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ABSTRACT 

Few transcription factors (TFs) have been studied in the context of an integrative analysis 

incorporating genomic datasets from diverse genome regulatory mechanisms. Such an analysis 

allows the testing of specific regulatory associations in an unbiased and comprehensive manner. 

The promoter binding TF complex NF-Y regulates a diverse set of constitutive, inducible, 

developmental, oncogenic and tissue-specific genes. Using cancer models, ChIP-Seq, shRNA, 

and genomics, I have undertaken a genome-wide study of NF-Y. NF-Y binds to not only 

promoters but also extensively to enhancers, select classes of repetitive elements, inactive 

chromatin domains and insulators. NF-Y is a “pioneer”-like factor able to access its motif within 

closed, transcriptionally inactive chromatin domains. NF-Y pervasively associates with FOS, 

usually in the absence of JUN and the AP-1 motif, and with a group of growth controlling 

oncogenic TFs. I also show that NF-Y asymmetrically binds to its motif and stereo-aligns with 

specific TFs and their motifs. My results indicate that NF-Y is not merely a commonly-used, 

proximal promoter TF, but rather functions at a more diverse set of genomic elements. 

 The dynamics of TF occupancy, cis-regulatory element (CRE) usage and their linkage to 

gene expression during a differentiation process, from a genome-wide perspective, is poorly 

understood and is critical to the understanding of fundamental aspects of development and 

disease. I utilize a model of inflammation-mediated oncogenic transformation, siRNA, ChIP-
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Seq, FAIRE-Seq, and microarrays to study the genomic aspects of transformation driven by Src-

mediated activation of the inflammatory TF STAT3. I show that CRE usage is static, even in the 

presence of induced STAT3 activity, and large-scale transcriptional and phenotypic changes. 

STAT3 induced occupancy is tightly associated with FOS, pre-existing CREs, and does not 

create CREs de novo. I also highlight a putative role of TSC22D3 in inhibiting an epigenetic 

switch and in STAT3 and AP-1 factors driving the embryonic-like and bone-like phenotypes of 

breast cancer. The research presented here suggests that phenotypic alterations occurring during 

disease are not driven by large-scale perturbations of CRE usage. 

Overall, this dissertation provides an invaluable resource of genome-scale datasets within 

cancer models that will assist in future endeavors of scientific discovery.  
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CHAPTER 1: Introduction 

The NF-Y transcription factor complex 

General: NF-Y (Nuclear Factor Y, also known as CBF, CP1) is a highly conserved [1] 

heterotrimeric transcription factor (TF) complex originally identified in Homo sapiens [2] and 

yeast [3]. It is composed of: NFYA, NFYB and NFYC in H. sapiens; Hap2 [4], Hap3 [5], and 

Hap5 [6] in Saccharomyces cerevisiae. In S. cerevisiae there is an additional 4
th

 subunit, Hap4 

[7], that contains transactivation domains that have been incorporated into other NF-Y subunits 

in mammals. NFYB and NFYC form a stable heterodimer, via their histone fold domains (HFDs) 

(discussed below), to which NFYA binds with high specificity. The heterotrimeric complex is 

then fully capable of binding to its DNA sequence motif, the CCAAT box, which is a common 

eukaryotic promoter element. All three subunits are required for DNA binding in vitro [8] and in 

vivo, though there are limited exceptions (see below), and this has not been tested in an unbiased 

manner by genome-wide studies. All three subunits make contact with DNA [8], and the affinity 

for the CCAAT box is extremely high (Kd 10
-10

-10
-11

 [9, 10]). In general, NF-Y is considered a 

mild transactivator, on a level similar to other glutamine-rich (Q-rich) domain containing TFs 

(SP1, POU2F1 (OCT1), POU2F2 (OCT2)), but ~500 fold less than VP16, which contains an 

acidic activation domain [11]. 

 NF-Y is ubiquitously expressed, found in all human and murine tissues, cell lines and 

tumors assayed. There are a few exceptions, however. NFYA protein is not detectable by 

Western blot in myocytes [12, 13], heart muscle [12, 13] or circulating monocytes [14]. This 

regulation is not at the mRNA level, but rather happens post transcriptionally as NFYA mRNA is 

clearly present. Both myocytes and heart muscle are post-mitotic and terminally differentiated, 
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and, as such, are not actively dividing. NF-Y has a role in regulating many cell-cycle genes, and, 

on one level, it is not surprising that NFYA is not required in these non-cycling cells. However, 

NF-Y regulates many other critical cellular processes such as DNA repair, apoptosis and 

cholesterol metabolism. It is intriguing to postulate that NFYB and NFYC may bind DNA and 

regulate transcription in the absence of NFYA. 

The importance of NF-Y is underscored by the early embryonic lethality of an NFYA 

knockout mouse model [15] due to defects in cell proliferation and massive apoptosis, and a D. 

melanogaster knockout also shows early embryonic lethality [16]. In addition, functional 

inactivation of NF-Y subunits or the use of a dominant negative NFYA mutant, indicates that 

NF-Y-DNA binding is important for transcriptional activation and the pattern of histone 

modifications at promoters (reviewed by [17]). 

Structure of the NF-Y complex 

NFYA: The 3D structure of NFYA is unknown as the crystal structure has not yet been 

published. However structural modeling and biochemical experimentation has shed light on its 

structure and the function of specific domains. The N-terminal region of NFYA contains a large 

Q-rich domain, rich in hydrophobic residues, but lacking in charged residues. NFYC has a 

similar Q-rich domain at its C-terminus. As assayed by LexA and Gal4 fusion proteins, these Q-

rich domains serve as the transcriptional activation domains of NF-Y [11, 18-20]. In addition, 

NFYA has two small juxtaposed domains, which are highly conserved, in its C-terminus that 

mediate NFYB-NFYC dimer interaction and DNA binding [21]. While NFYB and NFYC are 

known to contact DNA, the sequence specific CCAAT recognition domain is contained within 

the C-terminus of NFYA [22-25]. 
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NFYB and NFYC: NFYB and NFYC were found to be related to the core histones, H2B and 

H2A, respectively, as they contain conserved HFDs [26, 27]. NFYB is 30% identical to H2B and 

NFYC is 21% identical to H2A, though similarity is a lot higher [26]. The NF-Y subunits are 

part of a small disparate family of non-histone HFD containing proteins in humans: e.g. NC2α 

and NC2β (for review see [28]); TAF3/-4/-6/-9/-10/-11/-12/-13 of the TFIID and SAGA 

complexes (for review see [29, 30]); and CHRAC16/-14, YEATS2 and POLE3 of the DNA 

Polymerase ε, ATAC and CHRAC complexes [31-33]. The sequence identity within the HFDs of 

histones (14-18%) [34] is comparable to that between the HFDs of NF-Y and histones (~15%) 

[26, 35] and key residues within it are well conserved. In general, DNA and protein sequence 

similarity is low, but secondary and tertiary structural similarity is exceptionally well conserved. 

In histones, the HFDs are responsible for both octameric protein–protein complex formation and 

non-sequence-specific protein-DNA interactions. They have a similar function within the NF-Y 

complex, as elucidated by many biochemical and mutagenic experiments over the years. The 

HFDs mediate both dimerization of NFYB and NFYC, and non-sequence-specific protein-DNA 

interactions [22-25]. The crystal structure of NFYB-NFYC has been solved, and confirmed the 

presence and role of HFDs mediating heterodimer formation, and, via modeling, the HFD-DNA 

interaction [25]. 

The CCAAT box 

NF-Y binds to the core pentanucleotide sequence CCAAT, commonly referred to as the CCAAT 

box. An estimated 30-60% of human proximal promoters contain CCAAT boxes [36-39], which 

is similar to the frequency of the TATA element (~35-70%), but less than the GC box (~95%), 

which is ubiquitous in mammalian promoters [36, 40]. The CCAAT box is found both in TATA-

containing and TATA-less promoters. As found by in silico studies [36-40], and confirmed by 
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limited genomic ChIP experiments [41, 42], the CCAAT box is highly positioned approximately 

80 bp upstream of the transcriptional start site (TSS), with the motif in either orientation, which 

is similar to the TATA element which observes a closer distribution (approximately -35 bp) to 

the TSS [40]. This biased distribution suggests that the location of NF-Y in relation to the TSS is 

important for the function of NF-Y, though this has not been specifically tested [43]. At 

promoters, specific distance and orientation requirements [43-45] between cooperating TFs [44-

49], adjacent NF-Y binding sites [50], and the TSS is required for optimal transcriptional 

activation by NF-Y. In essentially all promoters tested, mutation of the CCAAT box reduces or 

eliminates both constitutive and/or inducible transcriptional activity [51]. In this regard, NF-Y 

can be thought of as having an “architectural” role in positioning protein factors in the correct 

location at promoters in respect to the transcriptional machinery, though this has only been 

observed on single promoter studies with a limited number of motifs and TFs. It is not known if 

this architectural function of NF-Y translates genome-wide and if it occurs outside of core 

promoters within other genomic contexts. 

 Though mutation of any of the core pentanucleotides greatly reduces NF-Y binding to the 

CCAAT box and associated transcription [52-54], the specific flanking sequences are also 

important for NF-Y binding. Many in silico [36-40], in vivo foot-printing [10, 54], SELEX [10], 

and ChIP-chip [41, 42, 55] studies defining the CCAAT box have repeatedly found specific 

flanking sequences to be preferred, and mutation of these sequences affect NF-Y occupancy and 

transcription from the associated promoter [10, 43, 54]. Purines are favored at positions 3 and 4, 

pyrimidines predominate at 2, C/G at 10 and 12, and purines at 11 (Figure 1). In limited 

instances, NF-Y can associate with chromatin in the absence of a recognizable CCAAT box: 

mainly recruited by hormone receptors: estrogen receptor (only NFYA was present) [56]; and 
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mineralocorticoid receptor (only NFYC was present) [57]. The lack of unbiased genome-wide 

maps of NF-Y subunit binding sites hinders the study of the biology of NF-Y binding in the 

absence of the CCAAT box. 

How does NF-Y regulate transcription? 

Given that CCAAT boxes are found in 30-60% of human proximal promoters, including 

inducible, constitutive and cell-type specific promoters, it is not surprising that NF-Y has been 

documented interacting with a plethora of transcriptional regulators. Sequence specific DNA 

binding TFs, co-activators and co-repressors, and, given its close proximity to the TSS, many 

general RNA Pol II factors interact with NF-Y. Indeed, a recent review [17] listed 42 

transcriptional regulators that interact with at least one NF-Y subunit, and this count doesn’t 

include kinases (CDK2 [58]), splicing factors (e.g. SF1 and YBX1 [59]), structural molecules 

(ACTIN4 [60]) and polymerases (PAPOLG [59]). It is not known how extensive the association 

of NF-Y is with any one particular TF, let alone 10s of TFs and the complexes they form at NF-

Y bound sites. One exception is that of SP1 which has been documented in a promoter ChIP-chip 

study closely associating with NF-Y [61]. 

I will use the example of the MHC class II gene promoters, which have been extensively 

studied, to highlight a mode of transactivation by NF-Y, i.e. TF cooperativity mediated by 

conserved spacing between DNA motifs for the activation of transcription. 

Motif and TF cooperativity: NF-Y was originally discovered as a factor binding to the Y box 

motif (a CCAAT box), one of multiple conserved motifs common to all MHC class II gene 

promoters [2, 54] and controlling their expression. A second of these motifs, which partners 

intimately with the CCAAT box, is the X box. NF-Y binding to the CCAAT box cooperates 

synergistically with the TF RFX binding to the X box [46, 62, 63], to recruit the co-activator 
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CIITA [46, 64]. Mutation of the CCAAT box inhibits interaction of the X box with RFX, but the 

opposite is not true, suggesting that NF-Y is a prerequisite for RFX recruitment. There is a well 

conserved distance preference (19-20 bp) between the X and CCAAT boxes across multiple 

MHC class II promoters. Altering the distance between the motifs by half helical turns (~5 bp), 

but not by full helical turns, severely disrupts gene expression [44, 45, 47, 65]. Both NF-Y and 

RFX are required for the recruitment of CIITA, which in turn is required for the recruitment of 

the histone acetyltransferases (HATs) KAT3A (p300/CBP) and KAT2B (p300/PCAF) [66, 67]. 

BRG1, of the SWI/SNF chromatin remodeling complex, is also recruited by CIITA and is 

required for CIITA mediated expression of MHC class II genes. This was shown by the failure of 

exogenous CIITA to induce gene expression in cells lacking BRG1 (SMARCA4) [68, 69]. NF-

Y/RFX binding also facilitates the direct interaction of CIITA with the basal transcription factors 

TAF9, TAF6 and TFIIB [70, 71]. These orchestrated events ultimately lead to the induction of 

MHC class II gene expression in a time and cell-type specific manner that is absolutely 

dependent on NF-Y and the CCAAT box. 

Direct interaction with the basal transcriptional machinery: NF-Y and RNA Pol II basal 

factor interactions are important for promoter activation. CCAAT boxes and the TBP binding 

TATA and Initiator (Inr) motifs are common promoter elements, with biased and 

transcriptionally important spacing requirements, both with respect to the TSS and between each 

other. Thus, at most CCAAT box containing promoters, NF-Y, TBP and TBP-associating factors 

(TAFs) are located in close physical proximity. The experimental dissection of the MHC class II 

Eα promoter in mice showed that the CCAAT box was required for the correct use of the +1 TSS 

[72] and NF-Y binding increases the affinity of holo-TFIID to the promoter [73]. In vitro, studies 

have shown that NFYA is required for pre-initiation complex formation at the Eα promoter, but 
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not once it is formed, nor for the re-initiation of transcription [74]. Additionally, NF-Y binding to 

the CCAAT box in the γ-globin promoter is required for TBP-TFIIB recruitment in vivo [75]. 

The HFDs of NF-Y allow it to interact with the HFD containing subunits of the basal 

transcriptional machinery. Many of the TAFs contain HFDs [76, 77] which allow them to 

interact with NF-Y (TAF4/-11/-12/-13) [73] and other HFD containing TFs (e.g. NC2). NFYB 

and NFYC, but not NFYA, co-immuno-precipitate with TBP and TAF5 [35] in solution and the 

NFYB-NFYC-TBP interaction domains have been identified [35] and are the same as those that 

interact with NC2. The Q-rich transactivation domain of NFYA has also been shown to interact 

with TAF5 in vitro [78].  

Interaction with co-activators: NF-Y can also associate with co-activators (KAT2A (GCN5), 

KAT2B (P/CAF), EP300 (p300), SUB1 (PC4)) and co-repressors (HDAC1, PcG complex) 

which are functionally important for transcription from CCAAT box containing promoters. The 

histone acetylase complex KAT2B physically interacts with NF-Y in vitro and CCAAT box 

mutations and dominant negative NFYA constructs prevent induction of the MDR1 gene 

promoter by KAT2B overexpression [79]. NF-Y was also found in a complex composed of 

SP1/EP300/KAT2B/HDAC1, that induces the transcriptional activity of the TGFBR2 promoter 

upon trichostatin A treatment and is modulated by a mechanism where KAT2B (a histone 

acetylase that activates) or HDAC1 (a histone deacetylase than inhibits) predominate in the 

complex [80]. The HFDs of NFYB/NFYC dimer can stably associate with KAT2A in vitro and 

in vivo and overexpression of KAT2A potentiates NF-Y activation of the collagen, type I, α2 

(COL1A2) promoter [81]. 

Interactions with nucleosomes: NF-Y, either the HFD dimer or the trimer, have been shown 

to directly interact with chromatin in vitro and/or in vivo and that this function is important for 
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transcription. The NF-Y trimer can successfully bind to a CCAAT box containing promoter both 

during and after reconstitution of nucleosomal DNA using purified histones [82]. NF-Y forms 

higher-ordered NF-Y-nucleosome-DNA structures in vitro, in a CCAAT box dependent manner, 

importantly, with preformed nucleosomes and even in the presence of free naked non-

nucleosomal CCAAT box containing DNA fragments [82]. In a similar study using a more 

purified system of recombinant histones, the NFYB/NFYC HFD containing dimer, associates 

with H3-H4 tetramers in vitro both in the presence of DNA and in solutions free of DNA [83]. 

The same study also tracked down the H3-H4 interaction region to the HFD of NFYB. However, 

nucleosomal, octameric-like structures on DNA were not formed with clear differences in the 

DNase I, MNase and exonuclease III digestion patterns. The NF-Y-nucleosome interaction 

affects choice of TSS used in an in vitro transcription system [84], and in general, lack of NF-Y 

at the core promoter of CCAAT box regulated genes is associated with a closed nucleosomal 

structure in vivo [85, 86]. How NF-Y-CCAAT-nucleosome interactions behave outside of core 

promoters in vivo is incompletely understood. The association between CCAAT boxes, their 

occupancy by NF-Y, the degree of nucleosome depletion and the histone modifications present 

in the immediate vicinity has never been studied in vivo or in vitro. 

NF-Y and repression: NF-Y can also repress transcription, and the mechanisms are quite 

varied. A previous partial genomic study utilizing ChIP-chip, found NF-Y bound to the 

promoters of genes with the repressive H3K27me3 and H4K20me3 histone post translational 

modifications (PTMs) [42] which confirmed previous studies on single promoters showing a role 

of NF-Y in repression [87-92]. A report with Caenorhabditis elegans showed a role of NF-Y in 

maintaining the repression of the Hox gene egl-5 during development [93]. This repression was 

dependent on the CCAAT box in the egl-5 promoter and NF-Y directly interacted with the MES-
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2/MES-6 PcG repression complex, therefore implicating a direct role for NF-Y in repression. 

Another mechanism of NF-Y repression involves a multi-protein complex composed of NF-

Y/HMGA1/KLF9/SIN3A that forms on, deacetylates, and inhibits the GHR promoter [90]. In 

response to DNA damage, G(2)/M promoters are repressed by direct association of acetylated 

TP53 (p53) with NF-Y and the CCAAT box, resulting in the recruitment of HDAC1/4/5 and 

transcriptional repression [94]. A complete map of NF-Y binding sites in the human genome, the 

associated histone PTMs, and RNA expression level, would greatly increase our understanding 

of NF-Y’s repressive function. 

Probably the most interesting aspects of NF-Y repression are those that involve CCAAT-

less promoters. As mentioned earlier, there are reports of hormone receptor recruitment of NF-Y 

to CCAAT-less promoters and the induction of transcriptional repression. It was shown that the 

mineralocorticoid receptor recruits NFYC, but not NFYA or NFYB, to the ENaC promoter, as a 

cofactor, which prevents the N- and C-termini of mineralocorticoid receptor from interacting 

upon hormone binding which prevents activation of transcription [57]. ChIP-Seq for NFYC was 

not undertaken in this dissertation due to the poor performance of the antibody. Another study 

[56] showed that NFYA mutants, devoid of DNA binding or trimer formation ability, can inhibit 

the ERα mediated transcriptional induction of the F12 (FXII) and VIT promoters, via a 

mechanism that involves interaction of the NFYA C-terminus directly with ERα and not with the 

CCAAT box. Neither promoter contains a canonical CCAAT motif and NFYB may be involved. 

These methods of repression are probably limited to hormone receptors and the genes they 

target, however they show an interesting, and largely unexplored, aspect of NF-Y biology, that of 

the individual subunits functioning outside of the trimer complex. 
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It is clear that NF-Y, sitting at -80 bp upstream of the TSS in between upstream 

transactivating motifs and the TATA/Inr elements, efficiently penetrates nucleosomal structures, 

via its HFDs. From this position NF-Y recruits and cooperates with upstream transactivators, to 

recruit TFIID and the pre-initiation complex to CCAAT containing core promoters to initiate 

transcription. The associated HATs serve to modulate NF-Y transactivation potential by aiding 

disruption of local chromatin structure thereby enhancing transcription. 

