated with many
different types of cancer [167-169]. While acute inflammation is important to critical bodily
functions such as pathogen defense, wound healing and tissue repair, chronic inflammation,
which has no known normal physiological role, has now been linked to various disease states
including cancer, rheumatoid arthritis, atherosclerosis, multiple sclerosis, asthma, and
Alzheimer’s disease [170-172]. Many pro-inflammatory cytokines and chemokines are released
by cancer cells (TNFa, IL1p, IL6, IL8, IL17, CSF2 (GMCSF)) and act as potent proliferative and
survival factors. Their receptors are prevalent on cancer cells, for example the chemokine
receptors CXCR4 and CCR7 are highly expressed in breast cancer cells and mediate the invasion
phenotype [173]. The inhibition of CXCL12 and CXCR4 receptor dependent inflammatory
signaling reduces pulmonary metastases in a murine model of breast cancer [174]. STAT3 is an
important inflammatory TF, and along with NF«kB, is a major effector of the inflammatory
signaling pathways. STAT3 has been found to be a central mediator of the transcriptional

changes in many different types of cancers, including breast cancer [175], pancreatic cancer
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[176, 177], prostate cancer [178], liver cancer [179], melanoma [180], among others (for a
review see [181, 182]). In this regard STAT3 and NF«B link inflammation to carcinogenesis and
their biology within cancer cells is an important avenue of research for potential therapeutic

intervention.

Rational for dissertation project

While this thesis does not explicitly study aspects of the biological sciences of dental medicine, it
does, however, take a broader view of transcription regulation and how it pertains to cellular
regulation. Cell differentiation and organismal development are all mediated by cell-type specific
TFs interacting with DNA motifs, the transcriptional machinery and, ultimately, the regulation of
gene expression. As such, understanding the biology of TFs is critical to the study of
developmental biology and the pathology of disease.

As we pass from the single gene/transcript/promoter/cis-regulatory element view of the
molecular biology of transcription regulation that was imposed on the scientific community by
the available biological techniques, we are now entering the era of transcription regulation from
the viewpoint of whole genome analysis. This is largely driven by rapidly advancing technology
in the area of massively parallel DNA sequencing and its application to traditional molecular
biology techniques. Because of this shift from a narrow and biased view of the molecular biology
of cell regulation, we can now ask very broad, genome-scale, highly integrative, “big picture”
questions about fundamental aspects of cellular regulation. This dissertation and the many
genome scale views of transcription regulation just now being published, especially with the help
of the ENCODE Project Consortium [183-185] (See Appendices 1 and 2), are re-asking old
questions but with newly developed biological techniques that can interpret data from the entire

3,137,161,264 bp (at last count from the hgl9 version) of the genome of H. sapiens. In addition,
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new questions, that were not approachable even 5 years ago, can now be asked and answered due
to the massive increase of genome scale datasets for chromatin bound transcriptional regulators,
histone modifications, histone occupancy, cis-regulatory elements, gene expression, isoform
transcripts, protein-protein interactions, and protein modifications within a single cell-type, but
also across cell states and even species. This thesis, as a small part of the ENCODE project, has
undertaken a genomic study of the NF-Y transcription factor complex and the transcriptional
regulation of a cellular differentiation process, inflammation-mediated oncogenic transformation.
To date there is a lack of data on the genomic profile of NF-Y binding in the H. sapiens
genome and how this profile changes with cell type. Even more so, there is a fundamental lack of
unbiased knowledge regarding the TFs and histone modifications present at NF-Y locations. In
addition, NF-Y-CCAAT box-chromatin interactions are largely unexplored in vivo. Many studies
over the last two decades have provided biased views of individual loci, and a handful of studies
have tried to provide a broader perspective. However, all have been limited to promoter-like
genomic elements, non-repetitive regions, and/or < 2% of the H. sapiens genome with limited
integration of other datasets. None have explored TF-NF-Y and/or chromatin state-NF-Y
interactions in an unbiased genomic study. This dissertation aims to address these questions and
has confirmed many known aspects of NF-Y biology. An unbiased genome-scale study can
contribute greatly to the scientific knowledge pertaining to NF-Y and holds the promise of
defining new aspects of NF-Y biology and gene regulation in general.
While the bulk of this dissertation centered on NF-Y, a second, related area, explored
here is the genome-scale view of transcription regulation dynamics during a cellular
differentiation process. Here I use, with the help of many friends both past and present, an

inflammation-mediated oncogenic transformation model of an immortalized breast epithelial cell
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line to explore aspects of gene regulation during phenotypic changes. This cell line is discussed
further in the Introduction to Chapter 3 and I will not repeat that discussion here. STAT3 is
absolutely require for transformation in this model system and the dynamics of STAT3 mediated
transcriptional regulation have not been explored and would provide invaluable insight into the
inflammatory transformation pathways regulated by STAT3. Whether the cis-regulatory element
usage of a cell undergoing oncogenic transformation is dynamic or stable has also never been
explored. It is a fundamental question of cancer biology, and is related to similar events during

development and disease progression, and is undertaken by this dissertation.
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CHAPTER 2: NF-Y co-associates with FOS at promoters, enhancers,
repetitive elements and inactive chromatin regions, and is stereo-aligned with

growth-controlling transcription factors

ABSTRACT

NF-Y is a trimeric transcription factor (TF) composed of two histone-like subunits (NFYB and
NFYC) and a sequence-specific subunit (NFYA). NF-Y binds to the CCAAT box, a common
promoter element. We have identified the location of NFYA and NFYB across the H. sapiens
genome in three cell types and annotated the sites with respect to chromatin states, 78 chromatin
associating factors, cis-regulatory elements, DNA sequence motifs, genic features, RNA, and
gene ontologies. Approximately 25% of NF-Y sites are in promoters and an equally large
proportion are in enhancers, which tend to be tissue specific, and NFYA and NFYB bind
asymmetrically with respect to the CCAAT box. Surprisingly, a large portion of NF-Y sites are
in select subclasses of HERV LTR repeats that appear to be transcriptionally inactive.
Unexpectedly, NF-Y extensively co-localizes with FOS in all genomic contexts, and at
promoters and enhancers this often occurs in the absence of JUN and the AP-1 DNA motif.
Unlike most TFs, NF-Y can access the CCAAT box within “non-modified” inactive chromatin
domains and H3K27me3" repressed domains. NF-Y was associated with a select cluster of
growth-controlling, potentially oncogenic TFs, which helps explain the abundance of CCAAT
boxes in the promoters of genes overexpressed in cancer. Our results indicate that NF-Y is not
merely a commonly-used, proximal promoter TF, but rather performs a more diverse set of

biological functions, many of which are likely to involve co-association with FOS.
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INTRODUCTION

Transcriptional regulatory proteins and the RNA polymerase (Pol) II machinery recruit
chromatin-modifying activities to their target loci, thereby determining the genomic pattern of
histone modifications and nucleosome occupancy [186]. Activator proteins, functioning
combinatorially at distal enhancers and in proximity to core promoters, recruit nucleosome-
remodeling and histone acetylase complexes, thereby generating nucleosome-depleted regions
that nevertheless have peaks of histone acetylation [187-189]. The RNA Pol II machinery
recruits H3-K4 histone methylases near the core promoter and upon transcriptional elongation
recruits H3-K36 and H3-K79 histone methylases to active coding regions. Although less well
defined, other DNA-binding proteins and nascent RNA can recruit H3-K27 or H3-K9 methylases
to other genomic regions, resulting in heterochromatic silencing by polycomb complexes or HP1,
respectively [190, 191].

As a consequence of the above and other mechanistic relationships between TFs and
chromatin-modifying activities, the genome-wide pattern of histone modifications and
nucleosome occupancy can be used to classify promoters, enhancers, insulators, and distinct
types of heterochromatic regions in a given cell type under a given physiological condition.
Using chromatin immuno-precipitation (ChIP), formaldehyde-assisted isolation of regulatory
elements (FAIRE), and DNase I hypersensitivity techniques coupled to massively parallel DNA
sequencing, such classification of functional genomic regions has been done in several cell lines
in the context of the ENCODE consortium [183-185, 192]. In addition, the ENCODE consortium
has performed genome-wide mapping of binding sites for 80 chromatin associating factors (at
the time of writing), most notably in the erythroid cancer cell line K562. These genome-wide

maps provide an invaluable resource for uncovering new functional aspects of individual TFs.

22



NF-Y (also known as CBF, CP1) is a heterotrimeric, DNA-binding TF that is conserved
in all eukaryotes [25]. NF-Y binds specifically to the CCAAT box [8, 10] that is frequently
found in eukaryotic promoters [36, 38]. The NFYB and NFYC subunits contain histone-fold
domains (HFDs) structurally related to H2B and H2A, respectively [26], which mediate
formation of a stable histone-like heterodimer [25], to which NFYA binds, whereupon the
resulting heterotrimeric complex can bind to DNA [8]. NFYA contains the sequence specific
CCAAT recognition domain, and NFYB and NFYC also contact DNA through their HFDs [22-
24]. All bases of the core pentanucleotide are critical for NF-Y binding, with immediate flanking
sequences on both ends also being important for efficient DNA binding in vitro [193, 194] and in
vivo [41, 42, 55].

At many promoters, the CCAAT box is highly positioned ~80 bp upstream of the
transcriptional start site (TSS), in either orientation, suggesting that its location is important for
gene expression. In essentially all promoters tested, mutation of the CCAAT box reduces or
eliminates transcriptional activity [51]. In addition, functional inactivation of NF-Y subunits or
the use of a dominant negative NFY A mutant indicates that NF-Y binding is important for the
pattern of histone modifications at promoters (reviewed by [17]). Interestingly, bioinformatic
studies comparing gene expression patterns in tumors vs normal tissues indicate that NF-Y sites
are highly enriched in promoters of genes overexpressed in tumors [133-135], particularly in the
most aggressive cohorts. The importance of NF-Y is further underscored by the early embryonic
lethality of an NFYA mouse knockout model due to defects in cell proliferation and extensive
apoptosis [15].

Here we describe the genome-wide analysis of NF-Y binding in three tumor cell lines.

Using data generated by the ENCODE consortium, we analyze the bound loci with respect to
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chromatin states and binding by other TFs. Our results uncover many new and unexpected

aspects of NF-Y biology.
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RESULTS AND DISCUSSION

Unbiased genome-wide identification of NF-Y binding sites

We performed ChIP with anti-NFYA and anti-NFYB antibodies in three cell types (K562,
GM12878 and HeLaS3) followed by massively parallel DNA sequencing. Antibodies [51] were
validated by Western blot and IP-WB showing that NFYA and NFYB were specifically
recognized (Supplemental Figure 1, A, B). Immuno-precipitated DNA was validated using
QPCR to known NF-Y targets (Supplemental Figure 1, C, D) and the reproducibility between
biological replicates was high (Pearson correlations > 0.8).

Using a stringent cut-off (P-value <= 10”), we identified 12655, 7932 and 5457 NFYB
binding sites and 4726, 289 and 3726 NFY A binding sites in K562, GM 12878 and HeLaS3 cells,
respectively (Figure 1, A). Applying the de novo motif discovery tool MEME to NFYB peaks in
K562 cells, we identified the typical NF-Y binding motif (Figure 1, C) that corresponded well to
the motif derived from ChIP-chip experiments [51]. Similar NF-Y binding motifs were found in
all datasets (data not shown). These high-confidence binding sites, 83% of which had at least one
CCAAT box within each site (with a mean of 1.7 motifs per site), were used for subsequent
bioinformatic analyses. At lower stringency, we identified 14772 (P <= 107) and 18523 (P <=
10°) NFYB sites in K562, 81% and 77% of which, respectively, had CCAAT boxes. The subset
of NFYB sites with relatively high P-values in the range of 10™ to 107 contained CCAAT boxes
at a rate of ~60%, whereas the genomic background is ~5% for similarly sized regions
(Supplemental Figure 2, A). Based on these observations, and a peak saturation analysis
(Supplemental Figure 2, B), we estimate that there are an additional ~4000 low affinity NF-Y

binding sites in the genome of K562 cells.
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Figure 1: ChIP-Seq of two components of the NF-Y complex in three cell types

A.

MACS peak analysis indicating peak numbers, mean peak lengths and standard deviations,
at three different P-value thresholds for NFYA and NFYB ChIP-Seq datasets in
GM12878, HeLaS3, and K562.

Scatter plots of NFYA, NFYB and input read counts at NFYA or NFYB sites in K562
showing correlation between datasets. Blue shading represents correlation amongst NFY A
and NFYB. Orange shading represents NFY A or NFYB correlation with input.
Identification of the NF-Y DNA binding site motif de novo from 12655 K562 NFYB
peaks depicted as a sequence logo [246].

Venn diagrams depicting the overlap between NFYB peak populations in GM12878,
HeLaS3, and K562. Integers represent peak numbers called at the 10” P-value threshold.
The percentages of peaks with CCAAT boxes are indicated (%).

ChIP-QPCR validation of NFYB peaks unique to each cell type. Error bars represent
standard deviation of 3 biological replicates. “Pos. Ctrls.” are loci known to be bound by
NF-Y. “Neg Ctrls.” are loci known to be devoid of NF-Y. Data represents a fold over
background measurement compared to a non-NF-Y bound region (GAPDH up.). Solid
and striped bars are ChIPs performed with NFYB specific antibody and non-specific

rabbit IgG, respectively.
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Figure 1 (Continued)
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The apparently higher number of NFYB sites with respect to NFYA sites could be due to
target loci bound only by NFYB. In this regard, in nuclei, NFYB is more abundant than NFYA,
and NFYB is present in certain post-mitotic cells whereas NFYA is not detectable [12-14] .
However, the NFYA and NFYB datasets were highly correlated (Pearson correlation 0.7-0.8;
Figure 1, B), and quantitative PCR analysis of individual sites revealed 3-fold higher
enrichments for NFYB than for NFYA. Furthermore, analysis of 21 NFYB sites that appeared to
lack NFYA showed low occupancy of NFYB such that an NFYA peak was below the detection
limit (Supplemental Figure 3, A and B). These results indicate that the NFYB antibody was more
“immuno-efficient” than the NFYA antibody and that there were few, if any, genomic sites that
were bound by NFYB but not NFYA. For this reason, we used the NFYB dataset to define NF-Y
binding sites in subsequent analyses.

Approximately 39% of NF-Y sites were occupied in at least 2 cell types, whereas the
remaining 61% of NF-Y-bound sites were cell-type specific (Figure 1, D). In accord with this
observation, examination of 14 NF-Y target genes identified previously in different cell lines
[42] revealed that 13 were bound in K562 and 8 were bound in HelaS3. We validated the cell
type specificity of a small number of these loci by ChIP-QPCR (Figure 1, E). The lower number
of NFYB bound loci in GM12878 and HelLaS3 was most likely due to the higher efficiency of

the ChIP assay in K562 cells, rather than to biological differences.

Asymmetric binding of NFYA and NFYB to the CCAAT box

Linking the high-resolution positioning data of NF-Y subunits to the CCAAT box location, we
confirmed that NFYA binds directly over the CCAAT sequence (Figure 2, A). Interestingly, the
NF-Y complex is asymmetric, with NFYB binding ~15 bp downstream from the CCAAT box, as
defined by the CCAAT strand (Figure 2, A). This asymmetry fits extremely well with the
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Figure 2: Annotation of NF-Y peaks to genomic features

A.

The average position of NFYB is upstream of the CCAAT box. Kernel density estimate of
the distribution of the 5’-CCAAT-3" and 5’-ATTGG-3" sequences under NFYA and
NFYB peaks in relation to the peak summit centered at 0 bp. Only the position of best
matching CCAAT box within 100 bp of the peak summit was considered and plotted.
Transparent lines indicate raw data; solid lines indicate Gaussian smoothed data.
Annotation of K562 NFYB peak summits to RefSeq gene features.

As in A, except chromatin state maps were used. Abbreviations are: “Prom” = promoter,
“enh” = enhancer, “trxn” = transcription. Numbering is from the chromatin state maps of
[205].

Frequency distribution of K562 NFYB peak summits at RefSeq TSSs showing a
preferential location between -50 and -100 bp upstream of the TSS.

Gaussian kernel density estimate of the distribution of positive and negative strand 5°-
CCAAT-3’ and 5’-ATTGG-3" motifs at K562 NFYB bound RefSeq TSSs. Only the best
motif per region was considered. Bandwidth was equal to the standard deviation of the

smoothing kernel. Gray arrows indicate the direction of transcription.
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Figure 2 (Continued)
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available biochemical knowledge of NF-Y/DNA contacts (Dolfini et al., 2009) and with the
crystal structure of trimer interactions with DNA ([25]; M. Nardini, M. Bolognesi, R. Mantovani,
in preparation). The high resolution of protein-DNA positioning achievable through ChIP-Seq,
and the large number of datasets available through ENCODE, urges the detailed and expansive
analyses of chromatin bound protein complex prediction among transcriptional regulators (see

below).

NF-Y targets cell signaling, DNA repair, cell-cycle, metabolic and gene expression genes

GREAT gene ontology analysis of NFYB bound loci from K562, GM12878 and HeLaS3
revealed a strong enrichment of genes involved in cell signaling pathways (“Integrin
alpha2beta3 signaling”, “Signaling mediated by p38-gamma and p3§-delta™), cell cycle (‘G2/M
checkpoints”, “Regulation of DNA replication”), DNA repair (“Homologous recombination
repair” and “Base excision repair’) and metabolism (“Superpathway of cholesterol
biosynthesis”, “Metabolism of polyamines”) (Table 1). Cell cycle and metabolism terms are in
line with previous findings, and further stress the central role of NF-Y in growth controlling
decisions.

In addition, just below our fold enrichment cutoff, we found a preponderance of GO
terms associated with gene expression in all three cell lines. Upon further analysis, it was
apparent that NF-Y significantly targeted genes involved in “Transcription”, “mRNA splicing”,
“mRNA editing”, “mRNA 3'-end processing”, and “mRNA transport”. Included were a large and
diverse set of TFs, including the NF-Y genes themselves, members of the transcriptional

machinery, and co-activators and co-repressors (Supplemental Figure 4, A and B). Thus, the

picture emerging is one of NF-Y as a regulator of gene expression regulators.
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Table 1: NF-Y binds to genes involved in cell signaling, DNA repair, cell-cycle, and gene
expression
Gene ontology analyses of NFYB bound loci in K562, GM12878 and HeLaS3. Only the
top 10 terms with a fold enrichment > 2 are shown. Observed region hits correspond to
the number of regulatory regions, of genes in that gene ontology term, that had >= 1
NFYB sites. Highly redundant categories are not shown. For a full list of significant GO

terms see Supplemental Data.

IDR gq- Fold Observed

GO term P -value value enrichment hits

G2/M DNA damage checkpoint 7.7E-11 1.1E-08 2.1 91
M/GI Transition 1.1E-09 8.5E-08 2.0 91
Homologous recombination repair 1.8E-09 1.0E-07 2.0 89

&  |Polo-like kinase mediated events 4.5E-07 9.7E-06 2.0 62
ﬁ APC/C:Cdc20 mediated degradation of Securin 8.8E-07 1.7E-05 2.1 54
E Ubiquitin-dependent degradation of Cyclin D 1.7E-06 2.9E-05 2.4 39
o Superpathway of cholesterol biosynthesis 2.3E-06 3.7E-05 2.4 36
Signaling mediated by p38-gamma and p38-delta 1.4E-05 1.7E-04 2.8 23
Activation of ATR in response to replication stress 1.6E-05 1.8E-04 2.1 39
Integrin alphallbbeta3 signaling 1.9E-05 2.1E-04 2.0 44
G2/M checkpoints 2.3E-09 6.6E-07 2.1 79
Homologous recombination repair 2.9E-07 1.7E-05 2.0 62

RNA polymerase I chain elongation 4.6E-06 1.2E-04 3.2 21

] Retrograde neurotrophin signalling 5.5E-06 1.3E-04 3.6 18
% Regulation of DNA replication 6.8E-08 7.9E-06 2.6 43
T |Integrin alphallbbeta3 signaling 1.7E-07 1.2E-05 2.6 39
Alpha6Beta4Integrin 7.5E-07 2.9E-05 23 44
Synthesis of DNA 2.8E-06 9.0E-05 2.0 524
Cyclin E associated events during G1/S transition 3.1E-06 9.9E-05 2.0 52
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In a separate analysis (/PA4, Ingenuity Systems) of signaling pathways, we found that NF-
Y preferentially associates with genes involved in the inter-related TP53 (p53) and TRAIL
apoptotic (death receptor) pathways (Supplemental Figure 4, C and D). This observation
reinforces the notion of a direct and indirect NF-Y/TP53 interplay, with opposing functional
consequences depending on the 7P353 status of the cell, i.e. proliferation or apoptosis (reviewed
in [195]). In addition, it is consistent with anecdotal evidence about the role of NF-Y in apoptosis
[196, 197], which helps explain the phenotypes of NFYA overexpression and inactivation

experiments [85], and point to specific molecules as areas of future investigation.

NF-Y binds to a diverse set of genomic features including non-genic regions

We annotated the NFYB bound regions in K562 to RefSeq genes (Figure 2, B; Supplemental
Figure 5), maps of histone modifications (Figure 2, C) and nucleosome-depleted regions, and
RNA levels (Figure 3, A and B). Unexpectedly, ~25% of the NF-Y binding sites were not
situated near RefSeq promoters, genic regions (IncRNAs [198]; miRBASE [199]; UCSC RNA
genes [200]; NONCODEdb [201]) or loci bound by RNA Pol II or Pol III [202] (not shown).
These sites were not false positives as the vast majority (88%) contained CCAAT boxes, and
46% of them were present in at least one other cell type. Based on the patterns of co-localized
histone modifications, and RNA Pol II, NF-Y bound regions in K562 and HeLaS3 reproducibly
partitioned into 20 clusters that could be grouped into five major classes (Figure 3, A and B;
Supplemental Figure 6): promoter, enhancer, gene body, PcG repressed, and LTR/non-modified-
chromatin. As discussed below, these results indicate that NF-Y binding was prevalent in tissue-
specific enhancers and specific types of repetitive sequences, in addition to proximal promoters,

where NF-Y has traditionally been observed.
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Figure 3: NF-Y bound loci resided within 5 epigenetic domains

A. K-means clustering of K562 NFYB loci based on the distribution of histone PTM, RNA
Pol II, NFYB and NFYA ChIP-Seq reads within a region spanning +/-5 kbp from the
summit of NFYB peaks (centered at 0 bp). Clustering was carried out on transformed rank
normalized read counts. Raw read count intensity is depicted in red. The interpretation
and classification of clusters into functional categories are shown to the right.

B. NFYB summits from clusters derived from A were annotated to genomic features:
chromatin states, LTRs, dbTSS, RefSeq promoters, and FAIRE-Seq regions. The
percentage of peak summits within each cluster overlapping a specific feature is indicated.
Overlap with LTRs was assayed within a window of +/-250 bp from the ends of the LTR
feature. RefSeq promoters were considered within a window of -2500:+500 bp from the
TSS. A direct overlap with FAIRE-Seq regions and chromatin states was used. Long
polyA purified RNA reads were counted within a window of +/-500 bp about the NFYB

peak summit and the median value of that cluster is shown.
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Figure 3 (Continued)
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Only a minority of NF-Y binding sites are located at proximal promoter regions

Although NF-Y is typically described as a factor that binds to proximal promoter regions, only
22% of NF-Y sites were located within 1 kbp upstream of a RefSeq TSS (Figure 2, B;
Supplemental Figure 5), consistent with our previous analysis of 2% of the H. sapiens genome
[42]. For such proximal promoter binding sites, a frequency distribution plot of NFYB peak
summits indicated that NF-Y was highly positioned upstream of the TSS at -40 to -100 bp
(Figure 2, D), in line with the position of the CCAAT box at TSSs (Figure 2, E), in agreement
with previous observations [51]. Though NFYA and NFYB bound asymmetrically to the
CCAAT box, the orientation with respect to the TSS was largely irrelevant for transcription, as
only a small difference in the frequency of CCAAT and its complement ATTGG were noticed
on the same strand (Figure 2, E). More generally, only a third of NF-Y loci (clusters L, K, P, N,
S, B, V, U; n = 4061; Figure 3, A) were associated with active promoters, as defined by high
levels of di- and tri-methylated H3-K4, acetylated H3-K27 and H3-K9, RNA Pol II, and
nucleosome depletion (defined by a “valley” of low enrichment of mono-methylated H3-K4 at

NFYB summits and a positive FAIRE signal; Figure 3, A and B).

A subset of NF-Y sites was located at tissue-specific enhancers

NF-Y binding to enhancers has been rarely described, e.g. the 5 upstream regions of the MHC
class II genes [203] and the intronic enhancer of the Hoxb4 gene [204]. Of NF-Y peak summits,
25% were located within a region demarcated by Ernst et al. [205] to be an enhancer chromatin
state (Figure 2, C). Our analysis, using similar datasets, found a lower percentage of NF-Y sites
to be located within regions consistent with known histone modifications of enhancers (12%;
clusters E, R and T; n = 1525; Figure 3, A). This discrepancy is likely due to our more

conservative definition of enhancer and the wider genomic region used for interpretation. NF-Y
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sites adjacent to Ernst et al promoter states, though still within the histone modifications defining
that state derived from the nearby active TSS, were designated by us to be “promoter”, however,
they would be classified as “enhancer” by Ernst et al. Clusters E and R are exceptional, in that
they represent NF-Y sites located close to (~2.5 kb), but not within regions of high enrichment
for H3-K27ac, H3-K9ac, H3K4mel/-2/-3 (strong actively transcribing promoters), unlike all
other clusters from the enhancer and promoter groups where NF-Y is directly within the enriched
domains.

Interestingly, cell type specific NF-Y sites were enriched for enhancers and were, on
average, located further away from TSSs as compared with NF-Y sites common to all cell types
(Supplemental Figure 7, A and B). GO analysis of cell-type specific NFYB loci reveals
categories enriched in individual cell types: “NF-xB cascade and regulation of IL12” was
enriched in GM12878, a cell type where NFkB is constitutively active [206, 207]; HeLaS3
showed enrichment for “Epidermis morphogenesis” and “Establishment of tissue polarity”,

commonly associated with cells of epithelial origin (Supplemental Figure 7, C).

Functional inactivation of NF-Y indicates a transcriptional role for NF-Y located distally to

TSSs

Given the preponderance of NF-Y locations distal to TSSs, we decided to identify the direct
transcriptional targets of NF-Y by performing expression array analysis on HeLaS3 cells
depleted for NFYA by lentiviral small hairpin RNA (shRNA) (Supplemental Figure 8, A and B)
and correlating these changes to the location of NF-Y. At a P-value cutoff of 10, 84 genes were
down-regulated and 252 genes were up-regulated (Table 2) upon NFYA knockdown. Of these,
only 11% (n = 9) and 39% (n = 98) had NF-Y bound to their proximal promoters, respectively.

The topmost differentially down- and up-regulated genes both
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Table 2: shRNA knockdown of NFYA
Differentially expressed genes upon NFYA knockdown in HeLaS3 and the number that
was bound by NF-Y as determined by ChIP-Seq. Windows are in relation to RefSeq

TSSs. Adjusted P-value is Bonferroni corrected.

Genes NFYA bound NFYB bound
Cutoff P-value | differentially | -2.5 kbp, +500 bp +/-50 kbp -2.5 kbp, +500 bp +/-50 kbp

(adjusted) regulated # p-value # p-value # p-value # p-value
1.00€-06 (7.5E-04) Down 9 2 1.8E-01 2 2.0E-01 2 1.0E+00 2 7.3E-01
Up 25 3 4.7E-01 3 5.0E-01 10 1.7E-01 11 1.9E-01
1.00E-05 (2.0E-03) Down 27 2 1.0E+00 3 7.3E-01 3 8.1E-02 3 2.2E-02
Up 91 15 1.3E-02 15 2.6E-02 45 3.3E-06 50 3.4E-06
Down 84 3 1.2E-01 4 1.9E-01 9 6.8E-04 9 1.5E-05

1.00E-04 (6.7E-03)
Up 252 34 8.5E-03 37 4.1E-03 98 1.3E-05 110 2.6E-05

Down 220 5 2.2E-04 6 2.3E-04 19 4.3E-11 28 2.4E-10
Up 629 101 5.9E-10 108 1.3E-10 233 1.6E-09 264 4.5E-09
Down 513 12 4.9E-09 18 7.6E-07 54 3.7E-19 79 1.8E-16
Up 1518 223 9.8E-17 245 9.7E-20 536 4.3E-16 624 4.4E-18

1.00E-03 (2.7E-02)

1.00E-02 (1.1E-01)
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trended towards having a higher percentage of their promoters occupied by NF-Y than non-
differentially regulated genes (Supplemental Figure 8, D). Of the 1059 NF-Y peaks in HeLaS3
located within 250 bp of a RefSeq TSS, only 5.2% were differentially regulated at a P-value of
10* (n = 55). The low percentage of differentially regulated genes bound by NFYB (or NFYA)
was similar to that found with other TFs [208-210] and could be exacerbated by the incomplete
functional inactivation of NF-Y.

The above observations suggest that NF-Y located more distally may be important
transcriptionally for the differentially regulated genes. In this regard, we ranked NF-Y sites by
the fold change in RNA expression of the nearest associated gene upon NF-Y inactivation. The
most strongly down-regulated genes had NF-Y sites that were much more distal to the TSS, with
the median distance being >10 kb (Supplemental Figure 8, C). This data suggests that NF-Y

located at enhancers, was important for transcription of neighboring genes.

LTRs were the most prevalent class of NF-Y sites in the H. sapiens genome

Of all NF-Y binding sites in K562, 40% directly overlapped an LTR, the promoter elements of
endogenous retroviruses, making LTRs the most prevalent class of NF-Y loci in the H. sapiens
genome, even more so than core promoters of endogenous genes (Figure 4, A). NF-Y selectively
associated with two families of LTRs - MLT1 and LTR12 (Figure 4, B and C). NF-Y did not
bind to all LTR families, irrespective of the presence of a CCAAT box in the consensus
sequence. The R66 tandem repeat (which is related to LTRI2B [211, 212]), MERSIA and
MERSIE also associated with NF-Y. In general, there was no significant cell type specificity in
LTR binding.

Most NF-Y bound sites at LTRs lacked any detectable histone modifications within 5 kbp of
the NF-Y peak summit (clusters D and J in Figure 3, A and B; Figure 4, D). These NF-Y loci
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appeared to be transcriptionally inactive, yet maintained substantial NFYB and NFYA
occupancy. Although most NF-Y bound LTRs appeared to be transcriptionally inactive,
promoter and enhancer chromatin states with high levels of H3 acetylation and/or H3-K4
methylation contained a sizeable minority (27% K562; 20% GM12878; Figure 4, D) of LTRs.
These appeared to be transcriptionally active, thus most likely representing functional cis-
regulatory elements derived from transposable repetitive elements and regulating endogenous
genes.

LTRs function as promoter elements of endogenous retroviruses and they can act as
regulatory elements for certain host genes [213]. NF-Y sites abound in viral LTRs [214-218].
The selectivity for the gamma-retrovirus LTR family and within it for certain members, likely
reflects the presence of CCAAT in the original viral LTRs. Thus, our results suggest a strong
genetic pressure on their genomic transduced copies to maintain NF-Y binding. This is not
unprecedented, as evidenced by the preference of particular TFs for specific repetitive sequences
[219, 220]. Genetic analysis of the ERV-9/LTR12 element located 5’ of the globin locus-control
region indicates a crucial role of the 14 CCAAT and GATA containing E3 repeats for expression
of the B-globin locus [221, 222]. Because of this precedent, we expected to observe a genomic
theme of most, if not all, LTR repetitive sequences bound by NF-Y to be either at enhancers or
promoters in regions of H3 acetylation. Instead, the opposite was true. The majority were
associated with heterochromatin-like domains apparently devoid of any transcriptional signal,
either positive or negative. Since the vast cohort of endogenous LTR proviral sites were under
strong control by the host organism and, in most cases, actively repressed by genetic and

epigenetic means [213], we are tempted to speculate that NF-Y plays a role in the epigenetic
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Figure 4: NF-Y binds extensively to long terminal repeats

A. NFYB peaks were extensively found at LTRs, more so than core promoters. The
percentage of all K562 NFYB peak summits that occupy the indicated feature. Core and
proximal promoters are defined as -250:+50 bp and -2500:+500 bp from the TSS of
RefSeq promoters, respectively.

B. Mapping of ChIP-Seq reads from K562, GM12878 and HeLaS3 to RepBase consensus
sequences showing an abundance of NF-Y specific reads mapping to repetitive elements.
Ratios reflect the enrichment of reads in the NFYB ChIP sample as compared to input.
Only RepBase entries with a read ratio >= 5 are shown. Orange shading indicates repeat
elements present in all cell lines. Green and red shading indicate the presence and
absence, respectively, of a CCAAT box match at P-value < 10™ in the consensus
sequence.

C. Frequency of overlap between NFYB peak summits and the genomic locations of LTR
families showing that only a specific subset of LTR families are bound by NF-Y. Only
LTR elements that overlapped at least one peak in each cell line are shown. The two most
highly overlapping repeat families are indicated, LTR12 and MLTJ1.

D. NF-Y bound LTRs were mainly situated within heterochromatin-like domains.
Distribution of NFYB bound LTRs from K562 and GM12878 at chromatin states. No

chromatin state map was available for HeL.aS3.
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Figure 4 (Continued)
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NE-YB Input
% Y% Ratio
Name Type Reads Reads | IP:Input
LTRI2D Long terminal repeat 8.10 0.13 62.4
R66 Tandem repeat 022 0.00 61.8
LTRI2 Long terminal repeat 422 0.08 543
LTRI2B Long terminal repeat 333 0.07 478
MERI22 | Interspersed repetitive element 0.12 0.00 46.8
LTRI2E Long terminal repeat 6.83 0.16 422
LTRI2C Long terminal repeat 21.67 0.52 41.7
LTRI2F Long terminal repeat 1.19 0.04 274
MLT1J Long terminal repeat 0.06 0.00 273
REP522 Repetitive subtelomeric-like 0.07 0.00 269 ﬁ
LTR7IB Long terminal repeat 0.28 0.02 17.0 2
MERS1E Long terminal repeat 0.09 0.01 15.7
A@l Simple repeat 158 0.13
Ul snRNA 028 0.02 12.1
MLT1J1 Long terminal repeat 0.01 0.00
c@l Simple repeat 0.06 0.01
MERSIA Long terminal repeat 0.24 0.03 “
A@2 Simple repeat 0.58 0.08
C@z2 Simple repeat 0.02 0.00
MERI101 Long terminal repeat 0.03 0.00 6.9
Ré6 Tandem repeat 0.02 0.00 92
LTRI2 Long terminal repeat 0.48 0.06 79
LTRI2B Long terminal repeat 0.40 0.05 7.7
LTRI2D Long terminal repeat 0.89 0.13 6.9 E
LTRI2F Long terminal repeat 0.19 0.03 SEO) B
U1l snRNA 0.11 0.02 5.8 -
MERS1A Long terminal repeat 0.08 0.01 5.6
MERS1E Long terminal repeat 0.02 0.00 5.0
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D Promoter strong (01) RPN 1.2%
Promoter weak (02)| 2.4% 2.1%
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repression of these LTRs in somatic tissue, and/or in their activation during embryogenesis,

where many repetitive elements are de-methylated and become expressed [223].

NF-Y binds CCAAT boxes in non-modified-chromatin domains in vivo, unlike most TFs

The majority of NF-Y sites (n = 6169; 49%) were in 2 similar clusters (D and J, i.e. LTR/non-
modified-chromatin class; Figure 3, A) that displayed no positive or repressive histone
modifications, negligible RNA Pol II and polyA RNA, and overlapped few open regulatory
regions (11, 25%) and RefSeq TSSs (7, 11%). Interestingly, most of these loci overlapped LTRs,
58% and 82%, respectively (Figure 3, B). These NF-Y sites are interesting as most TFs are
believed to not be able to bind to their DNA motifs within closed, transcriptionally inactive
chromatin domains.

To further explore this issue, we calculated the percentage of motifs residing within NFYB
peaks within distinct chromatin states, over a range of motif quality scores. Interestingly, and
unlike other TFs such as E2Fs and MYC, NFYB was not excluded from any chromatin state
assayed (Figure 5, A-C). At strong and weak promoters, > 80% of CCAAT boxes (with scores
>= 16) were occupied by NF-Y (Figure 5, A). CCAAT boxes at enhancers and insulators were
also well occupied by NF-Y (30-65%, respectively; Figure 5, A) although the percent occupancy
was lower than at strong promoters, indicating that binding to these genomic regions was more
selective. More generally, CCAAT boxes situated within open chromatin regions, as defined by
FAIRE, were exceptionally well occupied to near saturated levels by NF-Y, with 80% occupancy
(Figure 5, A). Interestingly, many CCAAT boxes within the non-modified-chromatin (10%),
PcG repressed (20%) and transcription elongation states (10-25%) were occupied by NF-Y.

To test whether the substantial occupation of CCAAT boxes within non-modified
chromatin and repressed genomic contexts was unique to NF-Y, we performed the same analysis
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on 22 TFs, whose binding sites in K562 cells have been determined by the ENCODE consortium
[183-185] (Figure 5, B; Supplemental Figure 9). As expected, most of the TFs examined showed
motif occupancy at nucleosome-depleted regulatory regions at high levels, comparable to those
of NF-Y. In contrast, GATA1 and GATA2, thought to be “pioneer” TFs (for review see [224,
225]), were highly selective and unable to saturate their motifs that resided within these
nucleosome-depleted regulatory regions. However, most TFs lacked the ability to occupy even
their highest quality motifs within non-modified and repressed chromatin states. For the 23
factors tested, only USF1, MAFK, and NF-Y could bind to motifs in the context of nucleosomes
lacking some of the most common “positive” histone modifications or containing the repressive
H3-K27me3 mark (Figure 5, B; Supplemental Figure 9).

By preventing accessibility to target sites, chromatin is a formidable barrier for binding by
most TFs. This creates a dilemma as to how cis-regulatory elements and their resident DNA
motifs can provide transcriptional competency if they cannot be accessed by trans-acting factors.
There are a small number of “pioneer” factors that can efficiently bind to their motif located
within non-nucleosome depleted, non-modified chromatin. Once bound, these pioneer TFs can
recruit chromatin-modifying activities to generate open chromatin for the subsequent binding of
partnering TFs [224, 225]. NF-Y can associate with a CCAAT box after nucleosome assembly in
vitro, and the NFYB/NFYC HFD dimer can physically interact with H3/H4 in solution and on
DNA [83]. Indeed, NF-Y binding is not mutually exclusive with nucleosomes in vitro, giving
NF-Y the theoretical functional ability to interact efficiently with chromatin bound CCAAT
boxes in vivo. NF-Y binds to a sizeable number of sites either in functionally ‘“hostile”
environments, or sites lacking all the common positive histone modifications. Perhaps, the

structural features of the HFD heterodimer are instrumental for this. We propose that NF-Y is a
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Figure 5: NF-Y can occupy its motif in closed chromatin

A. NF-Y has the ability to bind to its motif in many epigenetic domains, including repressed
and non-modified-chromatin regions. The percentage of genome-wide computationally
discovered CCAAT boxes within each chromatin state, FAIRE-Seq regions or the entire
genome, that directly overlapped NFYB K562 sites plotted as a function of CCAAT box
motif quality (right axes). Also shown are the numbers of discovered CCAAT boxes as a
function of CCAAT box motif quality (left axes). Numbering was derived from [205].

B. NF-Y was unusual in its ability to bind to closed chromatin CCAAT boxes. Similar to A,
except motif sites of different TFs are plotted as a function of motif quality. Only a subset
of TFs is shown, see Supplemental Figure 9 for all TFs analyzed.

C. Distribution of CCAAT box quality scores under NFYB K562 peaks, called at 3 different
P-values, a random genomic background sample set of 400k 500 bp regions and K562

FAIRE-Seq regions.
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Figure 5 (Continued)
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new type of “pioneer” TF that retains histone-like features, while possessing high sequence-

specificity with a remarkable ability to access its motif irrespective of the chromatin state.

NF-Y functions with different TFs based on genomic context, and the prevalence of an

association with FOS

Given the availability of 78 ChIP-Seq datasets in K562 for chromatin associated factors involved
in diverse functions, we explored their combinatorial genomic interactions with NF-Y and
focused on three classes of NF-Y bound sites — promoters, enhancers and LTR/non-modified-
chromatin. We statistically tested for co-association between NF-Y and individual factors and
found a high number, 44 at promoters and 50 at enhancers (at a P-value <= 107"%; Supplemental
Figure 10, A). We looked for combinatorial interactions beyond a one-way co-association with
NFYB, by performing hierarchical clustering (Supplemental Figure 10, B) and describing the
most common sets of 4-, 3-, and 2-way combinations of factors (Supplemental Figure 10, C). 2-
way combinations were deemed relevant for enhancers due to the dearth of factors located in
those regions. Figure 6 shows a summary of the factors present with NF-Y at promoters and
enhancers.

Promoters: Hierarchical clustering revealed a distinct cluster that contained a core group
of NF-Y co-associating factors: FOS, CHD2, TBP, RNA Pol II, CCNT2, HMGN3, MYC, and
E2F4/6 (Supplemental Figure 10, B). The most common 4-way sets of TF combinations present
at NFYB promoters variously included FOS, HMGN3, MYC, E2F4/6, HEY1 and CHD2,
verifying this group as highly prevalent and extensively overlapping (Supplemental Figure 10,
C). FOS was conspicuous, as it was the factor that most closely clustered with NFYA and
extensively associates with NF-Y in multi-way overlaps (Supplemental Figure 10, C; note
highlighted FOS entries). When we contrasted NFYB bound to non-bound promoters, FOS and
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CHD2 were absent from the latter. FOS was highly specific for promoters, with 59% occupancy,
but was largely absent at non-NFYB bound promoters (< 8%). HMGN3, MYC, E2F4/6, and
HEY1 were common promoter bound TFs, generally enriched at, but not specific to, NF-Y
bound promoters (Supplemental Figure 10, C).

Enhancers: NF-Y formed a well-defined cluster consisting of FOS, USF1/2, MAX,
CHD2 and E2F4 (Supplemental Figure 10, B), a slightly different grouping compared to
promoters but very similar. When individual and 2-way combinations were assayed, FOS and
USF1 were highly prevalent, being present at 39% and 27% of NF-Y enhancers, respectively,
and were the most common 2-way overlap at 13% (Supplemental Figure 10, C).

Somewhat expectedly, E2Fs, represented here by E2F4 and E2F6, closely associated with
NF-Y. Bioinformatic studies identified CCAAT boxes and E2F motifs as highly enriched in the
promoters of genes overexpressed in tumors [133-135], and an enrichment of E2F sites in the
proximity of CCAAT boxes in RefSeq promoters has been shown [51]. Importantly, apoptosis
mediated by overexpression of NFYA was abolished in E2F17" cells [226]. Moreover, E2F4 is
part of the DREAM complex [227, 228], which binds to the CDE DNA motif, and co-operates
with the CCAAT box to negatively regulate expression of G2/M-specific genes during the cell
cycle [229, 230]. CCAAT box and CDE -containing G2/M genes were significantly
overexpressed in a model of step-wise transformation of primary fibroblasts [125]. These data
invite further analysis between the interaction of NF-Y and E2F sites (see below) particularly in
cancer signature and cell cycle genes, and the integration with ChIP-Seq data of additional
members of the E2F family and the DREAM complex.

Essentially all E box binding TFs present in ENCODE are statistically enriched at NF-Y

locations, suggesting a pervasive partnership in cis between CCAAT and E boxes. MYC, which
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Figure 6: NF-Y co-associates with many factors at promoters and enhancers
[lustration of the factors that significantly associate with NF-Y bound strong promoters
and enhancers. Only those factors with greater than the median fold enrichment with
respect to NFYB non-bound regions (enrichment indicated by circle size), greater than the
median value of percent occupancy of NFYB bound regions (percentage occupied
indicated by color), and that significantly co-associate with NF-Y (gray box; see
Supplemental Figure 10, A). Factors enclosed within a yellow box are, additionally, the
subset of factors that cluster with NFYA and NFYB (see Supplemental Figure 10, B). A
black arrow indicates the start of a transcribed region. Two vertical slashes are used to

represent being distal to a promoter area.
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teams up with MAX to bind to the E box, is a good example. Interestingly, the number of
MYC/NF-Y bound promoters exceeds those with MAX/NF-Y, suggesting that either MYC
heterodimerizes with another E box binding partner, or that it binds in an E box independent
manner, possibly directly to NF-Y [59, 231]. The interaction data detailed above go a long way to
explain the importance of NF-Y for growth-regulating genes, and establish that NF-Y makes
widespread partnership with a group of TFs - MYC, E2Fs, and FOS - that control cellular

proliferation, and, when altered, can lead to cancer.

LTR/non-modified-chromatin: Given NF-Y’s ability to bind to closed chromatin we
wanted to know what factors could be partnering with NF-Y in these regions. We found
extensive co-localization of NF-Y with only four factors, FOS and USFI1, and to a lesser degree,
USF2 and SP1 (Supplemental Figure 11, A). In addition, specific groupings of these factors
occurred when we clustered the regions (clusters HL4, HLS, HL6, HL7, HL8, HL9, HL10;
Supplemental Figure 11, A). As most of the non-modified-chromatin NF-Y sites were LTRs, we
searched NF-Y-LTR sites located in non-modified-chromatin for known and novel DNA motifs,
both in K562 and GM12878. We found that these regions are extensively de-enriched for all
known DNA motifs that we assayed for when compared to all non-modified-chromatin residing
LTRs (not shown), except for the CCAAT box and, in K562 only, the motif for KLF4 (P-value =
1.6 x 10"%). A complementary de novo motif analysis found over-represented motifs that showed
little resemblance to known elements, other than the expected CCAAT box and, confirming, a
DNA motif similar to that of KLF4 (Supplemental Figure 11, B). ChIP-Seq data for KLF4 is not
available in K562 or GM 12878, however, its RNA and protein are detectable (not shown, [232]).
The TF KLF4 is known to act as a transcriptional activator and repressor [233-238] and may be

co-operating with NF-Y to repress LTR elements via a mechanism independent of H3K27me3.
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The TFs USF1 and USF2 create barrier elements of acetylated chromatin in intergenic
domains, thereby stopping the spread of heterochromatin [239-241]. The NF-Y-USF sites in non-
modified-chromatin are unlikely to be canonical USF barrier elements, as these regions are not
acetylated (Figure 3, A). However, this does not exclude a unique barrier element function of
these NF-Y-USF sites functioning by a different mechanism.

The biological function of the LTR/non-modified-chromatin residing NF-Y sites is truly
intriguing. Though we do not know their function, we do know that they are not acting as TSSs
(no detectable RNA Pol II, RNA Pol III or polyA RNA, and very few dbTSS entries), DNA
replication origins (ORC2 was not present), insulators (CTCF, RAD21 and SMC3 were not
detectable), enhancers (no detectable H3K4mel), or canonical USF barrier elements (no
detectable H3 acetylation). However, we do know that FOS, USF1, USF2, and SP1 were present,
that these loci were depleted for known motifs, and that they were LTRs, which opens up
possible avenues of biochemical and genetic experimentation.

It should also be noted that cluster HL2 (Supplemental Figure 11, A), though only
representing 147 NF-Y sites, displayed specific enrichment for four members of the CTCF-
cohesin insulator complex (CTCF, CTCFL, RAD21, and SMC3), in direct proximity with NF-Y.
A similar small cluster was also observed in the PcG repressed class (not shown). There is no
known precedent for this chromatin associated interaction in the literature and it raises the

question as to what NF-Y-CTCF-cohesion complexes could be doing in the cell.

NF-Y extensively co-associates with FOS at loci lacking an AP-1 motif

The overlap of FOS and NF-Y at all chromatin states, cluster classes and genic features is
striking. In fact, genome-wide, 45% of NFYB peaks directly overlapped a FOS peak, and 39% of
FOS peaks directly overlapped an NFYB peak (Table 3). The correlation of occupancy between
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NFYA and FOS at promoters and enhancers was high (Supplemental Figure 10, B), and even in
the LTR/non-modified-chromatin class (clusters D and J) FOS signal was directly coincident
with NF-Y at a large subset of NF-Y locations (clusters HL4, HLS5, HL6, HL7, HLS, HLOY;
Supplemental Figure 11, A). The degree of correlation between NFYB and FOS ChIP-Seq reads
at NFYB peaks was also exceptionally high (Pearson = 0.74), and only marginally lower than
that observed between the NF-Y subunits (Pearson = 0.77) (Figure 7, A). Interestingly, a
correlation (Pearson = 0.14) was not observed with JUN (Figure 7, A). These observations raise
the question as to whether the NF-Y-FOS co-association involved JUN and the AP-1 motif, or if
it could be mediated via NF-Y and the CCAAT box. NF-Y and FOS peaks were located just as
close (< 50 bp) as that observed between the NF-Y subunits and between FOS and its
dimerization partner JUN (Figure 7, B). Interestingly, most NF-Y-FOS sites lacked detectable
AP-1 motifs, either by de novo discovery (Figure 7, C; right panels) or by searching for the
canonical motif (Figure 7, C; left panel), with one very notable exception being NF-Y-FOS-LTR
loci, which will be discussed below. FOS-JUN loci had an AP-1 motif positioned under FOS
peak summits, as expected (Figure 7, C; left panel). Only about half of the FOS-NF-Y sites were
co-occupied by JUN and another, undetermined, B-Zip partner(s) may mediate FOS binding at
NF-Y sites, but this is at odds with the lack of a canonical AP-1 motif. A representative example
of the interplay is shown in Figure 7, D.

There are no reports of NF-Y and FOS protein-protein interactions in the literature or in
public databases that could explain this novel co-association (BIND, BioGRID, DIP, HPRD,
IntAct, and MINT interaction databases via the APID portal [242]). Given that NF-Y and FOS
have both been studied for decades and are ubiquitous factors, it is unlikely to have been missed

by the scientific community, unless the NF-Y-FOS interaction was highly unique to a specific
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Table 3: Overlap between FOS, JUN, MYC and NF-Y genomic binding site populations
Values represent the percentage of the peak population (left row) directly overlapping the
peak population of a second factor (top column). All binding sites were called at a P-value
<=10". All sites were: FOS (n = 14404); JUN (n = 18480); MYC (n = 13693); NFYA (n

= 4726); NFYB (n = 12655).

% Overlap
FOS | JUN | MYC | NFYA | NFYB

FOS 49.5 229 251 38.5

JUN | 385 28.1 6.5 a:7
MYC | 24.0 37.9 156.2 21.9
NFYA | 76.9 257 44.6 94.5
NFYB | 445 14.5 243 35.3
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Figure 7: NF-Y and FOS are closely co-associated at loci that lack JUN and the AP-1

motif

A. Correlation between ChIP-Seq read counts at NFYB peak summits, within a window of
+/-500 bp, between NFYB and NFYA, FOS, JUN or MYC in K562 cells. NFYA and FOS
were well correlated with NFYB, whereas JUN and MY C were not.

B. FOS-NF-Y peak summits were located just as closely as FOS-JUN and NFYA-NFYB
summits. FOS, NFYA and NFYB ChIP-Seq peak summits were mapped to the nearest
FOS, JUN, MYC or NFYA peak summit. The number of ChIP-Seq peaks at the indicated
distance between adjacent peak summits is plotted. All peaks were called at a 10° P-value
threshold in K562, where summit was the local maxima in read counts.

C. The AP-1 motif was not present under FOS sites that overlap NF-Y. The top 1000 K562
FOS ChIP-Seq sites, as ranked by site P-value, that directly overlap an NFYB site (
“FOS+NFYB”) and the top 1000 that do not overlap an NFYB site (10~ P-value site list,
“FOS-NFYB”) were assayed for the distribution of the AP-1 motif in relation to the FOS
peak summit centered at O bp. Plotted is the Gaussian kernel density estimate of the AP-1
motif using a bandwidth of 0.5 of the standard deviation of the smoothing kernel. The top
3 motifs discovered de novo from each FOS peak set, as above, are depicted with the
percentage of FOS peaks containing a match to that motif indicated.

D. FOS associated at the same genomic loci as NF-Y, usually in the absence of JUN.
Representative view of a locus on chromosome 3 of the K562 ChIP-Seq read counts from

NFYA, NFYB, FOS, JUN, and MYC ChlIPs, with an input control.
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Figure 7 (Continued)
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cellular compartment not commonly analyzed for direct protein-protein interactions (i.e.
chromatin) and/or was cell type specific. Related to our finding, an unexpected result emerged
recently from ChIP-Seq analysis of JNKs (Jun N-terminal Kinase). Rather than the predicted AP-
1 motif, the only recognizable motif in JNK sites was CCAAT, and indeed NF-Y was shown to
be necessary for INK-DNA association [243]. In light of our data, one possibility is that FOS,
directly or indirectly and possibly with JNK, binds to NF-Y, though only on chromatin and/or in
specific cell types, forming a novel NF-Y/FOS/INK complex that does not require the AP-1
motif or JUN, and recruits members of the MAPK family to CCAAT box containing regulatory

regions.

NF-Y sites contain positionally biased TFs

To investigate a possible distance bias between NF-Y and TFs on chromatin, we plotted the
distribution of the relative position of TATA, E box, E2F and AP-1 motif instances (termed
“predicted”) at NFYB peaks, in relation to the position of the best scoring CCAAT box (Ist C is
position 1), while maintaining strandedness. We then plotted the subset of motif instances
(termed “verified”) that were actually occupied by the TF of interest by ChIP-Seq (Figure 8).
First, we checked the NF-Y-FOS connection (Figure 8, A) and, remarkably, there was a
clear AP-1 motif 10-11 bp upstream of 5’-CCAAT-3’, which corresponded to FOS ChIP-Seq
peaks. However, this positioning was only found in NF-Y-bound LTR sequences, as NF-Y-FOS
sites, in general, did not contain an AP-1 motif (Figure 7, C). This finding has no precedent in
promoter studies and it is even more surprising as it involves repetitive sequences. The
functional nature of this interaction remains to be determined and the precise positioning and
distribution of the interplay may be an indication that the two TFs cooperate to keep LTRs
repressed, presumably with an unknown B-Zip partner. The TATA, E box and E2F motifs were
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also located at remarkably discrete, highly biased positions in a CCAAT orientation specific
manner: TATA at +50 bp; the E-box at -10/-11 bp; and the E2F motif at +6/+7, +31, +55 and
+72 bp (Figure 8, B). The position of the TATA box was maintained in TBP peak locations at
NF-Y loci, albeit with a somewhat reduced frequency. The stereo positioning of the E box
location was only maintained when MAX or USF1, but not MYC, loci were considered,
suggesting that MYC, when associating with NF-Y, was either not positioned, or did not bind
DNA directly. The E2F motif was unusual in that multiple stereo alignments were present and
only one, the closest to CCAAT, was maintained at E2F6, but not at E2F4 occupied sites.

The USF1 finding was particularly interesting, as USF1 was one of the few factors that
partnered with NF-Y in non-modified-chromatin domains (Supplemental Figure 11, A) and also
had the ability to recognize its motif within a repressive nucleosomal structure (Figure 5, B). NF-
Y and USF1 may cooperate to penetrate repressive, non-modified chromatin domains containing
a CCAAT box through a mechanism that requires precise motif positioning with an E box.

Overall, our data indicate the presence of precise positional bias between NF-Y and some
of its most common TF partners, notably, those that play crucial roles in the control of cell
proliferation, cell-cycle and metabolism genes. In the vast majority of NF-Y bound promoters, it
is known that NF-Y synergizes with neighboring TFs and it appears to be more of a promoter
organizer and facilitator of transcription, than a strong activator per se. There are three examples
in which cooperativity with NF-Y is mediated by precise spacing: the MHC Class II promoters;
NF-Y/ATF6 sites in ER stress response promoters [244]; and the multiple CCAAT boxes in
G2/M promoters [245]. Several studies reported overlaps between TFs at a genomic level, but, to
the best of our knowledge, the mutual TF interplays were never detailed with such a high degree

of precision. We establish here that the quality of ChIP-Seq peaks in ENCODE allows one to
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Figure 8: Motif pairings with the CCAAT box are stereo-positioned

A. The AP-1 motif was only stereo-positioned, with respect to the CCAAT box, at LTR
elements. Similar to B, except FOS peaks directly overlapping LTRs were considered.

B. The percentage of NFYB peaks that have a TATA-box (TBP), E-box (MYC, MAX,
USF1), and E2F motif (E2F6) at the specified distance from the best scoring CCAAT box
centered at 0 bp of NFYB sites, showing highly precise stereo-positioning of DNA motifs.
All NFYB peaks were categorized as “predicted”, while those NFYB peaks overlapping
the respective ChIP-Seq peaks of the other TF were categorized as “verified”. Only the
top 500 peaks in each category were plotted. The negative strand plots were near identical

mirror images of the positive strand plots and are not shown.
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Figure 8 (Continued)
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study the precise genomic architectural rules of TF interactions on DNA in vivo and within

specific genomic contexts.

Conclusions

Our comprehensive analysis of NF-Y confirms many functions including its prevalence at
proximal promoters, particularly those of growth controlling genes, at a much higher degree of
precision and completion. More interestingly, our analyses uncover several novel and
unexpected aspects of NF-Y function. In particular, NF-Y binds asymmetrically at its target sites,
plays an important role at many tissue-specific enhancers, is capable of binding “closed”
chromatin including at LTRs, co-associates pervasively with FOS, but not other AP-1 factors,
and displays precise stereo positioning with a restricted group of TFs involved in cellular
proliferation. Lastly, we note that comprehensive bioinformatic analyses of the type performed
here have been done on relatively few TFs. Similar analyses on other TFs whose target sites have
been or will be defined by ChIP-seq are likely to uncover new functional properties and

relationships of biological relevance, in particular to reconstruct regulatory element architectures.
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METHODS

Cell culture

K562, GM12878 and HeLaS3 were grown as per standard ENCODE protocols ([183-185];

Appendix C) and a detailed protocol is available at: http://genome.ucsc.edu/ENCODE/.

Chromatin immuno-precipitation

Cells were fixed by the addition of 1% v/v formaldehyde at room temperature for 10 min and
quenched with 0.2 M glycine. Cell pellets were washed twice with PBS, lysed in CLB (25 mM
HEPES pH7.8, 1.5 mM MgCl2, 10 mM KCl, 0.1% NP-40) with 1 mM DTT added just before
use, and nuclei pelleted by centrifugation at 12 kG. Crude nuclei were then lysed in NLB (50
mM HEPES pH7.9, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na deoxycholate)
with 1% SDS. Nuclear extract was fragmented using a Branson 450 sonicator and/or Misonix
3000 to yield chromatin of a suitable length for immuno-precipitation. Chromatin was spun at 12
kG for 10 min to remove precipitates and the supernatant was flash frozen and stored at -80°C
until use. Chromatin from 2x10’cell equivalents were used per ChIP. Chromatin was diluted 10x
in NLB and pre-cleared with Protein A-Sepharose beads for 2 hr at 4°C. The supernatant was
incubated with 5-10 pg of the appropriate antibody overnight at 4°C. Protein A-Sepharose beads
were added for 2 hr then washed as follows: 2x NLB with 0.1% SDS; 2x NLB with 0.1% SDS
and 640 mM NaCl; 2x WB (20 mM Tris-HCL pH8.0, 250 mM LiCl, 1 mM EDTA pHS.0, 0.5%
NP-40, 0.5% Na deoxycholate); finally, 2x TE (10 mM Tris-HCI pH 8.0, 1 mM EDTA pHS.0).
Bound protein was eluted in TE with 1% SDS for 15 min at > 60°C. Protease inhibitor cocktail
and 1 mM PMSF were added to all buffers just before use. Elutions were digested with 20 uL of

20 mg/mL pronase for 2 hr at 42°C and crosslinks reversed by overnight incubation at 65°C.
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DNA was purified using phenol:chloroform:isoamyl alcohol extraction utilizing high density
MaXtract tubes (Qiagen, USA) as per manufacturer’s protocol. Aqueous phase DNA was
precipitated by the addition of 200 mM NaCl, 500 mM NaAc, 80 pg/mL glycogen, and 2
volumes of ethanol, while incubating for > 1 hr at -80°C, followed by centrifugation at 12 kG at
4°C for 20 min. The precipitate was washed in 95% ethanol, resuspended in TE and stored at -

20°C until needed.

ChIP-Sequencing

ChIP DNA (2 biological replicates) prepared as above, and immuno-precipitated with anti-
NFYB or anti-NFYA antibody (Mantovani, R.), and input DNA (3 biological replicates) were
end repaired with calf intestinal alkaline phosphatase (New England Biolabs, USA) and sent for
sequencing to the Stanford Center for Genomics and Personalized Medicine or the Department
of Molecular, Cellular and Developmental Biology at Yale University. Library preparation and
[Mlumina sequencing were carried out as per manufacturer protocols and ENCODE standards

([183-185], http://genome.ucsc.edw/ENCODE/). Datasets for NF-Y are deposited at UCSC as per

ENCODE guidelines. Sequence reads (~28 nucleotides) were mapped to the H. sapiens genome
(hg18) using Bowtie [247], allowing <= 2 mismatches per read and reads with > 10 reportable
alignments were discarded. Binding sites were called using MACS v1.4 [248] at a P-value
threshold of 10” (unless otherwise noted) on non-redundant reads using input to control for local

genomic biases. See Supplemental Data for genomic coordinates.

ENCODE Consortium data Sets
ChIP-sequencing datasets for histone PTMs, TFs, and RNA-Seq for K562 and/or HeLaS3 cell

lines were provided by the ENCODE Consortium via the UCSC Genome Browser and are
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described there and ([183-185]; http://genome.ucsc.edu/ENCODE/; Appendix C). ChIP-Seq

datasets were mapped and peaks called as described above. RNA-Seq data was prepared by
Helicos (Cambridge, MA) as long (> 200 nt), poly-A enriched, cytosolic RNA and mapped using
rSeq [249, 250]. Chromatin state maps were also from ENCODE and are described at

http://genome.ucsc.edu/ENCODE/ and in [205]. The chromatin state “heterochromatin” was

renamed to “non-modified-chromatin”.

ChIP-QPCR

Primer pairs were designed to amplify regions within 150 bp of the summit of ChIP-Seq peaks.
Batch primer3 was used for primer design using default parameters [251]. All primers were
tested for unique hits to the H. sapiens genome using UCSC In-Silico PCR (Jim Kent, UCSC)
and by dissociation curve analysis. See supplemental data for primer sequences. QPCR was
performed on an Applied Biosystems 7900FAST instrument (kindly provided by the HMS
ICCB) on ChIP and input DNA (prepared as above, except Qiagen columns were used for
purification), using 2x Taq Mix (see [252]), except 250 nM EVA green (Biotium, USA) replaced
SYBR green. PCR program was: 95°C 10 min, followed by 40 cycles of 95°C for 5 sec, 60°C for
30 sec. ChIP-QPCR values are represented as fold enrichment over an NF-Y non-bound control
region as previously described [253]. Error bars are based on the standard deviation observed in

2-4 biological replicates run in QPCR triplicates.

Lentiviral knockdown and gene expression arrays

Scrambled control (shSCM) and NFYA pLKO.1-shRNAs were designed by Sigma-Aldrich. The
puromycin resistance cassette was replaced with an EGFP cassette. Viral production and

transduction were carried out as previously described [254]. HeLaS3 cells were transduced with
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shSCM or shNFYA viral supernatants, in triplicate, and cells collected after 48 hr of incubation.
The distribution of cells within the cell-cycle was checked via FACS as previously described
[254]. Knockdown efficiency was assayed by PCR on ¢cDNA to known NFYA target genes and
by Western Blot on whole cell protein extracts using anti-NFY A, and anti-Actin antibodies. For
arrays, total RNA was prepared by Trizol extraction and Qiagen RNeasy kit purification,
converted to biotinylated aRNA and hybridized to U133 Plus 2.0 GeneChip expression arrays
using the 3’ IVT Express Kit (Affymetrix, USA) following the manufacturer’s protocol. Array
hybridization was carried out by the Molecular Genetics Core Facility at Children’s Hospital
Boston supported by NIH-P50-NS40828 and NIH-P30-HD18655. Arrays were RMA normalized
[255], gene expression levels calculated, differential expression determined and probes annotated

using the following R packages from the Bioconductor project: affy [256], limma [257], and

annaffy [258].

Annotation of peaks to gene features, GO analysis (GREAT/IPA)

Genomic locations of peak summits were submitted to the annotation tool GREAT [259] using
the following parameters: whole genome background set, basal plus extension, proximal
upstream = 5 kbp, proximal downstream = 1 kbp, distal = 1 mbp; or whole genome background
set, basal, proximal upstream = 5 kbp, proximal downstream = 1 kbp. Molecular signaling

pathways were visualized using /PA (Ingenuity Systems, USA, http://www.ingenuity.com) were

a gray shaded node represents a K562 NFYB binding site located within the putative regulatory
region, as defined by GREAT, of that molecule. Peak summits were annotated to genomic

features using in-house scripts.
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De novo motif discovery

DNA sequences corresponding to the regions +/-50 bp of ChIP-Seq peak summits for NFYB in
K562 were gathered using BEDTools [260] and repeat masked using RepeatMasker with —q
option [261]. Sequences were searched for de novo motifs using parallel MEME [262] using the
following parameters: zoops, revcomp, minw [range 5-40], maxw [range 10-60]. Background
letter frequencies were based on a 5-order Markov model derived from hgl8 repeat masked
sequences -350:+100 bp about RefSeq TSSs, the non-modified-chromatin or PcG repressed
chromatin state maps. For NFYB, a second background model using FAIRE-Seq regions for
K562 was also carried out and produced a similar motif (not shown). Tomtom [263] was used to
compare de novo motifs to known motifs in the JASPAR CORE 2009 database [264]. For TFs
other than NF-Y, motifs were discovered as above except the top 1000 ChIP-Seq peaks of each
factor were used and the top motif was selected, except for FOS, which produced the CCAAT
box and was substituted for the motif derived from JUN ChIP-Seq. Similarly, for motifs in the
non-modified-chromatin state MEME was run using a motif width range of 10-15, on all K562
NFYB peaks residing within the non-modified-chromatin state, on non-masked sequences, with

a background set derived from the entire non-modified-chromatin state of K562 [205].

Motif stereo positioning

NFYB summit locations from K562 were scanned using Pscan [265], for matches to the NF-Y
matrix in the JASPAR CORE 2009 database (MA0060.1) [264]. For NF-Y loci with the best
matrix match on the positive strand, the first C (of CCAAT) of the best match was set to 0 bp.
Genomic sequences +/-75 bp from the motifs were retrieved and scanned with Pscan using the
collection of matrices in the JASPAR CORE 2009 database [264]. For each JASPAR matrix,

only regions containing a best matrix match > 0.8, computed as described in [265], were
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considered for further analyses. This population was deemed “predicted”. For each "predicted”
population, the subpopulation of regions that overlapped the relevant TF ChIP-Seq peak dataset
were deemed “ChlIP verified”. The frequency of the best motif occurrences for each motif matrix
at each bp from the CCAAT box was determined for each population and plotted as the

percentage of motifs.

Histone PTMs and chromatin associated factor clustering

Density arrays at NFYB peak summits spanning either +/-5 kbp or +/-500 bp representing ChIP-
Seq read counts of histone PTMs (H3K79me2, H3K4me3, H3K27me3, H3K4mel, H4K20mel,
H3K36me3, H3K4me2, H3K9ac, H3K9mel, H3K27ac), NFYA , NFYB, and RNA Pol II or
NFYA, NFYB and 78 chromatin associated factors (see Supplemental Figure 11, A for the full
list) with appropriate input samples, were computed using the ranked based correlation method
of segMINER v1.2 [266]. Clustering was carried out using the following parameters: T = 10, K-
means. Clusters from 3-50 were considered. Non-normalized raw read counts are depicted in

Figure 3, A and Supplemental Figure 11, A.

Mapping to repeats

Bowtie [247] was used to map the NFYB and input ChIP-Seq datasets to a reference “genome”
composed of Repbase v15.08 [267] entries - simple.ref, humrep.ref, humsub.ref and pseudo.ref —
allowing <= 2 mismatches per read and reads with > 1 alignment had one alignment selected at
random. Read counts for each Repbase entry were tallied and the ChIP:input ratio calculated.
Individual consensus sequences of repeat elements were scored for the presence or absence of
the CCAAT box using the matrix derived from this paper and FIMO [268] with matches called at

a significance P-value threshold of 10™.
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Hierarchical clustering of binding events to promoters and enhancers

Regions considered promoters and enhancers were taken from the K562 chromatin state maps of
[205]. Regions were considered “bound” if an NFYB peak summit directly overlapped the
region. Regions were considered “non-bound” if no NFYB peak overlapped the region of interest
and the region had < 1.5x the normalized fold-over-input ChIP-Seq enrichment for NFYB. At all
NFYB-bound or NFYB non-bound regions, chromatin associated factors were scored as present
(1) or absent (0) based on directly overlapping peak summits. The R packages pvclust [269] and

snow (http://cran.r-project.org/web/packages/snow/) were used to cluster the matrices and to

calculate  P-values using multiscale bootstrap  resampling.  Parameters  were:
method.dist="binary", method.hclust="ward", nboot=10000. Red and blue numbers in plots
indicate the approximately unbiased (AU) P-values and the bootstrap probability (BP),

respectively, as detailed in [269].

Statistical test of TF co-association with NF-Y

NFYB bound regions were as above. Promoters or enhancers occupied by NFYB we assessed for
individual co-occupancy of 78 transcriptional regulators. The significance of the overlap was

tested by a 2x2 contingency table using Fisher’s exact test and calculated using [270].

Western blot and RT-PCR

As described in [254]. Briefly, total cell protein extracts were prepared by resuspending the cell
pellets from shSCM or shNFYA infected cells in lysis buffer (50 mM Tris—HCI pH 8.0, 120 mM
NaCl, 0.5% NP-40, 1 mM EDTA, protease and phosphatase inhibitors). An equivalent amount of

cellular extracts were resolved by SDS-PAGE, electro transferred to PVDF membrane, and
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immuno-blotted with the following antibodies at 1:1000 in TBS containing 1 mg/ml BSA: anti-

NFYA (sc-10779), and anti-Actin (sc-1616) from Santa Cruz Biotechnology, USA.
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CHAPTER 3: Genome-wide dynamics of STAT3, FOS and cis-regulatory

element usage during inflammatory-mediated oncogenic transformation
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ABSTRACT

Oncogenic transformation can be triggered by inflammatory signaling pathways and
inflammation has been linked to diverse types of cancer. Here we use an inducible isogenic
model of inflammatory oncogenic transformation to track the genomic changes in the
inflammatory transcription factor (TF) STAT3, a partnering TF, FOS, and genome-wide cis-
regulatory element (CRE) usage during a time course of transformation. STAT3 genomic
binding is highly induced during transformation, linked to preexisting FOS bound sites, but does
not create new CREs, likely due to STAT3s inability to bind to DNA motifs outside of open
chromatin. Surprisingly, CRE usage is highly stable during transformation, a process with large
scale phenotypic and gene expression changes. STAT3 regulated AP-1 factors are deregulated
during transformation and may regulate the embryonic-like and bone-metastasis phenotypes
commonly observed in cancer and breast cancer, respectively. Using siRNA we found that direct
or indirect regulation by STAT3 accounts for 1/3" of the gene expression program during
transformation and that, a second inflammatory TF, NF«kB likely controls the rest. We also
highlight putative roles for circadian rhythm related TFs in transformation and the likely
inhibitory role of TSC22D3 acting on an epigenetic switch that initiates and maintains the
transformed phenotype. This study is one of the first to track a critical determinant TF and CRE
usage during a cellular phenotypic change, and the first for transformation. The genome maps of
STAT3, FOS and CREs catalogued here will be a valuable asset to the community for future

studies of inflammation-mediated oncogenic transformation.
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INTRODUCTION

Oncogenic transformation is the phenotypic process a normal cell undergoes to become
cancerous. It has long been known to be driven mostly by the perturbation of kinases (e.g. SRC,
RAS, BCR-ABL, ERBB2), which drive the inappropriate activity of downstream TFs. These
factors mediate transcriptional changes within the cell which ultimately mediate the phenotypic
qualities observed in the transformed cancerous cell type such as invasion, metastasis, loss of
contact mediated growth inhibition, uncontrolled proliferation and formation of tumors in nude
mice. This process has been thoroughly studied over the decades and the signal transducer and
activator of transcription 3 (STAT3) has been found to be a central mediator of the
transcriptional changes in many different types of cancers: breast cancer [175], pancreatic cancer
[176, 177], prostate cancer [178], liver cancer [179], melanoma [180], among others (for a
review see [181, 182]). STAT3 directly regulates the genes involved in cell proliferation, cell
cycle control, metastasis, apoptosis, angiogenesis, and embryogenesis, and as such, is a key
factor in the process of transformation.

STAT3 is a DNA binding TF [138, 139], that is part of a larger family consisting of 7
members. STAT3 contains an SH2 domain and is phosphorylated at tyrosine 705 (Tyr’*’) and
serine 727 (Ser’?’) in response to many cytokines and growth factors [161]. Tyr'®
phosphorylation is critical for the dimerization, nuclear localization, and gene activation by
STATS3, while Ser’*’ phosphorylation plays a more minor role in modulating STAT3 activity
[164, 271, 272]. SRC directly phosphorylates STAT3 in vitro [273] and co-immuno-precipitates
with STAT3 from cellular extracts [274-276], and is itself an oncogenic kinase. Many primary
tumors [277-283], tumor derived cell lines, and v-Src or ABL kinase transformed cell types

contain constitutively activated STAT3 [162, 273, 281, 284, 285]. Of primary breast cancer

71



specimens, 30-60% contain Tyr’® phosphorylated STAT3 [286-289]. Breast cancer cell lines
also have elevated levels of Tyr’® STAT3 and inhibition of STAT3 activity impairs proliferation
and induces apoptosis [175, 290, 291]. Pertinently, overexpression of a highly active form of
STAT3 (STAT3-C) in H. sapiens mammary epithelial cell lines [292] or fibroblasts [293] has
been shown to be sufficient to induce transformation. This was shown by anchorage independent
growth in soft agar and tumor development in nude mice, indicating that the transcriptional
output of activated STAT3 is all that is required, at least in breast cancer epithelial cells and
fibroblasts, for a transformed phenotype. In addition, inactivation of STAT3, by dominant
negative constructs [284], has been shown to inhibit Src induced transformation and reduce
tumor size/burden in murine models. However, STAT3 does not act alone, as we have previously
shown that inflammation-mediated oncogenic transformation of MCFI10A-ER-Src cells is
dependent upon a second inflammatory transcription factor, NFkB, as well as STAT3 [289].

In previous work in the Struhl Lab, an inflammatory cancer gene signature was found on the
basis of the identification of genes that were differentially expressed in 2 isogenic models of
oncogenic transformation [294]. One model involved non-transformed mammary epithelial cells
(MCF-10A; [295]) containing ER-Src, a derivative of the Src kinase oncoprotein that is fused to
the ligand-binding domain of the estrogen receptor (ER) [296]. Treatment of such cells with
tamoxifen (TAM) rapidly induces Src kinase activity which activates an epigenetic switch
involving STAT3, NFkB and downstream effectors [289, 297], that initiates and maintains
transformation. Inactivation of STAT3 or NF«kB prevents ER-Src induced transformation. Upon
Src activation, phenotypic transformation is observed within 24 to 36 hours ([289, 298]; Figure
15), thereby making it possible to kinetically follow the transition between non-transformed and

transformed isogenic cells.
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Here we use this model to further explore the transcriptional regulatory network involved in
inflammation-mediated transformation, specifically focusing on STAT3. To gain a
comprehensive understanding of the molecular events that occur upon Src activation in
MCFI10A-ER-Src cells, we performed ChIP-Seq, FAIRE-Seq, and gene expression studies at

several time points post Src activation, followed by genomic analyses.
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RESULTS

Study design

The cell line MCF10A-ER-Src provides an isogenic model for the study of the time-dependent
molecular dynamics that occur during oncogenic transformation. Upon treatment with tamoxifen,
cells undergo a rapid, and epigenetically maintainable, phenotypic and morphological
differentiation from an immortal non-transformed cellular state to a transformed cancerous
cellular state within 24-36 hr [289, 294]. To explore the relationship between a critical
determinant TF (STAT3), a partnering TF (FOS), cis-regulatory-element usage and changes in
gene expression during this pathologic cellular differentiation process, we sampled the
differentiation pathway by ChIP-Seq, gene expression microarrays and FAIRE-Seq (Figure 9).
Focusing on one of the main TFs mediating this process, we also performed siRNA knockdown
of STAT3, prior to transformation, to determine its dependent and independent contribution to

the transcriptional signal.

Biological functions of chromatin bound STAT3

The activation of STAT3 is a hallmark of oncogenic transformation in MCF10A-ER-Src
cells (Figure 10, A). It has been known since the late 90s that overexpression of constitutively
active STAT3 can lead to transformation of a non-transformed, though immortal, cell line and
that many different types of cancers have constitutively active STAT3. To identify where STAT3
was binding in the genome, STAT3 ChIP-Seq was performed at 0 hr and 36 hr post EtOH
treatment, and 4 hr, 12 hr and 36 hr post ER-Src activation (TAM treatment). We identified
78,293 non-redundant sites of STAT3 occupancy within MCF10A-ER-Src cells and 15,098

genes which contained at least one STAT3 binding site within their putative regulatory domain
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Figure 9: Experimental study design
Illustration depicting the basic outline of the experimental design showing tamoxifen or
ethanol treatment of MCF10A-ER-Src cells and the harvesting of chromatin or RNA for

ChIPs, FAIRE and gene expression analyses.
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Figure 10: STAT3 during transformation and the GO terms associated with differential

binding

A. Western blot of Tyr'® phosphorylated STAT3 in MCF10A parental cells and MCF10A-
ER-Src cells treated with EtOH or TAM for 24 hr. Tubulin was used as loading control.
Intensity values were normalized to tubulin and expressed as relative to the parental cell
line.