Regulation of NF-Y 

Splicing: NFYA and NFYC are known to express multiple isoforms, while NFYB is not known 

to be alternatively spliced in H. sapiens, which has been confirmed by GENCODE (the 

ENCODE related group annotating human genes) [95]. NFYA has at least two confirmed 

isoforms (GENCODE, [18, 95, 96]), NFYAs (short) and NFYAl (long), which differ in only 28 

amino acids within the Q-rich transcriptional activation domain. There are known instances in 

the literature where these isoforms switch during differentiation [97] or show cell type specific 

biases [18, 98]. Indeed, these isoforms have different functions as shown by the ability of a 

specific isoform to drive a specific phenotype and co-operate in transcription with a specific 

partnering TF [98, 99]. 

NFYC is much more complex, with the human genome encoding 13 splice isoforms 

(GENCODE, [95]). By northern blots, 4 isoforms have been observed in Rattus norvegicus 

tissues [100], and 2 in H. sapiens tissues [101]. The functions of some of these isoforms are 

starting to be described [102]. In keeping with the findings from NFYA, two H. sapiens NFYC 

splice isoforms differ in the Q-rich transactivation domain and have cell type specific biases. 

There functions are unknown, however their RNA levels do differ in their response to DNA 

damage [102]. A third splice variant, which lacks the HFD and therefore cannot interact with 
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NFYB, has a specific function in acting as a negative regulator of TGFβ signaling by interacting 

with SMAD2/-3 [103]. 

Expression and post translational modification of NF-Y: NFYA protein levels are known to 

fluctuate during the cell-cycle [104] and in certain cells during differentiation [12-14], while the 

protein levels of NFYB and NFYC (and the mRNA of all three subunits) remain constant. This 

fluctuation in NFYA protein levels modulates the complex’s transactivation function, making 

NFYA the regulatory subunit. A post-transcriptional process involving NFYA acetylation [105] 

by EP300 (p300) [81] on conserved lysine residues (K283, K289) located in the trimerization 

and DNA binding domains, has been shown to increase NFYA protein stability by preventing the 

poly-ubiquitination of overlapping lysine residues (K283, K289, K292, K296) [106]. This 

acetylation-ubiquitination dynamic regulates proteasomal degradation and accumulation of 

NFYA protein in the cell. In Xenopus, NFYB can also be acetylated, by EP300, though the 

residues are unknown and the function unclear [107]. 

 A second common modification of TFs is phosphorylation. NFYA contains two CDK2 

phosphorylation sites in its C-terminus (S292 and S298) [58, 108, 109], near the trimerization 

and DNA binding domains, that are phosphorylated in a cell-cycle dependent manner. CDK2 

interacts with and phosphorylates NFYA in vitro and in vivo. Phosphorylation does not impair 

heterotrimer formation [58] but does prevent NF-Y-DNA interaction [58]. This is functionally 

important as CDK2-dependent phosphorylation of NFYA is essential for expression of cell-cycle 

genes (e.g. CDC2, CDK2) and cell-cycle progression [108]. NFYB and NFYC are not known to 

be phosphorylated. 

Cellular redox: A common process of reversible regulation of proteins is the post-

translational reduction of cysteine (Cys) thiol groups (-SH) to moieties such as disulphide   (-S–
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S-) and S-nitrosothiol (SNO), that can alter protein structure and effect signaling, respectively 

(for review see [62]). The activity of many TFs are known to be modulated by cellular redox 

state at Cys residues (e.g. FOS [110], JUN [110], NFκB [111], and MYB [112]), one of the best 

studied being the S. cerevisiae Yap1 protein [113, 114]. Pertinently, all known NFYB 

orthologues have three conserved Cys residues in the HFD that are not present in histone HFDs, 

and histones are not known to be regulated by cellular redox. Nakshatri et al.1996 [115] showed 

by mutagenesis studies and by the alteration of redox potential, that reduction of two of these 

Cys residues modulates NFYB covalent-multimerization and NF-Y DNA binding ability. Further 

work by Thon et al. 2010 [116] on the NF-Y orthologue AnCF of Aspergillus nidulans 

confirmed these findings. Given the highly conserved nature of this phenomenon, redox 

regulation of NF-Y is likely a general mechanism. 

Cellular localization: Many TFs are actively transported into the nucleus upon an activating 

stimulus (usually a kinase cascade), however, NF-Y nuclear import seems to be constitutive and 

not a major method of regulation. There are reports of TGFβ signaling, through SMAD 

interactions and TSC2 dependent [117-119] regulation of NFYA nuclear import. This latter 

mechanism could be important for tumorigenesis as TSC2 (also known as tuberin) is a tumor 

suppressor gene. The proteins responsible for nuclear import have been identified: importin β for 

NFYA; and importin 13 for NFYB and NFYC, which are imported together [120-124].  

NF-Y and disease 

There are no known mutations within the NF-Y subunits that manifest in disease. This is likely 

due to the absolute requirement for NF-Y for cellular growth and development, as seen by the 

early embryonic lethality of NFYA deficient mice. However, indirect perturbations of NF-Y 

function and in silico findings have associated NF-Y with disease. 
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 Impressively, a number of studies have found that the CCAAT box is enriched, in concert 

with the E2F motif, in cancer signature genes [125-132]. Three methodologically independent 

studies of gene expression sets from 1,000s of diverse H. sapiens tumor samples found the 

CCAAT box and E2F motifs, either separately or in combination, to be commonly enriched 

across many tumor types in the promoters of genes misregulated in cancer [133-135]. This is not 

surprising, as NF-Y is required for cellular proliferation and transcriptionally controls, along 

with E2Fs, many cell-cycle genes, at some of which NF-Y is required for E2F binding [136]. 

Tabach et al. 2005 [125] found a promoter module of p21/NF-Y/E2F motifs in the 

transcriptional response of transformation induced genes by the inactivation of TP53 (p53) and 

p16(INK4A) tumor suppressors. Many of the genes were cell-cycle genes. In a meta-analysis of 

8 breast cancer metastasis gene expression datasets, Thomassen et al. 2008 [137] identified 

E2F/NF-Y/YY1 as the TFs involved in metastasis, with cell-cycle and metabolism related genes 

being significantly enriched in metastasizing tumors. NF-Y is known to be involved in regulating 

metabolic biosynthetic processes [61]. 

 NF-Y has also been linked to polyglutamine-based neurological disorders, Leigh 

syndrome, schizophrenia and diabetes; however, these will not be discussed here as they are not 

relevant to this dissertation. 

The biology of STAT3 

The signal transducer and activator of transcription 3 (STAT3) was originally identified as a 

factor that regulated the acute phase response genes, an inflammatory process of transcriptional 

induction upon treatment with the inflammatory cytokine IL6 [138]. As such, STAT3 has been 

intimately linked to inflammation from its discovery, yet the direct transcriptional targets and the 
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genomic sites of occupation of STAT3, especially during inflammation-mediated oncogenic 

transformation, are poorly characterized. 

Structure and function of STAT3 

STAT3 functions as a latent monomeric cytoplasmic TF whose activation is tightly regulated by 

tyrosine
705

 (Tyr) phosphorylation and its subsequent homo- or hetero-dimerization and nuclear 

localization. STAT3 contains a SRC homology 2 (SH2) domain that recognizes phosphotyrosine 

residues on other molecules (e.g. STAT3, STAT1, EGF [139]) and mediates reciprocal SH2-

phosphotyrosine dimerization. A second function of the SH2 domain is to serve as a specificity 

domain as the peptide sequence adjacent to the phosphotyrosine residue is recognized and affects 

affinity [140]. STAT3 contains a DNA binding domain based on the immunoglobulin fold and is 

structurally similar to that of NFκB and TP53 [141]. STAT3 phosphorylation and dimerization is 

obligatory for DNA binding to the consensus motif TTCCNGGAA. STAT dimers can 

themselves dimerize, and these dimer-dimer interactions allow STATs to strongly interact with 

adjacent low affinity motifs that would poorly mediate occupancy of a single STAT dimer [142-

145]. 

STAT3 interacts with TFs and co-factors to mediate transcriptional activation. The C-

terminal of STAT3 contains the transactivation domain (TAD) and a small peptide motif within 

it (Pro-Met-Ser-Pro) is highly conserved and its phosphorylation (serine
727

) is required for 

maximal transactivation by STAT3. Almost all STATs interact with and recruit to promoters the 

histone HAT EP300 via their TAD [146]. HATs acetylate conserved residues in histones to 

create negatively charged residues that form a repulsive force which opens the chromatin 

structure to facilitate transcription. STAT3 itself is reversibly acetylated on lysine
685

 by KAT3A 

[147] which is required for DNA binding and transcriptional activation of STAT3 target genes 
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[148]. Not all STAT3 interactions are mediated by the C-terminal TAD. The STAT3-JUN 

interaction have been well characterized, mapped to the N-terminal regions of STAT3, and the 

complex specifically targets a subset of STAT3 regulated genes [149, 150]. Negative interactions 

have also been documented. SIN3A [151] and HDAC1 [152] have been shown to interact with 

and deacetylate STAT3 to promote its nuclear exclusion. 

New mechanisms of STAT3 gene regulation are emerging, particularly involving repression 

and a body of research on unphosphorylated STAT3 (U-STAT3). A recent study has shown that 

acetylated STAT3 plays a role in methylating and repressing the promoters of tumor suppressors 

by interaction with DNA methyltransferase-1 [153]. Additionally, Drosophila melanogaster 

STAT has been implicated in HP1 localization and heterochromatic gene silencing [154, 155]. 

Traditionally, all of the regulatory potential of STAT3 has been thought to be due to 

phosphorylated STAT3, however, there is now a large body of evidence showing that U-STAT3 

can bind DNA [156], regulate genes distinct from phosphorylated STAT3 (44), and interact with 

NFκB [157, 158] to activate [157] or inhibit [159] transcription [157, 160]. These new aspects of 

STAT3 biology complicate the interpretation of results involving STAT3, as it can’t be thought 

of as just an inducible TF involved in gene activation. To this regards, the ChIP-Seq derived 

STAT3 genomic locations produced by dissertation and the integration with ChIP-Seq datasets 

of other TFs, can be used to explore these aspects of STAT3 biology. 

STAT3, inflammation and cancer 

There are many cytokines and external stimuli that can signal to and activate STAT3. A recent 

review [161] has catalogued 19 cytokines (e.g. IL6, IFNγ, and TNFα), 5 growth factors (e.g. 

EGF, CSF2 (GMCSF) and PDGF) and 16 miscellaneous external stimuli/chemicals (e.g. UVB, 

tobacco and diesel exhaust particles). STAT3 is phosphorylated by receptor tyrosine kinases (e.g. 
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PDGF, EGF, CSF1R) and by members of the JAK family of kinases (JAK1, JAK2, TYK2) that 

are resident on cell surface receptors. Upon stimulating cells with a cytokine, STATs are 

phosphorylated within 10mins. The oncoproteins Src [162] and Ras ([163]) have also been 

shown to phosphorylate and/or activate STAT3. STAT3 activity is modulated by Ser
727

 

phosphorylation which enhances transactivation [164, 165] and by EP300 mediated acetylation 

which stabilizes dimer formation [148]. Ultimately, STAT3 serves to induce transcription, and 

the transactivation domain located within the C-terminus is essential for this function, as when it 

is deleted, STAT3 cannot activate transcription [166] and acts as a dominant negative. 

Inflammation and the production of an inflammatory milieu, composed of cytokines, 

chemokines, reactive oxygen species and growth factors, is commonly associated with many 

different types of cancer [167-169]. While acute inflammation is important to critical bodily 

functions such as pathogen defense, wound healing and tissue repair, chronic inflammation, 

which has no known normal physiological role, has now been linked to various disease states 

including cancer, rheumatoid arthritis, atherosclerosis, multiple sclerosis, asthma, and 

Alzheimer’s disease [170-172]. Many pro-inflammatory cytokines and chemokines are released 

by cancer cells (TNFα, IL1β, IL6, IL8, IL17, CSF2 (GMCSF)) and act as potent proliferative and 

survival factors. Their receptors are prevalent on cancer cells, for example the chemokine 

receptors CXCR4 and CCR7 are highly expressed in breast cancer cells and mediate the invasion 

phenotype [173]. The inhibition of CXCL12 and CXCR4 receptor dependent inflammatory 

signaling reduces pulmonary metastases in a murine model of breast cancer [174]. STAT3 is an 

important inflammatory TF, and along with NFκB, is a major effector of the inflammatory 

signaling pathways. STAT3 has been found to be a central mediator of the transcriptional 

changes in many different types of cancers, including breast cancer [175], pancreatic cancer 
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[176, 177], prostate cancer [178], liver cancer [179], melanoma [180], among others (for a 

review see [181, 182]). In this regard STAT3 and NFκB link inflammation to carcinogenesis and 

their biology within cancer cells is an important avenue of research for potential therapeutic 

intervention. 

Rational for dissertation project 

While this thesis does not explicitly study aspects of the biological sciences of dental medicine, it 

does, however, take a broader view of transcription regulation and how it pertains to cellular 

regulation. Cell differentiation and organismal development are all mediated by cell-type specific 

TFs interacting with DNA motifs, the transcriptional machinery and, ultimately, the regulation of 

gene expression. As such, understanding the biology of TFs is critical to the study of 

developmental biology and the pathology of disease. 

 As we pass from the single gene/transcript/promoter/cis-regulatory element view of the 

molecular biology of transcription regulation that was imposed on the scientific community by 

the available biological techniques, we are now entering the era of transcription regulation from 

the viewpoint of whole genome analysis. This is largely driven by rapidly advancing technology 

in the area of massively parallel DNA sequencing and its application to traditional molecular 

biology techniques. Because of this shift from a narrow and biased view of the molecular biology 

of cell regulation, we can now ask very broad, genome-scale, highly integrative, “big picture” 

questions about fundamental aspects of cellular regulation. This dissertation and the many 

genome scale views of transcription regulation just now being published, especially with the help 

of the ENCODE Project Consortium [183-185] (See Appendices 1 and 2), are re-asking old 

questions but with newly developed biological techniques that can interpret data from the entire 

3,137,161,264 bp (at last count from the hg19 version) of the genome of H. sapiens. In addition, 
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new questions, that were not approachable even 5 years ago, can now be asked and answered due 

to the massive increase of genome scale datasets for chromatin bound transcriptional regulators, 

histone modifications, histone occupancy, cis-regulatory elements, gene expression, isoform 

transcripts, protein-protein interactions, and protein modifications within a single cell-type, but 

also across cell states and even species. This thesis, as a small part of the ENCODE project, has 

undertaken a genomic study of the NF-Y transcription factor complex and the transcriptional 

regulation of a cellular differentiation process, inflammation-mediated oncogenic transformation. 

To date there is a lack of data on the genomic profile of NF-Y binding in the H. sapiens 

genome and how this profile changes with cell type. Even more so, there is a fundamental lack of 

unbiased knowledge regarding the TFs and histone modifications present at NF-Y locations. In 

addition, NF-Y-CCAAT box-chromatin interactions are largely unexplored in vivo. Many studies 

over the last two decades have provided biased views of individual loci, and a handful of studies 

have tried to provide a broader perspective. However, all have been limited to promoter-like 

genomic elements, non-repetitive regions, and/or < 2% of the H. sapiens genome with limited 

integration of other datasets. None have explored TF-NF-Y and/or chromatin state-NF-Y 

interactions in an unbiased genomic study. This dissertation aims to address these questions and 

has confirmed many known aspects of NF-Y biology. An unbiased genome-scale study can 

contribute greatly to the scientific knowledge pertaining to NF-Y and holds the promise of 

defining new aspects of NF-Y biology and gene regulation in general. 

 While the bulk of this dissertation centered on NF-Y, a second, related area, explored 

here is the genome-scale view of transcription regulation dynamics during a cellular 

differentiation process. Here I use, with the help of many friends both past and present, an 

inflammation-mediated oncogenic transformation model of an immortalized breast epithelial cell 
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line to explore aspects of gene regulation during phenotypic changes. This cell line is discussed 

further in the Introduction to Chapter 3 and I will not repeat that discussion here. STAT3 is 

absolutely require for transformation in this model system and the dynamics of STAT3 mediated 

transcriptional regulation have not been explored and would provide invaluable insight into the 

inflammatory transformation pathways regulated by STAT3. Whether the cis-regulatory element 

usage of a cell undergoing oncogenic transformation is dynamic or stable has also never been 

explored. It is a fundamental question of cancer biology, and is related to similar events during 

development and disease progression, and is undertaken by this dissertation. 
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CHAPTER 2: NF-Y co-associates with FOS at promoters, enhancers, 

repetitive elements and inactive chromatin regions, and is stereo-aligned with 

growth-controlling transcription factors 

ABSTRACT 

NF-Y is a trimeric transcription factor (TF) composed of two histone-like subunits (NFYB and 

NFYC) and a sequence-specific subunit (NFYA). NF-Y binds to the CCAAT box, a common 

promoter element. We have identified the location of NFYA and NFYB across the H. sapiens 

genome in three cell types and annotated the sites with respect to chromatin states, 78 chromatin 

associating factors, cis-regulatory elements, DNA sequence motifs, genic features, RNA, and 

gene ontologies. Approximately 25% of NF-Y sites are in promoters and an equally large 

proportion are in enhancers, which tend to be tissue specific, and NFYA and NFYB bind 

asymmetrically with respect to the CCAAT box. Surprisingly, a large portion of NF-Y sites are 

in select subclasses of HERV LTR repeats that appear to be transcriptionally inactive. 

Unexpectedly, NF-Y extensively co-localizes with FOS in all genomic contexts, and at 

promoters and enhancers this often occurs in the absence of JUN and the AP-1 DNA motif. 

Unlike most TFs, NF-Y can access the CCAAT box within “non-modified” inactive chromatin 

domains and H3K27me3
+
 repressed domains. NF-Y was associated with a select cluster of 

growth-controlling, potentially oncogenic TFs, which helps explain the abundance of CCAAT 

boxes in the promoters of genes overexpressed in cancer. Our results indicate that NF-Y is not 

merely a commonly-used, proximal promoter TF, but rather performs a more diverse set of 

biological functions, many of which are likely to involve co-association with FOS. 
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INTRODUCTION 

Transcriptional regulatory proteins and the RNA polymerase (Pol) II machinery recruit 

chromatin-modifying activities to their target loci, thereby determining the genomic pattern of 

histone modifications and nucleosome occupancy [186]. Activator proteins, functioning 

combinatorially at distal enhancers and in proximity to core promoters, recruit nucleosome-

remodeling and histone acetylase complexes, thereby generating nucleosome-depleted regions 

that nevertheless have peaks of histone acetylation [187-189]. The RNA Pol II machinery 

recruits H3-K4 histone methylases near the core promoter and upon transcriptional elongation 

recruits H3-K36 and H3-K79 histone methylases to active coding regions. Although less well 

defined, other DNA-binding proteins and nascent RNA can recruit H3-K27 or H3-K9 methylases 

to other genomic regions, resulting in heterochromatic silencing by polycomb complexes or HP1, 

respectively [190, 191]. 

 As a consequence of the above and other mechanistic relationships between TFs and 

chromatin-modifying activities, the genome-wide pattern of histone modifications and 

nucleosome occupancy can be used to classify promoters, enhancers, insulators, and distinct 

types of heterochromatic regions in a given cell type under a given physiological condition. 

Using chromatin immuno-precipitation (ChIP), formaldehyde-assisted isolation of regulatory 

elements (FAIRE), and DNase I hypersensitivity techniques coupled to massively parallel DNA 

sequencing, such classification of functional genomic regions has been done in several cell lines 

in the context of the ENCODE consortium [183-185, 192]. In addition, the ENCODE consortium 

has performed genome-wide mapping of binding sites for 80 chromatin associating factors (at 

the time of writing), most notably in the erythroid cancer cell line K562. These genome-wide 

maps provide an invaluable resource for uncovering new functional aspects of individual TFs.  
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 NF-Y (also known as CBF, CP1) is a heterotrimeric, DNA-binding TF that is conserved 

in all eukaryotes [25]. NF-Y binds specifically to the CCAAT box [8, 10] that is frequently 

found in eukaryotic promoters [36, 38]. The NFYB and NFYC subunits contain histone-fold 

domains (HFDs) structurally related to H2B and H2A, respectively [26], which mediate 

formation of a stable histone-like heterodimer [25], to which NFYA binds, whereupon the 

resulting heterotrimeric complex can bind to DNA [8]. NFYA contains the sequence specific 

CCAAT recognition domain, and NFYB and NFYC also contact DNA through their HFDs [22-

24]. All bases of the core pentanucleotide are critical for NF-Y binding, with immediate flanking 

sequences on both ends also being important for efficient DNA binding in vitro [193, 194] and in 

vivo [41, 42, 55]. 