B. The STAT3 DNA binding motif derived from ChIP-Seq identified STAT3 binding sites.

C. Gene ontology terms significantly bound by transformation dependent differential STAT3

sites.
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Figure 10 (Continued)
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(as defined by GREAT, see Methods). Only 3.3% of STAT3 sites (n = 2,629) were not associated
with a RefSeq gene. De novo motif analysis of the top 10,000 of these sites revealed the
canonical STAT3 motif (Figure 10 , B). The location of differential STAT3 binding sites (see
below) in the genome revealed that many genes linked to inflammation were significantly over-
represented (“IL-6 signaling”, “NFxB signaling”, and “TGF-beta signaling”) as was expected
(Figure 10, C). STAT3 was also located within the regulatory regions of genes from ontologies
such as “cellular movement”, “growth and proliferation”, “cell death” and “embryonic

development” (Figure 10, C), key processes all linked to cancer, and, as such, confirming the

central role of STAT3 in transformation.

Transformation increased STAT3 DNA binding activity

STAT3 RNA levels were increased by ~50% during transformation, and STAT3 activity, as

measured by Tyr’"

phosphorylation, was increased ~3 fold. The increase in STAT3 activity was
reflected in an increase in average ChIP signal at STAT3 bound loci (Figure 11, A-E) and the
induction of new transformation dependent STAT3 sites. 26,783 STAT3 binding sites (cut off P-
value <= 10”) were discovered in non-transformed MCF10A-ER-Src cells, probably
representing a basal level of ER-Src signaling (Figure 10, A). In MCF10A-ER-Src cells
undergoing Src induced transformation, STAT3 bound sites at 4 hr, 12 hr and 36 hr post
induction increased to 77,262, 67,015, and 74,584 sites, respectively. While the increase in
transformation induced STAT3 sites is impressive, only 5.4% (n = 4,157), 4.8% (n = 3,200) and
4.7% (n = 3510) of STATS3 sites at these time points, respectively, were not detected in control
cells and induced greater than ~5 fold (mean + 1 x standard deviation) in ChIP signal intensity.
These STATS3 sites will hitherto be referred to as differential (similarly for FOS bound sites, see

below).
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Figure 11: Genome view of STAT3 binding during transformation
ChIP-Seq read counts at the ARNTL?2 (A), SOCS3 (B), TSC22D3 (C), NFKBI (D) and IL6
(E) loci during transformation of MCF10A-ER-Src cells. “4 hr”, “12 hr” and “36 hr”
indicate time post ER-Src induction by TAM treatment. EtOH and TAM input samples
are single replicates, all others are of 2 biological replicates combined. ChIP-Seq and
FAIRE-Seq elements deemed to be transformation dependent differential (“Diff.”) sites
and all sites derived from TAM and EtOH treated samples are shown. Red arrows

highlight differential (“Diff.””) ChIP-Seq sites.
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Figure 11 (Continued)
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Figure 11 (Continued)
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The location of STAT3 during transformation

STAT3 is mainly located at regions outside of proximal promoters, which has been observed
previously [299, 300]. In MCF10A-ER-Src cells, only 7% of STAT3 binding sites were located
within 2500 bp upstream of a RefSeq transcriptional start site (TSS) (Figure 12, A). Most
STATS3 sites were located within introns (40%) and regions distal to RefSeq gene features (42%)
(Figure 12, A), most of which were located within CREs and were therefore most likely
enhancers. Of all STAT3 sites, 57% directly overlapped a CRE. The locations of differential
STATS3 sites were primarily formed at locations distal to RefSeq TSSs. Differential STAT3 sites
were found 250 bp upstream of RefSeq TSSs at a rate similar, and not reaching significance, to
that of the genomic background (0.4% vs. 0.3%), however, all STAT3 sites were found at a rate
of 2.6% (P-value < 10™"; Figure 12, A). This preference is also seen at regions 250 — 2500 bp
upstream of RefSeq TSSs (2.6% vs. 4.1%, P-value < 10”; Figure 12, A). Moreover, there was a
statistically significant increase in distal intergenic STAT3 sites in the differential population
compared to all STAT3 sites (49% vs. 42%, P-value < 10'15; Figure 12, A). Plots of the density
of STATS3 sites in relation to RefSeq TSSs also showed that STAT3 sites that were differential
during transformation were preferentially located in regions distal of TSSs (Figure 12, B).

The bias of differential STAT3 sites towards distal intergenic regions was unlikely to be due
to STAT3 alone, and most likely reflected the biased location of a co-operating factor(s) and
their DNA motif(s) and/or saturation of STAT3 binding to proximal promoter locations. A
comparison of known motifs between differential STAT3 sites and all STAT3 sites implicated
the AP-1 (occurring as “AP-1” and “NFE2LI::MafG”), NOBOX and PRXX2 motifs in
cooperating with STAT3 at these loci (not shown). Neither NOBOX, an oocyte specific

transcriptional activator, nor PRXX2, interestingly involved in mesenchymal cell proliferation
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Figure 12: Transformation induced differential STAT3 sites are preferentially located

outside of proximal promoters

A. Distribution of STATS3 sites at RefSeq gene features.

B. ChIP-Seq peak density of STAT3 and NF-Y about RefSeq TSSs. Differential STAT3 sites
were located more distally than all STAT3 peaks from 4 hr, 12 hr and 36 hr post ER-Src

induction. 0 bp represents the TSS.
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and wound healing, had detectable RNA in MCF10A-ER-Src cells (not shown). All members of

the FOS and JUN family (AP-1 factors) were expressed (Figure 17, A).

STAT3 was located at FOS bound sites

The increase in STAT3 occupancy across the genome observed during transformation was
closely associated with FOS binding. ChIP-Seq of the AP-1 factor FOS revealed that 82% of all
STATS3 sites directly overlapped FOS bound sites. As can be seen in Figure 13, A, there was a
large overlap between STAT3 and FOS sites throughout transformation. Specifically observing
STATS3 differential sites indicated that nearly all (88%) were associated with a pre-existing FOS

bound site, and not with differential FOS sites (25%; Figure 13, B).

Cis-regulatory elements were static during cancer transformation

To identify the CREs utilized during transformation we performed FAIRE (formaldehyde
assisted isolation of regulatory elements) followed by massively parallel DNA sequencing [301,
302]. FAIRE allows the identification of nucleosome free genomic regions by utilizing the
preferential solubility of fragmented, non-protein bound DNA in the aqueous phase of phenol-
chloroform purification. This enriches for CREs which are depleted or free of nucleosomes
[303]. Nucleosomes are, by far, the major protein component bound to the genome, and are
efficiently cross-linked to DNA by formaldehyde whereas TFs, in general, are not [304, 305].
Thus, nucleosome depleted FAIRE regions are enriched and can be detected by DNA
sequencing. Cross-linked chromatin from 0 hr untreated (control), and 4 hr, 12 hr and 36 hr
TAM (tamoxifen) treated cells were analyzed to identify CREs used during transformation.
Across all our samples, 100,597 non-redundant CREs were identified in MCF10A-ER-Src

cells which was in line with the number of FAIRE-Seq defined CREs found in other cell types
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Figure 13: Overlap of STAT3 and FOS sites during transformation

A. STATS3 and FOS sites from each time point that directly overlapped.

B. Transformation dependent differential STAT3 sites directly overlapping all FOS sites
from 4 hr, 12 hr and 24 hr post ER-Src induction or transformation-dependent differential

FOS sites.
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Figure 13 (Continued)
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[184, 306]. The locations corresponded well to the known locations of TFs derived from ChIP-
Seq experiments in MCF10A-ER-Src cells (Figure 14, A). Surprisingly, given the major
phenotypic and transcriptional changes observed during transformation (Figure 15; Figure 22,
E), only 6.6% (n = 6617) of CREs were differentially present in at least one time point during
transformation (Figure 14, B). An analysis of differential CREs indicated that they were
indistinguishable from the genomic background in terms of gene ontologies (not shown), with no
significantly enriched terms. The differential CREs were most likely false positives and were not

considered further.

Differential STAT3 sites did not create new CREs

In addition to the above findings, the differential CREs were not the preferential location of
differential STAT3 or FOS bound loci (not shown; note “Diff.” FAIRE track in Figure 11 and
Figure 20). STAT3 activity was increased during transformation and would be expected to be
preferentially located at newly formed transformation-dependent CREs. The vast majority of
STAT3 sites represented a modest, but en masse genome-wide accumulation of STAT3 on
chromatin which was not reflected in the generation of new CREs. Of differential STAT3 sites,
38% (n = 2266) directly overlapped a stable CRE, however, only 0.24% (n = 14) of differential
STATS3 sites occurred at differential CREs and only 0.27% (n = 18) of differential CREs
contained differential STAT3 binding sites. Therefore, differential STAT3 sites did not elicit the
mass formation of new transformation-dependent CREs, but rather largely utilized the pre-

existing population.
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Figure 14: Co-localization of FAIRE-Seq regions and TF binding sites

A. FAIRE-Seq regions co-localized with TF binding sites. ChIP-Seq datasets of TFs, RNA

Pol II and RPC155 (Pol III subunit) in MCF10A-ER-Src cells at the EPASI locus with the

location of FAIRE-Seq sites indicated.

B. The active CREs identified by FAIRE-Seq during transformation and clustering of the

differential CREs (highlighted in red) based on their dynamics over the time-course

assayed.
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Figure 14 (Continued)
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Figure 15: Morphological changes of MCF10A-ER-Src cells undergoing transformation
MCF10A-ER-Src cells, at two cell densities, were treated with EtOH or TAM (induces
ER-Src) at time 0 hr and tracked by DIC time-lapse microscopy until 36 hr post treatment.
The key phenotypic differences between transformed and non-transformed cells are
highlighted. All images were taken at the same magnification. A video of the time-lapse is

available in Supplementary Videos.
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Figure 15 (Continued)
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STAT3 had a limited ability to bind to its motif outside of nucleosome depleted CREs

To determine if STAT3 was able to bind to its motif outside of nucleosome-depleted CREs, we
compared STAT3 bound sites, the genomic locations of STAT3 DNA motifs and FAIRE-Seq
regions. CREs containing a STAT3 motif where exceptionally well occupied by STAT3. At a
motif quality score of 14, there were ~26,000 potential STAT3 binding sites within the H.
sapiens genome of which only 8% were occupied by STAT3, whereas 80% of those falling
within FAIRE-Seq regions were bound by STAT3 (Figure 16). Access of STAT3 to its motif
was largely limited to nucleosome-depleted open genomic loci and similar results were found for
NF«kB and MYC. MYC is known to bind only to H3 acetylated loci [307] which are nucleosome
depleted open regions. In comparison, genome-wide FOS binding sites were well occupied
(30%), which may be due to cooperation with NF-Y (this dissertation, Chapter 2) or the biased
prevalence of AP-1 motifs at constitutively open regions. In this regard, STAT3 bound
opportunistically, present at most if not all CREs that contained a suitable DNA motif for
binding, with the limiting step being the post-translational activation of STAT3 (ie.

phosphorylation).

STAT3 regulated AP-1 factors were likely the predominant transcriptional regulators

during the later stages of transformation

Temporally, FOS RNA levels peaked at 24 hr post induction of ER-Src and this response was
STAT3-dependent (Figure 17, A). FOS 1is part of the AP-1 TF complex, a heterodimeric
regulatory complex composed of FOS (FOS, FOSL1, FOSL2, FOSB) and JUN family (JUN,
JUNB, JUND) members, many of which were significantly differentially expressed during
transformation (KOS, FOSLI, FOSL2, JUNB, JUND; Figure 17, A). Importantly, in a STAT3-

dependent manner, FOSL2 and JUNB were activated during transformation, whereas JUND was
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Figure 16: Occupancy of TF DNA binding site motifs in CREs
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The DNA binding site motifs of STAT3, MYC, FOS and NF«xB, at varying motif quality
scores, were computationally discovered genome-wide and the percentage that resided
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Seq regions, only those motifs that directly overlapped a FAIRE element were considered.
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repressed (Figure 17, A). An analysis of the regulatory regions bound by FOS sites that were
differential during transformation highlighted its importance to many STAT3 regulated processes
such as “G-protein coupled receptor signaling”, “NF«xB signaling”, “Cellular movement”, and
“Cell death” (Figure 17, B). In this regard, FOS cooperates with STAT3 in many key processes
of transformation. De novo motif analysis of the top 10,000 FOS bound sites revealed the

canonical AP-1 motif (Figure 17, C).

FOS bound to embryonic stem cell and bone metastasis related genes and pathways

Differential FOS sites were enriched for embryonic stem cell and development associated gene
ontology terms: “Role of NANOG in ESC pluripotency”, “Human ESC pluripotency”,
“Organismal development”, “Embryonic development”, and “Organ development” (Figure 17,
B). Moreover, /P4 analysis (see Methods) of the STAT3-dependent transcriptional program at
24 hr post ER-Src induction found FOS, FOSL2 and JUND, as key downstream effectors in a
pathway which was regulated during transformation that linked cellular assembly and
organization, embryonic development and organ development genes, via TGFB3 signaling
through the guanine nucleotide exchange factor SOS, and the extra-cellular matrix protein,
tenascin C (TNC) (Figure 18, B). High TNC expression is a biomarker for poor prognosis in
breast cancer [308, 309] and was found to be essential for breast cancer metastasis [310-312].
The genes within the ontology “Human embryonic stem cell pluripotency” containing a
differential FOS binding site are illustrated and listed in Figure 19, A and B. In addition, other
TFs linked to stem cell function were significantly differentially regulated at the RNA level
during transformation: PAXS, SOX4/9, STAT3, ZBTB16, and LEF1 (Figure 28).

A second gene ontology category whose genes were significantly enriched for FOS
differential sites, and which is pertinent to the clinical manifestation of breast cancer, were
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Figure 17: Deregulation of AP-1 factors and the GO terms associated with differential

FOS binding during transformation

A. Expression array analysis of AP-1 factors during transformation and their transcriptional
dependence on STAT3. Shown are the normalized RNA expression levels at 4 hr and 24
hr post EtOH or TAM treatment in samples transfected with siSCM (scrambled control)
or siSTAT3. RNA levels are expressed as fold change over the 4 hr EtOH and siSCM
treated sample.

B. Significant gene ontology terms bound by transformation-dependent differential FOS
sites.

C. The FOS DNA binding site motif derived de novo from FOS ChIP-Seq.
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Figure 17 (Continued)
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Figure 18: Ingenuity Pathway Analysis of genes differentially regulated during

transformation

A. The top interaction network derived from STAT3-dependent and transformation-
dependent differentially regulated genes at 4 hr post induction of ER-Src. Green and red
shading indicates down- and up-regulated by siSTAT3 treatment, respectively. Only
genes that were differentially regulated by transformation and by siSTAT3 were
considered.

B. Similar to A except at 24 hr post ER-Src induction.

C. The top interaction network derived from STAT3-independent and transformation-
dependent differentially regulated genes at 4 hr post induction of ER-Src. Green and red
shading indicates down- and up-regulated during transformation, respectively. Only genes
that are differentially regulated by transformation and not by siSTAT3 were considered.

D. Similar to C except at 24 hr post ER-Src induction.

Lines between two genes indicate a known or predicted, direct or indirect interaction.
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Figure 18 (Continued)

Transformation- and STAT3-dependent differentially expressed genes — 4hr

Pathway: Organismal Injury and Abnormalities, Cellular Movement, Nervous System Development and
Function

Extracellular Space B unknown

©2000-2012 Ingenuity Systems, Inc. Al rights reserved.
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Figure 18 (Continued)

Transformation- and STAT3-dependent differentially expressed genes — 24 hr
Pathway: Cellular Assembly and Organization, Embryonic Development, Organ Development
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Figure 18 (Continued)

Transformation-dependent and STAT3-independent differentially expressed genes — 4 hr
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Figure 18 (Continued)

Transformation-dependent and STAT3-independent differentially expressed genes — 24 hr
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Figure 19: Embryonic-related genes bound by FOS in MCF10A-ER-Src cells

A. The Ingenuity Systems canonical pathway “Human embryonic pluripotency” showing
genes whose regulatory domain (see GREAT, Methods) was bound by transformation-
dependent differential FOS sites (highlighted in gray shading).

B. Similar to A. Shows the differential gene expression changes upon ER-Src activation at 4
hr and 24 hr post induction. Genes not showing expression changes were not significantly

altered during transformation.
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Figure 19 (Continued)
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Figure 19 (Continued)

B
Differentially expressed during transformation Differentially expressed during transformation
4 hr 24 hr 4 hr 24 hr

Gene log2 FC P -value log2 FC P -value Gene log2 FC P -value log2 FC P-value
AKT3 - - - - PIK3C2A - - - -
APC - - - - PIK3C2G - - - -
BDNF - - -0.62 8.3E-05 PIK3C3 - - - -
BMP15 - - - - PIK3CB - - - -
BMP2 - - 1.56 5.7E-09 PIK3CG - - - -
BMP3 - - - - PIK3RI1 -0.61 3.9E-05 - -
BMP4 - - - - PIK3R3 - - -1.05 9.0E-07
BMP35 - - - - PIK3R4 - - - -
BMP7 - - - - PIK3RS5 = = = =
BMPSA - - - - S1PR1 - - - -
BMPRI1B - - - - SMAD1 - - - -
CTNNBI1 - - - - SMAD2 - - - -
FGFRI1 - - - - SMAD3 0.74 2.2E-06 0.74 2.0E-06
FGFR2 - - -3.21 6.9E-05 SMAD6 - - - -
FZD1 - - - - SMAD7 - - - -
FZD10 - - - - SOX2 - - - -
FZD4 - - - - TCF4 - - - -
FZD7 - - - - TCF7L2 - - - -
FZDS§ - - - - TGFB2 0.74 8.4E-05 - -
GNAS - - - - TGFB3 - - 1.49 1.4E-05
GSK3B - - - - TGFBRI1 - - - -
LEF1 - - -0.65 9.8E-05 TGFBR2 -0.96 7.5E-05 - -
NGF - - - - WNT11 - - - -
NOG - - - - WNT16 - - - -
NTRK2 - - . - WNT?2 - - - -
NTRK3 ; - ; - WNT2B - - - -
PDGFB . . . . WNT3 . . . .
PDGFC ; - ; - WNT7A - - ; -
PDGFRA . - . - WNT7B . - . .
PDGIRB ; - ; - WNTSB - - ; -
PDPK1 - - - - WNTO9B - - - -
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mechanisms of osteo-pathologies and associated inflammation: “Role of osteoblasts, osteoclasts
and chondrocytes in RA”, and “Role of macrophages, fibroblasts and endothelial cells in RA”
(Figure 17, B). Breast cancers frequently metastasize to and reoccur within bone, where it
induces pathologic osteoclast-mediated bone resorption leading to osteolytic lesions, which are
the main causes of pain and disability in breast cancer patients. Here we find that key genes
known to be involved in this process (BMP2, MMPs and TNFRSF11A (RANK)) contained
differential FOS binding sites (Figure 20, A-C) and were differentially regulated during
transformation. The genes within the ontology “Role of osteoblasts, osteoclasts and
chondrocytes in RA” containing a transformation dependent differential FOS binding site are

illustrated and listed in Figure 21, A-D.

Functional inactivation of STAT3 during transformation

To understand if STAT3 alone can explain the gene transcription program observed during
transformation and to further define its direct targets, we knocked down STAT3 by siRNA and
tracked perturbations in gene expression by microarray expression analysis. siRNAs specific to
STAT3 or a control scrambled siRNA (siSCM) were transiently transfected into non-confluent
MCFI10A-ER-Src cells. After two days in culture, cells were treated with either tamoxifen
(TAM, to induce ER-Src and transformation) or EtOH (control for cell growth and crowding).
After an additional 4 or 24 hr in culture, RNA was extracted and assayed by 3’-biased
Affymetrix H. sapiens whole genome gene expression arrays.

To assess the quality of the STAT3 knockdown, parallel protein samples were harvested 72
hr post siRNA treatment (i.e. 24 hr post TAM treatment) and assayed by Western blot (Figure
22, A). A robust knockdown of STATS3 protein levels by > 95% was observed in two replicates.
In addition, microarray expression values showed a > 10 fold decrease in STA73 RNA level only

106



Figure 20: Genome view of FOS binding during transformation
ChIP-Seq read counts at the TNFRSF11A4, BMP2 and MMP loci during transformation of
MCFI10A-ER-Src cells. 4 hr, 12 hr and 36 hr indicate time post ER-Src induction by TAM
treatment. EtOH and TAM input samples are a single replicate, all others are of 2
biological replicates combined. ChIP-Seq and FAIRE-Seq elements deemed to be
transformation dependent differential (“Diff.”) sites and all sites derived from TAM and

EtOH treated samples are shown. Red arrows highlight differential (“Diff.”) ChIP-Seq

sites.
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Figure 20 (Continued)
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Figure 21: Bone metastasis related genes bound by differential FOS sites

A. B. C. The Ingenuity Systems canonical pathway “Role of osteoblasts, osteoclasts and
chondrocytes in rheumatoid arthritis” showing genes whose regulatory domain (see
GREAT, Methods) was bound by transformation-dependent differential FOS sites
(highlighted in gray shading).

D. Similar to A. Shows the differential gene expression changes upon ER-Src activation at 4
hr and 24 hr post induction, with P-values. Genes not showing expression changes were

not significantly altered during transformation.
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Figure 21 (Continued)
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Figure 21 (Continued)

Role of osteoblasts, osteoclasts and chondrocytes in rheumatoid arthritis
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Figure 21 (Continued)

Role of osteoblasts, osteoclasts and chondrocytes in rheumatoid arthritis

C

Degradation
of chondrocyte

Chondrocyte

Switch from

anabolic
to catabolic

Matrix
synthesis

Cleavage of
collagen fibers

PaAIasa1sIYSLI [y ou] ‘sw)sAS Anualdul Z102-0002 O

Cartilage
degradation

112



Figure 21 (Continued)

D Differentially expressed during transformation Differentially expressed during transformation
4 hr 24 hr 4 hr 24 hr

Gene log2 FC ~ P-value log2FC  P-value Gene log2 FC ~ P-value log2FC  P-value
ADAMTS4 - - - - JUN - - 1.03 1.2E-08
ADAMT S5 - - - - LEF1 - - -0.65 9.8E-05
AKT3 - - - - MAP2K6 - - - -
ALPL - - - - MAP3K7 - - - -
APC - - - - MAPK14 - - 0.55 2.1E-05
BIRC2 - - - - MAPKS - - - -
BIRC3 1.16 1.2E-08 - - MMP1 - - - -
BMP15 - . . . MMP 14 - - 1.51 6.7E-08
BMP2 - - 1.56 5.7E-09 MMP3 - - 2.24 6.3E-07
BMP3 - - - - MMPS§ - - - -
BMP4 - - - - NFATS3 - - - -
BMP5 - - - - NFATCI - - - -
BMP7 - - - - NFATC2 - - - -
BMPSA - - - - NFKBI 0.60 6.7E-05 - -
BMPRIB - - - - NFKBIA - - - -
CALCR - - - - PIK3C2A - - - -
CALM1 - - - - PIK3C2G - - - -
CASP9 - - - - PIK3C3 - - - -
CSF1 - - - - PIK3CB - - - -
CSFIR - - - - PIK3CG - - - -
CSF2 - - - - PIK3R1 -0.61 3.9E-05 - -
CTNNBI - - - - PIK3R3 - - -1.05 9.0E-07
DKK1 -0.83 5.5E-08 -1.82 4.4E-13 PIK3R4 - - - -
DKK2 - - - - PIK3RS - - - -
FOS 1.20 6.6E-09 2.04 2.3E-12 PPP3CA - - - -
FOXO1 -0.50 2.4E-05 - - PPP3CC - - - -
FZD1 - - - - PTK2B - - - -
FZD10 - - - - RUNX2 - - 0.69 4.6E-05
FZD4 - - - - SFRP 1 -0.55 3.5E-05 -1.59 1.7E-11
FZD7 - - - - SMADI - - - -
FZD8 - - - - SMADG6 - - - -
GSK3B - - - - SMAD9 - - - -
IFNG - - - - SMURF1 - - - -
IGF1 - - - - TAB2 - - - -
IL10 - - - - TCF4 - - - -
IL18 - - -1.30 8.3E-10 TCF7L2 - - - -
IL1A - - - - TNFRSF11A - - - -
IL1B - - - - TNFRSF11B - - 2.10 3.9E-09
ILIR1 0.56 1.1E-05 1.37 4.3E-11 TNFSF11 - - - -
IL1R2 - - 2.34 3.3E-10 WNT11 - - - -
ILIRAP 0.72 9.9E-06 1.23 4.5E-05 WNT16 - - - -
ILIRAPL2 - - - - WNT2 - - - -
ILIRL1 - - 2.68 3.1E-11 WNT2B - - - -
ILIRL2 - - - - WNT3 - - - -
IL33 - - 6.82 3.3E-09 WNT7A - - - -
IL37 - - - - WNT7B - - - -
IL6 2.70 2.5E-08 - - WNTS8B - - - -
L7 - - 0.98 3.9E-05 WNT9B - - - -
ITGA2 0.65 2.2E-05 1.32 2.0E-09 ADAMT S9 1.46 7.0E-05 2.24 5.2E-11
ITGB1 - - - -
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upon siSTAT3 treatment (Figure 22, B), and the expression of known STAT3 activated genes
(CD46, FOS, SERPIN3A4, SOCS3 and VEGFA) were effectively perturbed (CD46 less so)
(Figure 22, C). To assess the transformation process, genes known to be induced during
transformation in MCF10A-ER-Src cells were checked in the microarray data (Figure 22, B). In
addition, microscopic examination of cell morphology confirmed that transformation had
occurred in the siSCM TAM treated cells, but not in the siSTAT3 TAM or any EtOH treated
cells (not shown). A list of the top 20 genes at 4 hr or 24 hr that were STAT3-dependent or
STAT3-independent and transformation-dependent are listed in Figure 23, A and B.

A comparison of the gene ontology terms that were significantly enriched in those genes that
were differentially regulated during transformation in a STAT3-dependent or independent
manner revealed that STAT3 was more important for regulating genes involved in the
inflammatory response and less important in regulating genes that were involved in cellular
metabolism, especially at the 24 hr time point. Note the presence of “Butanoate metabolism”,
“Galactose metabolism”, “Starch and sucrose metabolism” and “Aminosugars metabolism” in
the STAT3-independent 24 hr time point (Figure 24, B) and the absence of metabolism related
terms in the STAT3-dependent 24 hr time point (Figure 24, A). IPA pathway analysis (see
Methods) revealed that NFkB may be controlling expression of the metabolism genes as a
network linking carbohydrate metabolism, drug metabolism, and small molecule biochemistry
was the top network (Figure 18, D) linking the differentially expressed genes at 24 hr post ER-

Src induction that were STAT3-independent, with NFkB as a central effector.

STAT3 activity accounts for a large proportion of differential gene regulation

During transformation, 384 and 1472 genes were differentially regulated (P-value <= 107, log2
fold change of >= 0.5) at 4 hr and 24 hr post ER-Src activation. Specific functional inactivation
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Figure 22: Knockdown of STAT3 during transformation

A. Western blots of protein extracts from TAM treated MCF10A-ER-Src cells done in
parallel to RNA samples used for expression microarray analysis. STAT3 protein levels
were reduced > 25 fold upon siSTAT3 knockdown by 24 hr.

B. Normalized RNA microarray expression values of STAT3 and four genes known to be
differentially regulated during transformation.

C. Similar to A, except showing RNA levels of genes known to be regulated by STAT3
indicating functional inactivation of STAT3 was achieved.

D. Similar to A, except showing expression levels of 4 “housekeeping” genes, expressed at
different levels, indicating that arrays were normalized.

E. The numbers of genes differentially up or down regulated during transformation at 4 hr

and 24 hr post ER-Src activation and their dependence on STAT3 (see Methods).
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Figure 22 (Continued)
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Figure 23: Top 20 differentially regulated genes during transformation and siSTAT3
treatment
A. At 4 hr post ER-Src activation (+TAM).

B. At 24 hr post ER-Src activation (+TAM).
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Figure 23 (Continued)

A Top 20 genes activated by STAT3 at 4 hr
. TAM +siSCM  TAM +siSTAT3
Symbol Name Molecular function log2 FC log2 FC
SOCS3 Suppressor of cytokine signaling 3 Protein kinase mhibitor activity 32 -2.8
SERPINA 1 Serpin peptidase inhibitor, clade A, member 1 Endopeptidase inhibitor activity 2.8 -2.8
STC1 Stanniocalein 1 Hormone activity 3.6 -2.7
SERPINB13 Serpin peptidase mhibitor, clade B, member 13 Endopeptidase mhibitor activity 3.0 225
TNC Tenascin C Unknown 25 -2.0
RGS2 Regulator of G-protein signaling 2, 24kDa GTPase activator activity 2.0 -2.0
SLC43A2 Solute carrier family 43, member 2 Amino acid transmembrane transporter 0.8 -1.8
activity
TRIM15 Tripartite motif-containing 15 Zinc ion binding 2.1 -1.7
SERPINB1 Serpin peptidase inhibitor, clade B, member 1~ Endopeptidase inhibitor activity 2.0 -1.7
LOC346887 (similar to solute carrier family 16, member 14)  Unknown 1.5 -1.7
NAMPT Nicotinamide phosphoribosyltransferase Cytokine activity, nicotinamide 1.9 -1.6
phosphorbosyltransferase activity,
FAM46C Family with sequence similarity 46, member C ~ Unknown 1.7 -1.6
CLEC2B C-type lectin domain family 2, member B Carbohydrate binding 1.7 -1.6
SAA4 Serumamyloid A4, constitutive Unknown 1.9 -1.5
FLI36031 Hypothetical protein FLJ36031 Unknown 1.7 -1.4
MCC Mutated in colorectal cancers Unknown 1.1 -1.4
NEDD4L Neural precursor cell expressed, Ton channel mhibitor activity 1.7 -1.4
developmentally down-regulated 4-like
PPAP2B Phosphatidic acid phosphatase type 2B Lipid phosphatase activity 1.1 -1.4
GPC6 Glypican 6 Proteoglycan binding 1.1 -1.3
SH3TC1 SH3 domain and tetratricopeptide repeats 1 Unknown 12 -1.3
Top 20 genes repressed by STAT3 at 4 hr
. TAM +5iSCM  TAM +siSTAT3
Symbol Name Molecular function log2 FC log2 FC
ABCB9 ATP-binding cassette, sub-family B ATPase activity, coupled to 221 41
(MDR/TAP), member 9 transmembrane movement of substances
ARPP21 Cyclic AMP-regulated phosphoprotein, 21 kD Unknown -12 27
LOCI00129166 N/A Unknown -0.8 2.6
AJAPL Adherens junctions associated protein 1 Unknown -12 23
SIRPD Signal-regulatory protein delta Unknown -14 20
SEMA3C Sema domain, Ig domain, short basic domain,  Semaphorin receptor binding, -12 1.7
secreted, 3C
ZNF238 Zine finger protein 238 Transcription factor activity -1.1 1.6
EXOC6B Exocyst complex component 6B Unknown -1.1 1.6
SOX9 SRY-box 9 Transcription factor activity -1.7 1.4
INHBA Inhibin, beta A Cytokine activity -0.6 1.3
C110RF17 Chromosome 11 open reading frame 17 Unknown -0.1 1.2
PAXSE Paired box 8 Transcription factor activity -0.2 1.2
TIMP3 TIMP metallopeptidase inhibitor 3 Metalloendopeptidase inhibitor activity -1.5 1.2
TXNIP Thioredoxin interacting protein Enzyme inhibitor activity -0.7 1.1
LAMC25 Laminin, gamma 2 Glycosaminoglycan binding -0.7 1.1
(237435 _at) N/A Unknown -1.3 1.0
CPEB2 Cytoplasmic polyadenylation element binding ssRNA binding -0.9 1.0
protein 2
ZBTBl16 Zince finger and BTB domain containing 16 Transcription factor activity -1.1 1.0
SLC46A 1 Solute carrier family 46 (folate trans porter), Vitamin transporter activity -0.2 1.0
member 1
ERRFI1 ERBB receptor feedback mhibitor 1 GTPase activator activity -0.2 0.9
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Figure 23 (Continued)

B
Top 20 genes activated by STAT3 at 24 hr
Symbol Name Molecular function SISCM + TAM SISTATS + TAM
log2 FC log2 FC
RASDI RAS, dexamethasone-induced 1 GTPase activity 6.9 -6.4
GZMB Granzyme B Peptidase activity 7.6 -6.3
PAEP Progestagen-associated endometrial protein Unknown 5.6 -6.2
11.33 Interleukin 33 Cytokine activity 6.8 -5.9
CRP C-reactive protein, pentraxin-related Calcium ion binding, lipoprotein binding, 5.1 5.4
choline binding
MYLK3 Myosin light chain kinase 3 Protein kinase activity 3.1 -5.3
OLFM4 Olfactomedin 4 Cell adhesion 5.6 -5.1
STCI Stanniocalein 1 Hormone activity 6.8 -5.0
ECSCR Endothelial cell-specific chemotaxis regulator ~ Unknown 4.9 -4.7
RIIOU Ras homolog gene family, member U GTPase activity 4.7 -4.5
CUEDC1 CUE domain containing 1 Ubiquitin system component 5.0 -4.3
TNC Tenascin C Cell adhesion 5.2 -4.2
NPAS1 Neuronal PAS domain protein 1 Transcription factor activity 0.9 -4.1
ADAM19 ADAM metallopeptidase domain 19 Metalloendopeptidase activity 54 -4.0
HBA2 Hemoglobin, alpha 2; hemoglobin, alpha 1 Heme binding 35 -3.8
FGL1 Fibrinogen-like 1 Unknown 4.5 -3.8
CLEC2B C-type lectin domain family 2, member B Carbohydrate binding, 5.1 -3.7
CTSL1P8 Cathepsin L1 pseudogene 8 Unknown 39 -3.6
CHRNA9 Cholinergic receptor, nicotinic, alpha 9 Ligand-gated ion channel activity 3.6 -3.5
ENTPD3 Ectonucleoside triphosphate Nucleoside-diphosphatase activity 5.1 -3.5
diphosphohydrolase 3
Top 20 genes repressed by STAT3 at 24 hr
Symbol Name Molecular function TAM #siSCM TAM + siSTAT3
log2 FC log2 FC
DBNDD2 Dysbindin domain containing 2 Unknown -2.0 49
MUCI6 Mucin 16, cell surface associated Cell adhesion -4.1 4.7
ATP6VIC2 ATPase, I+ transporting, lysosomal 42kDa, V1 Iydrolase activity, acting on acid -2.7 42
subunit C2 anhydrides, catalyzing transmembrane
movement of substances
SPRR3 Small proline-rich protein 3 Structural molecule activity -1.8 3.6
HIRA4 HtrA serine peptidase 4 Endopeptidase activity -3.7 33
CLDNI Claudin 1 Structural molecule activity -2.4 32
IGFBP3 Insulin-like growth factor binding protein 3 Protein tyrosine phosphatase activator -1.0 32
activity
TNF Tumor necrosis factor (TNF superfamily, Cytokine activity -0.8 32
member 2)
CTXNI Cortexin 1 ‘Trans membrane protein -3.0 32
KRT15 Keratin 15 Structural molecule activity -3.0 3.1
SPRR2B Small proline-rich protein 2B Unknown -1.0 3.1
EPHB3 EPH receptor B3 Protein kinase activity -2.8 3.0
BDKRBI Bradykmnin receptor Bl Bradykinin receptor activity -2.7 2.9
CD241.4 CD24 molecule; CD24 molecule-like 4 Protein kinase activator activity -2.6 29
MACC1 Metastasis associated in colon cancer 1 Growth factor activity -2.5 2.8
IFIT1 Interferon-induced protein with Unknown -1.4 28
tetratricopeptide repeats 1
GRIHL3 Grainyhead-like 3 Trans cription regulation -2.8 2.8
IF127 Interferon, alpha-inducible protein 27 Unknown 0.4 2.8
MUM1 Melanoma associated antigen (mutated) 1 Unknown -2.5 2.8
CXCL11 Chemokine (C-X-C motif) ligand 11 Cytokine activity -1.9 2.7
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Figure 24: Gene ontology terms associated with STAT3-dependent genes during

transformation

A. Genes significantly differentially regulated during transformation that are significantly

affected by STAT3 knockdown.

B. Genes significantly differentially regulated during transformation that are not significantly

affected by STAT3 knockdown.

A STAT3-dependent
4 hr 24 hr
Pathway P -value Pathway P -value
Acute Phase Response Signaling 4.0E-03 IL-6 Signaling 7.9E-08
Clathrin-mediated Endocytosis 6.2E-03 IL-10 Signaling 2.2E-07
IL-6 Signaling 6.3E-03 Biosynthesis of Steroids 2.6E-06
ILK Signaling 6.3E-03 PPAR Signaling 3.0E-06
[L-10 Signaling 9.1E-03 LXR/RXR Activation 3.5E-06
ROI;;X}?:;Z{’E:E:;?E:;%?S dand 1 2E-02 Acute Phase Response Signaling  5.5E-06
IL-9 Signaling LIE-02 Hepatic Fibrosis /'Hepatic Stellate Cell 6.5E-06
Activation
Oncostatin M Signaling 1Bz ~ PS/IL-I Mediated Inhibition of RXR o 1 ¢
Function
Role of Macrophages, Fibroblasts and
IL-17A Signaling in Fibroblasts 2.0E-02 Endothelial Cells in Rheumatoid 4.1E-05
Arthritis
p53 Signaling 2.1E-02 Oncostatin M Signaling 2.5E-04
Atherosclerosis Signaling 3.9E-02 Hepatic Cholestasis 2.8E-04
LXR/RXR Activation 4.2E-02 PPAR/RXR Activation 2.8E-04
LPS/IL-1 Mediated Iphibition of RXR 4.8F-02 Cholecy stokjl?in/Gfastrin-mediated A TE-04
Function Signaling
IL-12 Signaling and Production in 590 Sertoli Cell—S.ertoh: Cell Junction ASE-04
Macrophages Signaling
Ery thropoietin Signaling 6.8E-02 VDR/RXR Activation 7.4E-04
JAK/Stat Signaling 6.8E-02 Type I Diabetes Mellitus Signaling ~ 9.3E-04
Growth Hormone Signaling 6.9E-02 IGF-1 Signaling 1.3E-03
Renal Cell Carcinoma Signaling 7.2E-02 p38 MAPK Signaling 1.5E-03
Prolactin Signaling 7.8E-02 Graft-versus-Host Disease Signaling  1.7E-03
VEGF Family Ligand-Receptor 8 3E-02 Role of Osteoblasts, Osteoclasts and | SE-03

Interactions

120

Chondrocytes in Rheumatoid Arthritis



Figure 24 (Continued)

B
STAT3-independent
4 hr 24 hr
Pathway P -value Pathway P -value
IL-12 Signaling and Production in 1.9E-04 Butanoate Metabolism 1.6E-03
Macrophages
Activation of IRIPj by Cytosolic Pattern 5 SE.04 Complement System 59503
Recognition Receptors
Pancreatic Adenocarcinoma Signaling  3.8E-04 Bile Acid Biosynthesis 5.9E-03
iINOS Signaling 6.3E-04 IL-8 Signaling 6.2E-03
PI3K/AKT Signaling 6.6E-04 Androgen and Estrogen Metabolism  6.6E-03
Colorectal (?ancc?r Metastasis 13603 Actin Nucleation by ARP-WASP 6.9E-03
Signaling Complex
Role of IL-17A in Arthritis 1. 4E-03 Tumoricidal Function of Hepatic ) )
Natural Killer Cells
p53 Signaling 1 5E-03 Pentose and Gluc.uronate | AE-02
Interconversions
Chronic Myeloid Leukena Signaling  1.5E-03 Starch and Sucrose Metabolism 1.4E-02
Hepatic Fibrosis /'HGI')B.UC Stellate Cell 16E-03 ps3 Signaling | 5E-02
Activation
Role of Pattern Recognition Receptors NRF2-mediated Oxidative Stress
. .. . 1.7E-03 1.5E-02
in Recognition of Bacteria and Viruses Response
TNFR2 Signaling 2.1E-03 Galactose Metabolism 1.7E-02
CD40 Signaling 2.5E-03 PDGF Signaling 1.8E-02
Retinoic acid Medlz.iled Apoptosis 2 5E-03 HGF Signaling 2 OE-02
Signaling
Inositol Phosphate Metabolism 2.7E-03 Aminosugars Metabolism 2.0E-02
Type I Diabetes Mellitus Signaling  3.0E-03 Arginine and Proline Metabolism  2.0E-02
PTEN Signaling 33E03  Choleeystokinin/Gastin-mediated )y
Signaling
Interferon Signaling 3.4E-03 Role of Tissue Factor in Cancer 3.0E-02
Molecular Mechanisms of Cancer 3.5E-03 Estrog en-Depc?ndel?t Breast Cancer 4.0E-02
Signaling
Small Cell Lung Cancer Signaling 3.7E-03 Extrinsic Prothrombin Activation 4.5E-02

Pathway



of STAT3 revealed a large proportion, at least 34% (n = 129) and 31% (n = 451) respectively, to
be directly or indirectly transcriptionally dependent on STAT3 (Figure 22, E). Genes activated
during transformation, but not those that were repressed, correlated with both the number of
differential STAT3 bound loci and the fold change in STAT3 ChIP signal, indicating that
STATS3 directly regulated only genes that were activated during transformation and not those that
were repressed (Figure 25, A-H).

Motif analysis of the promoters of STAT3 regulated and/or transformation specific
differentially regulated genes did not find the STAT3 motif significantly enriched in the
promoters of early (4 hr) or late (24 hr) responsive genes (Figure 26). This may reflect the
general promoter distal positioning of STAT3 in the genome. STAT3 may be cooperating with
factors that bind the RXRa DNA motif to activate genes early during transformation. The RXRa
motif was found significantly enriched in transformation activated promoters, and in STAT3-
dependent promoters, and was the top motif in the promoters of genes differentially regulated at

4 hr, though it did not reach statistical significance in this latter category (Figure 26).

Candidate TFs regulating transformation repressed genes

Based on the above observations from STAT3 knockdown experiments, and the fact that the
STAT3 motif was conspicuously absent from the promoters of repressed genes, STAT3
indirectly regulated at least 35% (n = 295) of those genes that were repressed during
transformation. The only motif significantly enriched within STAT3-dependent transformation
repressed genes was that for INSM1 (Figure 26). Neither INSM1 nor INSM2 RNA was expressed
in MCF10A-ER-Src cells (not shown) and were therefore unlikely candidates. A novel approach
to discern the transcriptional regulators of a gene set, introduced by Ingenuity Systems, looks for
a statistically significant overlap with the genes that are experimentally validated functional
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Figure 25: Association of transformation induced chromatin bound STAT3 with

transformation-dependent differential gene expression

A. All genes differentially expressed during transformation were considered, separated into
up- and down-regulated genes by siSTAT3 treatment, and sorted by the probability of
differential gene regulation by siSTAT3. Plotted are: the number of transformation
differential STAT3 loci (per kb, per region) that occurred at 4 hr post ER-Src induction
within proximal promoter regions (+/- 2.5 kbp about TSS) or distal regions (+/- 50 kbp
from TSS, excluding the proximal promoter region); and, the associated fold change in
gene expression upon siSTAT3 treatment. Pie charts indicate the percentage of the top
500 regions that contained a differential STAT3 site at 4 hr post ER-Src induction.

B. Similar to A, except fold change in STAT3 ChIP-Seq signal at each region over EtOH
treated samples is plotted.

C. Similar to A, except 36 hr STAT3 ChIP samples were used and gene expression data was
for the 24 hr time-point.

D. Similar to C, except fold change in 36 hr STAT3 ChIP-Seq signal at each region over
EtOH treated samples is plotted and gene expression data was for the 24 hr time-point.

E. Similar to A, except genes are sorted by probability of transformation-dependent
differential gene expression.

F. Similar to B, except genes are sorted by probability of transformation-dependent
differential gene expression.

G. Similar to A, except 36 hr STAT3 ChIP samples were used, gene expression data was for
the 24 hr time-point, and genes are sorted by probability of transformation-dependent

differential gene expression.
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H. Similar to B, except 36 hr STAT3 ChIP samples were used, gene expression data was for
the 24 hr time-point, and genes are sorted by probability of transformation-dependent

differential gene expression.
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Figure 25 (Continued)

A

Association of transformation induced STATS3 sites (4 hr) with STAT3 dependent transformation specific

differential gene expression (4 hr) (sorted by probability of STAT3 dependency)
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Figure 25 (Continued)

B Association of transformation induced STAT3 ChIP signal (4 hr) with STAT3 dependent transformation
specific differential gene expression (4 hr) (sorted by probability of STAT3 dependency)
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Figure 25 (Continued)

C  Association of transformation induced STAT3 sites (36 hr) with STAT3 dependent transformation specific
differential gene expression (24 hr) (sorted by probability of STAT3 dependency)
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Figure 25 (Continued)

D  Association of transformation induced STAT3 ChIP signal (36 hr) with STAT3 dependent transformation
specific differential gene expression (24 hr) (sorted by probability of STAT3 dependency)
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Figure 25 (Continued)

E

New STAT3 bound loci @ 4 hr

post transformation initiation

Association of transformation induced STAT3 bound loci (4 hr) with STAT3 dependent transformation
specific differential gene expression (4 hr) (sorted by probability of transformation dependency)

(per 1 kb)
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Figure 25 (Continued)

F Association of transformation induced STAT3 ChIP signal (4 hr) with STAT3 dependent transformation
specific differential gene expression (4 hr) (sorted by probability of transformation dependency)
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Figure 25 (Continued)

G

New STAT3 bound loci @ 36 hr

post transformation initiation

Likelihood of transformation

(per 1 kb)

Association of transformation induced STAT3 bound loci (36 hr) with STAT3 dependent transformation
specific differential gene expression (24 hr) (sorted by probability of transformation dependency)
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Figure 25 (Continued)

H  Association of transformation induced STAT3 ChIP signal (36 hr) with STAT3 dependent transformation
specific differential gene expression (24 hr) (sorted by probability of transformation dependency)
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Figure 26: DNA motifs enriched in promoters of differentially expressed genes during

transformation

The promoter regions (-1000 bp:+0 bp from TSS) of transformation-dependent

differentially expressed genes were searched for known DNA motifs contained in the

JASPAR CORE 2009 database. Different background sets were used depending on the

specific question: “vs. RefSeq promoters” highlights motifs enriched compared to all

promoters; “vs. 24 hr” highlights motifs that are enriched early in transformation; “vs. 4

hr” highlights motifs that are enriched late in the transformation; “vs. repressed”

highlights motifs that are enriched in activated promoters; “vs. activated” highlights

motifs that are enriched in repressed promoters; “vs. independent” highlights motifs that

(13

are enriched in STAT3- and transformation-dependent promoters; “vs. dependent”

highlights motifs that are enriched in STAT3-independent and transformation-dependent

promoters. P-values considered significant are highlighted in yellow. STAT family motifs

are highlighted in green.
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Figure 26 (Continued)

All 4 hr vs. RefSeq Promoters

All 24 hr vs. RefSeq Promoters

Motif Matrix 1D P-value Motif Matrix 1D P-value
NFIC MA0161.1 1.68E-03 SP1 MA0079.2 1.91E-08
INSM1 MAO0155.1 3.45E-03 INSM1 MA0155.1 9.84E-08
Stat3 MAO0144.1 6.69E-03 NFKB1 MA0105.1 1.37E-07
Myc MAO0147.1 1.19E-02 Kif4 MA0039.2 1.39E-07
Arnt::Ahr MAO0006.1 1.59E-02 TFAP2A MAQ0003.1 4.26E-07
SP1 MAO0079.2 2.56E-02 Egr1 MA0162.1 5.78E-06
Mycn MAO0104.2 2.95E-02 NF-kappaB MAQ061.1 7.47E-06
MZF1_1-4 MAO0056.1 5.48E-02 Pax5 MA0014.1 1.60E-05
RXRA::VDR MAO0074.1 5.49E-02 CTCF MA0139.1 6.83E-05
NFYA MAO0060.1 5.59E-02 Tcfep2i1 MAO0145.1 9.10E-05

All4 hrvs. 24 hr All 24 hrvs. 4 hr

Motif Matrix 1D P-value Motif Matrix ID P-value
RXRA::VDR MAO0074 2.00E-02 Hand1::Tcfe2a MAO0092 6.25E-12
NFIC MAO0161 3.09E-02 CTCF MA0139 2.72E-07
Ar MAOQQQ7 6.19E-02 RUNX1 MAO0002 5.87E-06
Arnt::Ahr MAOO0Q6 6.33E-02 ZEB1 MAQ103 2.43E-05
Stat3 MAO0144 7.32E-02 RORA_1 MAQQ71 3.21E-05
Myc MAO0147 1.05E-01 Esrrb MAO0141 9.58E-05
MIZF MA0131 1.12E-01 SPI1 MAQ0080 1.01E-04
MZF1_1-4 MAO0056 1.33E-01 NFKB1 MAOQ105 1.35E-04
Hitf MAO0109 1.37E-01 GATA2 MAQ036 1.60E-04
SRF MAO0083 1.39E-01 Zfp423 MAO116 3.24E-04

All activated vs repressed All repressed vs activated

Motif Matrix 1D P-value Motif Matrix 1D P-value
NR1H2::RXRA MA0115 3.15E-06 INSM1 MAO155 8.58E-05
Foxd3 MAO0041 2.31E-04 ESR2 MA0258 9.24E-04
Stat3 MAO0144 6.74E-04 CTCF MAO0139 2.27E-03
SOX10 MA0442 2.56E-03 GATA3 MAO0037 7.02E-03
STAT1 MAO0137 4.05E-03 NFYA MAQO0G0 7.55E-03
SPIB MAO0081 4.79E-03 NHLH1 MAQ0048 1.25E-02
Foxq1 MAO0040 1.06E-02 Myf MAOQ055 2.19E-02
ARID3A MAO0151 1.42E-02 RREB1 MAOQQ73 2.34E-02
HNF1B MAO0153 1.46E-02 Zfp423 MAO0116 2.74E-02
GABPA MAO0062 1.64E-02 Pax5 MAQO014 3.54E-02

All STAT3 dependent vs independent

All STAT3 independent vs dependent

Motif Matrix 1D P-value Motif Matrix 1D P-value
Tcfcp2l1 MAO0145 3.58E-06 E2F1 MAO0024 4.90E-06
PPARG::RXRA MAO0065 1.03E-05 HIF1A::ARNT MAO0259 5.03E-04
TLX1:NFIC MAO0119 1.01E-04 Sox2 MAO143 5.56E-04
NFIC MAO0161 9.55E-04 REST MAO138 1.36E-03
Stat3 MA0144 5.73E-03 Zfx MAOQ146 1.43E-03
HNF4A MAO114 9.14E-03 Arnt::Ahr MAOQ06 1.97E-03
AP1 MAO0099 1.67E-02 Pdx1 MAO0132 2.21E-03
EWSR1-FLI1 MAO0149 3.47E-02 Foxd3 MAOQ041 2.85E-03
TAL1:TCF3 MAO0091 3.64E-02 FOXC1 MAO0032 2.99E-03
Ar MAO0007 3.91E-02 MIZF MAO131 3.06E-03
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targets of a TF based on literature mining. Using this approach, and using all transformation
repressed genes, AR, PPARG, NR3C1,TP53, KDM5B, SNAII, PDX1 and TP63 were found to
be significantly associated with transformation repressed genes (Figure 27), all of which are
known transcriptional repressors. However, 4R and PDXI/ do not have detectable RNA in
MCF10A-ER-Src cells (not shown). TP53 and NR3C1 are interesting, as they were previously
identified as common nodes linking inflammatory signals and cancer transformation to metabolic

syndrome [294] within the MCF10A-ER-Src model.

STATS3 cooperates with NFkB in an epigenetic switch that links inflammation to

transformation

NF«B is activated rapidly upon ER-Src induction (as measured by RELA/p65 nuclear
localization) and mediates an epigenetic switch through indirect induction of IL6 that is
necessary for transformation ([289]; Figure 30). STAT3 is also known to be part of this switch,
via its direct transcriptional targets MIR21 and MIR181b which cooperate to activate NFkB via
posttranslational mechanisms [297]. However, NFKBI (pl05/p50) was also a direct
transcriptional target of STAT3. NFKBI RNA levels were increased early during transformation
and this response was STAT3-dependent (Figure 28) and, likely, direct. Transformation induced
STAT3 ChIP-Seq sites were found within an intron of NFKB/ and just downstream of the gene,
with additional non-differential sites located upstream (Figure 11, D). In addition, IL6, which
was not known to be downstream of STAT3 in this switch, was a direct STAT3 target gene as
STAT3 was present at its promoter (Figure 11, E) and its transcriptional induction during
transformation was STAT3-dependent (Figure 22, B). Hence, an additional positive feedback
loop exists in which STATS3 transcriptionally upregulates NFxB and IL6, which can both activate
STAT3, thus maintaining rather than initiating the epigenetic switch.
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Figure 27: Ingenuity Pathway Analysis prediction of TFs involved in transformation
Transformation-dependent differentially regulated genes, at the indicated times and
treatments, and associated RNA expression fold changes, were submitted to Ingenuity
Systems’ Transcription Factor Analysis tool. This tool matches gene expression changes
with the known effects mediated by upstream TFs based on experimental findings from

the literature.
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Figure 27 (Continued)

STAT3-dependent

Differentially expressed @ 4 hrs Differentially expressed @ 24 hrs
Transcription Regulator P-value Transcription Regulator P-value
STAT3 1.8E-08 TP53 1.2E-12
STAT5A 7.7E-05 NFkB 1.4E-11
SMAD4 8.4E-05 NR3C1 3.8E-11
ER 8.6E-05 ER 1.9E-10
NR3C1 9.4E-05 STAT3 2.0E-10
BRCA1 9.4E-05 FOX04 6.7E-10
NFkB 1.0E-04 NR3C2 21E-08
CREB1 1.4E-04 TP63 6.8E-08
SP3 1.6E-04 SMAD3 7.9E-08
STAT6 1.9E-04 FOS 2.6E-07

STAT3-independent

Differentially expressed @ 4 hrs Differentially expressed @ 24 hrs
Transcription Regulator P-value Transcription Regulator P-value
TP53 7.9E-06 TP53 1.3E-10
ER 9.0E-06 STAT3 1.0E-08
TP63 1.3E-05 NR3C1 1.2E-06
PGR 1.8E-04 Ikb 4.7E-06
RB1 7.7E-04 NFKB1 7.7E-06
TLX1 2.1E-03 IRF1 8.7E-06
ELK1 2.1E-03 NFkB 9.2E-06
Atf 2.3E-03 EGR1 1.0E-05
Betacatenin/TCF 2.3E-03 HDAC3 1.2E-05
URI1 2.3E-03 SP1 1.4E-05

Transformation-dependent

Differentially activated @ 4 and/or 24 hrs Differentially repressed @ 4 and/or 24 hrs
Transcription Regulator P-value Transcription Regulator P-value
STAT3 1.8E-21 ER 7.8E-08
NFkB 1.7E-17 AR 7.3E-07
TP53 44E-13 PPARG 1.8E-06
ER 2.6E-12 NR3C1 6.0E-06
NR3C1 3.7E-12 NR3C 9.2E-06
CEBPA 6.9E-12 TP53 1.3E-05
HIF1A 1.3E-11 KDM5B 3.7E-05
SMAD3 2.2E-11 SNAI 6.1E-05
EPAS1 6.8E-11 PDX1 8.0E-05
JUN 1.1E-10 TP63 8.0E-05
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In addition, /P4 network analysis of the 4 hr and 24 hr time points of genes that were
STAT3-independent and transformation regulated both contained NF«kB as the central effector of
the perturbed signaling pathways, with IRF1 and IRF9 as likely co-operating partners (Figure 18,
C and D). This suggests that STAT3 and NF«kB cooperate transcriptionally early during

transformation with unique and, likely, overlapping transcriptional targets.

STATS3 transcriptionally induced SOCS3 is an inhibitor of inflammatory transformation

SOCS3 was identified as a highly up-regulated gene during transformation of MCF10A-ER-Src
cells (and confirmed here) and shown to be an inhibitor of transformation as siSOCS3 led to a
modest increase in colony formation in soft agar upon ER-Src induction [289]. The SOCS3 locus
contains numerous differential STAT3 sites (Figure 11, B) and its transcriptional induction
during transformation is STAT3-dependent (Figure 23, A). In this regard, STAT3 activation of
SOCS3 represents an auto-inhibitory signal acting against the persistent inflammation observed

during transformation of MCF10A-ER-Src cells (Figure 30).

Identification of TFs linked to transformation and their dependency on STAT3 — TSC22D3

and ARNTL2

To cast a broad net, Figure 28 details the RNA expression changes of all significantly
differentially regulated TFs during transformation and the effect of siSTAT3 on their expression.
Many of these TFs have been previously linked to tumorigenesis and/or inflammation, though
many have not and are novel in this regard. ETS2, BCL3, FOS, ATF3, ARNTL2, and TSC22D3
were the topmost differentially regulated TFs and all were STAT3-dependent and deserve follow
up experimentation. ARNTL2 and TSC22D3 are of particular interest, for disparate reasons, and

will be discussed in the following sections.
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Surprisingly, a large group of these TFs increased in expression at 24 hr post EtOH
treatment, and were repressed both early (4 hr) and/or late (24 hr) during transformation (Figure
28). These TFs are very interesting, of which TSC22D3 was the most dynamic, as they were
highly expressed as cells became more confluent, which is a stressful growth situation for cells,
yet were rapidly repressed during transformation. These TFs could be acting to inhibit cellular
transformation during normal growth of somatic cells, or they could be associated with the
transcriptional program of contact inhibition. The increased expression observed at 24 hr in
EtOH treated cells still occurred after knockdown of STAT3 activity, indicating that during
somatic cell growth, their transcription is STAT3-independent. However, for most, during
transformation in the absence of STAT3 activity, the repression observed during transformation
was reduced, indicating STAT3-dependent transcriptional repression during transformation.

While circadian rhythm related GO terms were not significantly enriched in genes
differentially regulated during transformation in MCF10A-ER-Src cells using the gene ontology
tool DAVID [313, 314], RNA expression of a core member of the circadian clock, ARNTL2, was
differential. ARNTL2 RNA was induced during transformation in a STAT3-dependent manner
(Figure 28) and the ARNTL2 locus contained a large increase in STAT3 ChIP signal and a
STATS3 differential binding site (Figure 11, A). The expression level of a second core clock gene,
ARNTL, was reduced upon siSTAT3 treatment in MCF10A-ER-Src cells, though its RNA level
was not altered during transformation (not shown). ARNTL2 shares structural and functional
homology with CYCLE and can heterodimerize with CLOCK, both core circadian clock
members, to regulate gene expression during the circadian cycle [315, 316]. The RNA levels of
the TFs EPASI and ZBTB16, which are known to be involved in circadian rhythms, were also

found to be deregulated in a STAT3-dependent manner upon transformation (Figure 28). EPASI
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Figure 28: Normalized relative RNA expression levels of all TFs differentially expressed

during transformation
Shown are all TFs differentially regulated (P-value < 10, > log2 0.5 fold change) during
transformation at 4 hr or 24 hr post TAM treatment in siSCM transfected cells. Shown are
the RNA expression levels at 4 hr and 24 hr post EtOH or TAM treatment in samples
transfected with siSCM (scrambled control) or siSTAT3. RNA levels are expressed as
fold change over 4 hr EtOH and siSCM treated sample. TFs were clustered and red boxes
indicate groups of TFs whose transcriptional response to treatment was correlated. Those
TFs known to be involved in tumorigenesis, inflammatory response, metabolic disease,

“stemness” or the circadian rhythm are indicated by colored circles.
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Figure 28 (Continued)
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(also known as HIF2a) is a hypoxia inducible TF which can heterodimerize with ARNTL?2 to
regulate gene [59, 315, 317]. ZBTBI16 is repressed during transformation, and while little is
known about the functions of this TF, its expression was shown to be circadian [318, 319] and it
has been genetically linked to metabolic syndrome, an inflammatory disease, in rats [320]. A list
of all circadian regulated genes that were differentially regulated during transformation can be

found in Figure 29.
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Figure 29: Transformation and circadian rhythm associated genes
Genes differentially regulated upon ER-Src induced transformation of MCF10A-ER-Src
cells that are known to be expressed in a circadian oscillation in mouse peripheral tissues
as assayed by gene expression microarrays. Only genes with a Bonferroni corrected P-
value of < 10™, based on the JTK_CYCLE algorithm [319], were considered as circadian

rhythm genes.
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Figure 29 (Continued)

Genes differentially regulated during transformation that occurin the circadian rhythm
dataset of Hughes ME, ef al :

Transformation Transformation and siSTAT3

ABHD6 GRB14 RBMSI ABHDG6 PNP
ACSLA HSD17B2 RCL1 ACAT2 PNRC1
ARNTL HSPA4 RGS16 ACOX2 PPPIR3B
ARRDC3 HSPB1 RNF125 ARNTL PSMBI10
BBOX1 IFITM1 RORA ARRDC3 PTP4A 1
BLCAP ING2 S100A 10 BBOX1 PTPRK
BNIP3 INHBA SAA4 BNIP3 RCLI
BNIP3L IVNS1ABP SAP30L CCN@2 RGS16
BTGl KHK SCARBI CDHI SAA4
CABCl1 KLF13 SERPINE2 CEBPD SERPINE2
CAMKID KYNU SLC39A8 CGN SLC39A8
CASP6 LIPG SNX10 CHN2 SNX10
CCNG2 LMO7 SORBS1 CLDN1 SORT1
CDHI1 LONRF1 SORBS2 CRIM1 ST6GALI
CEBPD LONRF3 SORT1 CTGF SVIL
CGN LPIN1 SPSBI1 CXADR TGM2
CHN2 LSS ST3GALI DHRS3 TIMP3
CLDN1 MCM10 ST3GALS FLNA TSC22D3
COL27A1 METTL7A ST6GALI GCLC UGCG
COL4A 1 MOCOS SVIL GLDC ZBTBI6
CPTIA MTHFDIL TBCIDIS GLRX
CREM MTHFR TGM2 GPDIL
CRIM1 MYOIB TIMP3 GRAMD?3
CRIP2 NDRGI TIP2 HMGCS1
CTGF NEDD4L TJP3 HSDI17B2
CXADR NET1 TMEM97 HSPBI1
CXXC5 NFIL3 TNFAIP2 INHBA
CYP39A1 NRID2 TSC22D3 IRF6
DHRS3 NR2F2 UGCG IRS1
DTX4 0ODCl UGP2 KLF13
EFHD2 PDLIM 1 WDR45 LMO7
EFNA1 PGK1 ZBTBl6 LONREF3
FBX09 PLAT ZC3HI2A LPINI
FGFR2 PLXNA2 LSS
FKBP5 PNKD MMD
GCHI PNP MOCOS
GCLC PNRCI1 NDRGI
GLDC PPPIR3B NEDDA4L
GLRX PSEN2 PGK1
GPDIL PTPRK PLXNA?2
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DISCUSSION

STAT3 during transformation

STAT3 is a well-known central mediator of inflammation-mediated oncogenic transformation,
however, only a small number of its direct transcriptional targets have been identified in such a
model. Dechow et al. [292] reported 199 genes whose expression was affected by
overexpression of a constitutively active STAT3 construct in MCF10A cells and Hutchins et al.
[299] found < 2500 genes bound by STAT3 within 20 kbp of their TSS in macrophages. We
have shown here that at least 1/3rd of the transcriptional program of transformation is mediated
by STAT3 activity, either directly or indirectly, and that NFkB likely mediates the rest.
Previously, we identified NFkB as a second central mediator of transformation that cooperates
with STAT3 [289, 297]. However, the transcriptional program during transformation is more
complex with downstream effector TFs likely taking part at later stages of transformation (e.g.
FOS).

Here we report the genomic locations of 78,293 and 129,192 non-redundant STAT3 and
FOS binding sites, respectively, during a time course of inflammation-mediated oncogenic
transformation and relate these findings to the STAT3- and/or transformation-dependent
transcriptional program of transformation. Curiously, Hutchins et al. [299] only found 1,352
STATS3 sites during IL10 stimulation of macrophages, and why the great disparity in the number
of sites found compared to ours is unknown. We identified 5921 non-redundant STAT3 sites as
differential during transformation and that these sites are found near key genes (e.g. MMP locus
on Chrll q22.1-q22.3) and processes (e.g. “Cellular movement”) that mediate transformation.
Differential STAT3 sites tended to be situated outside of proximal promoters in distal CREs that
were occupied by FOS.
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Deregulation of STAT3-dependent circadian clock related genes during transformation

Nearly all mammalian cells have a biological clock that is linked to the circadian day-night
cycle. In mammals, the circadian clock is controlled centrally by the hypothalamic
suprachiasmatic nucleus of the brain, and through neuroendocrine (e.g. pertinently anti-
inflammatory glucocorticoids [321]) and external stimuli (e.g. light, feeding), is synced with
peripheral tissue circadian clocks (for review see [322, 323]). The molecular mechanism of the
circadian clock is based on transcriptional-translational feed-back loops, of which, many of the
core clock genes are TFs (CYCLE, CLOCK, NPAS2) whose activity is negatively regulated by
CYR and PER proteins. The circadian clock is linked to many critical cellular processes such as
proliferation, apoptosis, DNA damage response, and metabolism with a growing body of
evidence elucidating a role for the circadian clock in cancer, both through epidemiological and
molecular studies [324]. Mutation of the mouse Per2 gene leads to cancer and mutation of CRY
in p53-null mice delays the onset of cancer [325] due to NF«xB mediated apoptosis [326].
Pertinently, to transformation in the MCF10A-ER-Src breast cancer cell line: women who work
night shifts are modestly more prone to developing breast cancer [327-330]; the PER genes are
deregulated in breast cancers [331]; and, NPAS2 mutations are associated with an increased risk
of breast cancer [332]. In general, patients with a perturbed circadian rhythm are known to be
more prone to cancer and have a poorer prognosis [333-335].

Interestingly, PER2 overexpression can inhibit the transcription of ERa regulated genes
[336], a key mammary epithelial cell TF (for a review see [337]). Mutations in ERa have long
been associated with an increased risk of breast cancer [338] and a key determinant of treatment
options [339]. A link between inflammation and the circadian rhythm is starting to be elucidated.

The DNA binding activity NFkB/REL complexes [340, 341], which are critical transcriptional
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mediators of inflammation, and an NF«B inhibitor protein (NFKBIA) [319] have been found to
be circadian regulated. However, NFKBI null mice do not manifest defects in daily locomotor
activity during the circadian cycle [342], though the main focus of that study was not the
circadian clock. Using chemical inhibitors of NF«B activity and the /L6 knockout mouse, Monje
et al. [343], showed a molecular link between inflammatory signaling through NFkB and IL6 on
the core clock genes Per2 and Npas2 in a mouse model of circadian disruption through light
deprivation. These literature findings and the STAT3-dependent deregulation of ARNTL2 during
transformation as discovered here, raise the interesting questions as to if and how the circadian
clock influences inflammatory transformation in our model, and ultimately the clinical

manifestation of breast cancer, and deserve further biological experimentation.

AP-1 factors in inflammation-mediated oncogenic transformation

FOS is one of the most differentially expressed TFs during transformation of MCF-10A-ER-Sr
cells, being highly expressed late at 24 hr, its expression is STAT3-dependent, and
transformation induced STAT3 sites preferentially form at FOS bound sites. Also, we have
characterized the CREs and STAT3 binding sites present at the FOS proximal promoter, which is
a known target of STAT3, and have found other members of the FOS and JUN family to be
deregulated (FOS, FOSLI, FOSL2, JUNB, JUND) during transformation. Previously, we
identified FOS as a node within the transformation-dependent transcriptional program that is
common between two different models of transformation and was also linked to metabolic
syndrome, an inflammation-based family of diseases [294]. However, its importance and role
within transformation was not expanded upon, and here we show a putative role for FOS in
regulating embryonic, stem cell and bone related genes. During transformation, cancerous cells
lose their differentiated cellular state and revert to a more embryonic-like state. There are also
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known stem cell-like cell populations within transformed cell lines, including MCF10A-ER-Src
[344], and primary tumors including AML [345], breast [346], brain [347], multiple myeloma
[348], pancreatic [349], and colon [350-352] cancers, among others. The deregulation of FOS
and JUN family members is common in cancer (reviewed in [353]). Indeed, overexpression of
FOS can transform fibroblasts [354], and overexpression of FOS [355, 356], and FOSLI [356] in
the breast cancer cell line MCF7 increases cell motility, invasion and proliferation. Here we
present evidence of FOS/JUN family members as downstream effectors of STAT3 with a
putative role in regulating aspects of ‘“stemness” and bone metastasis during oncogenic

transformation.

The lack of CRE dynamics during transformation

We have also discovered the genomic repertoire of CREs used during transformation and found
that this set of CREs does not change and are static, even though large scale phenotypic and gene
expression alterations are taking place. It is known from genomic studies comparing different
cell types that large scale differences are seen in CREs, including those that are defined by
FAIRE-Seq [306]. These cell-type specific CREs tend to be enhancers and are significantly
enriched for the DNA motifs of TFs that are pertinent to the establishment/maintenance of that
specific cell type. In MCF10A-ER-Src cells, the activation of STAT3 and its important role in
establishing the transformed cell state is akin to these cell type specific TFs. However, STAT3
does not elicit the formation of new CREs during transformation. This can be explained by the
fact that most cell-type specific determinant TFs are “pioneer” factors with the ability to access
their DNA motif, usually in the context of a nucleosome, before cooperating TFs and H3
acetylation occurs (e.g. FOX and GATA family members). Though ~35% of STAT3 binding
events do not occur within CREs, this is most likely due to a false negative result on the part of
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CRE detection. It can be reasoned that the over-arching cell-type, of non-transformed and
transformed MCF10A-ER-Src cells, is still that of mammary breast epithelial, and, therefore, the
changes that ER-Src induced transformation create, though extensive, does not fundamentally
alter the cell-type. All transcriptional changes are mediated through pre-existing CREs and the

CRE population is recycled to accommodate new phenotypes.

Does TSC22D3 inhibit the epigenetic switch during somatic cell growth?

TSC22D3 was the most dynamic of the STAT3-dependent transformation repressed TFs (Figure
28). TSC22D3 is particularly interesting as it is known to be a negative regulator of Ras/Raf
signaling pathways by directly interacting [357, 358] and inhibiting NF«B [359]. Both Ras and
NF«B are mediators of the epigenetic switch in MCF10A-ER-Src cells [289], and thus, could be
inhibited by TSC22D3 in somatic cells, before transformation. TSC22D3 was originally
identified as a gene up-regulated by the glucocorticoid dexamethasone [360], and has anti-
inflammatory and immuno-modulatory properties (for reviews see [361-363]; original articles
[364-366]). In inflammation-mediated oncogenic transformation of MCF10A-ER-Src cells, Ras
activation of NFxB helps mediate the induction of IL6, which in turn drives transformation
[289]. In this regard, it is tempting to speculate that the high level of anti-inflammatory
TSC22D3 down-regulates Ras signaling and NFxB activity during somatic cell growth,
ultimately preventing run-away pathologic inflammation, in our case, oncogenic transformation.
This repressive anti-inflammatory signal is relieved during transformation by STAT3, whose

activation represses TSC22D3 transcription.
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Updating the epigenetic switch

Previously the Struhl Lab discovered an epigenetic switch that is initiated by Src activation of
STAT3 and NFkB in MCF10A-ER-Src cells [289, 297]. Here we provide evidence of a
transcriptional feedback loop linking STAT3 to the direct transcriptional activation of /L6 and
NFKBI, who in turn can activate STAT3 transcription. This aspect of the epigenetic switch is
probably active during the later stages of transformation as it is dependent on new protein
production, and while an increase in S74A73 mRNA is not strictly required for transformation, the
maintenance of its expression is important. We have also provided evidence of two inhibitory
feedback loops, one acting late through SOCS3 inhibition of IL6/STAT3, the other acting before
transformation through TSC22D3 and Ras/NF«kB. This later feedback loop is speculative, but
very well supported by the literature, and may act to inhibit the epigenetic switch in normal,
dividing, proliferating and/or stressed cells. A modified version of the epigenetic switch

incorporating these findings is detailed in Figure 30.
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Figure 30: The epigenetic switch that initiates and maintains transformation of

MCF10A-ER-Src cells

A. Model of the epigenetic switch that mediates transformation in MCF10A-ER-Src cells.
Dashed lines indicate predicted interactions base on literature findings. Red lines indicate
direct transcriptional regulation. Black lines ending in an arrow or perpendicular slash
indicate known positive and inhibitory interactions, respectively, within MCF10A-ER-Src
based on ([289, 294, 297]; this dissertation). A thin line indicates weak activity. A green
asterisk represents interactions based on data presented in this dissertation.

B. A summary of the major phenotypic effects and processes mediated by STAT3, NF«B,

and FOS.
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Figure 30 (Continued)
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METHODS

Tissue culture and chromatin immuno-precipitation (ChIP)

MCFI10A-ER-Src cells were grown and ChIP DNA was isolated as per standard ENCODE
protocols  ([183-185], Appendix C) and a detailed protocol is available at:

http://genome.ucsc.edu/ENCODE/. Cultures were grown to 70% confluency, then treated with

either EtOH or tamoxifen (TAM) for 4, 12, 24 or 36 hr, as detailed in [294], and harvested for

DNA, protein or RNA as detailed below.

FAIRE-Seq

Cells were grown as above and a full detailed FAIRE-Seq protocol is available at:

http://genome.ucsc.edu/ENCODE/ and [301]. See Supplemental Data for genomic coordinates.

ChIP-Seq and peak calling

ChIP DNA (2 biological replicates) prepared as above, and immuno-precipitated with anti-
phospho-STAT3 (Cell Signaling, 9131), anti-FOS antibody (Santa Cruz, SC-7202x), or anti-
POL2 (Covance, 8WG16) and input DNA (3 biological replicates) were end repaired with calf
intestinal alkaline phosphatase (New England Biolabs, USA) and sent for sequencing to the
Stanford Center for Genomics and Personalized Medicine. ChIPs for anti-ATF2 (SC-6233x),
anti-E2F6 (SC-22823x), anti-E2F4 (SC-866x), anti-IRF2 (SC-13042), anti-JUN (SC-1694), anti-
MYC (SC-764), RPC155 (R. White) were prepared as above but using one biological replicate.
Library preparation and Illumina (USA) sequencing were carried out as per [llumina protocols

and a detailed protocol is available at http://genome.ucsc.edu/ENCODE/. Sequence reads (32

nucleotides) were mapped to the H. sapiens genome (hgl9) using Bowtie [247], allowing <= 2
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mismatches per read and reads with > 10 reportable alignments were discarded. Binding sites
were called using MACS v1.4 [248] at a P-value threshold of 10, “auto” redundant read setting,
using input to control for local genomic biases. PeakSplitter [367] was used to split MACS called
peaks into subpeaks of local maxima using default settings. STAT3 subpeaks (referred to as
“sites” in Results and Discussion) were called as differential if they did not overlap a STAT3
bound subpeak in the non-transformed control population (peaks called at 10 P-value) and had
a fold change greater than the mean + 1x standard deviation of all peaks within the population.
Fold change in STAT3 ChIP-Seq signal was calculated as read counts per region per million
mapped reads divided by the corresponding control ChIP signal of that region. A smoothing
value of 10 was added to the read count of each region in the transformed and control samples.

See Supplemental Data for genomic coordinates.

Annotation of peaks to gene features, GO analysis (GREAT/IPA)

Genomic locations of subpeak summits were submitted to the annotation tool GREAT [259]
using the following parameters: whole genome background set, basal plus extension, proximal
upstream = 5 kbp, proximal downstream = 1 kbp, distal = 1 mbp; or, whole genome background
set, basal, proximal upstream = 5 kbp, proximal downstream = 1 kbp. For /P4 (Ingenuity

Systems, USA; http://www.ingenuity.com) gene probe IDs, with the corresponding log2 fold

change, were uploaded into and analyzed by /PA (build: 140500, content version: 12710793)
using default settings. Molecular signaling pathways were visualized using /P4 where a gray
shaded node represented a subpeak binding site located within the putative regulatory region, as
defined by GREAT, of that gene/molecule. The biological relationship between two molecules is
represented as a line and is based on professionally curated literature findings. The relationships
can be direct or indirect.
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siRNA transfections

MCFI10A-ER-Src cells were reverse transfected with Dharmacon siRNAs (Thermo Scientific,
USA) according to the manufacturer’s protocol. Briefly, cells were seeded in 6-well plates
containing 25 nM ON-TARGETplus SMARTpool STAT3 or ON-TARGETplus Non-targeting
Pool and after 48 hr of growth were treated with EtOH or tamoxifen (1 uM) for 4 hr or 24 hr as
per [294]. For Western blots, cells were lysed after 72 hr (24 hr post EtOH/TAM treatment). For

expression profiling RNA was harvested after 4 or 24 hr post treatment.

Gene expression microarrays

RNA (from 3 biological replicates) was prepared for arrays using 3’ IVT Express kit
(Affymetrix, USA) as per manufacturer protocol — 100 ng RNA, 15 amplification cycles.
Amplified RNA was given to the Children’s Hospital Boston microarray core facility for
hybridization to GeneChip Human Genome U133 plus 2.0 gene expression arrays (Affymetrix,

USA) for hybridization and imaging as per manufacturer protocols.