 At many promoters, the CCAAT box is highly positioned ~80 bp upstream of the 

transcriptional start site (TSS), in either orientation, suggesting that its location is important for 

gene expression. In essentially all promoters tested, mutation of the CCAAT box reduces or 

eliminates transcriptional activity [51]. In addition, functional inactivation of NF-Y subunits or 

the use of a dominant negative NFYA mutant indicates that NF-Y binding is important for the 

pattern of histone modifications at promoters (reviewed by [17]). Interestingly, bioinformatic 

studies comparing gene expression patterns in tumors vs normal tissues indicate that NF-Y sites 

are highly enriched in promoters of genes overexpressed in tumors [133-135], particularly in the 

most aggressive cohorts. The importance of NF-Y is further underscored by the early embryonic 

lethality of an NFYA mouse knockout model due to defects in cell proliferation and extensive 

apoptosis [15]. 

 Here we describe the genome-wide analysis of NF-Y binding in three tumor cell lines. 

Using data generated by the ENCODE consortium, we analyze the bound loci with respect to 
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chromatin states and binding by other TFs. Our results uncover many new and unexpected 

aspects of NF-Y biology. 
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RESULTS AND DISCUSSION 

Unbiased genome-wide identification of NF-Y binding sites 

We performed ChIP with anti-NFYA and anti-NFYB antibodies in three cell types (K562, 

GM12878 and HeLaS3) followed by massively parallel DNA sequencing. Antibodies [51] were 

validated by Western blot and IP-WB showing that NFYA and NFYB were specifically 

recognized (Supplemental Figure 1, A, B). Immuno-precipitated DNA was validated using 

QPCR to known NF-Y targets (Supplemental Figure 1, C, D) and the reproducibility between 

biological replicates was high (Pearson correlations > 0.8). 

 Using a stringent cut-off (P-value <= 10
-9

), we identified 12655, 7932 and 5457 NFYB 

binding sites and 4726, 289 and 3726 NFYA binding sites in K562, GM12878 and HeLaS3 cells, 

respectively (Figure 1, A). Applying the de novo motif discovery tool MEME to NFYB peaks in 

K562 cells, we identified the typical NF-Y binding motif (Figure 1, C) that corresponded well to 

the motif derived from ChIP-chip experiments [51]. Similar NF-Y binding motifs were found in 

all datasets (data not shown). These high-confidence binding sites, 83% of which had at least one 

CCAAT box within each site (with a mean of 1.7 motifs per site), were used for subsequent 

bioinformatic analyses. At lower stringency, we identified 14772 (P <= 10
-7

) and 18523 (P <= 

10
-5

) NFYB sites in K562, 81% and 77% of which, respectively, had CCAAT boxes. The subset 

of NFYB sites with relatively high P-values in the range of 10
-5

 to 10
-7

 contained CCAAT boxes 

at a rate of ~60%, whereas the genomic background is ~5% for similarly sized regions 

(Supplemental Figure 2, A). Based on these observations, and a peak saturation analysis 

(Supplemental Figure 2, B), we estimate that there are an additional ~4000 low affinity NF-Y 

binding sites in the genome of K562 cells. 
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Figure 1: ChIP-Seq of two components of the NF-Y complex in three cell types 

A. MACS peak analysis indicating peak numbers, mean peak lengths and standard deviations, 

at three different P-value thresholds for NFYA and NFYB ChIP-Seq datasets in 

GM12878, HeLaS3, and K562. 

B. Scatter plots of NFYA, NFYB and input read counts at NFYA or NFYB sites in K562 

showing correlation between datasets. Blue shading represents correlation amongst NFYA 

and NFYB. Orange shading represents NFYA or NFYB correlation with input. 

C. Identification of the NF-Y DNA binding site motif de novo from 12655 K562 NFYB 

peaks depicted as a sequence logo [246]. 

D. Venn diagrams depicting the overlap between NFYB peak populations in GM12878, 

HeLaS3, and K562. Integers represent peak numbers called at the 10
-9

 P-value threshold. 

The percentages of peaks with CCAAT boxes are indicated (%). 

E. ChIP-QPCR validation of NFYB peaks unique to each cell type. Error bars represent 

standard deviation of 3 biological replicates. “Pos. Ctrls.” are loci known to be bound by 

NF-Y. “Neg Ctrls.” are loci known to be devoid of NF-Y. Data represents a fold over 

background measurement compared to a non-NF-Y bound region (GAPDH up.). Solid 

and striped bars are ChIPs performed with NFYB specific antibody and non-specific 

rabbit IgG, respectively. 



27 

 

 

  

Figure 1 (Continued) 
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 The apparently higher number of NFYB sites with respect to NFYA sites could be due to 

target loci bound only by NFYB. In this regard, in nuclei, NFYB is more abundant than NFYA, 

and NFYB is present in certain post-mitotic cells whereas NFYA is not detectable [12-14] . 

However, the NFYA and NFYB datasets were highly correlated (Pearson correlation 0.7-0.8; 

Figure 1, B), and quantitative PCR analysis of individual sites revealed 3-fold higher 

enrichments for NFYB than for NFYA. Furthermore, analysis of 21 NFYB sites that appeared to 

lack NFYA showed low occupancy of NFYB such that an NFYA peak was below the detection 

limit (Supplemental Figure 3, A and B). These results indicate that the NFYB antibody was more 

“immuno-efficient” than the NFYA antibody and that there were few, if any, genomic sites that 

were bound by NFYB but not NFYA. For this reason, we used the NFYB dataset to define NF-Y 

binding sites in subsequent analyses. 

 Approximately 39% of NF-Y sites were occupied in at least 2 cell types, whereas the 

remaining 61% of NF-Y-bound sites were cell-type specific (Figure 1, D). In accord with this 

observation, examination of 14 NF-Y target genes identified previously in different cell lines 

[42] revealed that 13 were bound in K562 and 8 were bound in HelaS3. We validated the cell 

type specificity of a small number of these loci by ChIP-QPCR (Figure 1, E). The lower number 

of NFYB bound loci in GM12878 and HeLaS3 was most likely due to the higher efficiency of 

the ChIP assay in K562 cells, rather than to biological differences. 

Asymmetric binding of NFYA and NFYB to the CCAAT box 

Linking the high-resolution positioning data of NF-Y subunits to the CCAAT box location, we 

confirmed that NFYA binds directly over the CCAAT sequence (Figure 2, A). Interestingly, the 

NF-Y complex is asymmetric, with NFYB binding ~15 bp downstream from the CCAAT box, as 

defined by the CCAAT strand (Figure 2, A). This asymmetry fits extremely well with the  
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Figure 2: Annotation of NF-Y peaks to genomic features 

A. The average position of NFYB is upstream of the CCAAT box. Kernel density estimate of 

the distribution of the 5’-CCAAT-3’ and 5’-ATTGG-3’ sequences under NFYA and 

NFYB peaks in relation to the peak summit centered at 0 bp. Only the position of best 

matching CCAAT box within 100 bp of the peak summit was considered and plotted. 

Transparent lines indicate raw data; solid lines indicate Gaussian smoothed data. 

B. Annotation of K562 NFYB peak summits to RefSeq gene features. 

C. As in A, except chromatin state maps were used. Abbreviations are: “Prom” = promoter, 

“enh” = enhancer, “trxn” = transcription. Numbering is from the chromatin state maps of 

[205]. 

D. Frequency distribution of K562 NFYB peak summits at RefSeq TSSs showing a 

preferential location between -50 and -100 bp upstream of the TSS. 

E. Gaussian kernel density estimate of the distribution of positive and negative strand 5’-

CCAAT-3’ and 5’-ATTGG-3’ motifs at K562 NFYB bound RefSeq TSSs. Only the best 

motif per region was considered. Bandwidth was equal to the standard deviation of the 

smoothing kernel. Gray arrows indicate the direction of transcription. 
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Figure 2 (Continued) 
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available biochemical knowledge of NF-Y/DNA contacts (Dolfini et al., 2009) and with the 

crystal structure of trimer interactions with DNA ([25]; M. Nardini, M. Bolognesi, R. Mantovani, 

in preparation). The high resolution of protein-DNA positioning achievable through ChIP-Seq, 

and the large number of datasets available through ENCODE, urges the detailed and expansive 

analyses of chromatin bound protein complex prediction among transcriptional regulators (see 

below). 

NF-Y targets cell signaling, DNA repair, cell-cycle, metabolic and gene expression genes 

GREAT gene ontology analysis of NFYB bound loci from K562, GM12878 and HeLaS3 

revealed a strong enrichment of genes involved in cell signaling pathways (“Integrin 

alpha2beta3 signaling”, “Signaling mediated by p38-gamma and p38-delta”), cell cycle (‘G2/M 

checkpoints”, “Regulation of DNA replication”), DNA repair (“Homologous recombination 

repair” and “Base excision repair”) and metabolism (“Superpathway of cholesterol 

biosynthesis”, “Metabolism of polyamines”) (Table 1). Cell cycle and metabolism terms are in 

line with previous findings, and further stress the central role of NF-Y in growth controlling 

decisions. 

 In addition, just below our fold enrichment cutoff, we found a preponderance of GO 

terms associated with gene expression in all three cell lines. Upon further analysis, it was 

apparent that NF-Y significantly targeted genes involved in “Transcription”, “mRNA splicing”, 

“mRNA editing”, “mRNA 3'-end processing”, and “mRNA transport”. Included were a large and 

diverse set of TFs, including the NF-Y genes themselves, members of the transcriptional 

machinery, and co-activators and co-repressors (Supplemental Figure 4, A and B). Thus, the 

picture emerging is one of NF-Y as a regulator of gene expression regulators. 
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Table 1: NF-Y binds to genes involved in cell signaling, DNA repair, cell-cycle, and gene 

expression 

Gene ontology analyses of NFYB bound loci in K562, GM12878 and HeLaS3. Only the 

top 10 terms with a fold enrichment > 2 are shown. Observed region hits correspond to 

the number of regulatory regions, of genes in that gene ontology term, that had >= 1 

NFYB sites. Highly redundant categories are not shown. For a full list of significant GO 

terms see Supplemental Data. 
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 In a separate analysis (IPA, Ingenuity Systems) of signaling pathways, we found that NF-

Y preferentially associates with genes involved in the inter-related TP53 (p53) and TRAIL 

apoptotic (death receptor) pathways (Supplemental Figure 4, C and D). This observation 

reinforces the notion of a direct and indirect NF-Y/TP53 interplay, with opposing functional 

consequences depending on the TP53 status of the cell, i.e. proliferation or apoptosis (reviewed 

in [195]). In addition, it is consistent with anecdotal evidence about the role of NF-Y in apoptosis 

[196, 197], which helps explain the phenotypes of NFYA overexpression and inactivation 

experiments [85], and point to specific molecules as areas of future investigation. 

NF-Y binds to a diverse set of genomic features including non-genic regions 

We annotated the NFYB bound regions in K562 to RefSeq genes (Figure 2, B; Supplemental 

Figure 5), maps of histone modifications (Figure 2, C) and nucleosome-depleted regions, and 

RNA levels (Figure 3, A and B). Unexpectedly, ~25% of the NF-Y binding sites were not 

situated near RefSeq promoters, genic regions (lncRNAs [198]; miRBASE [199]; UCSC RNA 

genes [200]; NONCODEdb [201]) or loci bound by RNA Pol II or Pol III [202] (not shown). 

These sites were not false positives as the vast majority (88%) contained CCAAT boxes, and 

46% of them were present in at least one other cell type. Based on the patterns of co-localized 

histone modifications, and RNA Pol II, NF-Y bound regions in K562 and HeLaS3 reproducibly 

partitioned into 20 clusters that could be grouped into five major classes (Figure 3, A and B; 

Supplemental Figure 6): promoter, enhancer, gene body, PcG repressed, and LTR/non-modified-

chromatin. As discussed below, these results indicate that NF-Y binding was prevalent in tissue-

specific enhancers and specific types of repetitive sequences, in addition to proximal promoters, 

where NF-Y has traditionally been observed. 
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Figure 3: NF-Y bound loci resided within 5 epigenetic domains 

A. K-means clustering of K562 NFYB loci based on the distribution of histone PTM, RNA 

Pol II, NFYB and NFYA ChIP-Seq reads within a region spanning +/-5 kbp from the 

summit of NFYB peaks (centered at 0 bp). Clustering was carried out on transformed rank 

normalized read counts. Raw read count intensity is depicted in red. The interpretation 

and classification of clusters into functional categories are shown to the right. 

B. NFYB summits from clusters derived from A were annotated to genomic features: 

chromatin states, LTRs, dbTSS, RefSeq promoters, and FAIRE-Seq regions. The 

percentage of peak summits within each cluster overlapping a specific feature is indicated. 

Overlap with LTRs was assayed within a window of +/-250 bp from the ends of the LTR 

feature. RefSeq promoters were considered within a window of -2500:+500 bp from the 

TSS. A direct overlap with FAIRE-Seq regions and chromatin states was used. Long 

polyA purified RNA reads were counted within a window of +/-500 bp about the NFYB 

peak summit and the median value of that cluster is shown. 
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Figure 3 (Continued) 



36 

 

Only a minority of NF-Y binding sites are located at proximal promoter regions 

Although NF-Y is typically described as a factor that binds to proximal promoter regions, only 

22% of NF-Y sites were located within 1 kbp upstream of a RefSeq TSS (Figure 2, B; 

Supplemental Figure 5), consistent with our previous analysis of 2% of the H. sapiens genome 

[42]. For such proximal promoter binding sites, a frequency distribution plot of NFYB peak 

summits indicated that NF-Y was highly positioned upstream of the TSS at -40 to -100 bp 

(Figure 2, D), in line with the position of the CCAAT box at TSSs (Figure 2, E), in agreement 

with previous observations [51]. Though NFYA and NFYB bound asymmetrically to the 

CCAAT box, the orientation with respect to the TSS was largely irrelevant for transcription, as 

only a small difference in the frequency of CCAAT and its complement ATTGG were noticed 

on the same strand (Figure 2, E). More generally, only a third of NF-Y loci (clusters L, K, P, N, 

S, B, V, U; n = 4061; Figure 3, A) were associated with active promoters, as defined by high 

levels of di- and tri-methylated H3-K4, acetylated H3-K27 and H3-K9, RNA Pol II, and 

nucleosome depletion (defined by a “valley” of low enrichment of mono-methylated H3-K4 at 

NFYB summits and a positive FAIRE signal; Figure 3, A and B). 

A subset of NF-Y sites was located at tissue-specific enhancers  

NF-Y binding to enhancers has been rarely described, e.g. the 5’ upstream regions of the MHC 

class II genes [203] and the intronic enhancer of the Hoxb4 gene [204]. Of NF-Y peak summits, 

25% were located within a region demarcated by Ernst et al. [205] to be an enhancer chromatin 

state (Figure 2, C). Our analysis, using similar datasets, found a lower percentage of NF-Y sites 

to be located within regions consistent with known histone modifications of enhancers (12%; 

clusters E, R and T; n = 1525; Figure 3, A). This discrepancy is likely due to our more 

conservative definition of enhancer and the wider genomic region used for interpretation. NF-Y 
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sites adjacent to Ernst et al promoter states, though still within the histone modifications defining 

that state derived from the nearby active TSS, were designated by us to be “promoter”, however, 

they would be classified as “enhancer” by Ernst et al. Clusters E and R are exceptional, in that 

they represent NF-Y sites located close to (~2.5 kb), but not within regions of high enrichment 

for H3-K27ac, H3-K9ac, H3K4me1/-2/-3 (strong actively transcribing promoters), unlike all 

other clusters from the enhancer and promoter groups where NF-Y is directly within the enriched 

domains.  

 Interestingly, cell type specific NF-Y sites were enriched for enhancers and were, on 

average, located further away from TSSs as compared with NF-Y sites common to all cell types 

(Supplemental Figure 7, A and B). GO analysis of cell-type specific NFYB loci reveals 

categories enriched in individual cell types: “NF-B cascade and regulation of IL12” was 

enriched in GM12878, a cell type where NFB is constitutively active [206, 207]; HeLaS3 

showed enrichment for “Epidermis morphogenesis” and “Establishment of tissue polarity”, 

commonly associated with cells of epithelial origin (Supplemental Figure 7, C). 

Functional inactivation of NF-Y indicates a transcriptional role for NF-Y located distally to 

TSSs 

Given the preponderance of NF-Y locations distal to TSSs, we decided to identify the direct 

transcriptional targets of NF-Y by performing expression array analysis on HeLaS3 cells 

depleted for NFYA by lentiviral small hairpin RNA (shRNA) (Supplemental Figure 8, A and B) 

and correlating these changes to the location of NF-Y. At a P-value cutoff of 10
-4

, 84 genes were 

down-regulated and 252 genes were up-regulated (Table 2) upon NFYA knockdown. Of these, 

only 11% (n = 9) and 39% (n = 98) had NF-Y bound to their proximal promoters, respectively. 

The topmost differentially down- and up-regulated genes both  



38 

 

  

Table 2: shRNA knockdown of NFYA 

Differentially expressed genes upon NFYA knockdown in HeLaS3 and the number that 

was bound by NF-Y as determined by ChIP-Seq. Windows are in relation to RefSeq 

TSSs. Adjusted P-value is Bonferroni corrected. 
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trended towards having a higher percentage of their promoters occupied by NF-Y than non-

differentially regulated genes (Supplemental Figure 8, D). Of the 1059 NF-Y peaks in HeLaS3 

located within 250 bp of a RefSeq TSS, only 5.2% were differentially regulated at a P-value of 

10
-4

 (n = 55). The low percentage of differentially regulated genes bound by NFYB (or NFYA) 

was similar to that found with other TFs [208-210] and could be exacerbated by the incomplete 

functional inactivation of NF-Y. 

 The above observations suggest that NF-Y located more distally may be important 

transcriptionally for the differentially regulated genes. In this regard, we ranked NF-Y sites by 

the fold change in RNA expression of the nearest associated gene upon NF-Y inactivation. The 

most strongly down-regulated genes had NF-Y sites that were much more distal to the TSS, with 

the median distance being >10 kb (Supplemental Figure 8, C). This data suggests that NF-Y 

located at enhancers, was important for transcription of neighboring genes. 

LTRs were the most prevalent class of NF-Y sites in the H. sapiens genome 

Of all NF-Y binding sites in K562, 40% directly overlapped an LTR, the promoter elements of 

endogenous retroviruses, making LTRs the most prevalent class of NF-Y loci in the H. sapiens 

genome, even more so than core promoters of endogenous genes (Figure 4, A). NF-Y selectively 

associated with two families of LTRs - MLT1 and LTR12 (Figure 4, B and C). NF-Y did not 

bind to all LTR families, irrespective of the presence of a CCAAT box in the consensus 

sequence. The R66 tandem repeat (which is related to LTR12B [211, 212]), MER51A and 

MER51E also associated with NF-Y. In general, there was no significant cell type specificity in 

LTR binding. 

Most NF-Y bound sites at LTRs lacked any detectable histone modifications within 5 kbp of 

the NF-Y peak summit (clusters D and J in Figure 3, A and B; Figure 4, D). These NF-Y loci 
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appeared to be transcriptionally inactive, yet maintained substantial NFYB and NFYA 

occupancy. Although most NF-Y bound LTRs appeared to be transcriptionally inactive, 

promoter and enhancer chromatin states with high levels of H3 acetylation and/or H3-K4 

methylation contained a sizeable minority (27% K562; 20% GM12878; Figure 4, D) of LTRs. 

These appeared to be transcriptionally active, thus most likely representing functional cis-

regulatory elements derived from transposable repetitive elements and regulating endogenous 

genes. 

 LTRs function as promoter elements of endogenous retroviruses and they can act as 

regulatory elements for certain host genes [213]. NF-Y sites abound in viral LTRs [214-218]. 

The selectivity for the gamma-retrovirus LTR family and within it for certain members, likely  

reflects the presence of CCAAT in the original viral LTRs. Thus, our results suggest a strong 

genetic pressure on their genomic transduced copies to maintain NF-Y binding. This is not 

unprecedented, as evidenced by the preference of particular TFs for specific repetitive sequences 

[219, 220]. Genetic analysis of the ERV-9/LTR12 element located 5’ of the globin locus-control 

region indicates a crucial role of the 14 CCAAT and GATA containing E3 repeats for expression 

of the β-globin locus [221, 222]. Because of this precedent, we expected to observe a genomic 

theme of most, if not all, LTR repetitive sequences bound by NF-Y to be either at enhancers or 

promoters in regions of H3 acetylation. Instead, the opposite was true. The majority were 

associated with heterochromatin-like domains apparently devoid of any transcriptional signal, 

either positive or negative. Since the vast cohort of endogenous LTR proviral sites were under 

strong control by the host organism and, in most cases, actively repressed by genetic and 

epigenetic means [213], we are tempted to speculate that NF-Y plays a role in the epigenetic  
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Figure 4: NF-Y binds extensively to long terminal repeats 

A. NFYB peaks were extensively found at LTRs, more so than core promoters. The 

percentage of all K562 NFYB peak summits that occupy the indicated feature. Core and 

proximal promoters are defined as -250:+50 bp and -2500:+500 bp from the TSS of 

RefSeq promoters, respectively. 

B. Mapping of ChIP-Seq reads from K562, GM12878 and HeLaS3 to RepBase consensus 

sequences showing an abundance of NF-Y specific reads mapping to repetitive elements. 

Ratios reflect the enrichment of reads in the NFYB ChIP sample as compared to input. 

Only RepBase entries with a read ratio >= 5 are shown. Orange shading indicates repeat 

elements present in all cell lines. Green and red shading indicate the presence and 

absence, respectively, of a CCAAT box match at P-value < 10
-4

 in the consensus 

sequence. 

C. Frequency of overlap between NFYB peak summits and the genomic locations of LTR 

families showing that only a specific subset of LTR families are bound by NF-Y. Only 

LTR elements that overlapped at least one peak in each cell line are shown. The two most 

highly overlapping repeat families are indicated, LTR12 and MLTJ1. 

D. NF-Y bound LTRs were mainly situated within heterochromatin-like domains. 

Distribution of NFYB bound LTRs from K562 and GM12878 at chromatin states. No 

chromatin state map was available for HeLaS3. 
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Figure 4 (Continued) 
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repression of these LTRs in somatic tissue, and/or in their activation during embryogenesis, 

where many repetitive elements are de-methylated and become expressed [223]. 

NF-Y binds CCAAT boxes in non-modified-chromatin domains in vivo, unlike most TFs 

The majority of NF-Y sites (n = 6169; 49%) were in 2 similar clusters (D and J, i.e. LTR/non-

modified-chromatin class; Figure 3, A) that displayed no positive or repressive histone 

modifications, negligible RNA Pol II and polyA RNA, and overlapped few open regulatory 

regions (11, 25%) and RefSeq TSSs (7, 11%). Interestingly, most of these loci overlapped LTRs, 

58% and 82%, respectively (Figure 3, B). These NF-Y sites are interesting as most TFs are 

believed to not be able to bind to their DNA motifs within closed, transcriptionally inactive 

chromatin domains. 

To further explore this issue, we calculated the percentage of motifs residing within NFYB 

peaks within distinct chromatin states, over a range of motif quality scores. Interestingly, and 

unlike other TFs such as E2Fs and MYC, NFYB was not excluded from any chromatin state 

assayed (Figure 5, A-C). At strong and weak promoters, > 80% of CCAAT boxes (with scores 

>= 16) were occupied by NF-Y (Figure 5, A). CCAAT boxes at enhancers and insulators were 

also well occupied by NF-Y (30-65%, respectively; Figure 5, A) although the percent occupancy 

was lower than at strong promoters, indicating that binding to these genomic regions was more 

selective. More generally, CCAAT boxes situated within open chromatin regions, as defined by 

FAIRE, were exceptionally well occupied to near saturated levels by NF-Y, with 80% occupancy 

(Figure 5, A). Interestingly, many CCAAT boxes within the non-modified-chromatin (10%), 

PcG repressed (20%) and transcription elongation states (10-25%) were occupied by NF-Y. 

 To test whether the substantial occupation of CCAAT boxes within non-modified 

chromatin and repressed genomic contexts was unique to NF-Y, we performed the same analysis 
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on 22 TFs, whose binding sites in K562 cells have been determined by the ENCODE consortium 

[183-185] (Figure 5, B; Supplemental Figure 9). As expected, most of the TFs examined showed 

motif occupancy at nucleosome-depleted regulatory regions at high levels, comparable to those 

of NF-Y. In contrast, GATA1 and GATA2, thought to be “pioneer” TFs (for review see [224, 

225]), were highly selective and unable to saturate their motifs that resided within these 

nucleosome-depleted regulatory regions. However, most TFs lacked the ability to occupy even 

their highest quality motifs within non-modified and repressed chromatin states. For the 23 

factors tested, only USF1, MAFK, and NF-Y could bind to motifs in the context of nucleosomes 

lacking some of the most common “positive” histone modifications or containing the repressive 

H3-K27me3 mark (Figure 5, B; Supplemental Figure 9). 

By preventing accessibility to target sites, chromatin is a formidable barrier for binding by 

most TFs. This creates a dilemma as to how cis-regulatory elements and their resident DNA 

motifs can provide transcriptional competency if they cannot be accessed by trans-acting factors. 

There are a small number of “pioneer” factors that can efficiently bind to their motif located 

within non-nucleosome depleted, non-modified chromatin. Once bound, these pioneer TFs can 

recruit chromatin-modifying activities to generate open chromatin for the subsequent binding of 

partnering TFs [224, 225]. NF-Y can associate with a CCAAT box after nucleosome assembly in 

vitro, and the NFYB/NFYC HFD dimer can physically interact with H3/H4 in solution and on 

DNA [83]. Indeed, NF-Y binding is not mutually exclusive with nucleosomes in vitro, giving 

NF-Y the theoretical functional ability to interact efficiently with chromatin bound CCAAT 

boxes in vivo. NF-Y binds to a sizeable number of sites either in functionally “hostile” 

environments, or sites lacking all the common positive histone modifications. Perhaps, the 

structural features of the HFD heterodimer are instrumental for this. We propose that NF-Y is a  
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Figure 5: NF-Y can occupy its motif in closed chromatin 

A. NF-Y has the ability to bind to its motif in many epigenetic domains, including repressed 

and non-modified-chromatin regions. The percentage of genome-wide computationally 

discovered CCAAT boxes within each chromatin state, FAIRE-Seq regions or the entire 

genome, that directly overlapped NFYB K562 sites plotted as a function of CCAAT box 

motif quality (right axes). Also shown are the numbers of discovered CCAAT boxes as a 

function of CCAAT box motif quality (left axes). Numbering was derived from [205]. 

B. NF-Y was unusual in its ability to bind to closed chromatin CCAAT boxes. Similar to A, 

except motif sites of different TFs are plotted as a function of motif quality. Only a subset 

of TFs is shown, see Supplemental Figure 9 for all TFs analyzed. 

C. Distribution of CCAAT box quality scores under NFYB K562 peaks, called at 3 different 

P-values, a random genomic background sample set of 400k 500 bp regions and K562 

FAIRE-Seq regions. 
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new type of “pioneer” TF that retains histone-like features, while possessing high sequence-

specificity with a remarkable ability to access its motif irrespective of the chromatin state. 

NF-Y functions with different TFs based on genomic context, and the prevalence of an 

association with FOS 

Given the availability of 78 ChIP-Seq datasets in K562 for chromatin associated factors involved 

in diverse functions, we explored their combinatorial genomic interactions with NF-Y and 

focused on three classes of NF-Y bound sites – promoters, enhancers and LTR/non-modified-

chromatin. We statistically tested for co-association between NF-Y and individual factors and 

found a high number, 44 at promoters and 50 at enhancers (at a P-value <= 10
-10

; Supplemental 

Figure 10, A). We looked for combinatorial interactions beyond a one-way co-association with 

NFYB, by performing hierarchical clustering (Supplemental Figure 10, B) and describing the 

most common sets of 4-, 3-, and 2-way combinations of factors (Supplemental Figure 10, C). 2-

way combinations were deemed relevant for enhancers due to the dearth of factors located in 

those regions. Figure 6 shows a summary of the factors present with NF-Y at promoters and 

enhancers. 

 Promoters: Hierarchical clustering revealed a distinct cluster that contained a core group 

of NF-Y co-associating factors: FOS, CHD2, TBP, RNA Pol II, CCNT2, HMGN3, MYC, and 

E2F4/6 (Supplemental Figure 10, B). The most common 4-way sets of TF combinations present 

at NFYB promoters variously included FOS, HMGN3, MYC, E2F4/6, HEY1 and CHD2, 

verifying this group as highly prevalent and extensively overlapping (Supplemental Figure 10, 

C). FOS was conspicuous, as it was the factor that most closely clustered with NFYA and 

extensively associates with NF-Y in multi-way overlaps (Supplemental Figure 10, C; note 

highlighted FOS entries). When we contrasted NFYB bound to non-bound promoters, FOS and 
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CHD2 were absent from the latter. FOS was highly specific for promoters, with 59% occupancy, 

but was largely absent at non-NFYB bound promoters (< 8%). HMGN3, MYC, E2F4/6, and 

HEY1 were common promoter bound TFs, generally enriched at, but not specific to, NF-Y 

bound promoters (Supplemental Figure 10, C). 

 Enhancers: NF-Y formed a well-defined cluster consisting of FOS, USF1/2, MAX, 

CHD2 and E2F4 (Supplemental Figure 10, B), a slightly different grouping compared to 

promoters but very similar. When individual and 2-way combinations were assayed, FOS and 

USF1 were highly prevalent, being present at 39% and 27% of NF-Y enhancers, respectively, 

and were the most common 2-way overlap at 13% (Supplemental Figure 10, C). 

 Somewhat expectedly, E2Fs, represented here by E2F4 and E2F6, closely associated with 

NF-Y. Bioinformatic studies identified CCAAT boxes and E2F motifs as highly enriched in the 

promoters of genes overexpressed in tumors [133-135], and an enrichment of E2F sites in the 

proximity of CCAAT boxes in RefSeq promoters has been shown [51]. Importantly, apoptosis 

mediated by overexpression of NFYA was abolished in E2F1
-/-

 cells [226]. Moreover, E2F4 is 

part of the DREAM complex [227, 228], which binds to the CDE DNA motif, and co-operates 

with the CCAAT box to negatively regulate expression of G2/M-specific genes during the cell 

cycle [229, 230]. CCAAT box and CDE containing G2/M genes were significantly 

overexpressed in a model of step-wise transformation of primary fibroblasts [125]. These data 

invite further analysis between the interaction of NF-Y and E2F sites (see below) particularly in 

cancer signature and cell cycle genes, and the integration with ChIP-Seq data of additional 

members of the E2F family and the DREAM complex.  

 Essentially all E box binding TFs present in ENCODE are statistically enriched at NF-Y 

locations, suggesting a pervasive partnership in cis between CCAAT and E boxes. MYC, which  
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  Figure 6: NF-Y co-associates with many factors at promoters and enhancers 

Illustration of the factors that significantly associate with NF-Y bound strong promoters 

and enhancers. Only those factors with greater than the median fold enrichment with 

respect to NFYB non-bound regions (enrichment indicated by circle size), greater than the 

median value of percent occupancy of NFYB bound regions (percentage occupied 

indicated by color), and that significantly co-associate with NF-Y (gray box; see 

Supplemental Figure 10, A). Factors enclosed within a yellow box are, additionally, the 

subset of factors that cluster with NFYA and NFYB (see Supplemental Figure 10, B). A 

black arrow indicates the start of a transcribed region. Two vertical slashes are used to 

represent being distal to a promoter area. 
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teams up with MAX to bind to the E box, is a good example. Interestingly, the number of 

MYC/NF-Y bound promoters exceeds those with MAX/NF-Y, suggesting that either MYC 

heterodimerizes with another E box binding partner, or that it binds in an E box independent 

manner, possibly directly to NF-Y [59, 231]. The interaction data detailed above go a long way to 

explain the importance of NF-Y for growth-regulating genes, and establish that NF-Y makes 

widespread partnership with a group of TFs - MYC, E2Fs, and FOS - that control cellular 

proliferation, and, when altered, can lead to cancer.  

 LTR/non-modified-chromatin: Given NF-Y’s ability to bind to closed chromatin we 

wanted to know what factors could be partnering with NF-Y in these regions. We found 

extensive co-localization of NF-Y with only four factors, FOS and USF1, and to a lesser degree, 

USF2 and SP1 (Supplemental Figure 11, A). In addition, specific groupings of these factors 

occurred when we clustered the regions (clusters HL4, HL5, HL6, HL7, HL8, HL9, HL10; 

Supplemental Figure 11, A). As most of the non-modified-chromatin NF-Y sites were LTRs, we 

searched NF-Y-LTR sites located in non-modified-chromatin for known and novel DNA motifs, 

both in K562 and GM12878. We found that these regions are extensively de-enriched for all 

known DNA motifs that we assayed for when compared to all non-modified-chromatin residing 

LTRs (not shown), except for the CCAAT box and, in K562 only, the motif for KLF4 (P-value = 

1.6 x 10
-10

). A complementary de novo motif analysis found over-represented motifs that showed 

little resemblance to known elements, other than the expected CCAAT box and, confirming, a 

DNA motif similar to that of KLF4 (Supplemental Figure 11, B). ChIP-Seq data for KLF4 is not 

available in K562 or GM12878, however, its RNA and protein are detectable (not shown, [232]). 

The TF KLF4 is known to act as a transcriptional activator and repressor [233-238] and may be 

co-operating with NF-Y to repress LTR elements via a mechanism independent of H3K27me3. 
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The TFs USF1 and USF2 create barrier elements of acetylated chromatin in intergenic 

domains, thereby stopping the spread of heterochromatin [239-241]. The NF-Y-USF sites in non-

modified-chromatin are unlikely to be canonical USF barrier elements, as these regions are not 

acetylated (Figure 3, A). However, this does not exclude a unique barrier element function of 

these NF-Y-USF sites functioning by a different mechanism. 

 The biological function of the LTR/non-modified-chromatin residing NF-Y sites is truly 

intriguing. Though we do not know their function, we do know that they are not acting as TSSs 

(no detectable RNA Pol II, RNA Pol III or polyA RNA, and very few dbTSS entries), DNA 

replication origins (ORC2 was not present), insulators (CTCF, RAD21 and SMC3 were not 

detectable), enhancers (no detectable H3K4me1), or canonical USF barrier elements (no 

detectable H3 acetylation). However, we do know that FOS, USF1, USF2, and SP1 were present, 

that these loci were depleted for known motifs, and that they were LTRs, which opens up 

possible avenues of biochemical and genetic experimentation. 

 It should also be noted that cluster HL2 (Supplemental Figure 11, A), though only 

representing 147 NF-Y sites, displayed specific enrichment for four members of the CTCF-

cohesin insulator complex (CTCF, CTCFL, RAD21, and SMC3), in direct proximity with NF-Y. 

A similar small cluster was also observed in the PcG repressed class (not shown). There is no 

known precedent for this chromatin associated interaction in the literature and it raises the 

question as to what NF-Y-CTCF-cohesion complexes could be doing in the cell. 

NF-Y extensively co-associates with FOS at loci lacking an AP-1 motif 

The overlap of FOS and NF-Y at all chromatin states, cluster classes and genic features is 

striking. In fact, genome-wide, 45% of NFYB peaks directly overlapped a FOS peak, and 39% of 

FOS peaks directly overlapped an NFYB peak (Table 3). The correlation of occupancy between 
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NFYA and FOS at promoters and enhancers was high (Supplemental Figure 10, B), and even in 

the LTR/non-modified-chromatin class (clusters D and J) FOS signal was directly coincident 

with NF-Y at a large subset of NF-Y locations (clusters HL4, HL5, HL6, HL7, HL8, HL9; 

Supplemental Figure 11, A). The degree of correlation between NFYB and FOS ChIP-Seq reads 

at NFYB peaks was also exceptionally high (Pearson = 0.74), and only marginally lower than 

that observed between the NF-Y subunits (Pearson = 0.77) (Figure 7, A). Interestingly, a 

correlation (Pearson = 0.14) was not observed with JUN (Figure 7, A). These observations raise 

the question as to whether the NF-Y-FOS co-association involved JUN and the AP-1 motif, or if 

it could be mediated via NF-Y and the CCAAT box. NF-Y and FOS peaks were located just as  

close (< 50 bp) as that observed between the NF-Y subunits and between FOS and its 

dimerization partner JUN (Figure 7, B). Interestingly, most NF-Y-FOS sites lacked detectable 

AP-1 motifs, either by de novo discovery (Figure 7, C; right panels) or by searching for the 

canonical motif (Figure 7, C; left panel), with one very notable exception being NF-Y-FOS-LTR 

loci, which will be discussed below. FOS-JUN loci had an AP-1 motif positioned under FOS 

peak summits, as expected (Figure 7, C; left panel). Only about half of the FOS-NF-Y sites were 

co-occupied by JUN and another, undetermined, B-Zip partner(s) may mediate FOS binding at 

NF-Y sites, but this is at odds with the lack of a canonical AP-1 motif. A representative example 

of the interplay is shown in Figure 7, D. 

 There are no reports of NF-Y and FOS protein-protein interactions in the literature or in 

public databases that could explain this novel co-association (BIND, BioGRID, DIP, HPRD, 

IntAct, and MINT interaction databases via the APID portal [242]). Given that NF-Y and FOS 

have both been studied for decades and are ubiquitous factors, it is unlikely to have been missed 

by the scientific community, unless the NF-Y-FOS interaction was highly unique to a specific  



53 

 

  

Table 3: Overlap between FOS, JUN, MYC and NF-Y genomic binding site populations 

Values represent the percentage of the peak population (left row) directly overlapping the 

peak population of a second factor (top column). All binding sites were called at a P-value 

<= 10
-9

. All sites were: FOS (n = 14404); JUN (n = 18480); MYC (n = 13693); NFYA (n 

= 4726); NFYB (n = 12655). 
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Figure 7: NF-Y and FOS are closely co-associated at loci that lack JUN and the AP-1 

motif 

A. Correlation between ChIP-Seq read counts at NFYB peak summits, within a window of 

+/-500 bp, between NFYB and NFYA, FOS, JUN or MYC in K562 cells. NFYA and FOS 

were well correlated with NFYB, whereas JUN and MYC were not. 

B. FOS-NF-Y peak summits were located just as closely as FOS-JUN and NFYA-NFYB 

summits. FOS, NFYA and NFYB ChIP-Seq peak summits were mapped to the nearest 

FOS, JUN, MYC or NFYA peak summit. The number of ChIP-Seq peaks at the indicated 

distance between adjacent peak summits is plotted. All peaks were called at a 10
-9

 P-value 

threshold in K562, where summit was the local maxima in read counts. 

C. The AP-1 motif was not present under FOS sites that overlap NF-Y. The top 1000 K562 

FOS ChIP-Seq sites, as ranked by site P-value, that directly overlap an NFYB site ( 

“FOS+NFYB”) and the top 1000 that do not overlap an NFYB site (10
-5

 P-value site list, 

“FOS-NFYB”) were assayed for the distribution of the AP-1 motif in relation to the FOS 

peak summit centered at 0 bp. Plotted is the Gaussian kernel density estimate of the AP-1 

motif using a bandwidth of 0.5 of the standard deviation of the smoothing kernel. The top 

3 motifs discovered de novo from each FOS peak set, as above, are depicted with the 

percentage of FOS peaks containing a match to that motif indicated. 