Western blots

Cells were lysed in 0.5 mL lysis buffer [SO mM Tris-HCL, 1% NP-40 (v/v), 5 mM EDTA, 1 mM
NaF, pH 8.0 supplemented with 10 mM B-glycerol phosphate, 1 mM phenylmethanesulfonyl
fluoride, 1 mM sodium orthovanadate, 1% Phosphatase Inhibitor Cocktail II (Sigma, USA), and
1 Complete-Mini Protease Inhibitor Cocktail tablet (Roche Applied Science, USA) per 10 mL].
Lysates were cleared by centrifugation at 20 kg, 15 min, 4 °C. Prior to immuno-blotting, lysates
were boiled in standard SDS gel-loading buffer and loaded into a 10% polyacrylamide gel. After
separation by electrophoresis, the proteins were transferred to nitrocellulose and the membranes

were blocked with 5% nonfat dry milk (w/v) in Tris-buffered saline (20 mM Tris, 150 mM NaCl,
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pH 7.6) containing 0.1% Tween-20 (v/v). Membranes were probed using mouse-derived anti-
STAT3 antibody from Cell Signaling Technologies, USA and anti-B-actin from Sigma, USA.
Bands were detected with IRDye 800-labelled goat-anti-mouse IgG (LI-COR Biosciences; USA)

and imaged using an Odyssey Infrared Imaging System (LI-COR Biosciences, USA).

Determination of differential gene expression

Gene expression arrays were analyzed using the R packages: limma [257], affy [256]. Arrays
were background corrected, normalized and probe set expression values determined by the mas5
algorithm. Probe sets were annotated to RefSeq gene IDs using GREAT [259] or DAVID [313,
314]. Genes determined to be transformation regulated/differential were derived from siSCM
treated samples comparing EtOH to TAM treatments with a P-value < 10 and with an absolute
log2 fold change > 0.5. Those genes determined to be STAT3 and transformation regulated were
determined by comparing EtOH to TAM samples under both siSCM and siSTAT3 conditions.
Genes were selected as STAT3-independent if their differential expression was statistically
insignificant upon siSTAT3 and had an absolute log2 fold change of < 0.5 upon siSTAT3. The
number of STAT3-dependent and STAT3-independent genes does not equal the total number of
genes considered differential by transformation as many genes could not be unambiguously

defined as “dependent” or “independent”.

Motif analysis of differentially regulated genes

Differentially regulated genes were as above. The non-redundant gene set was used, retaining the
probe set with the lowest P-value, and probe sets unable to be annotated to RefSeq IDs were not
considered. The web based Pscan [265] was used to establish significantly enriched motifs, the

settings were: H. sapiens, JASPAR, region about TSS -1000/+-0 bp.
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Differentially regulated TFs

All probe set IDs that were differentially regulated during transformation (see above) were
submitted to DAVID [313, 314] and probe sets annotated to the term “transcription factor
activity” (GO:0003700) were selected. Normalized expression values for each gene are
expressed as log2 fold change over siSCM 4 hr EtOH treated samples. Hierarchical clustering of
the resultant expression matrix was carried out using the Pearson correlation and average linkage
using the software package TMEV [368, 369]. Genes previously implicated in: “Tumorigenesis”,
“Inflammatory response” and “Metabolic disease” were determined by /P4 (Ingenuity Systems,

2010; http://www.ingenuity.com); stem cells (“stem cell division” (GO:0017145), “stem cell

development” (GO:0048864)) from the Gene Ontology Consortium (July 2012, [370]); and,

circadian rhythm from [319].

Annotation of STAT3 sites to differentially expressed genes

Differentially expressed genes were as above. Non-redundant probe sets were used, discarding
the probe set with the highest P-value. “Promoter” regions are defined as -2500 bp to +500 bp
from RefSeq TSS. “Upstream/downstream” regions are defined as +/- 50 kbp from the RefSeq
TSS, excluding the promoter region. The number of transformation specific differential STAT3
ChIP-Seq peaks were counted within these regions, normalized to peaks per 1 kbp, and plotted

using a 1000 gene rolling mean performed using the zoo [371] package of R.

Annotation of STAT3 sites to RefSeq TSSs

STAT3 and NFYB (K562) peak summits, defined as the local maxima of read counts within a
peak, were mapped to the nearest RefSeq TSS, incorporating strandedness, using an in-house

script. Histograms were plotted using the R package ggplot2 [372] using 500 bp bins within a
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region of +/-10 kbp about the TSS centered at 0 bp. The frequency of sites is represented as the
Gaussian smoothed kernel density estimate with a bandwidth of the standard deviation of the
smoothing kernel, calculated using the density function in R. The percentage of STAT3 peaks in
the proximal upstream region of RefSeq TSSs and located in distal intergenic regions (defined as
not within the following RefSeq genic features: -10 kbp upstream of a TSS, +10 kbp downstream
of a TTS, intronic, exonic, 5 UTR or 3° UTR), was calculated and compared to the percentage
of the genome within each category. Significance was calculated using the single sided binomial

test as implemented in the hinom function in R.

De novo motif discovery

The top 10,000 (as ranked by P-value) STAT3 or FOS ChIP-Seq subpeak summit locations were
determined and the sequence +/- 50 bp was extracted and repeat masked. A 5 order Markov
model was used as the background set and was extracted from the repeat masked, non-redundant
set of FAIRE-Seq cis-regulatory elements. Parallel MEME was run with the following settings:
zoops, revcomp, minw = [4-26], and maxw = [6-30]. For STAT3 and FOS, the top motif

corresponded to the respective known canonical motif.
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CHAPTER 4: Discussion and future directions

I will only discuss and comment on the broader findings and questions raised by the research
within this dissertation in this section. Specific aspects of NF-Y and STAT3 biology have
already been discussed within those respective chapters and here I want to highlight topics that

are of a more general interest and to talk about future avenues of research.

Transcription factors occupying closed chromatin residing DNA motifs

The ability of NF-Y to access the CCAAT box within closed and transcriptionally repressive
chromatin domains is truly intriguing. This finding is atypical when compared to many other
TFs, both from research presented in this dissertation and from other studies in eukaryotes [373,
374]. In eukaryotes, nucleosome occupancy is a major barrier to motif occupancy by their
cognate TFs in vivo. Nucleosomes physically prevent the interaction between a TF and its DNA
motif and in so doing restrict TF occupancy to regions of depleted nucleosome occupancy which
are commonly found at promoters and enhancers in eukaryotes [375]. Cawley ef al. [253] found
that only ~1% of consensus DNA motifs for TP53 (p53), SP1 and MYC were bound in vivo in H.
sapiens, and in yeast, Rapl preferentially associates with promoters and not to non-coding
regions which are nucleosome occupied [376]. In sharp contrast, prokaryotes do not contain
histones and do not contain closed chromatin domains. Prokaryotes do possess histone-like DNA
binding factors (Fis, H-NS, HU, IHF) that associate with DNA to form higher-order structures
called nucleoids [377]. However, the E. coli genome is fully accessible to the DNA binding TF
LexA [378], indicating that nucleoids do not prevent TF occupancy of DNA motifs in

prokaryotes.
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It has been known for close to 15 years that NF-Y can form hybrid NF-Y-nucleosomal-DNA
complexes and that NF-Y-H3-H4 complexes exist in vitro, however, in vivo studies are lacking.
From the data presented in this dissertation, it is clear that NF-Y can saturate its motifs within
open chromatin, but also displays a remarkable ability to bind to CCAAT boxes in closed and
inactive chromatin domains that lack detectable amounts of common transcription-dependent
histone PTMs (e.g. H3 acetylation). This ability is probably due to the HFD subunits of NF-Y
that allow either an interaction with H3-H4 in the context of nucleosomes, or the displacement of
the local CCAAT box occupying nucleosome. The lack of an open regulatory element by FAIRE
and the aforementioned in vitro findings support the former model, though this requires testing.

The technique of DNase I hypersensitivity followed by sequencing (DNase-Seq) is more
sensitive than FAIRE-Seq in detecting open and accessible non-chromatin bound DNA.
Moreover, when the sequencing depth reaches +500 million reads, the individually protected
DNA bases within all open region across the entire genome become detectable, just as in
traditional DNase I experiments analyzing a single locus. It would be interesting to compare the
DNase I hypersensitivity pattern at NF-Y bound CCAAT boxes in both open and closed
chromatin contexts to see if the NF-Y-DNA contacts are different. This could also be done using
traditional DNase | assays at select loci, and has been done with reconstituted nucleosomes in
vitro [83], however the ENCODE project is currently generating suitable DNase-Seq datasets
and all that is required is the computational skill to analyze the data that is freely available. This
could also be expanded to cover all TFs in which there are suitable ChIP-Seq datasets, a
corresponding DNA motif of sufficient information quality.

There is another related question that needs to be addressed: are H2A and H2B present at the

NF-Y occupied CCAAT boxes within closed chromatin domains in vivo? To date only
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nucleosome occupancy maps are available. To the best of my knowledge, no maps of individual
histones, except for H2A.Z, exist for H. sapiens. It would be interesting to use ChIP-Seq to
determine the occupancy of all four histones genome-wide in K562 cells. These datasets could
then be used to ascertain if H3-H4 and/or H2A-H2B are depleted at NF-Y bound CCAAT boxes
in closed chromatin in vivo. Obviously, this could be done in a more generic fashion to isolate
regions of the genome in which the ratio of H3/H4 to H2A/H2B is disparate. Any DNA motifs
enriched within these regions could be computationally determined and the associated TF(s)
identified and confirmed by ChIP, potentially identifying hybrid TF-histone complexes,
especially if the TF(s) have HFDs (such as NF-Y).

The ability of specific TFs to access their motifs within closed chromatin domains is a
distinguishing feature of “pioneer” factors. Pioneer factors are TFs that have the ability to access
their motifs in closed cis-regulatory elements before the arrival of cooperating TFs, chromatin
remodelers and H3 acetylation and/or H3K4 methylation. During this dissertation, I identified
NF-Y, USF1 and MAFK as factors that can access their motifs within closed, transcriptionally
inactive chromatin domains. Surprisingly, the known pioneer factors, GATA1 and GATA2, had
a limited ability to do this which requires explanation by the GATA scientific community. A
second, critical, aspect of pioneer biology is their ability to open chromatin. The lack of GATA
binding in non-modified-chromatin domains could be explained by GATA constitutively
opening loci upon binding. Hence, pioneer factors may never be found present in closed
transcriptionally inactive epigenetic domains. It is obvious that NF-Y, USF1 and MAFK do not
always elicit open chromatin upon binding. This could be due to the lack of an initiating event(s).
A genome-wide view of more pioneer factors would shed light on this issue. It is now possible to

expand upon my method implemented here to use the continually growing TF, histone PTM
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FAIRE and DNase I datasets available from ENCODE, and other sources, to computationally
screen for “pioneer”-like factors. In fact, I have already computed the location of all known (>
500) DNA binding site motifs genome-wide and screened them for occupancy to all TF ChIP-
Seq datasets (~150) available from ENCODE cell types in which chromatin states are, or can be,
derived. Analysis of these datasets will provide invaluable insight into the chromatin context that
determines TF access to DNA motifs in eukaryotes, how this varies by TF family type (HFD,
bZip, Zn-finger, etc.) and, hopefully, reveal more “pioneer’-like TFs. As many pioneer factors
are important for determining cell-type identity during development, this avenue of research

could lead to defining new roles for well-known TFs.

Why does the functional inactivation of a TF elicit a limited transcriptional response?

In this dissertation, and in the dissertation of Annie Yang (Struhl Lab graduate student) [208], we
mapped the location of NF-Y, STAT3 and TP63 (p63) genome-wide and also performed siRNA
knockdown followed by genome-wide gene expression analysis. In all three cases, many more
genes are bound by a TF than seem to be regulated by that TF. In the cases of STAT3 and TP63,
the knockdown efficiency was > 90%. The most extreme example is that of STAT3, in which we
also induced its expression. STAT3 is present in the vicinity of ~15,000 H. sapiens genes,
however, STAT3 knockdown only affects the expression of 451 genes as far as we can detect.
This raises the question: how does TF binding relate to gene expression? In the classic view of
gene regulation, DNA motifs dictate TF occupancy and the presence of a bound TF (and its
activation if required) dictates gene expression. This is the case in prokaryotes (see above).

It seems obvious to assume that most of the TF binding events observed for NF-Y, STAT3
and TP63 are non-functional, at least with respect to gene expression, but these sites are usually

highly conserved which implies maintenance of a biological function. A simple explanation is
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that gene regulation is dictated by cooperativity between multiple TFs (which we know is the
case in eukaryotic systems) and therefore highly redundant, so loss of a single TF (e.g. by
siRNA) does not affect transcriptional output in most cases, as the remaining TFs are still bound,
functional and sufficient for transcription. This implies that the transcriptional outputs that are
altered are unusually dependent on the specific TF activity that was perturbed. Another reason
could be due to the insensitivity of detecting minor alterations in transcriptional output. A 10%
change in RNA expression level could be biologically meaningful, but undetectable by gene
expression microarrays and therefore those genes would be listed as “not affected” when they are
actually false negatives. Another reason could be due to the requirement of post translation
activating modifications required by a TF for it to act as a transactivator, but not for DNA
binding. The TF CREB is a good example: CREB phosphorylation is not a prerequisite for DNA
binding, but it is for transactivation [379] and the recruitment of coactivators. In this situation,
large numbers of CREB binding sites could be functionally irrelevant for transcription as CREB

1S not activated.

The lack of differentially active cis-regulatory elements during a phenotypic change

When we tracked the location of active CREs throughout oncogenic transformation of mammary
epithelial cells in tissue culture, we noticed a lack of the differential formation or loss of active
CREs during the time course of differentiation. This has been noticed by other groups recently
[380, 381]. This was surprising as previous studies incorporating FAIRE-Seq analysis of
multiple cell lines showed that a great diversity in cis-element usage is common across cell
types, with most of the differential cell type specific FAIRE sites being enhancers and not
promoters [306]. It is well-known that embryonic stem cells contain globally open chromatin that

becomes more restricted and transcriptionally repressive domains expand as cells differentiate
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[382]. This process is driven by chromatin remodelers (e.g. CHD1, BAF, PRC1) and pioneer
factors are also intimately involved. Many tissue specific TFs are pioneer factors, e.g. GATAA4,
FoxAl [225], and can therefore access their motifs within closed chromatin to explicitly drive
open chromatin formation, new CRE usage and gene expression patterns, thereby altering
cellular phenotypes.

The lack of differential CREs during massive phenotypic and transcriptional alterations
raises an interesting observation: the cell’s library of functionally active CREs are static during
transformation and are, therefore: 1) “recycled” to accommodate new phenotypes (e.g.
transformed); and, 2) TFs, presumably ones that are not “pioneer”-like factors, function only
within the pre-defined existing population of CREs to affect transcription. This observation can
be extended to all TFs involved in SRC induced transformation of MCF10A-ER-Src cells: the
CREs do not change during transformation, therefore, any regulatory protein that does change in
activity can only work within the confines of the pre-existing population of CREs. There are
multiple reasons for this phenomenon. STAT3 and NF«B, the two TFs that drive oncogenic
transformation of MCF10A cells, are not known to have “pioneer” abilities, and therefore cannot
create new open nucleosome free regions, even when their activities are functionally
overexpressed (e.g. STAT3 phosphorylation). In this regard, new active CREs are not formed,
even though large scale gene expression changes are happening. The cells, even though they
have changed phenotype, are still mammary epithelial cells both before and after transformation
(a comparison to gene expression datasets from other cell lines would be useful to show this). As
such, they may not have undergone a differentiation process of the same magnitude as, let us say,

bone marrow resident preosteoclast cells which undergo differentiation into giant, multi-
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nucleated, fused polykaryons, with astonishing apical/baso-lateral cell polarity, with a highly
specialized function devoted absolutely to resorbing bone.

The findings discussed here have important implications for the study of developmental
biology, disease, and, in particular, cancer. Scientists trying to push pluripotent stem cells down
specific cellular differentiation pathways by overexpressing specific combinations of TFs, or
developmental biologists trying to decipher the combinatorial transcriptional network of cell
differentiation pathways, have to consider that pioneer factors are required to act early during
differentiation and that “regular” TFs are more important during the later stages of
differentiation. Only pioneer factors can drive the differentiation of cell types and non-pioneer
TFs can drive all other aspects of differentiation. Specifically derived from my findings with
MCFI10A cells, pioneer factors are unlikely candidates for critical oncogenic phenotypes such as
metastasis, homing, proliferation, immune evasion, tumor growth, and invasion. None of these
phenotypes require alterations in cell-type identity, which can only be driven by TFs with
“pioneer” abilities. However, cancer stem cell populations may require pioneer factor activity to
drive differentiation into non-stem cell cancer cells.

The questions answered and raised by the work in this dissertation will push forward the
field of NF-Y biology into new areas of experimentation. Likewise, the provocative finding that
massive phenotypic and gene expression alterations can occur without changes in CRE usage

will undoubtedly frame new questions for future research.
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APPENDIX A: Supplemental Figures
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Supplemental Figure 1: NF-Y ChIP-Seq

A.

Western blots of nuclear extracts from five cell lines probed with anti-NFY A and anti-NFYB
antibodies. Arrows highlight doublet bands showing that both isoforms of NFYA and NFYB
were detected.

Immuno-precipitation Western blot (IP-WB) of nuclear extracts showing enrichment of
NFYA and NFYB specific bands in the elution and depletion in the supernatant. An IgG
antibody was used as control for non-specific binding.

ChIP-QPCR results from anti-NFY A and anti-NFYB IPs performed in K562, GM12878 and
HeLaS3, before sequencing, showing enrichment over an NF-Y non-bound control region.
Representative loci showing NFYA, NFYB and input control ChIP-Seq data from K562,
GM12878 and HeLaS3. Enrichment of reads at the HNRNPA1 and SON promoters were
specific to NF-Y and not present in the input dataset. “GAPDH up.” and “TLE6 up.” were
control regions not bound by NF-Y. Red bars indicate ChIP-QPCR primer locations. Blue
bars under peaks show MACS called peak regions at the 10 P-value. RefSeq genes are

1llustrated.
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Supplemental Figure 1 (Continued)
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Supplemental Figure 2: CCAAT box frequency and saturation analysis

A. Mean percentage of peaks with CCAAT boxes in K562 NFYB peaks called at specific P-

values. CCAAT boxes were called using FIMO at a P-value threshold of 10™. Similarly sized

random genomic regions have a CCAAT box rate of 8%.

The percentage of peaks, from the K562 NFYB 10° peak list, that were successfully

identified based on a random subsample of ChIP-Seq reads.
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Supplemental Figure 3: ChIP-QPCR validation of NFYB binding in the absence of NFYA

A. NFYB peaks with a high NFYB:NFYA read ratio were assayed by ChIP-QPCR. Selection
criteria were: did not overlap an NFYA peak called at a lenient P-value threshold of 10”; and
hand-checked by observation of raw ChIP-Seq data and discarded if appreciable NFYA
signal was present. A group of control targets that showed similar fold enrichments for
NFYB as the test group were selected for comparison. The ratio of NFYB:NFYA reads is
shown, and targets are sorted by ratio. The average of 2-4 biological replicates and their
associated standard deviations are depicted.

B. Distribution of normalized ratios of NFYB and NFYA ChIP-Seq read counts at NFYB peak
regions. Reads were counted within a region spanning +/-100 bp from the summit of NFYB

peaks and normalized to the total number of mapped reads.
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Supplemental Figure 3 (Continued)
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Supplemental Figure 4: NF-Y binds to many genes involved in transcription regulation

A. and B. Transcription regulatory complexes, TFs, RNA Pol II general factors and chromatin
associated factors and complexes whose members’ putative cis-regulatory domains were
bound by NFYB. Dark and light green shading indicate NFYB binding within -5 kbp:+1 kbp
TSS and -5 kbp:+1 kbp TSS plus up to +/-1 mbp extension, respectively.

C. and D. Ingenuity Pathway Analysis, showing the TP53 (C) and TRAIL (D) signaling
pathways. Gray shaded gene terms indicate that that gene’s putative cis-regulatory domain (-

5 kbp:+1 kbp TSS plus up to +/-1 mbp extension) was bound by NFYB in K562.
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Supplemental Figure 4 (Continued)
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Supplemental Figure 4 (Continued)
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Supplemental Figure 4 (Continued)
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Supplemental Figure 5: Annotation of NF-Y ChIP-Seq peaks to RefSeq gene features
Percent occurrence of K562 NFYB peaks at RefSeq gene features compared to features in the

entire genome. P-values are indicated.
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Supplemental Figure 6: HeLaS3 NF-Y bound loci reside within 5 disparate epigenetic
domains
K-means clustering of HeL.aS3 NFYB loci based on the distribution of histone PTMs, RNA
Pol I, NFYB and NFYA ChIP-Seq reads within a region spanning +/-5 kbp from the summit
of NFYB peaks (centered at O bp). Clustering was carried out on transformed rank

normalized read counts. Raw read count intensity is depicted in red. Similar to Figure 3.
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Supplemental Figure 7: NF-Y cell line specific sites are enriched for enhancers and

function in cell-type specific biological processes

A. Ratio of enhancer:promoter chromatin states in the GM12878 and K562 cell type specific
NFYB binding sites and sites common to all three cell types (K562, GM12878 and HeLaS3).
Peaks are considered unique to a cell line if they do not overlap a peak called at the lenient
107 P-value threshold in the other two cell lines.

B. Box plot showing the distance to the nearest RefSeq TSS of NFYB sites. Horizontal edges of
the box represent the inter-quartile range. The middle bar represents the median value. Ends
of the extensions represent the minimum and maximum datum within 1.5 x inter-quartile
range. Outliers are represented as dots. P-values represent the significance of the difference
in the median value calculated by the Wilcoxon rank sum test.

C. Gene ontology analysis of cell type specific NFYB bound sites unique to K562, GM12878
and HeLaS3. Only the top 10 terms with a fold enrichment > 2 are shown. Observed region
hits correspond to the number of NFYB peaks within the regulatory regions of genes in that

gene ontology term.
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Supplemental Figure 7 (Continued)
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Supplemental Figure 8: Functional inactivation of NFYA and correlation with ChIP-Seq

NF-Y sites

A. and B. Representative (A) semi-quantitative PCR and (B) Western blot analysis of an NFYA

and scrambled control lentiviral shRNA knockdown in HelLaS3. A. Clear reduction in the

mRNA for NFYA is apparent, whereas a control gene, GAPDH, was unaffected. CCNBI and

TOPOIIA are known NF-Y regulated genes and are included as positive controls. A reverse

transcriptase negative control (RT-) is also shown. B. Membranes were blotted with anti-

NFYA or anti-Actin antibodies (control) and show a specific reduction in NFYA protein

levels.

C. NF-Y ChIP-Seq peaks were near differentially regulated genes. NFYA or NFYB peaks,

excluding peaks that overlapped LTRs, were mapped to the nearest RefSeq TSS and the

distance and associated differential gene expression upon shNFYA of that gene determined.

Peaks are sorted based on differential gene expression and the median distance of a sliding

200 peak window is shown. Inset, NFYB distance plot rescaled to show data points > 15 kbp.

D. The most differentially regulated genes were associated with the highest fraction of TSSs

bound by NFYA. The fraction (mean of 500 bp sliding window) of RefSeq TSSs with an

NFYA or NFYB ChIP-Seq peak within the indicated range of the TSS, ranked according to

differential gene expression upon shNFY A of the associated genes.
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Supplemental Figure 8 (Continued)
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Supplemental Figure 9: TFs have marked differences in their ability to bind their motif in

closed chromatin
The percentage of genome-wide computationally discovered TF binding site motif locations
within non-modified-chromatin, PcG repressed and strong promoter chromatin states,
FAIRE-Seq regions or the entire genome, that directly overlapped their respective TF sites

plotted as a function of motif quality (right axes). Similar to Figure 5, B.
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Supplemental Figure 10: NFYB significantly co-associates with many factors at promoters

and enhancers

A. The significance of co-association with NFYB at K562 strong promoter and enhancer
chromatin states. The number of promoters and enhancers bound by NFYB and one of each
individual chromatin associated proteins was assayed by a 2x2 contingency table approach.
The significance of the observed overlap was determined by the Fisher exact test. Peak
summits from the 10™ peak lists were used to determine occupancy within a given region.

B. Dendrograms depicting the correlation between chromatin associated factors at NFYB bound
or NFYB non-bound promoters or enhancers in K562. All promoters and enhancers from the
chromatin state maps where scored for the presence/absence of all chromatin associated
factors and clustered (see Methods). NFYA and NFYB are indicated by arrows and the
cluster they associate with is shaded in yellow.

C. Multi-way overlaps between chromatin associated factors (RNA Pol IIIII and associated
general factors were not considered) at NFYB bound and NFYB non-bound strong promoters
and all enhancers. Only the top 10 combinations are shown. The number and percentage of
promoters or enhancers that were simultaneously bound by the indicated factor(s) are shown.

Yellow shading represents FOS, which is highly prevalent at NFYB bound promoters.
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EIsi| 2607 1.153 15 82 4.1E-35
BCLAF1 6,616 2,712 35 127 7.1E-35
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NR4A1| 5514 1.685 22 85 6.6E-26
P300 2,969 1,038 13 63 1.2E-23
TAF7| 4536 1,237 16 65 4.5E-21
SIN3A| 2701 318 4 34 6.8E-21
JUND 945 256 3 31 8.8E-21
SIRTG| 1.794 1,227 16 64 1.3E-20
GITF2F1 885 90 1 20 2.7E-19
SRF| 2,005 666 9 39 9.9E-15
TAF1| 4.126 573 7 36 1.3E-14
BCL3| 3.924 492 6 32 1.4E-13
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Supplemental Figure 11: NF-Y partners with FOS, USF1, USF2 and SP1 in non-modified-

chromatin domains

A. K-means clustering of K562 NFYB loci from the non-modified-chromatin class (clusters D
and J; Figure 3, A) based on the distribution of ChIP-Seq reads from chromatin associated
factors within a region spanning +/-500 bp from the summit of NFYB peaks (centered at 0
bp). Clustering was carried out on transformed rank normalized read counts. Raw read count
intensity is depicted in red.

B. De novo motif search of NFYB peaks in the non-modified-chromatin state. Only the top 5
motifs are shown. The respective best match (P-value shown to right) to known motifs are
shown on top of the discovered motifs. The percentage of NFYB sites containing the
discovered motif is indicated to the right. In some instances the very similar Hap3 (yeast NF-

Y orthologue) motif was replaced by the NFY A motif which was second to Hap3 in all cases.
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Abstract

The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to
interpret the human genome sequence and apply it to understand human biclogy and improve health. The ENCODE
Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional
elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with
their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have
been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made
available through a freely accessible database. Here we provide an overview of the project and the resources it is generating
and illustrate the application of ENCODE data to interpret the human genome.

Citation: The ENCODE Project Consortium (2011) A User's Guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biol 9(4): e1001046. doi:10.1371/
Jjournal pbio. 1001046

Academic Editor: Peter B. Becker, Adolf Butenandt Institute, Germany
Received September 23, 2010; Accepted March 10, 2017; Published April 19, 2011

Copyright: © 20711 The ENCODE Project Consortium. This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are aredited.

Funding: Funded by the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. The role of the NIH Project Management
Group in the preparation of this paper was limited to coordination and scientific management of the ENCODE Consortium.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: 3C, Chromosome Conformation Capture; API, application programming interface; CAGE, Cap-Analysis of Gene Expression; ChIP, chromatin
immunoprecipitation; DCC, Data Coordination Center; DHS, DNasel hypersensitive site; ENCODE, Encyclopedia of DNA Elements; EPO, Enredo, Pecan, Ortheus
approach; FDR, false discovery rate; GEQ, Gene Expression Omnibus; GWAS, genome-wide association studies; IDR, Irreproducible Discovery Rate; Methyl-seq,
sequencing-based methylation determination assay; NHGRI, National Hurman Genome Research Institute; PASRs, promoter-associated short RNAs; PET, Paired-End
diTag; RACE, Rapid Amplification of cDNA Ends; RNA Pol2, RNA polymerase 2; RBP, RNA-binding protein; RRBS, Reduced Representation Bisulfite Sequencing; SRA,
Sequence Read Archive; TAS, trait/disease-associated SNP; TF, transcription factor; TSS, fransaription start site

* E-mail: rmyers@hudsonalpha.org (RMM); jstam@u.washington.edu (JS); mpsnyder@stanford.edu (MS); dunham@ebi.acuk (ID); rch8@psu.edu (RCH) bernstein.
bradley@mgh.harvard.edu (BEB); gingeras@cshl.edu (TRG); kent@soe.ucsc.edu (WIK); birney@ebi.ac.uk (EB); woldb@caltech.edu BW); greg.crawford@duke.edu (GEC)

o Membership of the ENCODE Project Consortiurm is provided in the Acknowledgments.

l. Introduction and Project Overview

Interpreting the human genome sequence is one of the leading
challenges of 21* century biology [1]. In 2003, the National
Human Genome Research Institute (NHGRI) embarked on an
ambitious project the Encydopedia of DNA Elements (EN-
CODE} aiming to delineate all of the functional elements
encoded in the human genome sequence [2]. To further this
goal, NHGRI organized the ENCODE Censortium, an interna-
tional group of investigators with diverse backgrounds and
expertise in production and analysis of high-throughput functional
genomic data. In a pilot project phase spanning 2003 2007, the
Consortium applied and compared a variety of experimental and
computational methods to annotate functional elements in a
defined 1% of the human genome [3]. Two additional goals of the
pilot ENCODE Project were to develop and advance technologies
for annotating the human genome, with the combined aims of
achieving higher accuracy, completeness, and cost-effective
throughput and establishing a paradigm for sharing functional
genomics data. In 2007, the ENCODE Project was expanded to
study the entire human genome, capitalizing on experimental and
computational technology developments during the pilot project
period. Here we describe this expanded project, which we refer to
throughout as the ENCODE Project, or ENCODE.

The major goal of ENCODE is to provide the scientific
community with high-quality, comprehensive annotations of
candidate functional elements in the human genome. For the

@ PLoS Biology | www.plosbiology.org

purposes of this article, the term “functional element” is used to
denote a discrete region of the genome that encodes a defined
product (e.g., protein) or a reproducible biochemical signature,
such as transcription or a specific chromatin structure. It is now
widely appreciated that such signatures, either alone or in
combinations, mark genomic sequences with important functions,
incuding exons, sites of RNA processing, and transcriptional
regulatory elements such as promoters, enhancers, silencers, and
insulators. However, it 1s also important to recognize that while
certain biochemical signatures may be associated with specific
functions, our present state of knowledge may not yet permit
definitive declaration of the ultimate biological role(s), function(s),
or mechanism(s) of action of any given genomic element.

At present, the proportion of the human genome that encodes
functional elements is unknown. Estimates based on comparative
genomic analyses suggest that 3% 8% of the base pairs in the
human genome are under purifying (or negative) selection [4 7].
However, this likely underestimates the prevalence of functional
features, as current comparative methods may not account for
lineage-specific evolutionary innovations, functional elements that
are very small or fragmented [8], elements that are rapidly
evolving or subject to nearly neutral evolutionary processes, or
elements that lie in repetitive regions of the genome.

The current phase of the ENCODE Project has focused on
completing two major classes of annotations: genes (both
protein-coding and non-coding) and their RNA transcripts,
and transcriptional regulatory regions. To accomplish these
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Author Summary

The Encyclopedia of DNA Elements (ENCODE) Project was
created to enable the scientific and medical communities
to interpret the human genome sequence and to use it to
understand human biclogy and improve health. The
ENCODE Consortium, a large group of scientists from
around the world, uses a variety of experimental methods
to identify and describe the regions of the 3 billion base-
pair human genome that are important for function. Using
experimental, computational, and statistical analyses, we
aimed to discover and describe genes, transcripts, and
transcriptional regulatory regions, as well as DNA binding
proteins that interact with regulatory regions in the
genome, including transcription factors, different versions
of histones and other markers, and DNA methylation
patterns that define states of the genome in various cell
types. The ENCODE Project has developed standards for
each experiment type to ensure high-quality, reproducible
data and novel algorithms to facilitate analysis. All data
and derived results are made available through a freely
accessible database. This article provides an overview of
the complete project and the resources it is generating, as
well as examples to illustrate the application of ENCODE
data as a user’s guide to facilitate the interpretation of the
human genome.

goals, seven ENCODE Data Production Centers encompassing
27 institutions have been organized to focus on generating
multiple complementary types of genome-wide data (Figure 1
and Figure S1). These data include identification and
quantification of RNA species in whole cells and in sub-cellular
compartments, mapping of protein-coding regions, delineation
of chromatin and DNA accessibility and structure with
nucleases and chemical probes, mapping of histone modifica-
tions and transcription factor (TF) binding sites by chromatin
immunoprecipitation (ChIP), and measurement of DNA
methylation (Figure 2 and Table 1). In parallel with the major
production efforts, several smaller-scale efforts are examining
long-range chromatin interactions, localizing binding proteins
on RNA, identifying transcriptional silencer elements, and
understanding detailed promoter sequence architecture in a
subset of the genome (Figure 1 and Table 1}.

ENCODE has placed emphasis on data quality, including
ongoing development and application of standards for data
reproducibility and the collection of associated experimental
information (ie., metadata). Adoption of state-of-the-art, massively
parallel DNA sequence analysis technologies has greatly facilitated
standardized data processing, comparison, and integration [9,10].
Primary and processed data, as well as relevant experimental
methods and parameters, are collected by a central Data
Coordination Center (DCC]) for curation, quality review, visual-
ization, and dissemination (Figure 1). The Consortium releases
data rapidly to the public through a web-accessible database
(http://genome.ucsc.edu/ENCODE/) [11] and provides a visu-
alization framework and analytical tools to facilitate use of the data
[12], which are organized inte a web portal (http://encodeproject.
org).

To facilitate comparison and integration of data, ENCODE
data production efforts have prioritized selected sets of cell types
(Table 2). The highest priority set (designated “Tier 17) includes
two widely studied immortalized cell lines K562 erythroleu-
kemia cells [13]; an EBV-immortalized B-lymphoblastoid line
(GM12878, also being studied by the 1,000 Genomes Project;
http://1000genomes.org) and the H] human embryonic stem cell
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line [14]. A secondary priority set (Tier 2) includes HeLa-S3
cervical carcinoma cells [15], HepG2 hepatoblastoma cells [16],
and primary (non-transtormed) human umbilical vein endothelial
cells (HUVEC; [17]), which have limited proliferation potential in
culture. To capture a broader spectrum of human biological
diversity, a third set (Tier 3} currently comprises more than 100
cell types that are being analyzed in selected assays (Table 2).
Standardized growth conditions for all ENCODE cell types have
been established and are available through the ENCODE web
portal (http://encodeproject.org, “cell types™ link).

This report is intended to provide a guide to the data and
resources generated by the ENCODE Project to date on Tier 1 3
cell types. We summarize the current state of ENCODE by
describing the experimental and computational approaches used
to generate and analyze data. In addition, we outline how to access
datasets and provide examples of their use.

Il. ENCODE Project Data

The following sections describe the different types of data being
produced by the ENCODE Project (Table 1).

Genes and Transcripts

Gene annotation. A major goal of ENCODE is to annotate
all protein-coding genes, pseudogenes, and non-coding transcribed
leci in the human genome and to catalog the products of
transcription including splice isoforms. Although the human
genome contains ~20,000 protein-coding genes [18], accurate
identification of all protein-coding transcripts has not been
straightforward. Annotation of psendogenes and noncoding
transcripts also remains a considerable challenge. While auto-
matic gene annotation algorithms have been developed, manual
curation remains the approach that delivers the highest level of
accuracy, completeness, and stability [19]. The ENCODE
Consortium has therefore primarily relied on manual curation
with moderate implementation of automated algorithms to produce
gene and transcript models that can be verified by traditional
experimental and analytical methods. This annotation process
involves consolidation of all evidence of transcripts (cDNA, EST
sequences) and proteins from public databases, followed by building
gene structures based on supporting experimental data [20]. More
than 50% of annotated transcripts have no predicted coding
potential and are classified by ENCODE into different transcript
categories. A classification that summarizes the certainty and types
of the annotated structures is provided for each transcript (see
http://www.gencodegenes.org/biotypes html  for details). The
annotation also includes extensive experimental validation by RT-
PCR for novel transcribed loci (ie., those not previously observed
and deposited into public curated databases such as RefSeq).
Pseudogenes are identified primarily by a combination of similarity
to other protein-coding genes and an obvious functonal
disablement such as an in-frame stop codon. Because it is difficult
to validate pseudogenes experimentally, three independent
annotation methods from Yale (“psendopipe™) [21], UCSC
(“retrofinder”; http://users.soe.ucsc.edu/~markd/gene-sets-new/
pseudoGenes/RetroFinder html, and references therein), and the
Sanger Center [20] are combined to produce a consensus
pseudogene set. Ultimately, each gene or transcript model is
assigned one of three confidence levels. Level 1 includes genes
validated by RT-PCR and sequencing, plus consensus pseudogenes.
Level 2 indudes manually annotated coding and long non-coding
loci that have transcriptional evidence in EMBL/ GenBank. Level 3
includes Ensembl gene predictions in regions not yet manually
annotated or for which there is new transcriptional evidence.
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Figure 1. The Organization of the ENCODE Consortium. {A) Schematic representation of the major methods that are being used to detect
functional elements {gray boxes), represented on an idealized model of mammalian chromatin and a mammalian gene. (B) The overall data flow from
the production groups after reproducibility assessment to the Data Coordinating Center (UCSC) for public access and to other public databases. Data
analysis is performed by production groups for quality control and research, as well as at a cross-Consortium level for data integration.

doi:10.1371/journal.pbio.1601046.9001

The result of ENCODE gene annotation (termed “GENCODE”)
is a comprehensive catalog of transcripts and gene models. ENCODE
gene and transcript annotations are updated bimonthly and are
available through the UCSC ENCODE browser, distributed
annotation servers (DAS;see http://genome.ucse.edu/cgi-bin/das/
hgl8/features?segment=21:33031597,

@ PLoS Biology | www.plosbiology.org

33041570, type=wgEncodeGencodeManualV3), and the Ensembl
Browser [22].

RNA transcripts. ENCODE aims to produce a compre-
hensive genome-wide catalog of transcribed loci that characterizes
the size, polyadenylation status, and subcellular compartmen-
talization of all transcripts (Table 1).
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Figure 2. Data available from the ENCODE Consortium. {A) A data matrix representing all ENCODE data types. Each row is a method and each
column is a cell line on which the method could be applied to generate data. Colored cells indicate that data have been generated for that method
on that cell line. The different colors represent data generated from different groups in the Consortium as indicated by the key at the bottom of the
figure. In some cases, more than one group has generated equivalent data; these cases are indicated by subdivision of the cell to accommodate
multiple colors. (B} Data generated by ChIP-seq are split into a second matrix where the cells now represent cell types {rows) split by the factor or
histone modification to which the antibody is raised {columns). The colors again represent the groups as indicated by the key. The upper left corner
of this matrix has been expanded immediately above the panel to better illustrate the data. All data were collected from the ENCODE public
download repository at http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC on September 1, 2010.

doi:10.1371/journal.pbio.1001046.9C02

ENCODE has generated transcript data with high-density
(5 bp) tiling DNA microarrays [23] and massively parallel DNA
sequencing methods [9,10,24], with the latter predominating in
ongoing efforts. Both polyA+ and polyA— RNAs are being
analyzed. Because subcellular compartmentalization of RNAs is
important in RNA processing and function, such as nuclear
retention of unspliced coding transcripts [25] or snoRNA activity
in the nucleolus [26], ENCODE is analyzing not only total whole
cell RNAs but also those concentrated in the nucleus and cytosol.
Long (>200 nt} and short RNAs {<X200 nt) are being sequenced
from each subcellular compartment, providing catalogs of
potential miRNAs, snoRNA, promoter-associated short RNAs
(PASRs) [27], and other short cellular RNAs. Total RNA from
K562 and GMI12878 cells has been mapped by hybridization to
high-density tiling arrays and sequenced to a depth of =500
million paired-end 76 bp reads under conditions where the strand

Table 1. Experimental assays used by the ENCODE Consortium.

of the RINA transcript is determined, providing considerable depth
of transcript coverage (see below).