D. FOS associated at the same genomic loci as NF-Y, usually in the absence of JUN. 

Representative view of a locus on chromosome 3 of the K562 ChIP-Seq read counts from 

NFYA, NFYB, FOS, JUN, and MYC ChIPs, with an input control. 



55 

 

 

  

Figure 7 (Continued) 
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cellular compartment not commonly analyzed for direct protein-protein interactions (i.e. 

chromatin) and/or was cell type specific. Related to our finding, an unexpected result emerged 

recently from ChIP-Seq analysis of JNKs (Jun N-terminal Kinase). Rather than the predicted AP-

1 motif, the only recognizable motif in JNK sites was CCAAT, and indeed NF-Y was shown to 

be necessary for JNK-DNA association [243]. In light of our data, one possibility is that FOS, 

directly or indirectly and possibly with JNK, binds to NF-Y, though only on chromatin and/or in 

specific cell types, forming a novel NF-Y/FOS/JNK complex that does not require the AP-1 

motif or JUN, and recruits members of the MAPK family to CCAAT box containing regulatory 

regions. 

NF-Y sites contain positionally biased TFs 

To investigate a possible distance bias between NF-Y and TFs on chromatin, we plotted the 

distribution of the relative position of TATA, E box, E2F and AP-1 motif instances (termed 

“predicted”) at NFYB peaks, in relation to the position of the best scoring CCAAT box (1st C is 

position 1), while maintaining strandedness. We then plotted the subset of motif instances 

(termed “verified”) that were actually occupied by the TF of interest by ChIP-Seq (Figure 8). 

 First, we checked the NF-Y-FOS connection (Figure 8, A) and, remarkably, there was a 

clear AP-1 motif 10-11 bp upstream of 5’-CCAAT-3’, which corresponded to FOS ChIP-Seq 

peaks. However, this positioning was only found in NF-Y-bound LTR sequences, as NF-Y-FOS 

sites, in general, did not contain an AP-1 motif (Figure 7, C). This finding has no precedent in 

promoter studies and it is even more surprising as it involves repetitive sequences. The 

functional nature of this interaction remains to be determined and the precise positioning and 

distribution of the interplay may be an indication that the two TFs cooperate to keep LTRs 

repressed, presumably with an unknown B-Zip partner. The TATA, E box and E2F motifs were 
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also located at remarkably discrete, highly biased positions in a CCAAT orientation specific 

manner: TATA at +50 bp; the E-box at -10/-11 bp; and the E2F motif at +6/+7, +31, +55 and 

+72 bp (Figure 8, B). The position of the TATA box was maintained in TBP peak locations at 

NF-Y loci, albeit with a somewhat reduced frequency. The stereo positioning of the E box 

location was only maintained when MAX or USF1, but not MYC, loci were considered, 

suggesting that MYC, when associating with NF-Y, was either not positioned, or did not bind 

DNA directly. The E2F motif was unusual in that multiple stereo alignments were present and 

only one, the closest to CCAAT, was maintained at E2F6, but not at E2F4 occupied sites. 

 The USF1 finding was particularly interesting, as USF1 was one of the few factors that 

partnered with NF-Y in non-modified-chromatin domains (Supplemental Figure 11, A) and also 

had the ability to recognize its motif within a repressive nucleosomal structure (Figure 5, B). NF-

Y and USF1 may cooperate to penetrate repressive, non-modified chromatin domains containing 

a CCAAT box through a mechanism that requires precise motif positioning with an E box.  

 Overall, our data indicate the presence of precise positional bias between NF-Y and some 

of its most common TF partners, notably, those that play crucial roles in the control of cell 

proliferation, cell-cycle and metabolism genes. In the vast majority of NF-Y bound promoters, it 

is known that NF-Y synergizes with neighboring TFs and it appears to be more of a promoter 

organizer and facilitator of transcription, than a strong activator per se. There are three examples 

in which cooperativity with NF-Y is mediated by precise spacing: the MHC Class II promoters; 

NF-Y/ATF6 sites in ER stress response promoters [244]; and the multiple CCAAT boxes in 

G2/M promoters [245]. Several studies reported overlaps between TFs at a genomic level, but, to 

the best of our knowledge, the mutual TF interplays were never detailed with such a high degree 

of precision. We establish here that the quality of ChIP-Seq peaks in ENCODE allows one to  
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Figure 8: Motif pairings with the CCAAT box are stereo-positioned 

A. The AP-1 motif was only stereo-positioned, with respect to the CCAAT box, at LTR 

elements. Similar to B, except FOS peaks directly overlapping LTRs were considered. 

B. The percentage of NFYB peaks that have a TATA-box (TBP), E-box (MYC, MAX, 

USF1), and E2F motif (E2F6) at the specified distance from the best scoring CCAAT box 

centered at 0 bp of NFYB sites, showing highly precise stereo-positioning of DNA motifs. 

All NFYB peaks were categorized as “predicted”, while those NFYB peaks overlapping 

the respective ChIP-Seq peaks of the other TF were categorized as “verified”. Only the 

top 500 peaks in each category were plotted. The negative strand plots were near identical 

mirror images of the positive strand plots and are not shown. 
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Figure 8 (Continued) 
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study the precise genomic architectural rules of TF interactions on DNA in vivo and within 

specific genomic contexts. 

Conclusions 

Our comprehensive analysis of NF-Y confirms many functions including its prevalence at 

proximal promoters, particularly those of growth controlling genes, at a much higher degree of 

precision and completion. More interestingly, our analyses uncover several novel and 

unexpected aspects of NF-Y function. In particular, NF-Y binds asymmetrically at its target sites, 

plays an important role at many tissue-specific enhancers, is capable of binding “closed” 

chromatin including at LTRs, co-associates pervasively with FOS, but not other AP-1 factors, 

and displays precise stereo positioning with a restricted group of TFs involved in cellular 

proliferation. Lastly, we note that comprehensive bioinformatic analyses of the type performed 

here have been done on relatively few TFs. Similar analyses on other TFs whose target sites have 

been or will be defined by ChIP-seq are likely to uncover new functional properties and 

relationships of biological relevance, in particular to reconstruct regulatory element architectures.  
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METHODS 

Cell culture 

K562, GM12878 and HeLaS3 were grown as per standard ENCODE protocols ([183-185]; 

Appendix C) and a detailed protocol is available at: http://genome.ucsc.edu/ENCODE/. 

Chromatin immuno-precipitation 

Cells were fixed by the addition of 1% v/v formaldehyde at room temperature for 10 min and 

quenched with 0.2 M glycine. Cell pellets were washed twice with PBS, lysed in CLB (25 mM 

HEPES pH7.8, 1.5 mM MgCl2, 10 mM KCl, 0.1% NP-40) with 1 mM DTT added just before 

use, and nuclei pelleted by centrifugation at 12 kG. Crude nuclei were then lysed in NLB (50 

mM HEPES pH7.9, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na deoxycholate) 

with 1% SDS. Nuclear extract was fragmented using a Branson 450 sonicator and/or Misonix 

3000 to yield chromatin of a suitable length for immuno-precipitation. Chromatin was spun at 12 

kG for 10 min to remove precipitates and the supernatant was flash frozen and stored at -80
o
C 

until use. Chromatin from 2x10
7
cell equivalents were used per ChIP. Chromatin was diluted 10x 

in NLB and pre-cleared with Protein A-Sepharose beads for 2 hr at 4
o
C. The supernatant was 

incubated with 5-10 µg of the appropriate antibody overnight at 4
o
C. Protein A-Sepharose beads 

were added for 2 hr then washed as follows: 2x NLB with 0.1% SDS; 2x NLB with 0.1% SDS 

and 640 mM NaCl; 2x WB (20 mM Tris-HCL pH8.0, 250 mM LiCl, 1 mM EDTA pH8.0, 0.5% 

NP-40, 0.5% Na deoxycholate); finally, 2x TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH8.0). 

Bound protein was eluted in TE with 1% SDS for 15 min at > 60
o
C. Protease inhibitor cocktail 

and 1 mM PMSF were added to all buffers just before use. Elutions were digested with 20 μL of 

20 mg/mL pronase for 2 hr at 42
o
C and crosslinks reversed by overnight incubation at 65

o
C. 

http://genome.ucsc.edu/ENCODE/
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DNA was purified using phenol:chloroform:isoamyl alcohol extraction utilizing high density 

MaXtract tubes (Qiagen, USA) as per manufacturer’s protocol. Aqueous phase DNA was 

precipitated by the addition of 200 mM NaCl, 500 mM NaAc, 80 μg/mL glycogen, and 2 

volumes of ethanol, while incubating for > 1 hr at -80
o
C, followed by centrifugation at 12 kG at 

4
o
C for 20 min. The precipitate was washed in 95% ethanol, resuspended in TE and stored at -

20
o
C until needed. 

ChIP-Sequencing 

ChIP DNA (2 biological replicates) prepared as above, and immuno-precipitated with anti-

NFYB or anti-NFYA antibody (Mantovani, R.), and input DNA (3 biological replicates) were 

end repaired with calf intestinal alkaline phosphatase (New England Biolabs, USA) and sent for 

sequencing to the Stanford Center for Genomics and Personalized Medicine or the Department 

of Molecular, Cellular and Developmental Biology at Yale University. Library preparation and 

Illumina sequencing were carried out as per manufacturer protocols and ENCODE standards 

([183-185], http://genome.ucsc.edu/ENCODE/). Datasets for NF-Y are deposited at UCSC as per 

ENCODE guidelines. Sequence reads (~28 nucleotides) were mapped to the H. sapiens genome 

(hg18) using Bowtie [247], allowing <= 2 mismatches per read and reads with > 10 reportable 

alignments were discarded. Binding sites were called using MACS v1.4 [248] at a P-value 

threshold of 10
-9

 (unless otherwise noted) on non-redundant reads using input to control for local 

genomic biases. See Supplemental Data for genomic coordinates. 

ENCODE Consortium data Sets 

ChIP-sequencing datasets for histone PTMs, TFs, and RNA-Seq for K562 and/or HeLaS3 cell 

lines were provided by the ENCODE Consortium via the UCSC Genome Browser and are 

http://genome.ucsc.edu/ENCODE/
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described there and ([183-185]; http://genome.ucsc.edu/ENCODE/; Appendix C). ChIP-Seq 

datasets were mapped and peaks called as described above. RNA-Seq data was prepared by 

Helicos (Cambridge, MA) as long (> 200 nt), poly-A enriched, cytosolic RNA and mapped using 

rSeq [249, 250]. Chromatin state maps were also from ENCODE and are described at 

http://genome.ucsc.edu/ENCODE/ and in [205]. The chromatin state “heterochromatin” was 

renamed to “non-modified-chromatin”. 

ChIP-QPCR 

Primer pairs were designed to amplify regions within 150 bp of the summit of ChIP-Seq peaks. 

Batch primer3 was used for primer design using default parameters [251]. All primers were 

tested for unique hits to the H. sapiens genome using UCSC In-Silico PCR (Jim Kent, UCSC) 

and by dissociation curve analysis. See supplemental data for primer sequences. QPCR was 

performed on an Applied Biosystems 7900FAST instrument (kindly provided by the HMS 

ICCB) on ChIP and input DNA (prepared as above, except Qiagen columns were used for 

purification), using 2x Taq Mix (see [252]), except 250 nM EVA green (Biotium, USA) replaced 

SYBR green. PCR program was: 95°C 10 min, followed by 40 cycles of 95°C for 5 sec, 60°C for 

30 sec. ChIP-QPCR values are represented as fold enrichment over an NF-Y non-bound control 

region as previously described [253]. Error bars are based on the standard deviation observed in 

2-4 biological replicates run in QPCR triplicates. 

Lentiviral knockdown and gene expression arrays 

Scrambled control (shSCM) and NFYA pLKO.1-shRNAs were designed by Sigma-Aldrich. The 

puromycin resistance cassette was replaced with an EGFP cassette. Viral production and 

transduction were carried out as previously described [254]. HeLaS3 cells were transduced with 

http://genome.ucsc.edu/ENCODE/
http://genome.ucsc.edu/ENCODE/
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shSCM or shNFYA viral supernatants, in triplicate, and cells collected after 48 hr of incubation. 

The distribution of cells within the cell-cycle was checked via FACS as previously described 

[254]. Knockdown efficiency was assayed by PCR on cDNA to known NFYA target genes and 

by Western Blot on whole cell protein extracts using anti-NFYA, and anti-Actin antibodies. For 

arrays, total RNA was prepared by Trizol extraction and Qiagen RNeasy kit purification, 

converted to biotinylated aRNA and hybridized to U133 Plus 2.0 GeneChip expression arrays 

using the 3’ IVT Express Kit (Affymetrix, USA) following the manufacturer’s protocol. Array 

hybridization was carried out by the Molecular Genetics Core Facility at Children’s Hospital 

Boston supported by NIH-P50-NS40828 and NIH-P30-HD18655. Arrays were RMA normalized 

[255], gene expression levels calculated, differential expression determined and probes annotated 

using the following R packages from the Bioconductor project: affy [256], limma [257], and 

annaffy [258]. 

Annotation of peaks to gene features, GO analysis (GREAT/IPA) 

Genomic locations of peak summits were submitted to the annotation tool GREAT [259] using 

the following parameters: whole genome background set, basal plus extension, proximal 

upstream = 5 kbp, proximal downstream = 1 kbp, distal = 1 mbp; or whole genome background 

set, basal, proximal upstream = 5 kbp, proximal downstream = 1 kbp. Molecular signaling 

pathways were visualized using IPA (Ingenuity Systems, USA, http://www.ingenuity.com) were 

a gray shaded node represents a K562 NFYB binding site located within the putative regulatory 

region, as defined by GREAT, of that molecule. Peak summits were annotated to genomic 

features using in-house scripts. 

http://www.ingenuity.com/
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De novo motif discovery 

DNA sequences corresponding to the regions +/-50 bp of ChIP-Seq peak summits for NFYB in 

K562 were gathered using BEDTools [260] and repeat masked using RepeatMasker with –q 

option [261]. Sequences were searched for de novo motifs using parallel MEME [262] using the 

following parameters: zoops, revcomp, minw [range 5-40], maxw [range 10-60]. Background 

letter frequencies were based on a 5-order Markov model derived from hg18 repeat masked 

sequences -350:+100 bp about RefSeq TSSs, the non-modified-chromatin or PcG repressed 

chromatin state maps. For NFYB, a second background model using FAIRE-Seq regions for 

K562 was also carried out and produced a similar motif (not shown). Tomtom [263] was used to 

compare de novo motifs to known motifs in the JASPAR_CORE_2009 database [264]. For TFs 

other than NF-Y, motifs were discovered as above except the top 1000 ChIP-Seq peaks of each 

factor were used and the top motif was selected, except for FOS, which produced the CCAAT 

box and was substituted for the motif derived from JUN ChIP-Seq. Similarly, for motifs in the 

non-modified-chromatin state MEME was run using a motif width range of 10-15, on all K562 

NFYB peaks residing within the non-modified-chromatin state, on non-masked sequences, with 

a background set derived from the entire non-modified-chromatin state of K562 [205]. 

Motif stereo positioning 

NFYB summit locations from K562 were scanned using Pscan [265], for matches to the NF-Y 

matrix in the JASPAR_CORE_2009 database (MA0060.1) [264]. For NF-Y loci with the best 

matrix match on the positive strand, the first C (of CCAAT) of the best match was set to 0 bp. 

Genomic sequences +/-75 bp from the motifs were retrieved and scanned with Pscan using the 

collection of matrices in the JASPAR_CORE_2009 database [264]. For each JASPAR matrix, 

only regions containing a best matrix match > 0.8, computed as described in [265], were 
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considered for further analyses. This population was deemed “predicted”. For each "predicted” 

population, the subpopulation of regions that overlapped the relevant TF ChIP-Seq peak dataset 

were deemed “ChIP verified”. The frequency of the best motif occurrences for each motif matrix 

at each bp from the CCAAT box was determined for each population and plotted as the 

percentage of motifs. 

Histone PTMs and chromatin associated factor clustering 

Density arrays at NFYB peak summits spanning either +/-5 kbp or +/-500 bp representing ChIP-

Seq read counts of histone PTMs (H3K79me2, H3K4me3, H3K27me3, H3K4me1, H4K20me1, 

H3K36me3, H3K4me2, H3K9ac, H3K9me1, H3K27ac), NFYA , NFYB, and RNA Pol II or 

NFYA, NFYB and 78 chromatin associated factors (see Supplemental Figure 11, A for the full 

list) with appropriate input samples, were computed using the ranked based correlation method 

of seqMINER v1.2 [266]. Clustering was carried out using the following parameters: T = 10, K-

means. Clusters from 3-50 were considered. Non-normalized raw read counts are depicted in 

Figure 3, A and Supplemental Figure 11, A. 

Mapping to repeats 

Bowtie [247] was used to map the NFYB and input ChIP-Seq datasets to a reference “genome” 

composed of Repbase v15.08 [267] entries - simple.ref, humrep.ref, humsub.ref and pseudo.ref – 

allowing <= 2 mismatches per read and reads with > 1 alignment had one alignment selected at 

random. Read counts for each Repbase entry were tallied and the ChIP:input ratio calculated. 

Individual consensus sequences of repeat elements were scored for the presence or absence of 

the CCAAT box using the matrix derived from this paper and FIMO [268] with matches called at 

a significance P-value threshold of 10
-4

. 
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Hierarchical clustering of binding events to promoters and enhancers 

Regions considered promoters and enhancers were taken from the K562 chromatin state maps of 

[205]. Regions were considered “bound” if an NFYB peak summit directly overlapped the 

region. Regions were considered “non-bound” if no NFYB peak overlapped the region of interest 

and the region had < 1.5x the normalized fold-over-input ChIP-Seq enrichment for NFYB. At all 

NFYB-bound or NFYB non-bound regions, chromatin associated factors were scored as present 

(1) or absent (0) based on directly overlapping peak summits. The R packages pvclust [269] and 

snow (http://cran.r-project.org/web/packages/snow/) were used to cluster the matrices and to 

calculate P-values using multiscale bootstrap resampling. Parameters were: 

method.dist="binary", method.hclust="ward", nboot=10000. Red and blue numbers in plots 

indicate the approximately unbiased (AU) P-values and the bootstrap probability (BP), 

respectively, as detailed in [269]. 

Statistical test of TF co-association with NF-Y 

NFYB bound regions were as above. Promoters or enhancers occupied by NFYB we assessed for 

individual co-occupancy of 78 transcriptional regulators. The significance of the overlap was 

tested by a 2x2 contingency table using Fisher’s exact test and calculated using [270]. 

Western blot and RT-PCR 

As described in [254]. Briefly, total cell protein extracts were prepared by resuspending the cell 

pellets from shSCM or shNFYA infected cells in lysis buffer (50 mM Tris–HCl pH 8.0, 120 mM 

NaCl, 0.5% NP-40, 1 mM EDTA, protease and phosphatase inhibitors). An equivalent amount of 

cellular extracts were resolved by SDS–PAGE, electro transferred to PVDF membrane, and 

http://cran.r-project.org/web/packages/snow/
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immuno-blotted with the following antibodies at 1:1000 in TBS containing 1 mg/ml BSA: anti-

NFYA (sc-10779), and anti-Actin (sc-1616) from Santa Cruz Biotechnology, USA. 
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CHAPTER 3: Genome-wide dynamics of STAT3, FOS and cis-regulatory 

element usage during inflammatory-mediated oncogenic transformation 
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ABSTRACT 

Oncogenic transformation can be triggered by inflammatory signaling pathways and 

inflammation has been linked to diverse types of cancer. Here we use an inducible isogenic 

model of inflammatory oncogenic transformation to track the genomic changes in the 

inflammatory transcription factor (TF) STAT3, a partnering TF, FOS, and genome-wide cis-

regulatory element (CRE) usage during a time course of transformation. STAT3 genomic 

binding is highly induced during transformation, linked to preexisting FOS bound sites, but does 

not create new CREs, likely due to STAT3s inability to bind to DNA motifs outside of open 

chromatin. Surprisingly, CRE usage is highly stable during transformation, a process with large 

scale phenotypic and gene expression changes. STAT3 regulated AP-1 factors are deregulated 

during transformation and may regulate the embryonic-like and bone-metastasis phenotypes 

commonly observed in cancer and breast cancer, respectively. Using siRNA we found that direct 

or indirect regulation by STAT3 accounts for 1/3
rd

 of the gene expression program during 

transformation and that, a second inflammatory TF, NFκB likely controls the rest. We also 

highlight putative roles for circadian rhythm related TFs in transformation and the likely 

inhibitory role of TSC22D3 acting on an epigenetic switch that initiates and maintains the 

transformed phenotype. This study is one of the first to track a critical determinant TF and CRE 

usage during a cellular phenotypic change, and the first for transformation. The genome maps of 

STAT3, FOS and CREs catalogued here will be a valuable asset to the community for future 

studies of inflammation-mediated oncogenic transformation. 
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INTRODUCTION 

Oncogenic transformation is the phenotypic process a normal cell undergoes to become 

cancerous. It has long been known to be driven mostly by the perturbation of kinases (e.g. SRC, 

RAS, BCR-ABL, ERBB2), which drive the inappropriate activity of downstream TFs. These 

factors mediate transcriptional changes within the cell which ultimately mediate the phenotypic 

qualities observed in the transformed cancerous cell type such as invasion, metastasis, loss of 

contact mediated growth inhibition, uncontrolled proliferation and formation of tumors in nude 

mice. This process has been thoroughly studied over the decades and the signal transducer and 

activator of transcription 3 (STAT3) has been found to be a central mediator of the 

transcriptional changes in many different types of cancers: breast cancer [175], pancreatic cancer 

[176, 177], prostate cancer [178], liver cancer [179], melanoma [180], among others (for a 

review see [181, 182]). STAT3 directly regulates the genes involved in cell proliferation, cell 

cycle control, metastasis, apoptosis, angiogenesis, and embryogenesis, and as such, is a key 

factor in the process of transformation. 

STAT3 is a DNA binding TF [138, 139], that is part of a larger family consisting of 7 

members. STAT3 contains an SH2 domain and is phosphorylated at tyrosine 705 (Tyr
705

) and 

serine 727 (Ser
727

) in response to many cytokines and growth factors [161]. Tyr
705

 

phosphorylation is critical for the dimerization, nuclear localization, and gene activation by 

STAT3, while Ser
727

 phosphorylation plays a more minor role in modulating STAT3 activity 

[164, 271, 272]. SRC directly phosphorylates STAT3 in vitro [273] and co-immuno-precipitates 

with STAT3 from cellular extracts [274-276], and is itself an oncogenic kinase. Many primary 

tumors [277-283], tumor derived cell lines, and v-Src or ABL kinase transformed cell types 

contain constitutively activated STAT3 [162, 273, 281, 284, 285]. Of primary breast cancer 
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specimens, 30-60% contain Tyr
705 

phosphorylated STAT3 [286-289]. Breast cancer cell lines 

also have elevated levels of Tyr
705 

STAT3 and inhibition of STAT3 activity impairs proliferation 

and induces apoptosis [175, 290, 291]. Pertinently, overexpression of a highly active form of 

STAT3 (STAT3-C) in H. sapiens mammary epithelial cell lines [292] or fibroblasts [293] has 

been shown to be sufficient to induce transformation. This was shown by anchorage independent 

growth in soft agar and tumor development in nude mice, indicating that the transcriptional 

output of activated STAT3 is all that is required, at least in breast cancer epithelial cells and 

fibroblasts, for a transformed phenotype. In addition, inactivation of STAT3, by dominant 

negative constructs [284], has been shown to inhibit Src induced transformation and reduce 

tumor size/burden in murine models. However, STAT3 does not act alone, as we have previously 

shown that inflammation-mediated oncogenic transformation of MCF10A-ER-Src cells is 

dependent upon a second inflammatory transcription factor, NFκB, as well as STAT3 [289]. 

In previous work in the Struhl Lab, an inflammatory cancer gene signature was found on the 

basis of the identification of genes that were differentially expressed in 2 isogenic models of 

oncogenic transformation [294]. One model involved non-transformed mammary epithelial cells 

(MCF-10A; [295]) containing ER-Src, a derivative of the Src kinase oncoprotein that is fused to 

the ligand-binding domain of the estrogen receptor (ER) [296]. Treatment of such cells with 

tamoxifen (TAM) rapidly induces Src kinase activity which activates an epigenetic switch 

involving STAT3, NFκB and downstream effectors [289, 297], that initiates and maintains 

transformation. Inactivation of STAT3 or NFκB prevents ER-Src induced transformation. Upon 

Src activation, phenotypic transformation is observed within 24 to 36 hours ([289, 298]; Figure 

15), thereby making it possible to kinetically follow the transition between non-transformed and 

transformed isogenic cells. 
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Here we use this model to further explore the transcriptional regulatory network involved in 

inflammation-mediated transformation, specifically focusing on STAT3. To gain a 

comprehensive understanding of the molecular events that occur upon Src activation in 

MCF10A-ER-Src cells, we performed ChIP-Seq, FAIRE-Seq, and gene expression studies at 

several time points post Src activation, followed by genomic analyses.  
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RESULTS 

Study design 

The cell line MCF10A-ER-Src provides an isogenic model for the study of the time-dependent 

molecular dynamics that occur during oncogenic transformation. Upon treatment with tamoxifen, 

cells undergo a rapid, and epigenetically maintainable, phenotypic and morphological 

differentiation from an immortal non-transformed cellular state to a transformed cancerous 

cellular state within 24-36 hr [289, 294]. To explore the relationship between a critical 

determinant TF (STAT3), a partnering TF (FOS), cis-regulatory-element usage and changes in 

gene expression during this pathologic cellular differentiation process, we sampled the 

differentiation pathway by ChIP-Seq, gene expression microarrays and FAIRE-Seq (Figure 9). 

Focusing on one of the main TFs mediating this process, we also performed siRNA knockdown 

of STAT3, prior to transformation, to determine its dependent and independent contribution to 

the transcriptional signal. 

Biological functions of chromatin bound STAT3 

The activation of STAT3 is a hallmark of oncogenic transformation in MCF10A-ER-Src 

cells (Figure 10, A). It has been known since the late 90s that overexpression of constitutively 

active STAT3 can lead to transformation of a non-transformed, though immortal, cell line and 

that many different types of cancers have constitutively active STAT3. To identify where STAT3 

was binding in the genome, STAT3 ChIP-Seq was performed at 0 hr and 36 hr post EtOH 

treatment, and 4 hr, 12 hr and 36 hr post ER-Src activation (TAM treatment). We identified 

78,293 non-redundant sites of STAT3 occupancy within MCF10A-ER-Src cells and 15,098 

genes which contained at least one STAT3 binding site within their putative regulatory domain  
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  Figure 9: Experimental study design 

Illustration depicting the basic outline of the experimental design showing tamoxifen or 

ethanol treatment of MCF10A-ER-Src cells and the harvesting of chromatin or RNA for 

ChIPs, FAIRE and gene expression analyses. 
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Figure 10: STAT3 during transformation and the GO terms associated with differential 

binding 

A. Western blot of Tyr
705

 phosphorylated STAT3 in MCF10A parental cells and MCF10A-

ER-Src cells treated with EtOH or TAM for 24 hr. Tubulin was used as loading control. 

Intensity values were normalized to tubulin and expressed as relative to the parental cell 

line. 

B. The STAT3 DNA binding motif derived from ChIP-Seq identified STAT3 binding sites. 

C. Gene ontology terms significantly bound by transformation dependent differential STAT3 

sites. 
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Figure 10 (Continued) 
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(as defined by GREAT, see Methods). Only 3.3% of STAT3 sites (n = 2,629) were not associated 

with a RefSeq gene. De novo motif analysis of the top 10,000 of these sites revealed the 

canonical STAT3 motif (Figure 10 , B). The location of differential STAT3 binding sites (see 

below) in the genome revealed that many genes linked to inflammation were significantly over-

represented (“IL-6 signaling”, “NFκB signaling”, and “TGF-beta signaling”) as was expected 

(Figure 10, C). STAT3 was also located within the regulatory regions of genes from ontologies 

such as “cellular movement”, ”growth and proliferation”, “cell death” and “embryonic 

development” (Figure 10, C), key processes all linked to cancer, and, as such, confirming the 

central role of STAT3 in transformation. 

Transformation increased STAT3 DNA binding activity 

STAT3 RNA levels were increased by ~50% during transformation, and STAT3 activity, as 

measured by Tyr
705

 phosphorylation, was increased ~3 fold. The increase in STAT3 activity was 

reflected in an increase in average ChIP signal at STAT3 bound loci (Figure 11, A-E) and the 

induction of new transformation dependent STAT3 sites. 26,783 STAT3 binding sites (cut off P-

value <= 10
-9

) were discovered in non-transformed MCF10A-ER-Src cells, probably 

representing a basal level of ER-Src signaling (Figure 10, A). In MCF10A-ER-Src cells 

undergoing Src induced transformation, STAT3 bound sites at 4 hr, 12 hr and 36 hr post 

induction increased to 77,262, 67,015, and 74,584 sites, respectively. While the increase in 

transformation induced STAT3 sites is impressive, only 5.4% (n = 4,157), 4.8% (n = 3,200) and 

4.7% (n = 3510) of STAT3 sites at these time points, respectively, were not detected in control 

cells and induced greater than ~5 fold (mean + 1 x standard deviation) in ChIP signal intensity. 

These STAT3 sites will hitherto be referred to as differential (similarly for FOS bound sites, see 

below). 
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Figure 11: Genome view of STAT3 binding during transformation 

ChIP-Seq read counts at the ARNTL2 (A), SOCS3 (B), TSC22D3 (C), NFKB1 (D) and IL6 

(E) loci during transformation of MCF10A-ER-Src cells. “4 hr”, “12 hr” and “36 hr” 

indicate time post ER-Src induction by TAM treatment. EtOH and TAM input samples 

are single replicates, all others are of 2 biological replicates combined. ChIP-Seq and 

FAIRE-Seq elements deemed to be transformation dependent differential (“Diff.”) sites 

and all sites derived from TAM and EtOH treated samples are shown. Red arrows 

highlight differential (“Diff.”) ChIP-Seq sites. 
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Figure 11 (Continued) 
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Figure 11 (Continued) 
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The location of STAT3 during transformation 

STAT3 is mainly located at regions outside of proximal promoters, which has been observed 

previously [299, 300]. In MCF10A-ER-Src cells, only 7% of STAT3 binding sites were located 

within 2500 bp upstream of a RefSeq transcriptional start site (TSS) (Figure 12, A). Most 

STAT3 sites were located within introns (40%) and regions distal to RefSeq gene features (42%) 

(Figure 12, A), most of which were located within CREs and were therefore most likely 

enhancers. Of all STAT3 sites, 57% directly overlapped a CRE. The locations of differential 

STAT3 sites were primarily formed at locations distal to RefSeq TSSs. Differential STAT3 sites 

were found 250 bp upstream of RefSeq TSSs at a rate similar, and not reaching significance, to 

that of the genomic background (0.4% vs. 0.3%), however, all STAT3 sites were found at a rate 

of 2.6% (P-value < 10
-15

; Figure 12, A). This preference is also seen at regions 250 – 2500 bp 

upstream of RefSeq TSSs (2.6% vs. 4.1%, P-value < 10
-9

; Figure 12, A). Moreover, there was a 

statistically significant increase in distal intergenic STAT3 sites in the differential population 

compared to all STAT3 sites (49% vs. 42%, P-value < 10
-15

; Figure 12, A). Plots of the density 

of STAT3 sites in relation to RefSeq TSSs also showed that STAT3 sites that were differential 

during transformation were preferentially located in regions distal of TSSs (Figure 12, B). 

The bias of differential STAT3 sites towards distal intergenic regions was unlikely to be due 

to STAT3 alone, and most likely reflected the biased location of a co-operating factor(s) and 

their DNA motif(s) and/or saturation of STAT3 binding to proximal promoter locations. A 

comparison of known motifs between differential STAT3 sites and all STAT3 sites implicated 

the AP-1 (occurring as “AP-1” and “NFE2L1::MafG”), NOBOX and PRXX2 motifs in 

cooperating with STAT3 at these loci (not shown). Neither NOBOX, an oocyte specific 

transcriptional activator, nor PRXX2, interestingly involved in mesenchymal cell proliferation  
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Figure 12: Transformation induced differential STAT3 sites are preferentially located 

outside of proximal promoters 

A. Distribution of STAT3 sites at RefSeq gene features. 

B. ChIP-Seq peak density of STAT3 and NF-Y about RefSeq TSSs. Differential STAT3 sites 

were located more distally than all STAT3 peaks from 4 hr, 12 hr and 36 hr post ER-Src 

induction. 0 bp represents the TSS. 
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Figure 12 (Continued) 



85 

 

and wound healing, had detectable RNA in MCF10A-ER-Src cells (not shown). All members of 

the FOS and JUN family (AP-1 factors) were expressed (Figure 17, A). 

STAT3 was located at FOS bound sites 

The increase in STAT3 occupancy across the genome observed during transformation was 

closely associated with FOS binding. ChIP-Seq of the AP-1 factor FOS revealed that 82% of all 

STAT3 sites directly overlapped FOS bound sites. As can be seen in Figure 13, A, there was a 

large overlap between STAT3 and FOS sites throughout transformation. Specifically observing 

STAT3 differential sites indicated that nearly all (88%) were associated with a pre-existing FOS 

bound site, and not with differential FOS sites (25%; Figure 13, B). 

Cis-regulatory elements were static during cancer transformation 

To identify the CREs utilized during transformation we performed FAIRE (formaldehyde 

assisted isolation of regulatory elements) followed by massively parallel DNA sequencing [301, 

302]. FAIRE allows the identification of nucleosome free genomic regions by utilizing the 

preferential solubility of fragmented, non-protein bound DNA in the aqueous phase of phenol-

chloroform purification. This enriches for CREs which are depleted or free of nucleosomes 

[303]. Nucleosomes are, by far, the major protein component bound to the genome, and are 

efficiently cross-linked to DNA by formaldehyde whereas TFs, in general, are not [304, 305]. 

Thus, nucleosome depleted FAIRE regions are enriched and can be detected by DNA 

sequencing. Cross-linked chromatin from 0 hr untreated (control), and 4 hr, 12 hr and 36 hr 

TAM (tamoxifen) treated cells were analyzed to identify CREs used during transformation. 

Across all our samples, 100,597 non-redundant CREs were identified in MCF10A-ER-Src 

cells which was in line with the number of FAIRE-Seq defined CREs found in other cell types  
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Figure 13: Overlap of STAT3 and FOS sites during transformation 

A. STAT3 and FOS sites from each time point that directly overlapped. 

B. Transformation dependent differential STAT3 sites directly overlapping all FOS sites 

from 4 hr, 12 hr and 24 hr post ER-Src induction or transformation-dependent differential 

FOS sites. 
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Figure 13 (Continued) 



88 

 

[184, 306]. The locations corresponded well to the known locations of TFs derived from ChIP-

Seq experiments in MCF10A-ER-Src cells (Figure 14, A). Surprisingly, given the major 

phenotypic and transcriptional changes observed during transformation (Figure 15; Figure 22, 

E), only 6.6% (n = 6617) of CREs were differentially present in at least one time point during 

transformation (Figure 14, B). An analysis of differential CREs indicated that they were 

indistinguishable from the genomic background in terms of gene ontologies (not shown), with no 

significantly enriched terms. The differential CREs were most likely false positives and were not 

considered further. 

Differential STAT3 sites did not create new CREs 

In addition to the above findings, the differential CREs were not the preferential location of 

differential STAT3 or FOS bound loci (not shown; note “Diff.” FAIRE track in Figure 11 and 

Figure 20). STAT3 activity was increased during transformation and would be expected to be 

preferentially located at newly formed transformation-dependent CREs. The vast majority of 

STAT3 sites represented a modest, but en masse genome-wide accumulation of STAT3 on 

chromatin which was not reflected in the generation of new CREs. Of differential STAT3 sites, 

38% (n = 2266) directly overlapped a stable CRE, however, only 0.24% (n = 14) of differential 

STAT3 sites occurred at differential CREs and only 0.27% (n = 18) of differential CREs 

contained differential STAT3 binding sites. Therefore, differential STAT3 sites did not elicit the 

mass formation of new transformation-dependent CREs, but rather largely utilized the pre-

existing population. 
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Figure 14: Co-localization of FAIRE-Seq regions and TF binding sites 

A. FAIRE-Seq regions co-localized with TF binding sites. ChIP-Seq datasets of TFs, RNA 

Pol II and RPC155 (Pol III subunit) in MCF10A-ER-Src cells at the EPAS1 locus with the 

location of FAIRE-Seq sites indicated.  

B. The active CREs identified by FAIRE-Seq during transformation and clustering of the 

differential CREs (highlighted in red) based on their dynamics over the time-course 

assayed. 
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  Figure 14 (Continued) 
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Figure 15: Morphological changes of MCF10A-ER-Src cells undergoing transformation 

MCF10A-ER-Src cells, at two cell densities, were treated with EtOH or TAM (induces 

ER-Src) at time 0 hr and tracked by DIC time-lapse microscopy until 36 hr post treatment. 

The key phenotypic differences between transformed and non-transformed cells are 

highlighted. All images were taken at the same magnification. A video of the time-lapse is 

available in Supplementary Videos. 



92 

 

 

  

Figure 15 (Continued) 
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STAT3 had a limited ability to bind to its motif outside of nucleosome depleted CREs 

To determine if STAT3 was able to bind to its motif outside of nucleosome-depleted CREs, we 

compared STAT3 bound sites, the genomic locations of STAT3 DNA motifs and FAIRE-Seq 

regions. CREs containing a STAT3 motif where exceptionally well occupied by STAT3. At a 

motif quality score of 14, there were ~26,000 potential STAT3 binding sites within the H. 

sapiens genome of which only 8% were occupied by STAT3, whereas 80% of those falling 

within FAIRE-Seq regions were bound by STAT3 (Figure 16). Access of STAT3 to its motif 

was largely limited to nucleosome-depleted open genomic loci and similar results were found for 

NFκB and MYC. MYC is known to bind only to H3 acetylated loci [307] which are nucleosome 

depleted open regions. In comparison, genome-wide FOS binding sites were well occupied 

(30%), which may be due to cooperation with NF-Y (this dissertation, Chapter 2) or the biased 

prevalence of AP-1 motifs at constitutively open regions. In this regard, STAT3 bound 

opportunistically, present at most if not all CREs that contained a suitable DNA motif for 

binding, with the limiting step being the post-translational activation of STAT3 (i.e. 

phosphorylation). 

STAT3 regulated AP-1 factors were likely the predominant transcriptional regulators 

during the later stages of transformation 

Temporally, FOS RNA levels peaked at 24 hr post induction of ER-Src and this response was 

STAT3-dependent (Figure 17, A). FOS is part of the AP-1 TF complex, a heterodimeric 

regulatory complex composed of FOS (FOS, FOSL1, FOSL2, FOSB) and JUN family (JUN, 

JUNB, JUND) members, many of which were significantly differentially expressed during 

transformation (FOS, FOSL1, FOSL2, JUNB, JUND; Figure 17, A). Importantly, in a STAT3-

dependent manner, FOSL2 and JUNB were activated during transformation, whereas JUND was  
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Figure 16: Occupancy of TF DNA binding site motifs in CREs 

The DNA binding site motifs of STAT3, MYC, FOS and NFκB, at varying motif quality 

scores, were computationally discovered genome-wide and the percentage that resided 

within a ChIP-Seq peak from the respective TF were calculated and plotted. For FAIRE-

Seq regions, only those motifs that directly overlapped a FAIRE element were considered. 