These analyses reveal that the human genome encodes a diverse
array of transcripts. For example, in the proto-oncogene 7P53
locus, RNA-seq data indicate that, while 7P53 transcripts are
accurately assigned to the minus strand, those for the oppositely
transcribed, adjacent gene WRAF53 emanate from the plus strand
(Figure 3). An independent transcript within the first intron of
TP531s also observed in both GM12878 and K562 cells (Figure 3).

Additional transcript annetations include exonic regions and
splice junctions, transcription start sites (T'SSs), transcript 3’ ends,
spliced RNA length, locations of polyadenylation sites, and
locations with direct evidence of protein expression. TSSs and 3"
ends of transcripts are being determined with two approaches,
Paired-End diTag (PET) [28] and Cap-Analysis of Gene
Expression (CAGE) [29 31] sequencing.

Gene/Transcript Analysis

Region/Feature Method

Group

Gene annotation GENCODE

Wellcome Trust

PolyA+ coding regions

RNA-seq; tiling DNA microarrays; PET

CSHL; Stanford/Yale//Harvard; Caltech

(TFBS)

Chromatin structure (accessibility, etc.)

DNasel hypersensitivity; FAIRE

Total RNA coding regions RNA-seq; tiling DNA microarrays; PET CSHL

Coding regions in subcellular RNA fractions PET CSHL

{e.g. nuclear, cytoplasmic)

Small RNAS short RNA-seq CSHL

Transcription initiation (5'-end) and CAGE; diTAGs RIKEN, GIS

termination (3-end’) sites

Full-length RNAs RACE University of Geneva; University of Lausanne
Protein-bound RNA coding regions RIP; CLIP SUNY-Albany; CSHL

Transcription Factors/Chromatin

Elements/Regions Method(s) Group(s)

Transcription Factor Binding Sites ChiP-seq Stanford/Yale/AJC-Davis/Harvard; HudsonAlpha/Caltech;

Duke/UT-Austin; UW; U. Chicago/Stanford
UW; Duke; UNC

Chromatin modifications (H3K27ac, ChiP-seq Broad; UW
H3K27me3, H3K36me3, etc)

DNasel footprints Digital genomic footprinting uw
Other Elements/Features

Feature Method(s) Group(s)

DNA methylation
Chromatin interacfions
Genotyping

RRBS; lllumina Methyl27; Methyl-seq
5C; CHIA-PET

lllumina 1M Duo

HudsonAlpha
UMass; UW; GIS
HudsonAlpha

doi:10.1371/journal pbio.1001046.1001
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Transcript annotations throughout the genome are further
corroborated by comparing tiling array data with deep sequencing
data and by the manual curation described above. Additionally,
selected compartment-specific RNA transcripts that cannot be
mapped to the current build of the human genome sequence have
been evaluated by 5/3° Rapid Amplification of cDNA Ends
(RACE) [32], followed by RT-PCR cloning and sequencing. To
assess putative protein products generated from novel RNA
transcripts and isoforms, proteins may be sequenced and
quantified by mass spectrometry and mapped back to their
encoding transcripts [33,34]. ENCODE has recently begun to
study proteins from distinct subcellular compartments of K562
and GM12878 cells by using this complementary approach.

Cis-Regulatory Regions

Cis-regulatory regions include diverse functional elements (e.g.,
promoters, enhancers, silencers, and insulators) that collectively
modulate the magnitude, timing, and cell-specificity of gene
expression [35]. The ENCODE Project is using multiple
approaches to identify cis-regulatory regions, including localizing
their characteristic chromatin signatures and identifying sites of

Table 2. ENCODE cell types.

Cell Type Tier Description Source

GM12878 1 B-Lymphoblastoid cell line Coriell GM12878

K562 1 Chronic Myelogenous/Erythroleukemia cell line ATCC CCL-243

H1-hESC 1 Human Embryonic Stem Cells, line H1 Cellular Dynamics International
HepG2 2 Hepatoblastomna cell line ATCC HB-8065

Hela-53 2 Cervical carcinoma cell line ATCC CCL-2.2

HUVEC 2 Human Umbilical Vein Endothelial Cells Lonza CC-2517

Various (Tier 2) 3 Various cell lines, cultured primary cells, and primary tissues Various

doi:10.1371/Journal pbic. 1001046.1002

occupancy of sequence-specific transcription factors. These
approaches are being combined to create a comprehensive map
of human cs-regulatory regions.

Chromatin structure and modification. Human
regulatory regions characteristically exhibit nuclease hyper-
sensitivity [36 39] and may show increased solubility after
chromatin fixation and fragmentation [40,41]. Additionally,
specific patterns of post-translational histone modifications [42,43]
have been connected with distinct classes of regions such as
promoters and enhancers [3,44 47] as well as regions subject to
programmed repression by Polycomb complexes [48,49] or other
mechanisms  [46,50,51]. Chromatin accessibility and histone
modifications thus provide independent and complementary
annotations of human regulatory DNA, and massively parallel,
high-throughput DNA sequencing methods are being used by
ENCODE to map these features on a genome-wide scale (Figure 2
and Table 1.

DNasel hypersensitive sites (DHSs) are being mapped by two
techniques: (i) capture of free DNA ends at in vivo DNasel
cleavage sites with biotinylated adapters, followed by digestion
with a TypellS restriction enzyme to generate ~20 bp DNasel

cis-

chri7: 7565000 7575000 7585000 7595000 7605000
ENCODE =t 2

Gene Rl = 3
Annotations WRAP53{ = -

mRNAs — |- ---AK097045

"I Us8658

GM12878 + 'Il I hn
GM12878 - o M“ ‘"‘“‘” ]' l‘l S ﬂ e

Kse2+ ~ . 77| T

Figure 3. ENCODE gene and transcript annotations. The image shows selected ENCODE and other gene and transcript annotations in the
region of the human TP53 gene (region chr17:7,560,001-7,616,000 fram the Human February 2009 (GRCh37/hg19) genome assembly). The annotated
isoforms of TP53 RNAs listed from the ENCODE Gene Annotations (GENCODE) are shown in the top tracks of the figure, along with annotation of the
neighboring WRAP53 gene. In black are two mRNA transcripts {U58658/AK097045) from GenBank. The bottom two tracks show the structure of the
TP53 region transcripts detected in nuclear polyadenylated poly A+ RNAs isolated from GM12878 and K562 cells. The RNA is characterized by RNA-
seq and the RNAs detected are displayed according to the strand of origin {i.e.+ and —). Signals are scaled and are present at each of the detected
p53 exons. Signals are also evident at the U58658 [120] and AKG97045 [121] regions located in the first 10 kb intron of the p53 gene (D1752179E). The
U58658/AK097045 transcripts are reported to be induced during differentiation of myeloid leukemia cells but are seen in both GM12878 and K562
cell lines. Finally the pS3 isoform observed in K562 cells has a longer 3'UTR region than the isoform seen in the GM12878 cell line.

doi:10.1371/journal.pbio.1061046.9003
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cleavage site tags [52,53] and (i) direct sequencing of DNasel
cleavage sites at the ends of small (<300 bp) DNA fragments
released by limiting treatment with DNasel [54 56]. Chromatin
structure is also being profiled with the FAIRE technique
[40,57,58], in which chromatin from formaldehyde-crosslinked
cells 1s sonicated in a fashion similar to ChIP and then extracted
with phenol, followed by sequencing of soluble DNA fragments.
An expanding panel of histone modifications (Figure 2) is being
profiled by ChlP-seq [59 62]. In this method, chromatin from
crosslinked cells is immunoprecipitated with antbodies to
chromatin modifications (or other proteins of interest), the
associated DINA is recovered, and the ends are subjected to
massively parallel DNA sequencing. Control immunoprecipita-
tions with a control IgG antibody or “input” chromatin
sonicated crosslinked chromatin that is not subjected to immune
enrichment are also sequenced for each cell type. These provide
critical controls, as shearing of crosslinked chromatin may occur
preferentially within certain regulatory DNA regions, typically
promoters [41]. ENCODE chromatin data types are illustrated for
a typical locus in Figure 4, which depicts the patterns of chromatin
accessibility, DNasel hypersensitive sites, and selected histone
modifications in GM]12878 cells.

For each chromatin data type, the “raw signal” is presented as
the density of uniquely aligning sequence reads within 150 bp
sliding windows in the human genome. In addition, some data are
available as processed signal tracks in which filtering algorithms
have been applied to reduce experimental noise. A variety of

A User's Guide to ENCODE

specialized statistical algorithms are applied to generate discrete
high-confidence genomic annotations, including DHSs, broader
regions of increased sensitivity to DNasel, regions of enrichment
by FAIRE, and regions with significant levels of specific histone
modifications (see Tables 3 and S1). Notably, different histone
modifications exhibit characteristic genomic distributions that may
be either discrete (e.g., H3K4me3 over a promoter) or broad (e.g.,
H3K36me3 over an entire transcribed gene body). Because
statistical false discovery rate (FDR) thresholds are applied to
discrete annotations, the number of regions or elements identified
under each assay type depends upon the threshold chosen
Optimal thresholds for an assay are typically determined by
comparison to an independent and standard assay method or
through reproducibility measurements (see below). Extensive
validation of the detection of DNasel hypersensitive sites is being
performed independently with traditional Southern blotting, and
more than 6,000 Southern images covering 224 regions in >12
cell types are available through the UCSC browser.
Transcription factor and RNA pelymerase occupancy.
Much of human gene regulation is determined by the binding of
transcriptional regulatory proteins to their cognate sequence
elements in as-regulatory regions. ChlP-seq enables genome-scale
mapping of transcription factor (TF) occupancy patterns in vivo
[59,60,62] and is being extensively applied by ENCODE to create
an atlas of regulatory factor binding in diverse cell types. ChlP-seq
experiments rely on highly specific antibodies that are extensively
characterized by immunoblet analysis and other criteria according
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Figure 4. ENCODE chromatin annotations in the /LA locus. Chromatin features in a human lymphoblastoid cell line, GM12878, are displayed
for a 114 kb region in the HLA locus. The top track shows the structures of the annotated isoforms of the HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes
from the ENCODE Gene Annotations (GENCODE), revealing complex patterns of alternative splicing and several non-protein-coding transcripts
overlapping the protein-coding transcripts. The purple mark on the next line shows that a CpG in the promoter of the HLA-DQB! gene is partially
methylated {assayed on the Illumina Methylation27 BeadArray platform). The densities of four histone modifications associated with transcriptionally
active loci are plotted next, along with the input control signal {generated by sequencing an aliquot of the sheared chromatin for which no
immunoprecipitation was performed). The last lines plot the accessibility of DNA in chromatin to nucleases {DNasel) and reduced coverage by
nucleosomes (FAIRE); peaks on these lines are DNasel hypersensitive sites. Note that the ENCODE Consortium generates DNasel accessibility data by
two alternative protocols marked by * and #. The magenta track shows DNasel sensitivity in a different cell line, NHEK, for comparison.

doi:10.1371/journal.pbio.1001046.9004
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Table 3. Analysis tools applied by the ENCODE Consortium.

A User's Guide to ENCODE

Class of Software Description of Task

Examples®

Short read alignment

Peak calling

RNA processing
of alternative splicing

Integrative peak calling and
classification

Statistical tools for specific
genomic tasks

Motif finding tools

Data analysis frameworks
and stafistical analysis

Assign TFBS peaks to genes

Compare TF binding and
gene expression nonexpressed genes
Conservation

Gene Ontology Analysis

Network analysis Examine relationships between genes

Computationally efficient alignment of short reads to the genome sequence

Converting tag density to defined regions that show statistical
properties consistent with binding activity

Processing RNA reads into exons and transcripts, with consideration

Jointly considering multiple assay signals to both define the location
and character of different genomic regions

Statistical methods developed for replicate-based thresholding,
genome-wide-based overlap, and genome-based aggregation

Discovering the presence of sequence motifs in enriched peaks

General frameworks to allow manipulation, comparison,

Match TFBS to genes they are likely to regulate
Compare binding and expression; compare expressed versus

Evaluates conservation of sequences across a range of species

Determine types of genes enriched for a given dataset

Bowtie, BWA, Maq, TopHat, GEM, STAR
SPP, PeakSeq, Fseq, MACS, HotSpot

Cufflinks, ERANGE, Fluxcapacitor

ChromHMM, Segway

IDR, GSC, ACT

MEME, Weeder

R, Bioconductor, MatLab, Galaxy, DART,
Genometools

GREAT
GenPattern, GSEA, Dchip

phastCons, GERP, SCONE
GO miner, BINGO, AmiGQ
Cytoscape

SFor full listings and references, see Table 51,
doi:10.1371/journal pbio. 1001046.1063

to ENCODE experimental standards. High-quality antibodies are
currently available for only a fraction of human TFs, and identifying
suitable immunoreagents has been a major activity of ENCODE
TF mapping groups. Alternative technologies, such as epitope
tagging of TFs in their native genomic context using recom-
bineering [63,64], are also being explored.

ENCODE has applied ChlP-seq to create occupancy maps for
a variety of TFs, RNA polymerase 2 (RNA Pol2) including both
unphosphorylated (initiating) and phosphorylated (elongating)
forms, and RNA polymerase 3 (RNA Pol3). The localization
patterns of five transcription factors and RNA Pol2 in GM12878
lymphoblastoid cells are shown for a typical locus in Figure 5.
Sequence reads are processed as described above for DNasel,
FAIRE, and histone modification experiments, including the
application of specialized peak-calling algorithms that use input
chromatin or control immunoprecipitation data to identify
potential false-positives introduced by scnication or sequencing
biases (Table 3). Although different peak-callers vary in perfor-
mance, the strongest peaks are generally identified by multiple
algonithms. Most of the sites identified by ChIP-seq are also
detected by traditional ChIP-gPCR [65] or are consistent with
sites reported in the literature. For example, 98% of 112 sites of
CTCF occupancy previously identified by using both ChIP-chip
and ChIP-qPCR [66] are also identified in ENCODE CTCF data.
‘Whereas the binding of sequence-specific TFs is typically highly
localized resulting in tight sequence tag peaks, signal from
antibodies that recognize the phosphorylated (elongating) form
of RNA Pol2 may detect occupancy over a wide region
encompassing both the site of transcription initiation as well as
the domain of elongation. Comparisons among ENCODE groups
have revealed that TF and RNA Pol2 occupancy maps generated
independently by different groups are highly consistent.

Additional Data Types

ENCODE is also generating additional data types to comple-
ment production projects and benchmark novel technologies. An
overview of these datasets is provided in Table 1.

@ PLoS Biology | www.ploshiology.org

DNA methylation. In vertebrate genomes, methylation at
position 5 of the cytosine in CpG dinucleotides is a heritable
“epigenetic” mark that has been connected with both
transcriptional silencing and imprinting [67,68]. ENCODE is
applying several complementary approaches to measure DNA
methylation. All ENCODE cell types are being assayed using two
direct methods for measuring DNA methylation following sodium
bisulfite conversion, which enables quantitative analysis of
methylcytosines:  interrogation of the methylation status of
27,000 CpGs with the Ilumina Methyl27 assay [69 72] and
Reduced Representation Bisulfite Sequencing (RRBS) [73], which
couples Mspl restriction enzyme digestion, size selection, bisulfite
treatment, and sequencing to interrogate the methylation status of
>1,000,000 CpGs largely concentrated within promoter regions
and CpG islands. Data from an indirect approach using a
methylation-sensitive restriction enzyme (Methyl-seq) [74] are also
available for a subset of cell types. These three approaches
measure DNA methylation in defined (though overlapping) subsets
of the human genome and provide quantitative determinations of
the fraction of CpG methylation at each site.

DNasel footprints. DNasel footprinting [75] enables
visualization of regulatory factor occupancy on DNA in vivo at
nucleotide resolution and has been widely applied to delineate the
fine structure of cis-regulatory regions [76]. Deep sampling of
highly enriched libraries of DNasel-released fragments (see above)
enables digital quantification of per nucleotide DNasel cleavage,
which in turn enables resclution of DNasel footprints on a large
scale [55,77,78]. Digital genomic footprinting is being applied on a
large scale within ENCODE to identify millions of DNasel
footprints across =12 cell types, many of which localize the
specific cognate regulatory motifs for factors profiled by ChlP-seq.

Sequence and siructural variation. Genotypic and
structural variations within all ENCODE cell types are being
interrogated at ~1 million positions distributed approximately
every 1.5 kb along the human genome, providing a finely grained
map of allelic variation and sequence copy number gains and
losses. Genotyping data are generated with the Illumina Infinium
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Figure 5. Occupancy of transcription factors and RNA polymerase 2 on human chromosome 6p as determined by ChIP-seq. The
upper portion shows the ChIP-seq signal of five sequence-specific transcription factors and RNA Pol2 throughout the 58.5 Mb of the short arm of
human chromosome 6 of the human lymphoblastoid cell line GM12878. Input control signal is shown below the RNA Pol2 data. At this level of
resolution, the sites of strongest signal appear as vertical spikes in blue next to the name of each experiment ("BATF,” "EBF,” etc.). More detail can be
seen in the bottom right portion, where a 116 kb segment of the HLA region is expanded; here, individual sites of occupancy can be seen mapping
to specific regions of the three HLA genes shown at the bottom, with asterisks indicating binding sites called by peak calling software. Finally, the
lower left region shows a 3,500 bp region around two tandem histone genes, with RNA Pol2 occupancy at both promoters and two of the five
transcription factors, BATF and cFos, occupying sites nearby. Selected annotations from the ENCODE Gene Annotations are shown in each case.
doiz10.1371/journal.pbio.1001046.9005
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platform [79], and the results are reported as genotypes and as
intensity value ratios for each allele. The genotype and sequence
data from GM 12878 generated by the 1,000 Genomes Project are
being integrated with sequence data from ENCODE chromatin,
transcription, TF occupancy, DNA methylation, and other assays
to facilitate recognition of functional allelic variation, a significant
contributor to phenotypic variability in gene expression [80,81].
The data also permit determination of the sequence copy number
gains and losses found in every human genome [82 84, which are
particularly prevalent in cell lines of malignant origin.

Long-range Chromatin interactions. Because cis-regulatory
elements such as enhancers can control genes from distances of tens
to hundreds of kb through looping interactions [85], a major
challenge presented by ENCODE data is to connect distal
regulatory elements with their cognate promoter(s). To map this
connectivity, the Consortium is applying the 5C method [86], an
enhanced version of Chromosome Conformation Capture (3C)
[87], to selected cell lines. 5C has been applied comprehensively to
the ENCODE pilot regions as well as to map the interactions
between distal DNasel hypersensitive sites and transcriptional start
sites across chromosome 21 and selected domains threughout the
genome. Special interfaces have been developed to visualize these 3-
dimensional genomic data and are publicly available at http://
my5C .umassmed.edu [88).

Protein:RNA interactions. RNA-binding proteins play a
major role in regulating gene expression through control of
mRNA translation, stability, and/or localization. Occupancy of
RNA-binding proteins (RBPs) on RNA can be determined by
using immunoprecipitation-based approaches (RIP-chip and RIP-
seq) [89 92] analogous to those used for measuring TF occupancy.
To generate maps of RBP:RNA associations and binding sites, a
combination of RIP-chip and RIP-seq are being used. These
approaches are currently targeting 4 6 RBPs in five human cell
types (K562, GM12878, Hl ES, HeLa, and HepG2). RBP
associations with non-coding RNA and with mRNA are also being
explored.

Identification of functional elements with integrative
analysis and  fine-scale of  biochemical
elements. ChIP-seq of TFs and chromatin modifications may
identify genomic regions bound by transcription factors in living cells
but do not reveal which segments bound by a given TF are
functionally important for transcription. By applying integrative
approaches that incorporate histone modifications typical of
enhancers (e.g, histone H3, Lysine 4 monomethylation), promoters
{e.g., histone H3, Lysine 4 trimethylation}, and silencers (e.g., Histone
H3, Lysine 27, and Lysine 9 trimethylation) ENCODE is
categorizing putative functional elements and testing a subset for
activities in the context of transient transfection/reporter gene assays
[93 97]. To further pinpoint the biological activities associated with
specific regions of TF binding and chromatin modification within
promoters, hundreds of TF binding sites have been mutagenized, and
the mutant promoters are being assayed for effects on reporter gene
transcription by transient transfection assays. This approach is
enabling identification of specific TF binding sites that lead to
activation and others associated with transcriptional repression.

Proteomics. To assess putative protein products generated
from novel RNA transcripts and isoforms, proteins are sequenced
and quantified by mass spectrometry and mapped back to their
encoding transcripts [33,34,98]. ENCGODE has recently begun to
study proteins from distinct subcellular compartments of K562
and GM12878 with this complementary approach.

Evoluti y conser Evolutionary conservation is an
important indicator of biological function. ENCODE is app-
roaching evolutionary analysis from two directions. Functional
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properties are being assigned to conserved sequence elements
identified through multi-species alignments, and conversely, the
evolutionary histories of biochemically defined elements are being
deduced. Multiple alignments of the genomes of 33 mammalian
species have been constructed by using the Enredo, Pecan, Ortheus
approach (EPO) [99,100], and complementary multiple alignments
are available through the UCSC browser (UCSC Lastz/ChainNet/
Multiz). These alignments enable measurement of evolutionary
constraint at single-nucleotide resolution using GERP [101],
SCONE [102], PhyloP [103], and other algorithms. In addition,
conservation of DNA secondary structure based on hydroxyl
radical cleavage patterns is being analyzed with the Chai algorithm
[71.

Data Production Standards and Assessment of Data
Quality

With the aim of ensuring quality and consistency, ENCODE
has defined standards for collecting and processing each data
type. These standards encompass all major experimental
components, including cell growth conditions, antibody charac-
terization, requirements for controls and biological replicates, and
assessment of reproducibility. Standard formats for data submis-
sion are used that capture all relevant data parameters and
experimental conditions, and these are available at the public
ENCODE portal (http://genome.ucsc.edu/ENCODE/ dataStan
dardshtml). All ENCODE data are reviewed by a dedicated
quality assurance team at the Data Coordination Center before
release to the public. Experiments are considered to be wenfied
when two highly concordant biological replicates have been
obtained with the same experimental technique. In addition, a
key quality goal of ENCGODE is to provide validation at multiple
levels, which can be further buttressed by cross-correlation
between disparate data types. For example, we routinely perform
parallel analysis of the same biological samples with alternate
detection technologies (for example, ChlP-seq versus ChIP-chip
or ChIP-qPCR). We have also compared our genome-wide
results to “gold-standard” data from individual locus studies, such
as DNase-seq versus independently performed conventional
(Southern-based) DNasel hypersensitivity studies. Cross-correla-
tion of independent but related ENCODE data types with one
another, such as DNasel hypersensitivity, FAIRE, transcription
factor occupancy, and histone modification patterns, can provide
added confidence in the identification of specific DNA elements
Similarly, cross-correlation between long RNA-seq, CAGE, and
TAF] ChlP-seq data can strengthen confidence in a candidate
location for transcription initiation. Finally, ENCODE is
performing pilot tests for the biological activity of DNA elements
to the predictive potential of various ENCODE biochemical
signatures for certain biological functions. Examples include
transfection assays in cultured human cells and injection assays in
fish embryos to test for enhancer, silencer, or insulator activities
in DNA elements identified by binding of specific groups of TFs
or the presence of DNasel hypersensitive sites or certain
chromatin marks. Ultimately, defining the full biclogical role of
a DNA element in its native chromosomal location and
organismic context is the greatest challenge. ENCODE is
beginning to approach this by integrating its data with results
from other studies of in situ knockouts and/or knockdowns, or
the identification of specific naturally occurring single base
mutations and small deletions associated with changes in gene
expression. However, we expect that deep insights into the
function of most elements will ultimately come from the
community of biologists who will build on ENCODE data or
use them to complement their own experiments.
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Current Scope and Completeness of ENCODE Data

A catalog of ENCODE datasets is available at http://
encodeproject.org. These data provide evidence that ~1 Gigabase
(Gb; 32%) of the human genome sequence is represented in
steady-state, predominantly processed RNA populations. We have
also delineated more than 2 million potential regulatory DNA
regions through chromatin and TF mapping studies.

The assessment of the completeness of detection of any given
element is challenging. To analyze the detection of transcripts in a
single experiment, we have sequenced to substantial depth and
used a sampling approach to estimate the number of reads needed
to approach complete sampling of the RNA population (Figure 6A)
[104]. For example, analyzing RNA transcripts with about 80
million mapped reads yields robust quantification of more than
80% of the lowest abundance class of genes (2 19 reads per
kilobase per million mapped tags, RPKM) [24]. Measuring RINAs
across multiple cell types, we find that, after the analysis of seven
cell lines, 68% of the GENCODE transcripts can be detected with
RPKM >1.

In the case of regulatory DNA, we have analyzed the detection
of regulatory DNA by using three approaches: 1) the saturation of
occupancy site discovery for a single transcription factor within a
single cell type as a functicn of sequencing read depth, 2) the
incremental discovery of DNasel hypersensitive sites or the
occupancy sites for a single TF across multiple cell types, and 3)
the incremental rate of collective TF occupancy site discovery for
all TFs across multiple cell types.

For detecting TF binding sites by ChlIP-seq, we have found that
the number of significant binding sites increases as a function of
sequencing depth and that this number varies widely by
transcription factor. For example, as shown in Figure 6B, 90%
of detectable sites for the transcription factor GABP can be
identified by using the MACS peak calling program at a depth of
24 million reads, whereas only 55% of detectable RINA Pol2 sites
are identified at this depth when an antibody that recognizes both
initiating and elongating forms of the enzyme is used. Even at 50
million reads, the number of sites is not saturated for RNA Pol2
with this antibody. It is important to note that determinations of
saturation may vary with the use of different antibodies and
laboratory protocols. For instance, a different RNA Pol2 antibody
that recognizes unphosphorylated, non-elongating RNA Pol2
bound only at promoters requires fewer reads to reach saturation
[105]. For practical purposes, ENCODE currently uses a
minimum sequencing depth of 20 M uniquely mapped reads for
sequence-specific transcription factors. For data generated prior to
June 1, 2010, this figure was 12 M.

To assess the incremental discovery of regulatory DNA across
different cell types, it was necessary to account for the non-uniform
correlation between cell lines and assays (see Figure 6C legend for
details). We therefore examined all possible orderings of either cell
types or assays and calculated the distribution of elements
discovered as the number of cell types or assays increases,
presented as saturation distribution plots (Figure 6C and 6D,
respectively). For DNase hypersensitive sites, we observe a steady
increase in the mean number of sites discovered as additional cell
types are tested up to and including the 62 different cell types
examined to date, indicating that new elements continue to be
identfied at a relatively high rate as additional cell types are
sampled (Figure 6C). Analysis of CTCF sites across 28 cell types
using this approach shows similar behavior. Ana_lysis of biuding
sites for 42 TFs in the cell line with most data (K562) also shows
that saturation of the binding sites for these factors has not yet
been achieved. These results indicate that additienal cell lines need
to be analyzed for DNasel and many transcription factors, and
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that many more transcription factors need te be analyzed within
single cell types to capture all the regulatory information for a
given factor across the genome. The implications of these trends
for defining the extent of regulatory DNA within the human
genome sequence is as yet unclear.

Ill. Accessing ENCODE Data

ENCODE Data Release and Use Policy

The ENCODE Data Release and Use Policy is described
at http://www.encodeproject.org/ ENCODE/ terms.html. Briefly,
ENCODE data are released for viewing in a publicly accessible
browser (initially at http://genome-preview.ucsc.edu/ENCODE
and, after additional quality checks, at http://encodeproject.org)
The data are available for download and pre-publication analysis
of any kind, as soon as they are verified (ie., shown to be
reproducible). However, consistent with the principles stated in the
Toronto Genomic Data Use Agreement [106], the ENCODE
Consortinm data producers request that they have the first
publication on genome-wide analyses of ENCODE data, within a
9-month timeline from its submission. The timeline for each
dataset is clearly displayed in the information section for each
dataset. This parallels policies of other large consortia, such as the
HapMap Project (http://www.hapmap.org), that attempt to
balance the goal of rapid data release with the ability of data
producers to publish initial analyses of their work. Once a
producer has published a dataset during this 9-month period,
anyone may publish freely on the data. The embargo applies only
to global analysis, and the ENCODE Consortium expects and
encourages immediate use and publication of information at one
or a few loci, without any consultation or permission. For such
uses, identifying ENCODE as the source of the data by citing this
article 1s requested.

Public Repositories of ENCODE Data

After curation and review at the Data Coordination Center, all
processed ENCODE data are publicly released to the UCSC
Genome Browser database (http://genome ucsc.edu). Accession-
ing of ENCODE data at the NCBI Gene Expression Omnibus
(GEO; http://www.ncbinlm.nih. gov/geo/info/ ENCODE . html)
is underway. Primary DNA sequence reads are stored at UCSC
and the NCBI Sequence Read Archive (SRA; http://www.nchi.
nlm.nih.gov/ Traces/sra/sra.cgi?) and will also be retrievable via
GEO. Primary data derived from DNA microarrays (for example,
for gene expression) are deposited directly to GEO. The processed
data are also formatted for viewing in the UCSC browser.
Metadata, including information on antibodies, cell culture
conditions, and other experimental parameters, are deposited into
the UCSC database, as are results of validation experiments. Easy
retrieval of ENCODE data to a user’s desktop is facilitated by the
UCSC Table Browser tool (http://genome.ucsc.edu/cgi-bin/
hgTables?org=human), which does not require programming
skills. Computationally sophisticated users may gain direct access
to data through application programming interfaces (APls) at both
the UCSC browser and NCBI and by downleading files from
http://genome.ucsc.edu/ENCODE/ downloads. html.

An overview of ENCODE data types and the location of the
data repository for each type is presented in Table 4.

IV. Working with ENCODE Data

Using ENCODE Data in the UCSC Browser
Many users will want to view and interpret the ENCODE data
for particular genes of interest. At the online ENCODE portal
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Figure 6. Incremental discovery of transcribed elements and regulatory DNA. (A) Robustness of gene expression quantification relative to
sequencing depth. PolyA-selected RNA from H1 human embryonic stem cells was sequenced to 214 million mapped reads. The number of reads
{indicated on the x-axis) was sampled from the total, and gene expression {in FPKM) was calculated and compared to the gene expression values
resulting from all the reads (final values). Gene expression levels were split into four abundance classes and the fraction of genes in each class with
RPKM values within 10% of the final values was calculated. At ~80 million mapped reads, more than 80% of the low abundance class of genes is
robustly quantified according to this measure (horizontal dotted line). Abundances for the classes in RPKM are given in the inset box. {B) Effect of
number of reads on fractions of peaks called in ChIP-seq. ChiP-seq experiments for three sequence-specific transcription factors were sequenced to a
depth of 50 million aligned reads. To evaluate the effect of read depth on the number of binding sites identified, peaks were called with the MACS
algorithm at various read depths, and the fraction of the total number of peaks that were identified at each read depth are shown. For sequence-
specific transcription factors that have strong signal with ChIP-seq, such as GABP, approximately 24 million reads {dashed vertical line} are sufficient
to capture 90% of the binding sites. However, for more general sequence-specific factors {e.g., OCT2), additional sequencing continues to yield
additional binding site information. RNA Pol2, which interacts with DNA broadly across genes, maintains a nearly linear gain in binding information
through 50 million aligned reads. {C) Saturation analysis of ENCODE DNasel hypersensitivity data with increasing numbers of cell lines. The plot shows
the extent of saturation of DNasel hypersensitivity sites {DHSs) discovered as increasing numbers of cell lines are studied. The plot is generated from
the ENCODE DNasel elements defined at the end of January 2010 {from httpy//hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC) as follows.
We first define a set of DHSs from the overlap of all DHS data across all cell lines. Where overlapping elements are identified in two or more cell lines,
these are determined to represent the same element and fused up to a maximum size of 5 kb. Elements above this limit are split and counted as
distinct. We then calculate the subset of these elements represented by each single cell line experiment. The distribution of element counts for each
single cell line is plotted as a box plot with the median at position 1 on the x-axis. We next calculate the element contributions of all possible pairs of
cell line experiments and plot this distribution at position 2. We continue to do this for all incremental steps up to and including all cell lines {which is
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by definition only a single data point). (D) Saturation of TF ChIP-seq elements in K562 cells. This plot illustrates the saturation of elements identified
by TF ChIP-seq as additional factors are analyzed within the same cell line. The plot is generated by the equivalent approach as described in (C),
except the data are now the set of all elements defined by ChiP-seq analysis of K562 cells with 42 different transcription factors. The data were from
the January 2010 data freeze from httpi//hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC. For consistency, the peak calls from all ChiP-seq
data were generated by a uniform processing pipeline with the Peakseq peak caller and IDR replicate reconciliation.

doi:10.1371/journal.phio.1001046.9006

(http://encodeproject.org), users should follow a “Genome
Browser” link to visualize the data in the context of other genome
annotations. Currently, it is useful for users to examine both the
hgl8 and the hgl9 genome browsers. The hgl8 has the ENCODE
Integrated Regulation Track on by default, which shows a huge
amount of data in a small amount of space. The hgl9 browser has
newer datasets, and more ENCODE data than are available on
hgl8. Work is in progress to remap the older hgl 8 datasets to hgl9
and generate integrated ENCODE tracks. On either browser,
additional ENCODE tracks are marked by a double helix logo in
the browser track groups for genes, transcripts, and regulatory
features. Users can turn tracks on or off to develop the views most
useful to them (Figure 7). To aid users in navigating the rich
variety of data tracks, the ENCODE portal also provides a
detailed online tutorial that covers data display, data download,
and analysis functions available through the browser. Examples
applying ENCODE data at individual loci to specific biological or
medical issues are a good starting poeint for exploration and use of
the data. Thus, we also provide a collection of examples at the
“session gallery’” at the ENCODE portal. Users are encouraged to
submit additional examples; we anticipate that this community-
based sharing of insights will accelerate the use and impact of the
ENCODE data.

An lllustrative Example

Numerous genome-wide association studies (GWAS) that link
human genome sequence variants with the risk of disease or with
common quantitative phenotypes have now become available.
However, in most cases, the molecular consequences of disease- or
trait-associated variants for human physiology are not understood
[107]. In more than 400 studies compiled in the GWAS catalog
[108], only a small minority of the trait/disease-associated SNPs
(TASs) occur in protein-coding regions; the large majority (89%)
are in noncoding regions. We therefore expect that the
accumulating functional annotation of the genome by ENCODE
will contribute substantially to functional interpretation of these
TASs.

For example, common variants within a ~1 Mb region
upstream of the c-Myc proto-oncogene at 8q24 have been
assoclated with cancers of the colon, prestate, and breast
(Figure 8A) [109 111]. ENCODE data on transcripts, histone

modifications, DNase hypersensitive sites, and TF occupancy show
strong, localized signals in the vicinity of major cancer-associated
SNPs. One variant (15698327) lies within a DXNase hypersensitive
site that is bound by several TFs and the enhancer-associated
protein p300 and contains histone modification patterns typical of
enhancers (high H3K4mel, low H3K4me3; Figure 8B) Recent
studies have shown enhancer activity and allele-specific binding of
TCFIL2 at this site [112], with the risk allele showing greater
binding and activity [113,114]. Moreover, this element appears to
contact the downstream c-Myc gene in vivo, compatible with
enhancer function [114,115]. Similarly, several regions predicted
via ENCODE data to be involved in gene regulation are close to
SNPs in the BCLIIA gene associated with persistent expression of
fetal hemoglobin (Figure S2). These examples show that the simple
overlay of ENCGODE data with candidate non-coding risk-
associated variants may readily identify specific genomic elements
as leading candidates for investigation as probable effectors of
phenotypic effects via alterations in gene expression or other
genomic regulatory processes. Importantly, even data from cell
types not directly associated with the phenotype of interest may be
of considerable value for hypothesis generation. It is reasonable to
expect that application of current and future ENCODE data will
provide useful information concerning the mechanism(s) whereby
genomic variation influences susceptibility to disease, which then
can then be tested experimentally.

Limitations of ENCODE Annotations

All ENCODE datasets to date are from populations of cells.
Therefore, the resulting data integrate over the entire cell
population, which may be physiologically and genetically
inhomogeneous. Thus, the source cell cultures in the ENGODE
experiments are not typically synchronized with respect to the cell
cycle and, as with all such samples, local micro-environments in
culture may also vary, leading to physiological differences in cell
state within each culture. In addition, one Tier 1 cell line (K562}
and two Tier 2 cell lines (HepG2 and HeLa) are known to have
abnormal genomes and karyotypes, with genome instability.
Finally, some future Tier 3 tissue samples or primary cultures
may be inherently heterogeneous in cell type composition.
Averaging over heterogeneity in physiclogy and/or genotype
produces an amalgamation of the contributing patterns of gene
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Table 4. Overview of ENCODE data types.

Data Description Location

Metadata Experimental parameters (e.g., growth conditions, antibody characterization) Ucsc, GEC

Primary data images CCD camera images from sequencers or microarrays Not archived

Sequence reads/microarray signal Minimally processed experimental data; reads and quality information; probe UCSC, GEQ, SRA
locations and intensities

Aligned sequence reads Sequence reads and genomic positions UCsC, GEC

Genomic signal Sequence tag density (sliding window); cumulative base coverage or density by UCsC, GEC
sequencing or read pseudo-extension; microarray probe intensity

Enriched region calls/scores/p or g values Putative binding or transcribed regions UCsC, GEO

doi:10.1371/journal pbio.1001046.1004
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Figure 7. Accessing ENCODE data at the UCSC Portal. Data and results for the ENCODE Project are accessible at the UCSC portal (http://
genome.ucsc.edu/ENCODE). “Signal tracks” for the different datasets are selected and displayed in the genome browser to generate images such as
those shown in Figures 3-4. The datasets are available from the Track Settings page; an example is shown that illustrates some of the key controls. A
dataset is selected and the Signal display plots the values of an assay for a given feature more or less continuously along a chromosome. The height,
range for the y-axis, windowing function, and many other aspects of the graph are controlled in the Signal Configuration window, accessed by
clicking on “Signal” {red oval #1). ENCODE data are commonly generated on multiple cell lines; information about each can be accessed by clicking
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on the name of the cell line or antibody {e.g., HepG2, red oval #2). Many ENCODE tracks are actually composites of multiple subtracks; these can be
turned on and off by using the boxes in the central matrix or in the subtrack list below. Subtracks can be reordered individually by using drag and
drop in the browser image or the Track Settings page, or in logical groups by using the “Cell/Antibody/Views" (red oval #4) ordering controls.
Additional information about the feature and the assay, such as the antibody used, can be obtained by clicking on the name of the feature. Some
restrictions to the use of ENCODE data apply for a 9-month period after deposit of the data; the end of that 9-month period is given by the
“Restricted Until” date. Full data can be downloaded by clicking on the “Downloads” link {red oval #7).

doi:10.1371/journal.pbio.1001046.9C07

expression, factor occupancy, and chromatin status that must be
considered when using the data. Future improvements in genome-
wide methodology that allow the use of much smaller amounts of
primary samples, or follow-up experiments in single cells when
possible, may allow us to overcome many of these caveats.