The number of motifs at each quality score within the genome or FAIRE elements is also 

shown. 
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repressed (Figure 17, A). An analysis of the regulatory regions bound by FOS sites that were 

differential during transformation highlighted its importance to many STAT3 regulated processes 

such as “G-protein coupled receptor signaling”, “NFκB signaling”, “Cellular movement”, and 

“Cell death” (Figure 17, B). In this regard, FOS cooperates with STAT3 in many key processes 

of transformation. De novo motif analysis of the top 10,000 FOS bound sites revealed the 

canonical AP-1 motif (Figure 17, C). 

FOS bound to embryonic stem cell and bone metastasis related genes and pathways 

Differential FOS sites were enriched for embryonic stem cell and development associated gene 

ontology terms: “Role of NANOG in ESC pluripotency”, “Human ESC pluripotency”, 

“Organismal development”, “Embryonic development”, and “Organ development” (Figure 17, 

B). Moreover, IPA analysis (see Methods) of the STAT3-dependent transcriptional program at 

24 hr post ER-Src induction found FOS, FOSL2 and JUND, as key downstream effectors in a 

pathway which was regulated during transformation that linked cellular assembly and 

organization, embryonic development and organ development genes, via TGFβ3 signaling 

through the guanine nucleotide exchange factor SOS, and the extra-cellular matrix protein, 

tenascin C (TNC) (Figure 18, B). High TNC expression is a biomarker for poor prognosis in 

breast cancer [308, 309] and was found to be essential for breast cancer metastasis [310-312]. 

The genes within the ontology “Human embryonic stem cell pluripotency” containing a 

differential FOS binding site are illustrated and listed in Figure 19, A and B. In addition, other 

TFs linked to stem cell function were significantly differentially regulated at the RNA level 

during transformation: PAX8, SOX4/9, STAT3, ZBTB16, and LEF1 (Figure 28). 

A second gene ontology category whose genes were significantly enriched for FOS 

differential sites, and which is pertinent to the clinical manifestation of breast cancer, were  
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Figure 17: Deregulation of AP-1 factors and the GO terms associated with differential 

FOS binding during transformation 

A. Expression array analysis of AP-1 factors during transformation and their transcriptional 

dependence on STAT3. Shown are the normalized RNA expression levels at 4 hr and 24 

hr post EtOH or TAM treatment in samples transfected with siSCM (scrambled control) 

or siSTAT3. RNA levels are expressed as fold change over the 4 hr EtOH and siSCM 

treated sample. 

B. Significant gene ontology terms bound by transformation-dependent differential FOS 

sites. 

C. The FOS DNA binding site motif derived de novo from FOS ChIP-Seq. 
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Figure 17 (Continued) 
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Figure 18: Ingenuity Pathway Analysis of genes differentially regulated during 

transformation 

A. The top interaction network derived from STAT3-dependent and transformation-

dependent differentially regulated genes at 4 hr post induction of ER-Src. Green and red 

shading indicates down- and up-regulated by siSTAT3 treatment, respectively. Only 

genes that were differentially regulated by transformation and by siSTAT3 were 

considered. 

B. Similar to A except at 24 hr post ER-Src induction. 

C. The top interaction network derived from STAT3-independent and transformation-

dependent differentially regulated genes at 4 hr post induction of ER-Src. Green and red 

shading indicates down- and up-regulated during transformation, respectively. Only genes 

that are differentially regulated by transformation and not by siSTAT3 were considered. 

D. Similar to C except at 24 hr post ER-Src induction. 

Lines between two genes indicate a known or predicted, direct or indirect interaction. 
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Figure 18 (Continued) 
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Figure 18 (Continued) 
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Figure 18 (Continued) 
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Figure 18 (Continued) 
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Figure 19: Embryonic-related genes bound by FOS in MCF10A-ER-Src cells 

A. The Ingenuity Systems canonical pathway “Human embryonic pluripotency” showing 

genes whose regulatory domain (see GREAT, Methods) was bound by transformation-

dependent differential FOS sites (highlighted in gray shading). 

B. Similar to A. Shows the differential gene expression changes upon ER-Src activation at 4 

hr and 24 hr post induction. Genes not showing expression changes were not significantly 

altered during transformation. 
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Figure 19 (Continued) 
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Figure 19 (Continued) 
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mechanisms of osteo-pathologies and associated inflammation: “Role of osteoblasts, osteoclasts 

and chondrocytes in RA”, and “Role of macrophages, fibroblasts and endothelial cells in RA” 

(Figure 17, B). Breast cancers frequently metastasize to and reoccur within bone, where it 

induces pathologic osteoclast-mediated bone resorption leading to osteolytic lesions, which are 

the main causes of pain and disability in breast cancer patients. Here we find that key genes 

known to be involved in this process (BMP2, MMPs and TNFRSF11A (RANK)) contained 

differential FOS binding sites (Figure 20, A-C) and were differentially regulated during 

transformation. The genes within the ontology “Role of osteoblasts, osteoclasts and 

chondrocytes in RA” containing a transformation dependent differential FOS binding site are 

illustrated and listed in Figure 21, A-D. 

Functional inactivation of STAT3 during transformation 

To understand if STAT3 alone can explain the gene transcription program observed during 

transformation and to further define its direct targets, we knocked down STAT3 by siRNA and 

tracked perturbations in gene expression by microarray expression analysis. siRNAs specific to 

STAT3 or a control scrambled siRNA (siSCM) were transiently transfected into non-confluent 

MCF10A-ER-Src cells. After two days in culture, cells were treated with either tamoxifen 

(TAM, to induce ER-Src and transformation) or EtOH (control for cell growth and crowding). 

After an additional 4 or 24 hr in culture, RNA was extracted and assayed by 3’-biased 

Affymetrix H. sapiens whole genome gene expression arrays. 

To assess the quality of the STAT3 knockdown, parallel protein samples were harvested 72 

hr post siRNA treatment (i.e. 24 hr post TAM treatment) and assayed by Western blot (Figure 

22, A). A robust knockdown of STAT3 protein levels by > 95% was observed in two replicates. 

In addition, microarray expression values showed a > 10 fold decrease in STAT3 RNA level only  
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Figure 20: Genome view of FOS binding during transformation 

ChIP-Seq read counts at the TNFRSF11A, BMP2 and MMP loci during transformation of 

MCF10A-ER-Src cells. 4 hr, 12 hr and 36 hr indicate time post ER-Src induction by TAM 

treatment. EtOH and TAM input samples are a single replicate, all others are of 2 

biological replicates combined. ChIP-Seq and FAIRE-Seq elements deemed to be 

transformation dependent differential (“Diff.”) sites and all sites derived from TAM and 

EtOH treated samples are shown. Red arrows highlight differential (“Diff.”) ChIP-Seq 

sites. 
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Figure 20 (Continued) 
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Figure 21: Bone metastasis related genes bound by differential FOS sites 

A. B. C. The Ingenuity Systems canonical pathway “Role of osteoblasts, osteoclasts and 

chondrocytes in rheumatoid arthritis” showing genes whose regulatory domain (see 

GREAT, Methods) was bound by transformation-dependent differential FOS sites 

(highlighted in gray shading). 

D. Similar to A. Shows the differential gene expression changes upon ER-Src activation at 4 

hr and 24 hr post induction, with P-values. Genes not showing expression changes were 

not significantly altered during transformation. 
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Figure 21 (Continued) 
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Figure 21 (Continued) 
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Figure 21 (Continued) 
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Figure 21 (Continued) 
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upon siSTAT3 treatment (Figure 22, B), and the expression of known STAT3 activated genes 

(CD46, FOS, SERPIN3A, SOCS3 and VEGFA) were effectively perturbed (CD46 less so) 

(Figure 22, C). To assess the transformation process, genes known to be induced during 

transformation in MCF10A-ER-Src cells were checked in the microarray data (Figure 22, B). In 

addition, microscopic examination of cell morphology confirmed that transformation had 

occurred in the siSCM TAM treated cells, but not in the siSTAT3 TAM or any EtOH treated 

cells (not shown). A list of the top 20 genes at 4 hr or 24 hr that were STAT3-dependent or 

STAT3-independent and transformation-dependent are listed in Figure 23, A and B. 

A comparison of the gene ontology terms that were significantly enriched in those genes that 

were differentially regulated during transformation in a STAT3-dependent or independent 

manner revealed that STAT3 was more important for regulating genes involved in the 

inflammatory response and less important in regulating genes that were involved in cellular 

metabolism, especially at the 24 hr time point. Note the presence of “Butanoate metabolism”, 

“Galactose metabolism”, “Starch and sucrose metabolism” and “Aminosugars metabolism” in 

the STAT3-independent 24 hr time point (Figure 24, B) and the absence of metabolism related 

terms in the STAT3-dependent 24 hr time point (Figure 24, A). IPA pathway analysis (see 

Methods) revealed that NFκB may be controlling expression of the metabolism genes as a 

network linking carbohydrate metabolism, drug metabolism, and small molecule biochemistry 

was the top network (Figure 18, D) linking the differentially expressed genes at 24 hr post ER-

Src induction that were STAT3-independent, with NFκB as a central effector. 

STAT3 activity accounts for a large proportion of differential gene regulation 

During transformation, 384 and 1472 genes were differentially regulated (P-value <= 10
-4

, log2 

fold change of >= 0.5) at 4 hr and 24 hr post ER-Src activation. Specific functional inactivation  
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Figure 22: Knockdown of STAT3 during transformation 

A. Western blots of protein extracts from TAM treated MCF10A-ER-Src cells done in 

parallel to RNA samples used for expression microarray analysis. STAT3 protein levels 

were reduced > 25 fold upon siSTAT3 knockdown by 24 hr. 

B. Normalized RNA microarray expression values of STAT3 and four genes known to be 

differentially regulated during transformation. 

C. Similar to A, except showing RNA levels of genes known to be regulated by STAT3 

indicating functional inactivation of STAT3 was achieved. 

D. Similar to A, except showing expression levels of 4 “housekeeping” genes, expressed at 

different levels, indicating that arrays were normalized. 

E. The numbers of genes differentially up or down regulated during transformation at 4 hr 

and 24 hr post ER-Src activation and their dependence on STAT3 (see Methods). 
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Figure 22 (Continued) 
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Figure 23: Top 20 differentially regulated genes during transformation and siSTAT3 

treatment 

A. At 4 hr post ER-Src activation (+TAM). 

B. At 24 hr post ER-Src activation (+TAM). 



118 

 

 

  

Figure 23 (Continued) 



119 

 

 

  

Figure 23 (Continued) 
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Figure 24: Gene ontology terms associated with STAT3-dependent genes during 

transformation 

A. Genes significantly differentially regulated during transformation that are significantly 

affected by STAT3 knockdown. 

B. Genes significantly differentially regulated during transformation that are not significantly 

affected by STAT3 knockdown. 
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Figure 24 (Continued) 
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of STAT3 revealed a large proportion, at least 34% (n = 129) and 31% (n = 451) respectively, to 

be directly or indirectly transcriptionally dependent on STAT3 (Figure 22, E). Genes activated 

during transformation, but not those that were repressed, correlated with both the number of 

differential STAT3 bound loci and the fold change in STAT3 ChIP signal, indicating that 

STAT3 directly regulated only genes that were activated during transformation and not those that 

were repressed (Figure 25, A-H).  

Motif analysis of the promoters of STAT3 regulated and/or transformation specific 

differentially regulated genes did not find the STAT3 motif significantly enriched in the 

promoters of early (4 hr) or late (24 hr) responsive genes (Figure 26). This may reflect the 

general promoter distal positioning of STAT3 in the genome. STAT3 may be cooperating with 

factors that bind the RXRα DNA motif to activate genes early during transformation. The RXRα 

motif was found significantly enriched in transformation activated promoters, and in STAT3-

dependent promoters, and was the top motif in the promoters of genes differentially regulated at 

4 hr, though it did not reach statistical significance in this latter category (Figure 26).  

Candidate TFs regulating transformation repressed genes 

Based on the above observations from STAT3 knockdown experiments, and the fact that the 

STAT3 motif was conspicuously absent from the promoters of repressed genes, STAT3 

indirectly regulated at least 35% (n = 295) of those genes that were repressed during 

transformation. The only motif significantly enriched within STAT3-dependent transformation 

repressed genes was that for INSM1 (Figure 26). Neither INSM1 nor INSM2 RNA was expressed 

in MCF10A-ER-Src cells (not shown) and were therefore unlikely candidates. A novel approach 

to discern the transcriptional regulators of a gene set, introduced by Ingenuity Systems, looks for 

a statistically significant overlap with the genes that are experimentally validated functional  
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Figure 25: Association of transformation induced chromatin bound STAT3 with 

transformation-dependent differential gene expression 

A. All genes differentially expressed during transformation were considered, separated into 

up- and down-regulated genes by siSTAT3 treatment, and sorted by the probability of 

differential gene regulation by siSTAT3. Plotted are: the number of transformation 

differential STAT3 loci (per kb, per region) that occurred at 4 hr post ER-Src induction 

within proximal promoter regions (+/- 2.5 kbp about TSS) or distal regions (+/- 50 kbp 

from TSS, excluding the proximal promoter region); and, the associated fold change in 

gene expression upon siSTAT3 treatment. Pie charts indicate the percentage of the top 

500 regions that contained a differential STAT3 site at 4 hr post ER-Src induction. 

B. Similar to A, except fold change in STAT3 ChIP-Seq signal at each region over EtOH 

treated samples is plotted. 

C. Similar to A, except 36 hr STAT3 ChIP samples were used and gene expression data was 

for the 24 hr time-point. 

D. Similar to C, except fold change in 36 hr STAT3 ChIP-Seq signal at each region over 

EtOH treated samples is plotted and gene expression data was for the 24 hr time-point. 

E. Similar to A, except genes are sorted by probability of transformation-dependent 

differential gene expression. 

F. Similar to B, except genes are sorted by probability of transformation-dependent 

differential gene expression. 

G. Similar to A, except 36 hr STAT3 ChIP samples were used, gene expression data was for 

the 24 hr time-point, and genes are sorted by probability of transformation-dependent 

differential gene expression. 
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H. Similar to B, except 36 hr STAT3 ChIP samples were used, gene expression data was for 

the 24 hr time-point, and genes are sorted by probability of transformation-dependent 

differential gene expression. 
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Figure 25 (Continued) 
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Figure 25 (Continued) 
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Figure 25 (Continued) 
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Figure 25 (Continued) 
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Figure 25 (Continued) 
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Figure 25 (Continued) 
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Figure 25 (Continued) 
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Figure 25 (Continued) 
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Figure 26: DNA motifs enriched in promoters of differentially expressed genes during 

transformation 

The promoter regions (-1000 bp:+0 bp from TSS) of transformation-dependent 

differentially expressed genes were searched for known DNA motifs contained in the 

JASPAR_CORE_2009 database. Different background sets were used depending on the 

specific question: “vs. RefSeq promoters” highlights motifs enriched compared to all 

promoters; “vs. 24 hr” highlights motifs that are enriched early in transformation; “vs. 4 

hr” highlights motifs that are enriched late in the transformation; “vs. repressed” 

highlights motifs that are enriched in activated promoters; “vs. activated” highlights 

motifs that are enriched in repressed promoters; “vs. independent” highlights motifs that 

are enriched in STAT3- and transformation-dependent promoters; “vs. dependent” 

highlights motifs that are enriched in STAT3-independent and transformation-dependent 

promoters. P-values considered significant are highlighted in yellow. STAT family motifs 

are highlighted in green.  
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Figure 26 (Continued) 
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targets of a TF based on literature mining. Using this approach, and using all transformation 

repressed genes, AR, PPARG, NR3C1,TP53, KDM5B, SNAI1, PDX1 and TP63 were found to 

be significantly associated with transformation repressed genes (Figure 27), all of which are 

known transcriptional repressors. However, AR and PDX1 do not have detectable RNA in 

MCF10A-ER-Src cells (not shown). TP53 and NR3C1 are interesting, as they were previously 

identified as common nodes linking inflammatory signals and cancer transformation to metabolic 

syndrome [294] within the MCF10A-ER-Src model. 

STAT3 cooperates with NFκB in an epigenetic switch that links inflammation to 

transformation 

NFκB is activated rapidly upon ER-Src induction (as measured by RELA/p65 nuclear 

localization) and mediates an epigenetic switch through indirect induction of IL6 that is 

necessary for transformation ([289]; Figure 30). STAT3 is also known to be part of this switch, 

via its direct transcriptional targets MIR21 and MIR181b which cooperate to activate NFκB via 

posttranslational mechanisms [297]. However, NFKB1 (p105/p50) was also a direct 

transcriptional target of STAT3. NFKB1 RNA levels were increased early during transformation 

and this response was STAT3-dependent (Figure 28) and, likely, direct. Transformation induced 

STAT3 ChIP-Seq sites were found within an intron of NFKB1 and just downstream of the gene, 

with additional non-differential sites located upstream (Figure 11, D). In addition, IL6, which 

was not known to be downstream of STAT3 in this switch, was a direct STAT3 target gene as 

STAT3 was present at its promoter (Figure 11, E) and its transcriptional induction during 

transformation was STAT3-dependent (Figure 22, B). Hence, an additional positive feedback 

loop exists in which STAT3 transcriptionally upregulates NFκB and IL6, which can both activate 

STAT3, thus maintaining rather than initiating the epigenetic switch. 
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Figure 27: Ingenuity Pathway Analysis prediction of TFs involved in transformation 

Transformation-dependent differentially regulated genes, at the indicated times and 

treatments, and associated RNA expression fold changes, were submitted to Ingenuity 

Systems’ Transcription Factor Analysis tool. This tool matches gene expression changes 

with the known effects mediated by upstream TFs based on experimental findings from 

the literature. 
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Figure 27 (Continued) 
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In addition, IPA network analysis of the 4 hr and 24 hr time points of genes that were 

STAT3-independent and transformation regulated both contained NFκB as the central effector of 

the perturbed signaling pathways, with IRF1 and IRF9 as likely co-operating partners (Figure 18, 

C and D). This suggests that STAT3 and NFκB cooperate transcriptionally early during 

transformation with unique and, likely, overlapping transcriptional targets. 

STAT3 transcriptionally induced SOCS3 is an inhibitor of inflammatory transformation 

SOCS3 was identified as a highly up-regulated gene during transformation of MCF10A-ER-Src 

cells (and confirmed here) and shown to be an inhibitor of transformation as siSOCS3 led to a 

modest increase in colony formation in soft agar upon ER-Src induction [289]. The SOCS3 locus 

contains numerous differential STAT3 sites (Figure 11, B) and its transcriptional induction 

during transformation is STAT3-dependent (Figure 23, A). In this regard, STAT3 activation of 

SOCS3 represents an auto-inhibitory signal acting against the persistent inflammation observed 

during transformation of MCF10A-ER-Src cells (Figure 30). 

Identification of TFs linked to transformation and their dependency on STAT3 – TSC22D3 

and ARNTL2 

To cast a broad net, Figure 28 details the RNA expression changes of all significantly 

differentially regulated TFs during transformation and the effect of siSTAT3 on their expression. 

Many of these TFs have been previously linked to tumorigenesis and/or inflammation, though 

many have not and are novel in this regard. ETS2, BCL3, FOS, ATF3, ARNTL2, and TSC22D3 

were the topmost differentially regulated TFs and all were STAT3-dependent and deserve follow 

up experimentation. ARNTL2 and TSC22D3 are of particular interest, for disparate reasons, and 

will be discussed in the following sections. 
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Surprisingly, a large group of these TFs increased in expression at 24 hr post EtOH 

treatment, and were repressed both early (4 hr) and/or late (24 hr) during transformation (Figure 

28). These TFs are very interesting, of which TSC22D3 was the most dynamic, as they were 

highly expressed as cells became more confluent, which is a stressful growth situation for cells, 

yet were rapidly repressed during transformation. These TFs could be acting to inhibit cellular 

transformation during normal growth of somatic cells, or they could be associated with the 

transcriptional program of contact inhibition. The increased expression observed at 24 hr in 

EtOH treated cells still occurred after knockdown of STAT3 activity, indicating that during 

somatic cell growth, their transcription is STAT3-independent. However, for most, during 

transformation in the absence of STAT3 activity, the repression observed during transformation 

was reduced, indicating STAT3-dependent transcriptional repression during transformation. 