The use of DNA sequencing to annotate functional genomic
features is constrained by the ability to place short sequence reads
accurately within the human genome sequence. Most ENCODE
data types currently represented in the UCSC browser use only
those sequence reads that map uniquely to the genome. Thus,
centromeric and telomeric segments (collectively ~15% of the
genome and enriched in recent transposon insertions and
segmental duplications) as well as sequences not present in the
current genome sequence build [116] are not subject to reliable
annotation by our current techniques. However, such information
can be gleaned through mining of the publicly available raw
sequence read datasets generated by ENCODE.

It is useful to recognize that the confidence with which different
classes of ENCODE elements can be related to a candidate
function varies. For example, ENCODE can identify with high
confidence new internal exons of protein-coding genes, based on
RNA-seq data for long polyA+ RNA. Other features, such as
candidate promoters, can be identified with less, yet still good,
confidence by combining data from RNA-seq, CAGE-tags, and
RNA polymerase 2 (RNA Pol2) and TAF1 occupancy. Still other
ENCODE biochemical signatures come with much lower
confidence about function, such as a candidate transcriptional
enhancer supported by ChIP-seq evidence for binding of a single
transcription factor.

Identification of genomic regions enriched by ENCODE
biochemical assays relies on the application of statistical analyses
and the selection of threshold significance levels, which may vary
between the algerithms used for particular data types. According-
ly, discrete annotations, such as TF occupancy or DNasel
hypersensitive sites, should be considered in the context of
reported £ values, g values, or false discovery rates, which are
conservative in many cases. For data types that lack focal
enrichment, such as certain histone modifications and many
RNA Pol2-beund regions, bread segments of significant enrich-
ment have been delineated that encompass considerable quanti-
tative variation in the signal strength along the genome.

V. ENCODE Data Analysis

Development and implementation of algorithms and pipelines
for processing and analyzing data has been a major activity of the
ENCODE Project. Because massively parallel DNA sequencing
has been the main type of data generated by the Consortium,
much of the algorithmic development and data analysis to date has
been concerned with issues related to producing and interpreting
such data. Software packages and algorithms commonly used in
the ENCODE Consortium are summarized in Tables 3 and S1.

In general, the analysis of sequencing-based measurements of
functional or biochemical genomic parameters proceeds through
three major phases. In the first phase, the short sequences that are
the output of the experimental method are aligned to the reference
genome. Algorithm  development for efficient and accurate

‘_’@: PLoS Biology | www.ploshiology.org

alignment of short read sequences to the human genome is a
rapidly developing field, and ENCODE groups employ a variety
of the state-of-the-art software (see Tables 3 and 81). In the second
phase, the initial sequence mapping is processed to identify
significantly enriched regions from the read density. For ChIP-seq
(TFs and histone modification), DNase-seq or FAIRE-seq, both
highly localized peaks or broader enriched regions may be
identified. Within the ENCODE Consortium, each data produc-
tion group provides lists of enriched regions or elements within
their own data, which are available through the ENCODE portal.
It should be noted that, for most data types, the majerity of
enriched regions show relatively weak absolute signal, necessitating
the application of conservative statistical thresholds. For some
data, such as those derived from sampling RNA species (e.g,
RNA-seq), additional algorithms and processing are used to
handle transcript structures and the recognition of splicing events.

The final stage of analysis involves integrating the identified
regions of enriched signal with each other and with other data
types. An important prerequisite to data integration is the
availability of uniformly processed datasets. Therefore, in addition
to the processing pipelines developed by individual production
groups, ENCODE has devoted considerable effort toward
establishing robust uniform processing for phases 1 and 2 to
enable integration. For signal comparison, specific consideration
has been given to deriving a normalized view of the sequence read
density of each experiment. In the case of GhIP-seq for TFs, this
process includes in silico extension of the sequence alignment to
reflect the experimentally determined average lengths of the input
DNA molecules that are sampled by the short sequence tag,
compensation for repetitive sequences that may lead to alignment
with multiple genomic locations, and consideration of the read
density of the relevant control or input chromatin experiment.
ENCODE has adopted a uniform standardized peak-calling
approach for transcription factor ChlP-seq, including a robust
and conservative replicate reconciliation statistic (Irreproducible
Discovery Rate, IDR [117], to yield comparable consensus peak
calls. As the project continues, we expect further standardizations
to be developed.

There are many different ways to analyze and integrate large,
diverse datasets. Some of the basic approaches include assigning
features to existing annotations (e.g., assigning transcribed regions
to annotated genes or Pol2-binding peaks to likely genes),
discovery of correlations among features, and identification of
particular gene classes (e.g., Gene Ontology categories) preferen-
tially highlighted by a given annotation. Many software tools exist
in the community for these purpeses, including some developed
within the ENCODE Project, such as the Genome Structure
Clorrection statistic for assessing overlap significance [3]. Software
tools used for integration by ENCODE are summarized in
Tables 3 and SI.

V1. Future Plans and Challenges

Data Production Plans

The challenge of achieving complete coverage of all functional
elements in the human genome is substantial. The adult human
body contains several hundred distinct cell types, each of which
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including MYC and a gene desert upstream shows the linkage disequilibrium blocks and positions of SNPs associated with breast and prostate cancer,
with both a custom track based on [121] and the resident track from the GWAS catalog. ENCODE tracks include GENCODE gene annotations, results
of mapping RNAs to high-density Affymetrix tiling arrays (cytoplasmic and nuclear polyA+ RNA), mapping of histone modifications {H3K4me3 and
H3K27Ac), DNasel hypersensitive sites in liver and colon carcinoma cell lines {HepG2 and Caco-2), and occupancy by the transcription factor TCF7L2 in
HCT116 cells. {B) Expanded view of a 9 kb region containing the cancer-associated SNP rs6983267 (shown on the top line). In addition to the histone
modifications, DNasel hypersensitive sites and factor occupancy described in (A), the ENCODE tracks also show occupancy by the coactivator p30C
and the transcription factors RXRA, CEBPB, and HNF4A. Except as otherwise noted in brackets, the ENCODE data shown here are from the liver
carcinoma cell line HepGz.

doi:10.1371/journal.pbio.1061046.9008
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expresses a unique subset of the ~1500 TFs encoded in the
human genome [118]. Furthermore, the brain alone contains
thousands of types of neurons that are likely to express not only
different sets of TFs but also a larger variety of non-coding RINAs
[119]. In additicn, each cell type may exhibit a diverse array of
responses to exogenous stimuli such as environmental conditions
or chemical agents. Broad areas of fundamental chromosome
function, such as meiosis and recombination, remain unexplored.
Furthermore, ENCODE has focused chiefly on definitive cells and
cell lines, bypassing the substantial complexity of development and
differentiation. A truly comprehensive atlas of human functional
elements is not practical with current technologies, motivating our
focus on performing the available assays in a range of cell types
that will provide substantial near-term utility. ENCODE is
currently developing a strategy for addressing this cellular space
in a timely manner that maximizes the value to the scientific
community. Feedback from the user community will be a critical
component of this process.

Integrating ENCODE with Other Projects and the
Scientific Community

To understand better and functionally annotate the human
genome, ENCODE is making efforts to analyze and integrate data
within the project and with other large-scale projects. These efforts
include 1) defining promoter and enhancer regions by combining
transcript mapping and biochemical marks, 2) delineating distinct
classes of regions within the genomic landscape by their specific
combinations of biochemical and functional characteristics, and 3)
defining transcription factor co-associations and regulatory
networks. These efforts aim to extend our understanding of the
functions of the different biochemical elements in gene regulation
and gene expression.

One of the major motivations for the ENCODE Project has
been to aid in the interpretation of human genome varation that is
associated with disease or quantitative phenotypes. The Consor-
tium is therefore working to combine ENCODE data with those
from other large-scale studies, including the 1,000 Genomes
Project, to study, for example, how SNPs and structural variation
may affect transcript, regulatory, and DNA methylation data. We
foresee a time in the near future when the biochemical features
defined by ENCODE are routinely combined with GWAS and
other sequence variation driven studies of human phenotypes.
Analogously, the systematic profiling of epigenomic features across
ex vivo tissues and stem cells currently being undertaken by the
NIH Roadmap Epigenomics program will provide synergistic data
and the opportunity to observe the state and behavior of
ENCODE-identified elements in human tissues representing
healthy and disease states.

These are but a few of many applications of the ENCODE data.
Investigators focused on one or a few genes should find many new
insights within the ENCODE data. Indeed, these investigators are
in the best position to infer potential functions and mechanisms
from the ENCODE data ones that will also lead to testable
hypotheses. Thus, we expect that the work of many investigators
will be enhanced by these data and that their results will in turn
inform the development of the project going forward.

Finally, we also expect that comprehensive paradigms for gene
regulation will begin to emerge from our work and similar work
from many laboratories. Deciphering the “regulatory code” within
the genome and its associated epigenetic signals is a grand and
complex challenge. The data contributed by ENCODE in
conjunction with complementary efforts will be foundational to
this effort, but equally important will be novel methods for
genome-wide analysis, model building, and hypothesis testing. We
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therefore expect the ENCODE Project to be a major contributor
not only of data but also novel technologies for deciphering the
human genome and those of other organisms,

Supporting Information

Figure 81 The Organization of the ENCODE Consortium. The
geographical distribution of the members of the ENCGODE
Consortium, with pin colors indicating the group roles as detailed
in the text below.

(TIF)

Figure $2  Quantitative trait example (BCL11A). Candidates for
gene regulatory features In the vicinity of SNPs at the BCEII4
locus associated with fetal hemoglobin levels. SNPs associated with
fetal hemoglobin levels are marked in red on the top line; those not
associated are marked in blue. The phenotype-associated SNPs are
close to an antisense transcript (AC009970.1, light orange), shown
in the ENCODE gene annotations. This antisense transcript is
within a region (boxed in red) with elevated levels of H3K
4mel and DNase hypersensitive sites. The phenotype-associated
region is flanked by two regions (boxed in blue) with multiple
strong biochemical signals associated with transcriptional regula-
tion, including transcription factor occupancy. The data are from
the lymphoblastoid cell line GM12878, as BCLIIA is expressed in
this cell line (RNA-SEq t'rack) but not in K562 (unpublished data)

(TIF)

Table 81 This supplemental table contains additional details of
the computational analysis tools used by the ENCODE Consor-
tium that are listed in Table 3. The name of each software tool
appears in the first column, and subsequent columns contain the
tasks for which the tool is used, the PMID reference number when
available, and a web address where the tool can be accessed.

DOC)
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An integrated encyclopedia of DNA
elements in the human genome

The ENCODE Project Consortium*

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is
unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription,
transcription factor association, chromatin structure and histone modification. These data enabled us to assign
biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many
discovered candidate regulatory elements are physically associated with one another and with expressed genes,
providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical
correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation.
Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an
expansive resource of functional annotations for biomedical research.

The human genome sequence provides the
underlying code for human biclogy. Despite
intensive study, especially in identifying
protein-coding genes, our understanding of the [N

d ENCODE

N Encyclopedia of DNA Elements
A nature.com/encode

95% of the genome lies within 8 kilobases (kb)
of a DNA-protein interaction (as assayed by
bound ChIP-seq motifs or DNase I footprints),
and 99% is within 1.7kb of at least one of the

genome is far from complete, particularly with —_—
regard to non-coding RNAs, alternatively spliced transcripts and reg-
ulatory sequences. Systematic analyses of transcripts and regulatory
information are essential for the identification of genes and regulatory
regions, and are an important resource for the study of human biology
and disease. Such analyses can also provide comprehensive views of the
organization and variability of genes and regulatory information across
cellular contexts, species and individuals.

The Encyclopedia of DNA Elements (ENCODE) project aims to
delineate all functional elements encoded in the human genome'™.
Operationally, we define a functional element as a discrete genome
segment that encodes a defined product (for example, protein or
non-coding RNA) or displays a reproducible biochemical signature
(for example, protein binding, or a specific chromatin structure).
Comparative genomic studies suggest that 3-8% of bases are under
purifying (negative) selection®”® and therefore may be functional,
although other analyses have suggested much higher estimates™ '
In a pilot phase covering 1% of the genome, the ENCODE project
annotated 60% of mammalian evolutionarily constrained bases, but
also identified many additional putative functional elements without
evidence of constraint®. The advent of more powerful DNA sequencing
technologies now enables whole-genome and more precise analyses
with a broad repertoire of functional assays.

Here we describe the production and initial analysis of 1,640 data
sets designed to annotate functional elements in the entire human
genome. We integrate results from diverse experiments within cell types,
related experiments involving 147 different cell types, and all ENCODE
data with other resources, such as candidate regions from genome-wide
association studies (GWAS) and evolutionarily constrained regions.
Together, these efforts reveal important features about the organization
and function of the human genome, summarized below.
¢ The vast majority (80.4%) of the human genome participates in at
least one biechemical RNA- and/or chromatin-associated event in at
least one cell type. Much of the genome lies close to a regulatory event:

biochemical events measured by ENCODE.

» Primate-specific elements as well as elements without detectable
mammalian constraint show, in aggregate, evidence of negative selec-
tion; thus, some of them are expected to be functional.

» Classifying the genome into seven chromatin states indicates an initial
set of 399,124 regions with enhancer-like features and 70,292 regions
with promoter-like features, as well as hundreds of thousands of qui-
escent regions. High-resolution analyses further subdivide the genome
into thousands of narrow states with distinct functional properties.

e [t is possible to correlate quantitatively RNA sequence production
and processing with both chromatin marks and transcription factor
binding at promoters, indicating that promoter functionality can
explain most of the variation in RNA expression.

+ Many non-coding variants in individual genome sequences lie in
ENCODE-annotated functional regions; this number is at least as
large as those that lie in protein-coding genes.

« Single nucleotide polymorphisms (SNPs) associated with disease by
GWAS are enriched within non-coding functional elements, with a
majority residing in or near ENCODE-defined regions that are out-
side of protein-ceding genes. In many cases, the disease phenotypes
can be associated with a specific cell type or transcription factor.

ENCODE data production and initial analyses

Since 2007, ENCODE has developed methods and performed a large
number of sequence-based studies to map functional elements across
the human genome®. The elements mapped (and approaches used)
include RNA transcribed regions (RNA-seq, CAGE, RNA-PET and
manual annotation), protein-coding regions (mass spectrometry),
transcription-factor-binding  sites (ChIP-seq and DNase-seq),
chromatin structure (DNase-seq, FAIRE-seq, histone ChIP-seq and
MNase-seq), and DNA methylation sites (RRBS assay) (Box 1 lists
methods and abbreviations; Supplementary Table 1, section P, details
production statistics)’. To compare and integrate results across the
different laboratories, data production efforts focused on two selected

"Lists of participants and their affiliations appear at the end of the papar.
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BOX |
ENCODE abbreviations

RNA-seq. Isclation of RNA sequences, often with different purification
technigues to isolate different fractions of RNA followed by high-
throughput sequencing.

CAGE. Capture of the methylated cap atthe 5’ end of RNA, followed by
high-throughput sequencing of a small tag adjacent to the

5" methylated caps. 5’ methylated caps are formed atthe initiation of
transcription, although other mechanisms also methylate 5’ ends of
RNA.

RNA-PET. Simultaneous capture of RNAs with both a 5° methyl cap
and a poly(A) tail, which is indicative of a full-length RNA. This is then
followed by sequencing a shert tag from each end by high-throughput
seguencing.

ChIP-seq. Chromatin immunoprecipitation followed by sequencing.
Specific regions of crosslinked chromatin, which is genomic DNA in
complex with its bound proteins, are selected by usingan antibocly to a
specific epitepe. The enriched sample is then subjected to high-
throughput sequencing to determine the regions in the genome most
often bound by the protein to which the antibody was directed. Most
often used are antibodies to any chromatin-asscciated epitope,
including transcription factors, chromatin binding proteins and
specific chemical modifications on histone proteins.

DNase-seq. Adaption of established regulatory sequence assay to
modern technigues. The DNase | enzyme will preferentially cut live
chromatin preparations at sites where nearby there are specific (non-
histone) proteins. The resulting cut points are then sequenced using
high-throughput sequencing to determine those sites ‘hypersensitive’
to DNase |, corresponding to open chromatin.

FAIRE-seq. Formaldehyde assisted isolation of regulatory elements.
FAIRE isolates nuclecsome-depleted genomic regions by exploiting
the difference in crosslinking efficiency between nucleosomes (high)
and sequence-specific regulatory factors (low). FAIRE consists of
cresslinking, phenol extraction, and sequencing the DNA fragments in
the agueous phase.

RRBS. Reduced representation bisulphite sequencing. Bisulphite
treatment of DNA sequence converts unmethylated cytosines to
uracil. To focus the assay and save costs, specific restriction enzymes
that cutaround CpG dinucleotides can recluce the genome to a portion
specifically enriched in CpGs. This enriched sample is then sequenced
to determine the methylation status of individual cytosines
guantitatively.

Tier 1. Tier 1 cell types were the highest-priority set and comprised
three widely studied cell lines: K562 erythroleukaemia cells;
GM12878, a B-lympheblastoid cell line that is also part of the 1000
Genomes project (http://1000genomes.org)®®; and the H1 embryonic
stem cell (H1 hESC) line.

Tier 2. The second-priority set of cell types in the ENCODE project
which included Hela-S3 cervical carcinoma cells, HepG2
hepatoblastoma cells and primary (non-transformed} human
umbilical vein endothelial cells (HUVECs).

Tier 3. Any other ENCODE cell types not in tier 1 or tier 2.

sets of cell lines, designated “tier 17 and ‘tier 2” (Box 1). To capture a
broader spectrum of biological diversity, selected assays were also
executed on a third tier comprising more than 100 cell types including
primary cells. All data and protocol descriptions are available at
http://www.encodeproject.org/, and a User’s Guide including details
of cell-type choice and limitations was published recently®.

Integration methodology

For consistency, data were generated and processed using standardized
guidelines, and for some assays, new quality-control measures were
designed (see refs 3, 12 and http://encodeproject.org/ENCODE/
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dataStandards.html; A. Kundaje, personal communication). Uniform
data-processing methods were developed for each assay (see
Supplementary Information; A. Kundaje, personal communication),
and most assay results can be represented both as signal information
(a per-base estimate across the genome) and as discrete elements
(regions computationally identified as enriched for signal). Extensive
processing pipelines were developed to generate each representation
(M. M. Heffman et al., manuscript in preparation and A. Kundaje,
personal communication). In addition, we developed the irreproducible
discovery rate (IDR)'* measure to provide a robust and conservative
estimate of the threshold where two ranked lists of results from bio-
logical replicates no longer agree (that is, are irreproducible), and we
applied this to defining sets of discrete elements. We identified, and
excluded from most analyses, regions yielding untrustworthy signals
likely to be artefactual (for example, multicopy regions). Together, these
regions comprise 0.39% of the genome (see Supplementary
Information). The poster accompanying this issue represents different
ENCODE-identified elements and their genome coverage.

Transcribed and protein-coding regions

We used manual and automated annotation to produce a compre-
hensive catalogue of human protein-coding and non-coding RNAs as
well as pseudogenes, referred to as the GENCODE reference gene
set'*'* (Supplementary Table 1, section U). This includes 20,687
protein-coding genes (GENCODE annotation, v7) with, on average,
6.3 alternatively spliced transcripts (3.9 different protein-coding tran-
scripts) per locus. In total, GENCODE-annotated exons of protein-
coding genes cover 2.94% of the genome or 1.22% for protein-coding
exons. Protein-coding genes span 33.45% from the outermost start to
stop codons, or 39.54% from promoter to poly(A) site. Analysis of
mass spectrometry data from K562 and GM12878 cell lines yielded 57
confidently identified unique peptide sequences in intergenic regions
relative to GENCODE annotation. Taken together with evidence of
pervasive genome transcription'®, these data indicate that additional
protein-coding genes remain to be found.

In addition, we annotated 8,801 automatically derived small RNAs
and 9,640 manually curated long non-coding RNA (IncRNA) loci'.
Comparing IncRNAs to other ENCODE data indicates that IncRNAs
are generated through a pathway similar to that for protein-coding
genes". The GENCODE project also annotated 11,224 pseudogenes,
of which 863 were transcribed and associated with active chromatin'.

RNA

We sequenced RN A" from different cell lines and multiple subcellular
fractions to develop an extensive RNA expression catalogue. Using a
conservative threshold to identify regions of RNA activity, 62% of
genomic bases are reproducibly represented in sequenced long (=200
nucleotides) RNA molecules or GENCODE exons. Of these bases, only
5.5% are explained by GENCODE exons. Most transcribed bases are
within er overlapping annotated gene boundaries (that is, intronic), and
only 31% of bases in sequenced transcripts were intergenic'®.

Weused CAGE-seq (5' cap-targeted RNA isolation and sequencing)
to identify 62,403 transcription start sites (TSSs) at high confidence
(IDRof0.01) in tier 1 and 2 cell types. Ofthese, 27,362 (44%) are within
100 base pairs (bp) of the 5" end of a GENCODE-annotated transcript
or previously reported full-length messenger RNA. The remaining
regions predominantly lie across exons and 3’ untranslated regions
(UTRs), and some exhibit cell-type-restricted expression; these may
represent the start sites of novel, cell-type-specific transcripts.

Finally, we saw a significant propertion of coding and non-coding
transeripts processed into steady-state stable RN As shorter than 200
nucleotides. These precursors include transfer RNA, microRNA,
small nuclear RNA and small nucleclar RNA (tRNA, miRNA,
snRNA and snoRNA, respectively) and the 5’ termini of these pro-
cessed products align with the capped 5’ end tags*®.
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Table 1& Summary of transcription factor classes analysed in
ENCOD

Acronym Description Factors
analysed
ChromRem ATP-dependent chromatin complexes 5
DNARep DNA repair 3
HiSase Histone acetylation, deacetylation or methylation 8
complexes
Other Cyclin kinase associated with transcription 4
Pol2 Pol Il subunit 1 (2 forms)
Pol3 Pol Ill-associated 6
TFNS General Pol ll-associated factor, not site-specific 8
TFSS Pol Il transcription factor with sequence-specific DNA 87
binding

Protein bound regions

To identify regulatory regions directly, we mapped the binding loca-
tions of 119 different DNA-binding proteins and a number of RNA
polymerase components in 72 cell types using ChIP-seq (Table 1,
Supplementary Table 1, section N, and ref. 19); 87 (73%) were
sequence-specific transcription factors. Overall, 636,336 binding
regions covering 231 megabases (Mb; 8.1%) of the genome are
enriched for regions bound by DNA-binding proteins across all cell
types. We assessed each protein-binding site for enrichment ofknown
DNA-binding motifs and the presence of novel motifs. Overall, 86%
of the DNA segments occupied by sequence-specific transcription
factors contained a strong DNA-binding motif, and in most (55%)
cases the known motif was most enriched (P. Kheradpour and
M. Kellis, manusctipt in preparation).

Protein-binding regions lacking high or moderate affinity cognate
recognition sites have 21% lower median scores by rank than regions
with recognition sequences (Wilcoxon rank sum P value < 10719,
Eighty-two per cent of the low-signal regions have high-affinity recog-
nition sequences for other factors. In addition, when ChIP-seq peaks
are ranked by their concordance with their known recognition
sequence, the median DNase [ accessibility is twofold higher in the
bottom 20% of peaks than in the upper 80% (genome structure
correction (GSC)® P value <107'®), consistent with previous
observations™ ™. We speculate that low signal regions are either
lower-affinity sites™ or indirect transeription-factor target regions
associated through interactions with other factors (see also refs 25, 26).

We organized all the information associated with each transcrip-
tion factor—including the ChIP-seq peaks, discovered motifs and
associated histone modification patterns—in FactorBook (http://www.
factorbook.org; ref. 26), a public resource that will be updated as the
project proceeds.

DNase I hypersensitive sites and footprints

Chromatin accessibility characterized by DNase I hypersensitivity is
the hallmark of regulatory DNA regions®*. We mapped 2.89 million
unique, non-overlapping DNase I hypersensitive sites (DHSs) by
DNase-seq in 125 cell types, the overwhelming majority of which lie
distal to TSSs™. We also mapped 4.8 million sites across 25 cell types

Table 2 | Summary of ENCODE histone modifications and variants

that displayed reduced nucleosomal crosslinking by FAIRE, many of
which coincide with DHSs. In addition, we used micrococcal nuclease
to map nucleosome occupancy in GM12878 and K562 cells™.

In tier 1 and tier 2 cell types, we identified a mean of 205,109 DHSs
per cell type (at false discovery rate (FDR) 1%), encompassing an
average of 1.0% of the genomic sequence in each cell type, and 3.9%
in aggregate. On average, 98.5% of the occupancy sifes of transcription
factors mapped by ENCODE ChIP-seq (and, collectively, 94.4% of all
1.1 million transcription factor ChIP-seq peaks in K562 cells) lie within
accessible chromatin defined by DNase [ hotspots”. However, a
small number of factors, most prominently heterochromatin-beund
repressive complexes (for example, the TRIM28-SETDB1-ZNF274
complex®*** encoded by the TRIM28, SETDBI and ZNF274 genes),
seem to occupy a significant fraction of nucleosomal sites.

Using genomic DNase I footprinting®™** on 41 cell types we iden-
tified 8.4 million distinct DNase I footprints (FDR 1%). Our de novo
metif discovery on DNase I footprints recovered ~90% of known
transcription factor motifs, together with hundreds of novel evolutio-
narily conserved motifs, many displaying highly cell-selective occu-
pancy patterns similar to major developmental and tissue-specific
regulators.

Regions of histone modification

Weassayed chromosomal locations for up to 12 histone modifications
and variants in 46 cell types, including a complete matrix of eight
modifications across tier 1 and tier 2. Because modification states
may span multiple nucleosomes, which themselves can vary in position
across cell populations, we used a continuous signal measure ofhistone
medifications in downstream analysis, rather than calling regions
(M. M. Hoffman ef al, manuscript in preparation; see http://code.
google.com/p/align2rawsignal/). For the strongest, ‘peak-like’ histone
modifications, we used MACS* to characterize enriched sites. Table 2
describes the differenthistone modifications, their peak characteristics,
and a summary of their known roles (reviewed in refs 36-39).

Our data show that global patterns of modification are highly vari-
able across cell types, in accordance with changes in transcriptional
activity. Consistent with previous studies**', we find that integration
of the different histone medification information can be used system-
atically to assign functional attributes to genomic regions (see below).

DNA methylation

Methylation of cytosine, usually at CpG dinucleotides, is involved in
epigenetic regulation of gene expression. Promoter methylation is
typically associated with repression, whereas genic methylation cor-
relates with transcriptional activity”. We used reduced representation
bisulphite sequencing (RRBS) to profile DNA methylation quantita-
tively for an average of 1.2 million CpGs in each of 82 cell lines and
tissues (8.6% of non-repetitive genomic CpGs), including CpGs in
intergenic regions, proximal promoters and intragenic regions (gene
bodies)®, although it should be noted that the RRBS method pref-
erentially targets CpG-rich islands. We found that 96% of CpGs
exhibited differential methylation in at least one cell type or tissue

Histone modification Signal Putative functions
or variant characteristics
H2A.Z Peak Histene protein variant (H2A.Z) associated with regulatory elements with dynamic chromatin

H3K4mel Peak/region Mark of regulatory elements associated with enhancers and other distal elements, but also enriched downstream of transcription starts
H3Kdme2 Peak Mark of regulatory elements associated with promoters and enhancers

H3K4me3 Peak Mark of regulatory elements primarily asscciated with promoters/transcription starts

H3K%ac Peak Mark of active regulatory elements with preference for promoters

H3K9mMel Region Preference for the 5" end of genes

H3K9mMe3 Peak/region Repressive mark associated with censtitutive heterochromatin and repetitive elements

H3K27ac Peak WMark of active regulatory elements; may distinguish active enhancers and promoters from their inactive counterparts
H3K27me3 Region Repressive mark established by polycomb complex activity associated with repressive domains and silent developmental genes
H3K36me3 Region Elongation mark associated with transcribed portions of genes, with preference for 3' regions after intron 1
H3K79me2 Region Transcription-asseciated mark, with preference for 5" end of genes
H4K20mel Region Preference for 5" end of genes
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assayed (K. Varley et al, personal communication), and levels of
DNA methylation correlated with chromatin accessibility. The most
variably methylated CpGs are found more often in gene bodies and
intergenic regions, rather than in promoters and upstream regulatory
regions. In addition, we identified an unexpected correspondence
between unmethylated genic CpG islands and binding by P300, a
histone acetyltransferase linked to enhancer activity*.

Because RRBS is a sequence-based assay with single-base resolu-
tion, we were able to identify CpGs with allele-specific methylation
consistent with genomic imprinting, and determined that these loci
exhibit aberrant methylation in cancer cell lines (K. Varley et al.,
persenal communication). Furthermore, we detected reproducible
cytosine methylation outside CpG dinucleotides in adult tissues®,
providing further support that this non-canonical methylation event
may have important roles in human biology (K. Varley et al., personal
communication).

Chromosome-interacting regions

Physical interaction between distinct chromosome regions that can be
separated by hundreds of kilobases is thought to be important in the
regulation of gene expression**. We used two complementary chro-
mosome conformation capture (3C)-based technologies to probe
these long-range physical interactions.

A 3C-carben copy (5C) approach®*® provided unbiased detection
of long-range interactions with TSSs in a targeted 1% of the genome
(the 44 ENCODE pilot regions) in four cell types (GM12878, K562,
HeLa-53 and H1 hESC)*. We discovered hundreds of statistically
significant long-range interactions in each cell type after accounting
for chromatin pelymer behaviour and experimental variation. Pairs
of interacting loci showed strong correlation between the gene
expression level of the TSS and the presence of specific functional
element classes such as enhancers. The average number of distal ele-
ments interacting with a TSS was 3.9, and the average number of TSSs
interacting with a distal element was 2.5, indicating a complex net-
work of interconnected chromatin. Such interwoven long-range
architecture was also uncovered genome-wide using chromatin inter-
action analysis with paired-end tag sequencing (ChIA-PET)™ applied
to identify interactions in chromatin enriched by RNA polymerase IT
(PolIT) ChIP from five cell types®. In K562 cells, we identified 127,417
promoter-centred chromatin interactions using ChIA-PET, 98% of
which were intra-chromosomal. Whereas promoter regions of 2,324
genes were involved in ‘single-gene’ enhancer-promoter interactions,
those of 19,813 genes were involved in ‘multi-gene’ interaction com-
plexes spanning up to several megabases, including promoter—
promoter and enhancer-promoter interactions™.

These analyses portray a complex landscape of long-range gene-
element connectivity across ranges of hundreds of kilobases to several
megabases, including interactions among unrelated genes (Supplemen-
tary Fig. 1, section Y). Furthermore, in the 5C results, 50-60% of long-
range interactions occurred in only one of the four cell lines, indicative
of a high degree of tissue specificity for gene-element connectivity®.

Summary of ENCODE-identified elements

Accounting for all these elements, a surprisingly large amount of the
human genome, 80.4%, is covered by at least one ENCODE-identified
element (detailed in Supplementary Table 1, section Q). The broadest
element class represents the different RNA types, covering 62% of the
genome (although the majority is inside of introns or near genes).
Regions highly enriched for histone meodifications form the next
largest class (56.1%). Excluding RNA elements and broad histone
elements, 44.2% of the genome is covered. Smaller proportions of
the genome are occupied by regions of open chrematin (15.2%) or
sites of transcription factor binding (8.1%), with 19.4% covered by at
least one DHS or transcription factor ChIP-seq peak across all cell
lines. Using our most conservative assessment, 8.5% of bases are
covered by either a transcription-factor-binding-site motif (4.6%)
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or a DHS footprint (5.7%). This, however, is still about 4.5-fold higher
than the amount of protein-coding exons, and about twofeld higher
than the estimated amount of pan-mammalian constraint.

Given that the ENCODE project did not assay all cell types, or all
transcription factors, and in particular has sampled few specialized or
developmentally restricted cell lineages, these proportions must be
underestimates of the total amount of functional bases. However,
many assays were performed on more than ene cell type, allowing
assessment of the rate of discovery of new elements. For both DHSs
and CTCF-bound sites, the number of new elements initially increases
rapidly with a steep gradient for the saturation curve and then slows
with increasing number of cell types (Supplementary Figs 1 and 2,
section R). With the current data, at the flattest part of the saturation
curve each new cell type adds, on average, 9,500 DHS elements (across
106 cell types) and 500 CTCF-binding elements (across 49 cell types),
representing 0.45% of the total element number. We modelled
saturation for the DHSs and CTCF-binding sites using a Weibull
distribution (> 0.999) and predict saturation at approximately
4.1 million (standard error (s.e.) = 108,000) and 185,100 (s.e. = 18,020)
sites, respectively, indicating that we have discovered around halfofthe
estimated total DHSs. These estimates represent a lower bound, but
reinforce the observation that there is more non-coding functional
DNA than either coding sequence or mammalian evolutionarily con-
strained bases.

The impact of selection on functional elements

From comparative genomic studies, at least 3-8% of bases are under
purifying (negative) selection®™!, indicating that these bases may
potentially be functional. We previously found that 60% of mammalian
evolutionarily constrained bases were annotated in the ENCODE pilot
project, but also observed that many functional elements lacked
evidence of constraint®, a conclusion substantiated by others™ ™. The
diversity and genome-wide occurrence of functional elements now
identified provides an unprecedented opportunity to examine further
the forces of negative selection on human functional sequences.

‘We examined negative selection using two measures that highlight
different periods of selection in the human genome. The first measure,
inter-species, pan-mammalian constraint (GERP-based scores;
24 mammals®), addresses selection during mammalian evelution.
The second measure Is intra-species constraint estimated from the
numbers of variants discovered in human populations using data from
the 1000 Genomes project™, and covers selection over human evolu-
tion. In Fig. 1, we plot both these measures of constraint for different
classes of identified functional elements, excluding features overlapping
exons and promoters that are known tobe constrained. Each graph also
shows genomic background levels and measures of coding-gene con-
straint for comparison. Because we plot human poepulation diversity on
an inverted scale, elements that are more constrained by negative selec-
tion will tend to lie in the upper and right-hand regions of the plot.

For DNase I elements (Fig. 1b) and bound metifs (Fig. 1c), most
sets of elements show enrichment in pan-mammalian constraint and
decreased human population diversity, although for some cell types
the DNase [ sites do not seem overall to be subject to pan-mammalian
constraint. Bound transcription factor motifs have a natural control
from the set of transcription factor motifs with equal sequence poten-
tial for binding but without binding evidence from ChIP-seq experi-
ments—in all cases, the bound motifs show both more mammalian
constraint and higher suppression of human diversity.

Consistent with previous findings, we do not observe genome-wide
evidence for pan-mammalian selection of novel RNA sequences
(Fig. 1d). There are also alarge number of elements without mammalian
constraint, between 17% and 90% for transcription-factor-binding
regions as well as DHSs and FAIRE regions. Previous studies could
not determine whether these sequences are either biochemically active,
but with little overall impact on the organism, or under lineage-
specific selection. By isolating sequences preferentially inserted into
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Figure 1 | Impact of selection on ENCODE functional elements in
mammals and human populations. a, Levels of pan-mammalian constraint
(mean GERP score; 24 mammals®, x axis) compared to diversity, a measure of
negative selection in the human population (mean expected heterozygosity,
inverted scale, y axis) for ENCODE data sets. Each point is an average for a
single data set. The top-right corners have the strongest evolutionary constraint
and lowest diversity. Coding (C), UTR (U), genomic (G), intergenic (IG) and
intronic (IN) averages are shown as filled squares. In each case the vertical and
horizontal cross hairs show representative levels for the neutral expectation for
mammalian conservation and human population diversity, respectively. The
spread over all non-exonic ENCODE elements greater than 2.5 kb from TSSs is
shown. The inner dashed box indicates that parts of the plot have been
magnified for the swrounding outer panels, although the scales in the outer
plots provide the exact regions and dimensions magnified. The spread for DHS
sites (b) and RNA elements (d) is shown in the plots on the left. RNA elements

the primate lineage, which is only feasible given the genome-wide scale
of this data, we are able to examine this issue specifically. Most primate-
specific sequence is due to retrotransposon activity, but an appreciable
proportion is non-repetitive primate-specific sequence. Of 104,343,413
primate-specific bases (excluding repetitive elements), 67,769,372
(65%) are found within ENCODE-identified elements. Examination
of 227,688 variants segregating in these primate-specific regions
revealed that all classes of elements (RNA and regulatory) show
depressed derived allele frequencies, consistent with recent negative
selection occurring in at least some of these regions (Fig. 1e). An alterna-
tive approach examining sequences that are not clearly under pan-
mammalian constraint showed a similar result (L. Ward and
M. Kellis, manuscript submitted). This indicates that an appreciable
proportion of the unconstrained elements are lineage-specific elements
required for organismal function, consistent with long-standing views
of recent evolution™, and the remainder are probably ‘neutral’ elements®
that are not currently under selection but may still affect cellular or
larger scale phenotypes without an effect on fitness.

DAF Motif position

are either long novel intronic (dark green) or long intergenic (light green)
RNAs. The horizontal cross hairs are colour-coded to the relevant data set in
d. ¢, Spread of transcription factor motif instances either in regions bound by
the transcription factor (orange points) or in the corresponding unbound motif
matches in grey, with bound and unbound points connected with an arrow in
each case showing that bound sites are generally more constrained and less
diverse. e, Derived allele frequency spectrum for primate-specific elements,
with variations outside ENCODE elements in black and variations covered by
ENCODE elements in red. The increase in low-frequency alleles compared to
background is indicative of negative selection occurring in the set of variants
annotated by the ENCODE data. f, Aggregation of mammalian constraint
scores over the glucocorticoid receptor (GR) transcription factor motif in
bound sites, showing the expected correlation with the information content of
bases in the motif. An interactive version of this figure is available in the online
version of the paper.

The binding patterns of transcription factors are not uniform, and
we can correlate both inter- and intra-species measures of negative
selection with the overall information content of motif positions. The
selection on some motif positions is as high as protein-coding exons
(Fig. 1f; L. Ward and M. Kellis, manuscript submitted). These
aggregate measures across motifs show that the binding preferences
found in the population of sites are also relevant to the per-site beha-
viour. By developing a per-site metric of population effect on bound
motifs, we found that highly constrained bound instances across
mammals are able to buffer the impact of individual variation®™.

ENCODE data integration with known genomic features
Promoter-anchored integration

Many of the ENCODE assays directly or indirectly provide informa-
tion about the action of promoters. Focusing on the TSSs of protein-
coding transcripts, we investigated the relationships between different
ENCODE assays, in particular testing the hypothesis that RNA
expression (output) can be effectively predicted from patterns of
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chromatin modification or transcription factor binding (input).
Consistent with previous reports™, we observe two relatively distinct
types of promoter: (1) broad, mainly (C+G)-rich, TATA-less promoters;
and (2) narrow, TATA-box-containing promoters. These promoters
have distinct patterns of histone modifications, and transcription-fac-
tor-binding sites are selectively enriched in each class (Supplementary
Fig. 1, section Z).

We developed predictive models to explore the interaction between
histone modifications and measures of transcription at promoters,
distinguishing between modifications known to be added as a con-
sequence of transcription (such as H3K36me3 and H3K79me2) and
other categories of histone marks™. In our analyses, the best models
had two components: an initial classification component (on/off) and a
second quantitative model component. Our models showed that
activating acetylation marks (H3K27ac and H3K9ac) are roughly
as informative as activating methylation marks (H3K4me3 and
H3K4me2) (Fig. 2a). Although repressive marks, such as H3K27me3

a CAGE poly(A)* K562 whole cell

or H3K9me3, show negative correlation both individually and in the
model, removing these marks produces only a small reduction in
model performance. However, for a subset of promoters in each cell
line, repressive histone marks (H3K27me3 or H3K9me3) must be used
to predict their expression accurately. We also examined the interplay
between the H3K79me2 and H3K36me3 marks, both of which mark
gene bodies, probably reflecting recruitment of modification enzymes
by polymerase isoforms. As described previously, H3K79me2 occurs
preferentially at the 5" ends of gene bodies and H3K36me3 occurs
more 3, and our analyses support the previous model in which the
H3K79me2 to H3K36me3 transition occurs at the first 3" splice site®.

Few previous studies have attempted to build qualitative or quant-
itative models of transcription genome-wide from transcription
factor levels because of the paucity of documented transcription-
factor-binding regions and the lack of coordination around a single
cell line. We thus examined the predictive capacity of transcription-
factor-binding signals for the expression levels of promoters (Fig. 2b).
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Figure 2 | Modelling transcription levels from histone modification and
transcription-factor-binding patterns. a, b, Correlative models between
cither histone modifications or transcription factors, respectively, and RNA
production as measured by CAGE tag density at TSSs in K562 cells. In each case
the scatter plot shows the output of the correlation models (x axis) compared to
observed values (y axis). The bar graphs show the most important histone
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modifications (a) or transcription factors (b) in both the initial classification
phase (top bar graph) or the quantitative regression phase (bottom bar graph),
with larger values indicating increasing importance of the variable in the model.
Further analysis of other cell lines and RNA measurement types is reported
elsewhere™ ™. AUC, area under curve; Gini, Gini coefficient; RMSE, root mean
square error.
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In contrast to the profiles of histone modifications, most transcription
factors show enriched binding signals in a narrow DNA region near
the TSS, with relatively higher binding signals in promoters with
higher CpG content. Most of this correlation could be recapitulated
by looking at the aggregate binding of transcription factors without
specific transcription factor terms. Together, these correlation models
indicate both that a limited set of chromatin marks are sufficient to
‘explain’ transcription and that a variety of transcription factors might
have broad roles in general transcription levels across many genes. It is
important to note that this is an inherently observational study of
correlation patterns, and is consistent with a variety of mechanistic
models with different causal links between the chromatin, transcrip-
tion factor and RNA assays. However, it does indicate that there is
enough information present at the promoter regions of genes to
explain most of the varjation in RNA expression.

We developed predictive models similar to those used to model
transcriptional activity to explore the relationship between levels of
histone meodification and inclusion of exons in alternately spliced
transcripts. Even accounting for expression level, H3K36me3 has a
positive contribution to exon inclusion, whereas H3K79me2 has a
negative contribution (H. Tilgner et al, manuscript in preparation).
By monitering the RNA populations in the subcellular fractions of
K562 cells, we found that essentially all splicing is co-transcriptional®’,
further supporting a link between chromatin structure and splicing.

Transcription-factor-binding site-anchored integration
Transcription-factor-binding sites provide a natural focus around
which to explore chromatin properties. Transcription factors are often
multifunctional and can bind a variety of genomic loci with different
combinations and patterns of chromatin marks and nucleosome organ-
ization. Hence, rather than averaging chiromatin mark profiles across all
binding sites of a transcription factor, we developed a clustering pro-
cedure, termed the Clustered Aggregation Tool (CAGT), to identify
subsets of binding sites sharing similar but distinct patterns of chro-
matin mark signal magnitude, shape and hidden directionality*. For
example, the average profile of the repressive histone mark H3K27me3
over all 55,782 CTCF-binding sites in H1 hESCs shows poer signal
enrichment (Fig. 3a). However, after grouping profiles by signal
magnitude we found a subset of 9,840 (17.6%) CTCF-binding sites
that exhibit significant flanking H3K27me3 signal. Shape and orienta-
tion analysis further revealed that the predominant signal profile for
H3K27me3 around CTCF peak summits is asymmetric, consistent
with a boundary role for some CTCF sites between active and
peolycomb-silenced domains. Further examples are provided in
Supplementary Figs 5 and 6 of section E. For TAFL, predominantly
found near TSSs, the asymmetric sites are orientated with the direction
of transcription. However, for distal sites, such as those bound by
GATAI1 and CTCF, we also observed a high proportion of asymmetric
histone patterns, although independent of motif directionality. In fact,
all transcription-factor-binding data sets in all cell lines show
predominantly asymmetric patterns (asymmetry ratio >>0.6) for all
chromatin marks but not for DNase I signal (Fig 3b). This indicates
that most transcription-factor-bound chromatin events correlate with
structured, directional patterns of histone modifications, and that pro-
moter directionality is not the enly source of orientation at these sites.
Wealso examined nucleosome occupancy relative to the symmetry
properties of chromatin marks around transcription-factor-binding
sites. Around TSSs, there is usually strong asymmetric nucleoseme
occupancy, often accounting for most of the histone modification
signal (for instance, see Supplementary Fig. 4, section E). However,
away from TSSs, there is far less concordance. For example, CTCE-
bindingsites typically show arrays of well-positioned nucleosomes on
either side of the peak summit (Supplementary Fig. 1, section E)**
‘Where the flanking chromatin mark signal is high, the signals are
often asymmetric, indicating differential marking with histone
modifications (Supplementary Figs 2 and 3, section E). Thus, we
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Figure 3 | Patterns and asymmetry of chromatin modification at
transcription-factor-binding sites. a, Results of clustered aggregation of
H3K27me3 modification signal around CTCE-binding sites (a multifunctional
protein involved with chromatin structure). The first three plots (left column)
show the signal behaviour of the histone modification over all sites (top) and
then split into the high and low signal components. The solid lines show the
mean signal distribution by relative position with the blue shaded area
delimiting the tenth and ninetieth percentile range. The high signal component
is then decomposed further into six different shape classes on the right (see ref.
30 for details). The shape decompasition process is strand aware. b, Summary
of shape asymmetry for DNase I, nucleosome and histone modification signals
by plotting an asymmetry ratio for each signal over all transcription-factor-
binding sites. All histone medifications measured in this study show
predominantly asymmetric patterns at transcription-factor-binding sites. An
interactive version of this figure is available in the online version of the paper.

confirm on a genome-wide scale that transcription factors can form
barriers around which nucleosomes and histone modifications are
arranged in a variety of configurations®®~*. This is explored in further
detail in refs 25, 26 and 30.

Transcription factor co-associations

Transcription-factor-binding regions are nonrandomly distributed
across the genome, with respect to both other features (for example,
promoters) and other transcription-factor-binding regions. Within the
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Figure 4 | Co-association between transcription factors. a, Significant co-
assodations of transcription factor pairs using the GSC statistic across the entire
genome in K562 cells. The colour strength represents the extent of association
(from red (strongest), crange, to yellow (weakest)), whereas the depth of colour
represents the fit to the GSC** model (where white indicates that the statistical
model is not appropriate) as indicated by the key. Most transcription factors have
anenrandom asseciation to other transcription factors, and these associations are
dependent on the genomic context, meaning that once the genome is separated
into promoter proximal and distal regions, the overall levels of co-assaciation

tier 1 and 2 cell lines, we found 3,307 pairs of statistically co-associated

factors (P <1 ¥ 10~ %, GSC) involving 114 outofa possible 117 factors
(97%) (Fig 4a). These include expected associations, such as Jun and

Table 3 | Summary of the combined state types

-2

| | DNVt

Intergenic regions  Promotor proximal regions

A (K562) B (K562) {H1 hESC)

Confidence

Low
01020 20 40 5060 70 80 90 2100

Degree of co-association
(z-score)

decrease, but more specific relationships are uncovered. b, Three classes of
behaviour are shown. The first column shows a set of associations for which
strength is independent of location in promoter and distal regions, whereas the
second column shows a set of transcription facters that have stronger assaciations
in promoter-proximal regions. Both of these examples are from data in K562 cells
and are highlighted on the genome-wide co-association matrix (a) by the labelled
boxes A and B, respectively. The third column shows a set of transcription factors
that show stronger association in distal regions (in the H1 hESC line). An
interactive version of this figure is available in the online version of the paper.

Fos, and some less expected novel associations, such as TCF7L2 with
HNF4-o and FOXAZ2 (ref. 66; a full listing is given in Supplementary
Table 1, section F). When one considers promoter and intergenic

Label Description

Details* Caolour

CTCF CTCF-enriched element

Sites of CTCF signal lacking histone modifications, often asseociated with open chromatin. Many  Turguoise

probably have a function ininsulator assays, but because of the multifunctional nature of CTGF, we
are conservative in our description. Also enriched for the cohesin components RAD21 and SMC3;
CTCF is known to recruit the cohesin complex.

E Predicted enhancer

Regions of open chromatin associated with H3K4mel signal. Enriched for other enhancer-

Orange

associated marks, including transcription factors known to act at enhancers. In enhancer assays,
many of these {=50%) function as enhancers. A more conservative alternative would be cis-
regulatory regions. Enriched for sites for the proteins encoded by EP300, FOS, FOSL 1, GATAZ,
HDACS, JUNB, JUND, NFE2, SMARCA4, SMARCB1, SIRT6 and TALI genes in K562 cells. Have
nuclear and whole-cell RNA signal, particularly poly(A)— fraction.

PF Predicted premeoter flanking region

Regions that generally surround TSS segments (see below).
R Predicted repressed or low-activity region Thisisa merged state thatincludes H3K27me3 polycomb-enriched regions, along with regionsthat

Light red
Grey

are silent in terms of observed signal for the input assays to the segmentations (low or no signal).

They may have other signals (for example, RNA, not in the segmentation input data). Enriched for

sites for the proteins encoded by REST and some other factors (for example, proteins encoded by
BRF2, CEBPB, MAFK, TRIM28, ZNF274 and SETDB1 genes in K562 cells).

TSS  Predicted promoter region including TSS

Found close to or overlapping GENCODE TSS sites. High precision/recall for TSSs. Enriched for

Bright red

H3K4me3. Sites of open chromatin. Enriched for transcription factors known to actclose to promoters
and polymerases Pol Il and Pol lll. Short RNAs are most enriched in these segments.

T Predicted transcribed region

Overlap gene bodies with H3K36me3 transcriptional elongation signal. Enriched for phosphorylated Dark green

form of Pgl |l signal (elongating polymerass) and poly(A)* RNA, especially cytoplasmic.

WE Predicted weak enhancer or open
chromatin crs-regulatory element

Similar to the E state, but weaker signals and weaker enrichments.

Yellow

*Where specific enrichments or overlaps areidentified, these are derived from analysis in GM1 2878 and/or K562 cells where the data for comparison is richest The colours indicated are usedin Figs 5and 7 and in

display of these tracks from the ENCODE data hub.
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Figure 5 | Integration of ENCODE data by genome-wide segmentation.

a, [Mustrative region with the two segmentation methods (ChromHMM and
Segway) in a dense view and the combined segmentation expanded to show
each state in GM12878 cells, beneath a compressed view of the GENCODE
gene annotations. Note that at this level of zoom and genome browser
resolution, some segments appear to overlap although they do not.
Segmentation classes are named and coloured according to the scheme in
Table 3. Beneath the segmentations are shown each of the normalized signals
that were used as the input data for the segmentations. Open chromatin signals
from DNase-seq from the University of Washington greup (UUW DNase) or the
ENCODE open chromatin group (Openchrom DNase) and FAIRE assays are
shown in blue; signal from histone modification ChIP-seq in red; and
transcription factor ChIP-seq signal for Pol IT and CTCEF in green. The mauve

w
a

CTCF o'
85

ChIP-seq contrel signal (input contrel) at the bottom was alse included as an
input to the segmentation. b, Association of selected transcription factor (left)
and RNA (right) elements in the combined segmentation states (x axis)
expressed as an observed/expected ratio (obs./exp.) for each combination of
transcription factor or RNA element and segmentation class using the heat-
map scale shown in the key besides each heat map. ¢, Variability of states
between cell lines, showing the distribution of occurrences of the state in the six
cell lines at specific genome locations: from unique to one cell line to ubiquitous
in all six cell lines for five states (CTCF, E, T, TSS and R). d, Distribution of
methylation level at individual sites frem RRBS analysis in GM12878 cells
across the different states, showing the expected hypomethylation at TSSs and
hypermethylation of genes bodies (T state) and repressed (R} regions.
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regions separately, this changes to 3,201 pairs (116 factors, 99%) for
promoters and 1,564 pairs (108 factors, 92%) for intergenic regions,
with some associations more specific to these genomic contexts (for
example, the cluster of HDAC2, GABPA, CHD2, GTF2F1, MXI1 and
MYC in promoter regions and SP1, EP300, HDAC2 and NANOG in
intergenic regions (Fig. 4b)). These general and context-dependent
associations lead to a network representation of the co-binding with
many interesting properties, explored in refs 19, 25 and 26. In addition,
we also identified a set of regions bound by multiple factors represent-
ing high occupancy of transcription factor (HOT) regions®”.

Genome-wide integration

To identify functional regions genome-wide, we next integrated ele-
ments independent of genomic landmarks using either discriminative
training methods, where a subset ofknown elements ofa particular class
were used to train a model that was then used to discover more instances
of this class, or using methods in which only data from ENCODE assays
were used without explicit knowledge of any annotation.

For discriminative training, we used a three-step process to predict
potential enhancers, described in Supplementary Information and
ref. 67. Two alternative discriminative models converged on a set of
~13,000 putative enhancers in K562 cells”. In the second approach,
two methodologically distinct unbiased approaches (see refs 40, 68
and M. M. Hoffman et al., manuscript in preparation) converged on a
concordant set of histone modification and chromatin-accessibility
patterns that can be used to segment the genome in each of the tier 1
and tier 2 cell lines, although the individual loci in each state in each
cell line are different. With the exception of RNA polymerase 11 and
CTCF, the addition of transcription factor data did not substantially
alter these patterns. At this stage, we deliberately excluded RNA and
methylation assays, reserving these data as a means to validate the
segmentations.

QOur integration of the two segmentation methods (M. M. Hoffman
et al., manuscript in preparation) established a consensus set of seven
major classes of genome states, described in Table 3. The standard
view of active promoters, with a distinct core promoter region (1SS
and PF states), leading to active gene bodies (T, transcribed state), is
rediscovered in this model (Fig. 5a, b). There are three “active’ distal
states. We tentatively labelled two as enhancers (predicted enhancers,
E, and predicted weak enhancers, WE) due to their occurrence in
regions of open chromatin with high H3K4mel, although they differ
in the levels of marks such as H3K27ac, currently thought to
distinguish active from inactive enhancers. The other active state
(CTCEF) has high CTCF binding and includes sequences that function
asinsulators in a transfection assay. The remaining repressed state (R)
summarizes sequences split between different classes of actively
repressed or inactive, quiescent chromatin. We found that the
CTCF-binding-associated state is relatively invariant across cell types,
with individual regions frequently occupying the CTCF state across all
six cell types (Fig. 5¢). Conversely, the E and T states have substantial
cell-specific behaviour, whereas the TSS state has a bimodal behaviour
with similar numbers of cell-invariant and cell-specific occurrences.
It is important to note that the consensus summary classes do not
capture all the detail discovered in the individual segmentations con-
taining more states.

The distribution of RNA species across segments is quite distinct,
indicating that underlying biological activities are captured in the
segmentation. Polyadenylated RNA is heavily enriched in gene
bodies. Around promoters, there are short RNA species previously
identified as promoter-associated short RNAs (Fig. 5b)'**. Similarly,
DNA methylation shows marked distinctions between segments,
recapitulating the known biology of predominantly unmethylated
active promoters (TSS states) followed by methylated gene bodies™
(T state, Fig. 5d). The two enhancer-enriched states show distinct
patterns of DNA methylation, with the less active enhancer state
(by H3K27ac/H3K4mel levels) showing higher methylation. These
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states also have an excess of RNA elements without poly(A) tails and
methyl-cap RNA, as assayed by CAGE sequences, compared to
matched intergenic controls, indicating a specific transcriptional
mode associated with active enhancers™. Transcription factors also
showed distinct distributions across the segments (Fig. 5b). A striking
pattern is the concentration of transcription factors in the TSS-
associated state. The enhancers contain a different set of transcription
factors. For example, in K562 cells, the E state is enriched for binding
by the proteins encoded by the EP300, FOS, FOSLI, GATA2, HDACS,
JUNB, JUND, NFE2, SMARCA4, SMARCBI, SIRT6 and TALI genes.
‘We tested a subset of these predicted enhancers in both mouse and
fish transgenic models (examples in Fig. 6), with over half of the
elements showing activity, often in the corresponding tissue type.

The segmentation provides a linear determination of functional
state across the genome, but not an association of particular distal
regions with genes. By using the variation of DNase I signal across cell
lines, 39% of E (enhancer associated) states could be linked to a
proposed regulated gene® concordant with physical proximity
patterns determined by 5C*” or ChIA-PET.

To provide a fine-grained regional classification, we turned to a self
organizing map (SOM) to cluster genome segmentation regions based
on their assay signal characteristics (Fig. 7). The segmentation regions
were initially randomly assigned to a 1,350-state map in a two-
dimensional toroidal space (Fig. 7a). This map can be visualized as
a two-dimensional rectangular plane onto which the various signal
distributions can be plotted. For instance, the rectangle at the bottom
left of Fig. 7a shows the distribution of the genome in the initial
randomized map. The SOM was then trained using the twelve differ-
ent ChIP-seq and DNase-seq assays in the six cell types previously
analysed in the large-scale segmentations (that is, over 72-dimensional
space). After training, the SOM clustering was again visualized in two
dimensions, now showing the organized distribution of genome seg-
ments (lower right of panel, Fig. 7a). Individual data sets associated
with the genome segments in each SOM map unit (hexagonal cells)
can then be visualized in the same framework to learn how each
additional kind of data is distributed on the chromatin state map.
Figure 7b shows CAGE/TSS expression data overlaid on the randomly
initialized (left) and trained map (right) panels. In this way the trained
SOM highlighted cell-type-specific TSS clusters (bottom panels of
Fig. 7b), indicating that there are sets of tissue-specific 'TSSs that are
distinguished from each other by subtle combinations of ENCODE

Figure 6 | Experimental characterization of segmentations. Randomly
sampled T state segments (see Table 3) from the K562 segmentation were
cloned for mouse- and fish-based transgenic enhancer assays. a, Representative
LacZ-stained transgenic embryonic day (E)11.5 mouse embryo obtained with
construct hs2065 (EN167, chrl0: 46052882-46055670, GRCh37). Highly
reproducible staining in the blood vessels was observed in 9 out of 9 embryos
resulting from independent transgenic integration events. b, Representative
green fluorescent protein reporter transgenic medaka fish obtained from a
construct with a basal hisp70 promoter on meganuclease-based transfection.
Reproducible transgenic expression in the circulating nucleated blood cells and
the endothelial cell walls was seen in 81 out of 100 transgenic tests of this
construct.
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Figure 7 | High-resolution segmentation of
ENCODE data by self-organizing maps (SOM).
a—¢, The training of the SOM (a) and analysis of the
results (b, ¢) are shown. Initially wearbitrarily placed
genomic segments from the ChromHMM
segmentation on to the toroidal map surface,
although the SOM does not use the ChromHMM
state assignments (a). We then trained the map
using the signal of the 12 different ChIP-seq and
DNase-seq assays in the six cell types analysed. Each
unit of the SOM is represented here by a hexagonal
cellin a planar two-dimensional view of the toroidal
map. Curved arrows indicate that traversing the
edges of two dimensional view leads back to the
opposite edge. The resulting map can be overlaid
with any class of ENCODE or other data to view the
distribution of that data within this high-resolution
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chromatin data. Many of the ultra-fine-grained state classifications
revealed in the SOM are associated with specific gene ontology (GO)
terms (right panel of Fig. 7c). For instance, the left panel of Fig. 7¢
identifies ten SOM map units enriched with genomic regions
associated with genes associated with the GO term ‘immune response’.
The central panel identifies a different set of map units enriched for the
GO term ‘sequence-specific transcription factor activity’. The two
map units most enriched for this GO term, indicated by the darkest
green colouring, contain genes with segments that are high in

hESCs and HUVECS; for IRX6, representative of a
set of body patterning transcription factors
associated with SOM unit 27,30, the repressive mark
is restricted largely to the embryonic stem (ES) cell.
Aninteractive version of this figure is available in the
online version of the paper.

H3K27me3 in H1 hESCs, but that differ in H3K27me3 levels in
HUVECs. Gene function analysis with the GO ontology tool
(GREAT™) reveals that the map unit with high H3K27me3 levels in
both cell types is enriched in transcription factor genes with known
neuronal functions, whereas the neighbouring map unit is enriched in
genes involved in body patterning. The genome browser shots at the
bottom of Fig. 7¢ pick out an example region for each of the two SOM
map units illustrating the ditference in H3K27me3 signal. Overall, we
have 228 distinct GO terms associated with specific segments across
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one or more states (A. Mortazavi, personal communication), and can
assign over ene-third of genes toa GO annotation solely on the basis of
its multicellular histone patterns. Thus, the SOM analysis provides a
fine-grained map of chromatin data across multiple cell types, which
can then be used to relate chromatin structure to other data types at
differing levels of resolution (for instance, the large cluster of units
containing any active TSS, its subclusters composed of units enriched
in TSSs active in only ene cell type, or individual map units signifi-
cantly enriched for specific GO terms).

The classifications presented here are necessarily limited by the
assays and cell lines studied, and probably contain a number of
heterogeneous classes of elements. Nonetheless, robust classifications
can be made, allowing a systematic view of the human genome.

Insights into human genomic variation
We next explored the potential impact of sequence varjation on
ENCODE functional elements. We examined allele-specific varjation
using results from the GM12878 cells that are derived from an indi-
vidual (NA12878) sequenced in the 1000 Genomes project, along with
her parents. Because ENCODE assays are predominantly sequence-
based, the trio design allows each GM12878 data set te be divided by
the specific parental contributions at heterozygous sites, producing
aggregate haplotypic signals from multiple genomic sites. We
examined 193 ENCODE assays for allele-specific biases using
1,409,992 phased, heterozygous SNPs and 167,096 insertions/dele-
tions (indels) (Fig. 8). Alignment biases towards alleles present in
the reference genome sequence were avoided using a sequence
specifically tailored to the variants and haplotypes present in
NA12878 (a ‘personalized genome’)’”. We found instances of pref-
erential binding towards each parental allele. For example, com-
parison of the results from the POLR2A, H3K79me2 and H3K27me3
assays in the region of NACC2 (Fig. 8a) shows a strong paternal bias for
H3K79me2 and POL2RA and a strong maternal bias for H3K27me3,
indicating differential activity for the maternal and paternal alleles.
Figure 8b shows the correlation of selected allele-specific signals
across the whole genome. For instance, we found a strong allelic
correlation between POL2RA and BCLAF1 binding, as well as nega-
tive correlation between H3K79me2 and H3K27me3, both at genes
(Fig. 8b, below the diagonal, bottom left) and chromosomal segments
(top right). Overall, we found that positive allelic correlations among
the 193 ENCODE assays are stronger and more frequent than nega-
tive correlations. This may be due to preferential capture of accessible
alleles and/or the specific histone modification and transcription
facter, assays used in the project.

Rare variants, individual genomes and somatic variants
We further investigated the potential functional effects of individual
variation in the context of ENCODE annotations. We divided
NA12878 variants into common and rare classes, and partitioned
these into those overlapping ENCODE annotation (Fig. 9a and
Supplementary Tables 1 and 2, section K). We also predicted potential
functional effects: for protein-coding genes, these are either non-
synonymous SNPs or variants likely to induce loss of function by
frame-shift, premature stop, or splice-site disruption; for other
regions, these are variants that overlap a transcription-factor-
binding site. We found similar numbers of potentially functional
variants affecting protein-coding genes or affecting other ENCODE
annotations, indicating that many functional variants within
individual genomes lie outside exons of protein-coding genes. A more
detailed analysis of regulatory variant annotation is described in
ref. 73.

To study further the potential effects of NA12878 genome variants
on transcription-factor-binding regions, we performed peak calling
using a constructed personal diploid genome sequence for NA12878
(ref. 72). We aligned ChIP-seq sequences from GM12878 separately
against the maternal and paternal haplotypes. As expected, a greater
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Figure 8 | Allele-specific ENCODE elements. a, Representative allele-specific
information from GM12878 cells for selected assays around the first exon of the
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Transcription signal is shown in green, and the three sections show allele-
specific data for three data sets (PFOLR2A, H3K79me2 and H3K27me3 ChIP-
seq). In each case the purple signal is the processed signal for all sequence reads
for the assay, whereas the blue and red signals show sequence reads specifically
assigned to either the paternal or maternal copies of the gencme, respectively.
The set of commeon SNPs from dbSNP, including the phased, heterczygous
SNPs used to provide the assignment, are shown at the bottom of the panel.
NACC2 has a statistically significant paternal bias for POLR2A and the
transcripticn-associated mark H3K79me2, and has a significant maternal bias
for the repressive mark H3K27me3. b, Pair-wise correlations of allele-specific
signal within single genes (below the diagonal) or within individual
ChromHMM segments across the whole genome for selected DNase-seq and
histone modification and transcription factor ChIP-seq assays. The extent of
correlation is coloured according to the heat-map scale indicated from positive
correlation (red) through to anti-correlation (blue). An interactive version of
this figure is available in the online version of the paper.

fraction of reads were aligned than to the reference genome (see
Supplementary Information, Supplementary Fig. 1, section K). On
average, approximately 1% of transcription-factor-binding sites in
GM12878 cells are detected in a haplotype-specific fashion. For
instance, Fig. 9b shows a CTCF-binding site not detected using the
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Figure ¢ | Examining ENCODE elements on a per individual basis in the
normal and cancer genome. a, Breakdown of variants in a single genome
(NA12878) by both frequency (common or rare (that is, variants not present in
the low-coverage sequencing of 179 individuals in the pilot 1 European panel of
the 1000 Genomes project™)) and by ENCODE annotation, including protein-
coding gene and non-coding elements (GENCODE annctations for protein-
coding genes, pseudogenes and other ncRNAs, as well as transcription-factor-
binding sites from ChIP-seq data sets, excluding broad annotations such as
histone modifications, segmentations and RNA-seq}. Annotation status is
further subdivided by predicted functional effect, being non-synenymeus and
missense mutations for protein-coding regions and variants overlapping bound

reference sequence that is only present on the paternal haplotype
due to a 1-bp deletion (see also Supplementary Fig 2, section K).
As costs of DNA sequencing decrease further, optimized analysis of
ENCODE-type data should use the genome sequence of the indi-
vidual or cell being analysed when possible.

Most analyses of cancer genomes so far have focused on character-
jzing somatic variants in protein-coding regions. We intersected four
available whole-genome cancer data sets with ENCODE annotations
(Fig. 9c and Supplementary Fig. 2, section L). Overall, somatic variation
is relatively depleted from ENCODE annotated regions, particularly for
elements specific to a cell type matching the putative tumour source (for
example, skin melanocytes for melanoma). Examining the mutational
spectrum of elements In introns for cases where a strand-specific
mutation assignment could be made reveals that there are mutational
spectrum differences between DHSs and unannotated regions (0.06
Fisher’s exact test, Supplementary Fig. 3, section L). The suppression
of somatic mutation is consistent with important functional roles of
these elements within tumour cells, highlighting a potential alternative
set of targets for examination in cancer.

Common variants associated with disease

In recent years, GWAS have greatly extended our knowledge of
geneticloci associated with human disease risk and other phenotypes.

transcription factor motifs for non-coding element annotations. A substantial
proportion of variants are annotated as having predicted functional effects in
the non-coding category. b, One of several relatively rare occurrences, where
alignment to an individual genome sequence (paternal and maternal panels)
shows a different readout from the reference genome. In this case, a paternal-
haplotype-specific CTCE peak is identified. ¢, Relative level of somatic variants
from a whole-genome melanoma sample that occur in DHSs unique to
different cell lines. The coloured bars show cases that are significantly enriched
or suppressed in somatic mutations. Details of ENCODE cell types can be
found at http://encodeproject.org/ENCODE/cell Types html. An interactive
versicn of this figure is available in the enline version of the paper.

The output of these studies is a series of SNPs (GWAS SNPs) corre-
lated with a phenotype, although not necessarily the functional
variants. Notably, 88% of associated SNPs are either intrenic or
intergenic’®. We examined 4,860 SNP-phenotype associations for
4,492 SNPs curated in the National Human Genome Research
Institute (NHGRI) GWAS catalogue™. We found that 12% of these
SNPs overlap transcription-factor-occupied regions whereas 34% over-
lap DHSs (Fig. 10a). Both figures reflect significant enrichments relative
to the overall proportions of 1000 Genomes project SNPs (about 6% and
23%, respectively). Even after accounting for biases introduced by selec-
tion of SNPs for the standard genotyping arrays, GWAS SNPs show
consistently higher overlap with ENCODE annotations (Fig. 10a, see
Supplementary Information). Furthermore, after partitioning the
genome by density of different classes of functional elements, GWAS
SNPs were consistently enriched beyond all the genotyping SNPs in
function-rich partitions, and depleted in function-poor partitions (see
Supplementary Fig 1, section M). GWAS SNPs are particularly
enriched in the segmentation classes associated with enhancers and
TSSs across several cell types (see Supplementary Fig. 2, section M).
Examining the SOM of integrated ENCODE annotations (see
above), we found 19 SOM map units showing significant enrichment
for GWAS SNPs, including many SOM units previously associated
with specific gene functions, such as the immune response regions.
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Thus, an appreciable proportion of SNPs identified in initial GWAS
scans are either functional or lie within the length of an ENCODE
annotation (~500 bp on average) and represent plausible candidates
for the functional variant. Expanding the set of feasible functional
SNPs to those in reasonable linkage disequilibrium, up to 71% of
GWAS SNPs have a potential causative SNP overlapping a DNase [
site, and 31% of loci have a candidate SNP that overlaps a binding site
occupied by a transcription factor (see also refs 73, 75).

The GWAS catalogue provides a rich functional categorization
from the precise phenotypes being studied. These phenotypic cate-
gorizations are nontandomly associated with ENCODE annotations
and there is marked correspondence between the phenotype and the
identity of the cell type or transcription factor used in the ENCODE
assay (Fig. 10b). For example, five SNPs associated with Crohn’s
disease overlap GATA2-binding sites (P value 0.003 by random
permutation or 0.001 by an empirical approach comparing to
the GWAS-matched SNPs; see Supplementary Information), and
fourteen are located in DHSs found in immunelogically relevant cell

types. A notable example is a gene desert on chromosome 5pl3.1
containing eight SNPs associated with inflammatory diseases.
Several are dose to or within DHSs in T-helper type 1 (Tyl) and
Tg2 cells as well as peaks of binding by transcription factors in
HUVEGs (Fig. 10c). The latter cell line is not immunological, but
factor occupancy detected there could be a proxy for binding of a
more relevant factor, such as GATA3, in T cells. Genetic variants in
this region also affect expression levels of PTGER4 (ref 76), encoding
the prostaglandin receptor EP4. Thus, the ENCODE data reinforce
the hypothesis that genetic variants in 5p13.1 modulate the expression
of flanking genes, and furthermore provide the specific hypothesis
that the variants affect occupancy of a GATA factor in an allele-
specific manner, thereby influencing susceptibility to Crohn’s disease.

Nonrandom association of phenotypes with ENCODE cell types
strengthens the argument that at least some of the GWAS lead SNPs
are functional or extremely close to functional variants. Each of the
associations between a lead SNP and an ENCODE annotation
remains a credible hypothesis of a particular functional element
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Figure 10 | Comparison of genome-wide-association-study-identified loci
with ENCODE data. a, Overlap of lead SNPs in the NHGRI GWAS SNP
catalogue (June 2011) with DHSs (left) or transcription-factor-binding sites
(right) as red bars compared with various control SNP sets in blue. The control
SNP sets are (from left to right): SNPs on the [llumina 2. 5M chip as an example
of a widely used GWAS SNP typing panel; SNPs from the 1000 Genomes
project; SNPs extracted from 24 personal genomes (see persenal genome
variants track at http://main genome-browser bx psu.edu (ref. 80)}, all shown
as blue bars. In addition, a further control used 1,000 randomizations from the
genotyping SNP panel, matching the SNPs with each NHGRI catalogue SNP
for allele frequency and distance to the nearest TSS (light blue bars with bounds
at 1.5 times the interquartile range). For both DHSs and transcription-factor-
binding regions, a larger proportion of overlaps with GWAS-implicated SNPs
is found compared to any of the controls sets. b, Aggregate overlap of
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phenotypes to selected transcription-factor-binding sites (left matrix) or DHSs
in selected cell lines (right matrix), with a count of overlaps between the
phenatype and the cell line/factor. Values in blue squares pass an empirical
P-value threshold =0.01 (based on the same analysis of overlaps between
randomly chosen, GWAS-matched SNPs and these epigenetic features) and
have at least a count of three overlaps. The P value for the total number of
phenotype—transcription factor associations is <0.001. ¢, Several SNPs
associated with Crohn’s disease and other inflammatory diseases that reside ina
large gene desert on chromosome 5, along with some epigenetic features
indicative of function. The SNP (rs11742570) strongly associated to Crohn’s
disease overlaps a GATA2 transcription-factor-binding signal determined in
HUVECs. This region is also DNase [ hypersensitive in HUVECs and T-helper
Tzl and T2 cells. An interactive version of this figure is available in the online
version of the paper.
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class or cell type to explore with future experiments. Supplementary
Tables 1-3, section M, list all 14,885 pairwise associations across the
ENCODE annotations. The accompanying papers have a more
detailed examination of common variants with other regulatory
informationl9,25,29)73,75,77‘

Concluding remarks

The unprecedented number of functional elements identified in this
study provides a valuable resource to the scientific community as well
as significantly enhances our understanding of the human genome.
Our analyses have revealed many novel aspects of gene expression and
regulation as well as the organization of such information, as illu-
strated by the accompanying papers (see http://www.encodeproject.
org/ENCODE/pubs html for collected ENCODE publications).
However, there are still many specific details, particularly about the
mechanistic processes that generate these elements and how and
where they function, that require additional experiments to elucidate.

The large spread of coverage—from our highest resolution, most
conservative set of bases implicated in GENCODE protein-coding
gene exons (2.9%) or specific protein DNA binding (8.5%) to the
broadest, most general set of marks covering the genome (approxi-
mately 80%), with many gradations in between—presents a spectrum
of elements with different functional properties discovered by
ENCODE. A total of 99% of the known bases in the genome are within
1.7 kb ofany ENCODE element, whereas 95% of bases are within 8 kb
of a bound transcription factor motif or DNase [ footprint.
Interestingly, even using the most conservative estimates, the fraction
of bases likely to be involved in direct gene regulation, even though
incomplete, is significantly higher than that ascribed to protein-
coding exons (1.2%), raising the possibility that more information
in the human genome may be important for gene regulation than
for biochemical function. Many of the regulatory elements are not
constrained across mammalian evolution, which so far has been one
of the most reliable indications of an important biochemical event
for the organism. Thus, our data provide orthologous indicators for
suggesting possible functional elements.

Importantly, for the first time we have sufficient statistical power to
assess the impact of negative selection on primate-specific elements,
and all ENCODE classes display evidence of negative selection in these
unique-to-primate elements. Furthermore, even with our most conser-
vative estimate of functional elements (8.5% of putative DNA/protein
binding regions) and assuming that we have already sampled half of the
elements from our transcription factor and cell-type diversity, one
would estimate that at a minimum 20% (17% from protein binding
and 2.9% protein coding gene exons) of the genome participates inthese
specific functions, with the likely figure significantly higher.

The broad coverage of ENCODE annotations enhances our under-
standing of common diseases with a genetic component, rare genetic
diseases, and cancer, as shown by our ability to link otherwise
anonymous associations to a functional element. ENCODE and
similar studies provide a first step towards interpreting the rest of
the genome—beyond protein-coding genes—thereby augmenting
common disease genetic studies with testable hypotheses. Such
information justifies performing whole-genome sequencing (rather
than exome only, 1.2% of the genome) on rare diseases and investi-
gating somatic varfants in non-coding functional elements, for
instance, in cancer. Furthermore, as GWAS analyses typically asso-
ciate disease to SNPs in large regions, comparison to ENCODE non-
coding functional elements can help pinpoint putative causal variants
in addition to refinement of location by fine-mapping techniques™.
Combining ENCODE data with allele-specific information derived
from individual genome sequences provides specific insight on the
impact of a genetic variant. Indeed, we believe that a significant goal
would be to use functional data such as that derived from this project
to assign every genomic variant to its possible impact on human

phenotypes.

So far, ENCODE has sampled 119 of 1,800 known transcription fac-
tors and general components of the transcriptional machinery on a
limited number of cell types, and 13 of more than 60 currently known
histone or DN A modifications across 147 cell types. DNase [, FAIREand
extensive RNA assays across subcellular fractionations have been under-
taken on many cell types, but overall these data reflect a minor fraction of
the potential functional information encoded in the human genome. An
important future goal will be to enlarge this data set to additional factors,
muodifications and cell types, complementing the other related projects
in this area (for example, Roadmap Epigenomics Project, http://
www.roadmapepigenomics.org/, and International Human Epigenome
Consortium, http://www.ihec-epigenomes.org/). These projects will
constitute foundational resources for human genomics, allowing a
deeper interpretation of the organization of gene and regulatory
information and the mechanisms of regulation, and thereby provide
important insights into human health and disease. Co-published
ENCODE-related papers can be explored online via the Nafure
ENCODE explorer (http://www.nature.com/ENCODE), a specially
designed visualization tool that allows users to access the linked papers
and investigate topics that are discussed in multiple papers via them-
atically organized threads.

METHODS SUMMARY
For full details of Methods, see Supplementary Information.
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