While circadian rhythm related GO terms were not significantly enriched in genes 

differentially regulated during transformation in MCF10A-ER-Src cells using the gene ontology 

tool DAVID [313, 314], RNA expression of a core member of the circadian clock, ARNTL2, was 

differential. ARNTL2 RNA was induced during transformation in a STAT3-dependent manner 

(Figure 28) and the ARNTL2 locus contained a large increase in STAT3 ChIP signal and a 

STAT3 differential binding site (Figure 11, A). The expression level of a second core clock gene, 

ARNTL, was reduced upon siSTAT3 treatment in MCF10A-ER-Src cells, though its RNA level 

was not altered during transformation (not shown). ARNTL2 shares structural and functional 

homology with CYCLE and can heterodimerize with CLOCK, both core circadian clock 

members, to regulate gene expression during the circadian cycle [315, 316]. The RNA levels of 

the TFs EPAS1 and ZBTB16, which are known to be involved in circadian rhythms, were also 

found to be deregulated in a STAT3-dependent manner upon transformation (Figure 28). EPAS1  
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Figure 28: Normalized relative RNA expression levels of all TFs differentially expressed 

during transformation 

Shown are all TFs differentially regulated (P-value < 10
-4

, > log2 0.5 fold change) during 

transformation at 4 hr or 24 hr post TAM treatment in siSCM transfected cells. Shown are 

the RNA expression levels at 4 hr and 24 hr post EtOH or TAM treatment in samples 

transfected with siSCM (scrambled control) or siSTAT3. RNA levels are expressed as 

fold change over 4 hr EtOH and siSCM treated sample. TFs were clustered and red boxes 

indicate groups of TFs whose transcriptional response to treatment was correlated. Those 

TFs known to be involved in tumorigenesis, inflammatory response, metabolic disease, 

“stemness” or the circadian rhythm are indicated by colored circles. 
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Figure 28 (Continued) 
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(also known as HIF2α) is a hypoxia inducible TF which can heterodimerize with ARNTL2 to 

regulate gene [59, 315, 317]. ZBTB16 is repressed during transformation, and while little is 

known about the functions of this TF, its expression was shown to be circadian [318, 319] and it 

has been genetically linked to metabolic syndrome, an inflammatory disease, in rats [320]. A list 

of all circadian regulated genes that were differentially regulated during transformation can be 

found in Figure 29. 
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Figure 29: Transformation and circadian rhythm associated genes 

Genes differentially regulated upon ER-Src induced transformation of MCF10A-ER-Src 

cells that are known to be expressed in a circadian oscillation in mouse peripheral tissues 

as assayed by gene expression microarrays. Only genes with a Bonferroni corrected P-

value of < 10
-4

, based on the JTK_CYCLE algorithm [319], were considered as circadian 

rhythm genes. 
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Figure 29 (Continued) 
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DISCUSSION 

STAT3 during transformation 

STAT3 is a well-known central mediator of inflammation-mediated oncogenic transformation, 

however, only a small number of its direct transcriptional targets have been identified in such a 

model. Dechow et al. [292] reported 199 genes whose expression was affected by 

overexpression of a constitutively active STAT3 construct in MCF10A cells and Hutchins et al. 

[299] found < 2500 genes bound by STAT3 within 20 kbp of their TSS in macrophages. We 

have shown here that at least 1/3rd of the transcriptional program of transformation is mediated 

by STAT3 activity, either directly or indirectly, and that NFκB likely mediates the rest. 

Previously, we identified NFκB as a second central mediator of transformation that cooperates 

with STAT3 [289, 297]. However, the transcriptional program during transformation is more 

complex with downstream effector TFs likely taking part at later stages of transformation (e.g. 

FOS). 

Here we report the genomic locations of 78,293 and 129,192 non-redundant STAT3 and 

FOS binding sites, respectively, during a time course of inflammation-mediated oncogenic 

transformation and relate these findings to the STAT3- and/or transformation-dependent 

transcriptional program of transformation. Curiously, Hutchins et al. [299] only found 1,352 

STAT3 sites during IL10 stimulation of macrophages, and why the great disparity in the number 

of sites found compared to ours is unknown. We identified 5921 non-redundant STAT3 sites as 

differential during transformation and that these sites are found near key genes (e.g. MMP locus 

on Chr11 q22.1-q22.3) and processes (e.g. “Cellular movement”) that mediate transformation. 

Differential STAT3 sites tended to be situated outside of proximal promoters in distal CREs that 

were occupied by FOS. 
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Deregulation of STAT3-dependent circadian clock related genes during transformation 

Nearly all mammalian cells have a biological clock that is linked to the circadian day-night 

cycle. In mammals, the circadian clock is controlled centrally by the hypothalamic 

suprachiasmatic nucleus of the brain, and through neuroendocrine (e.g. pertinently anti-

inflammatory glucocorticoids [321]) and external stimuli (e.g. light, feeding), is synced with 

peripheral tissue circadian clocks (for review see [322, 323]). The molecular mechanism of the 

circadian clock is based on transcriptional-translational feed-back loops, of which, many of the 

core clock genes are TFs (CYCLE, CLOCK, NPAS2) whose activity is negatively regulated by 

CYR and PER proteins. The circadian clock is linked to many critical cellular processes such as 

proliferation, apoptosis, DNA damage response, and metabolism with a growing body of 

evidence elucidating a role for the circadian clock in cancer, both through epidemiological and 

molecular studies [324]. Mutation of the mouse Per2 gene leads to cancer and mutation of CRY 

in p53-null mice delays the onset of cancer [325] due to NFκB mediated apoptosis [326]. 

Pertinently, to transformation in the MCF10A-ER-Src breast cancer cell line: women who work 

night shifts are modestly more prone to developing breast cancer [327-330]; the PER genes are 

deregulated in breast cancers [331]; and, NPAS2 mutations are associated with an increased risk 

of breast cancer [332]. In general, patients with a perturbed circadian rhythm are known to be 

more prone to cancer and have a poorer prognosis [333-335]. 

Interestingly, PER2 overexpression can inhibit the transcription of ERα regulated genes 

[336], a key mammary epithelial cell TF (for a review see [337]). Mutations in ERα have long 

been associated with an increased risk of breast cancer [338] and a key determinant of treatment 

options [339]. A link between inflammation and the circadian rhythm is starting to be elucidated. 

The DNA binding activity NFκB/REL complexes [340, 341], which are critical transcriptional 
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mediators of inflammation, and an NFκB inhibitor protein (NFKBIA) [319] have been found to 

be circadian regulated. However, NFKB1 null mice do not manifest defects in daily locomotor 

activity during the circadian cycle [342], though the main focus of that study was not the 

circadian clock. Using chemical inhibitors of NFκB activity and the IL6 knockout mouse, Monje 

et al. [343], showed a molecular link between inflammatory signaling through NFκB and IL6 on 

the core clock genes Per2 and Npas2 in a mouse model of circadian disruption through light 

deprivation. These literature findings and the STAT3-dependent deregulation of ARNTL2 during 

transformation as discovered here, raise the interesting questions as to if and how the circadian 

clock influences inflammatory transformation in our model, and ultimately the clinical 

manifestation of breast cancer, and deserve further biological experimentation. 

AP-1 factors in inflammation-mediated oncogenic transformation 

FOS is one of the most differentially expressed TFs during transformation of MCF-10A-ER-Sr 

cells, being highly expressed late at 24 hr, its expression is STAT3-dependent, and 

transformation induced STAT3 sites preferentially form at FOS bound sites. Also, we have 

characterized the CREs and STAT3 binding sites present at the FOS proximal promoter, which is 

a known target of STAT3, and have found other members of the FOS and JUN family to be 

deregulated (FOS, FOSL1, FOSL2, JUNB, JUND) during transformation. Previously, we 

identified FOS as a node within the transformation-dependent transcriptional program that is 

common between two different models of transformation and was also linked to metabolic 

syndrome, an inflammation-based family of diseases [294]. However, its importance and role 

within transformation was not expanded upon, and here we show a putative role for FOS in 

regulating embryonic, stem cell and bone related genes. During transformation, cancerous cells 

lose their differentiated cellular state and revert to a more embryonic-like state. There are also 
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known stem cell-like cell populations within transformed cell lines, including MCF10A-ER-Src 

[344], and primary tumors including AML [345], breast [346], brain [347], multiple myeloma 

[348], pancreatic [349], and colon [350-352] cancers, among others. The deregulation of FOS 

and JUN family members is common in cancer (reviewed in [353]). Indeed, overexpression of 

FOS can transform fibroblasts [354], and overexpression of FOS [355, 356], and FOSL1 [356] in 

the breast cancer cell line MCF7 increases cell motility, invasion and proliferation. Here we 

present evidence of FOS/JUN family members as downstream effectors of STAT3 with a 

putative role in regulating aspects of “stemness” and bone metastasis during oncogenic 

transformation. 

The lack of CRE dynamics during transformation 

We have also discovered the genomic repertoire of CREs used during transformation and found 

that this set of CREs does not change and are static, even though large scale phenotypic and gene 

expression alterations are taking place. It is known from genomic studies comparing different 

cell types that large scale differences are seen in CREs, including those that are defined by 

FAIRE-Seq [306]. These cell-type specific CREs tend to be enhancers and are significantly 

enriched for the DNA motifs of TFs that are pertinent to the establishment/maintenance of that 

specific cell type. In MCF10A-ER-Src cells, the activation of STAT3 and its important role in 

establishing the transformed cell state is akin to these cell type specific TFs. However, STAT3 

does not elicit the formation of new CREs during transformation. This can be explained by the 

fact that most cell-type specific determinant TFs are “pioneer” factors with the ability to access 

their DNA motif, usually in the context of a nucleosome, before cooperating TFs and H3 

acetylation occurs (e.g. FOX and GATA family members). Though ~35% of STAT3 binding 

events do not occur within CREs, this is most likely due to a false negative result on the part of 
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CRE detection. It can be reasoned that the over-arching cell-type, of non-transformed and 

transformed MCF10A-ER-Src cells, is still that of mammary breast epithelial, and, therefore, the 

changes that ER-Src induced transformation create, though extensive, does not fundamentally 

alter the cell-type. All transcriptional changes are mediated through pre-existing CREs and the 

CRE population is recycled to accommodate new phenotypes. 

Does TSC22D3 inhibit the epigenetic switch during somatic cell growth? 

TSC22D3 was the most dynamic of the STAT3-dependent transformation repressed TFs (Figure 

28). TSC22D3 is particularly interesting as it is known to be a negative regulator of Ras/Raf 

signaling pathways by directly interacting [357, 358] and inhibiting NFκB [359]. Both Ras and 

NFκB are mediators of the epigenetic switch in MCF10A-ER-Src cells [289], and thus, could be 

inhibited by TSC22D3 in somatic cells, before transformation. TSC22D3 was originally 

identified as a gene up-regulated by the glucocorticoid dexamethasone [360], and has anti-

inflammatory and immuno-modulatory properties (for reviews see [361-363]; original articles 

[364-366]). In inflammation-mediated oncogenic transformation of MCF10A-ER-Src cells, Ras 

activation of NFκB helps mediate the induction of IL6, which in turn drives transformation 

[289]. In this regard, it is tempting to speculate that the high level of anti-inflammatory 

TSC22D3 down-regulates Ras signaling and NFκB activity during somatic cell growth, 

ultimately preventing run-away pathologic inflammation, in our case, oncogenic transformation. 

This repressive anti-inflammatory signal is relieved during transformation by STAT3, whose 

activation represses TSC22D3 transcription. 
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Updating the epigenetic switch 

Previously the Struhl Lab discovered an epigenetic switch that is initiated by Src activation of 

STAT3 and NFκB in MCF10A-ER-Src cells [289, 297]. Here we provide evidence of a 

transcriptional feedback loop linking STAT3 to the direct transcriptional activation of IL6 and 

NFKB1, who in turn can activate STAT3 transcription. This aspect of the epigenetic switch is 

probably active during the later stages of transformation as it is dependent on new protein 

production, and while an increase in STAT3 mRNA is not strictly required for transformation, the 

maintenance of its expression is important. We have also provided evidence of two inhibitory 

feedback loops, one acting late through SOCS3 inhibition of IL6/STAT3, the other acting before 

transformation through TSC22D3 and Ras/NFκB. This later feedback loop is speculative, but 

very well supported by the literature, and may act to inhibit the epigenetic switch in normal, 

dividing, proliferating and/or stressed cells. A modified version of the epigenetic switch 

incorporating these findings is detailed in Figure 30. 
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Figure 30: The epigenetic switch that initiates and maintains transformation of 

MCF10A-ER-Src cells 

A. Model of the epigenetic switch that mediates transformation in MCF10A-ER-Src cells. 

Dashed lines indicate predicted interactions base on literature findings. Red lines indicate 

direct transcriptional regulation. Black lines ending in an arrow or perpendicular slash 

indicate known positive and inhibitory interactions, respectively, within MCF10A-ER-Src 

based on ([289, 294, 297]; this dissertation). A thin line indicates weak activity. A green 

asterisk represents interactions based on data presented in this dissertation. 

B. A summary of the major phenotypic effects and processes mediated by STAT3, NFκB, 

and FOS. 
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Figure 30 (Continued) 
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METHODS 

Tissue culture and chromatin immuno-precipitation (ChIP) 

MCF10A-ER-Src cells were grown and ChIP DNA was isolated as per standard ENCODE 

protocols ([183-185], Appendix C) and a detailed protocol is available at: 

http://genome.ucsc.edu/ENCODE/. Cultures were grown to 70% confluency, then treated with 

either EtOH or tamoxifen (TAM) for 4, 12, 24 or 36 hr, as detailed in [294], and harvested for 

DNA, protein or RNA as detailed below. 

FAIRE-Seq 

Cells were grown as above and a full detailed FAIRE-Seq protocol is available at: 

http://genome.ucsc.edu/ENCODE/ and [301]. See Supplemental Data for genomic coordinates. 

ChIP-Seq and peak calling 

ChIP DNA (2 biological replicates) prepared as above, and immuno-precipitated with anti-

phospho-STAT3 (Cell Signaling, 9131), anti-FOS antibody (Santa Cruz, SC-7202x), or anti-

POL2 (Covance, 8WG16) and input DNA (3 biological replicates) were end repaired with calf 

intestinal alkaline phosphatase (New England Biolabs, USA) and sent for sequencing to the 

Stanford Center for Genomics and Personalized Medicine. ChIPs for anti-ATF2 (SC-6233x), 

anti-E2F6 (SC-22823x), anti-E2F4 (SC-866x), anti-IRF2 (SC-13042), anti-JUN (SC-1694), anti-

MYC (SC-764), RPC155 (R. White) were prepared as above but using one biological replicate. 

Library preparation and Illumina (USA) sequencing were carried out as per Illumina protocols 

and a detailed protocol is available at http://genome.ucsc.edu/ENCODE/. Sequence reads (32 

nucleotides) were mapped to the H. sapiens genome (hg19) using Bowtie [247], allowing <= 2 

http://genome.ucsc.edu/ENCODE/
http://genome.ucsc.edu/ENCODE/
http://genome.ucsc.edu/ENCODE/
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mismatches per read and reads with > 10 reportable alignments were discarded. Binding sites 

were called using MACS v1.4 [248] at a P-value threshold of 10
-09

, “auto” redundant read setting, 

using input to control for local genomic biases. PeakSplitter [367] was used to split MACS called 

peaks into subpeaks of local maxima using default settings. STAT3 subpeaks (referred to as 

“sites” in Results and Discussion) were called as differential if they did not overlap a STAT3 

bound subpeak in the non-transformed control population (peaks called at 10
-9

 P-value) and had 

a fold change greater than the mean + 1x standard deviation of all peaks within the population. 

Fold change in STAT3 ChIP-Seq signal was calculated as read counts per region per million 

mapped reads divided by the corresponding control ChIP signal of that region. A smoothing 

value of 10 was added to the read count of each region in the transformed and control samples. 

See Supplemental Data for genomic coordinates. 

Annotation of peaks to gene features, GO analysis (GREAT/IPA) 

Genomic locations of subpeak summits were submitted to the annotation tool GREAT [259] 

using the following parameters: whole genome background set, basal plus extension, proximal 

upstream = 5 kbp, proximal downstream = 1 kbp, distal = 1 mbp; or, whole genome background 

set, basal, proximal upstream = 5 kbp, proximal downstream = 1 kbp. For IPA (Ingenuity 

Systems, USA; http://www.ingenuity.com) gene probe IDs, with the corresponding log2 fold 

change, were uploaded into and analyzed by IPA (build: 140500, content version: 12710793) 

using default settings. Molecular signaling pathways were visualized using IPA where a gray 

shaded node represented a subpeak binding site located within the putative regulatory region, as 

defined by GREAT, of that gene/molecule. The biological relationship between two molecules is 

represented as a line and is based on professionally curated literature findings. The relationships 

can be direct or indirect. 

http://www.ingenuity.com/
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siRNA transfections 

MCF10A-ER-Src cells were reverse transfected with Dharmacon siRNAs (Thermo Scientific, 

USA) according to the manufacturer’s protocol. Briefly, cells were seeded in 6-well plates 

containing 25 nM ON-TARGETplus SMARTpool STAT3 or ON-TARGETplus Non-targeting 

Pool and after 48 hr of growth were treated with EtOH or tamoxifen (1 µM) for 4 hr or 24 hr as 

per [294]. For Western blots, cells were lysed after 72 hr (24 hr post EtOH/TAM treatment). For 

expression profiling RNA was harvested after 4 or 24 hr post treatment. 

Gene expression microarrays 

RNA (from 3 biological replicates) was prepared for arrays using 3’ IVT Express kit 

(Affymetrix, USA) as per manufacturer protocol – 100 ng RNA, 15 amplification cycles. 

Amplified RNA was given to the Children’s Hospital Boston microarray core facility for 

hybridization to GeneChip Human Genome U133 plus 2.0 gene expression arrays (Affymetrix, 

USA) for hybridization and imaging as per manufacturer protocols. 

Western blots 

Cells were lysed in 0.5 mL lysis buffer [50 mM Tris-HCl, 1% NP-40 (v/v), 5 mM EDTA, 1 mM 

NaF, pH 8.0 supplemented with 10 mM β-glycerol phosphate, 1 mM phenylmethanesulfonyl 

fluoride, 1 mM sodium orthovanadate, 1% Phosphatase Inhibitor Cocktail II (Sigma, USA), and 

1 Complete-Mini Protease Inhibitor Cocktail tablet (Roche Applied Science, USA) per 10 mL]. 

Lysates were cleared by centrifugation at 20 kg, 15 min, 4 °C. Prior to immuno-blotting, lysates 

were boiled in standard SDS gel-loading buffer and loaded into a 10% polyacrylamide gel. After 

separation by electrophoresis, the proteins were transferred to nitrocellulose and the membranes 

were blocked with 5% nonfat dry milk (w/v) in Tris-buffered saline (20 mM Tris, 150 mM NaCl, 
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pH 7.6) containing 0.1% Tween-20 (v/v). Membranes were probed using mouse-derived anti-

STAT3 antibody from Cell Signaling Technologies, USA and anti-β-actin from Sigma, USA. 

Bands were detected with IRDye 800-labelled goat-anti-mouse IgG (LI-COR Biosciences; USA) 

and imaged using an Odyssey Infrared Imaging System (LI-COR Biosciences, USA).  

Determination of differential gene expression 

Gene expression arrays were analyzed using the R packages: limma [257], affy [256]. Arrays 

were background corrected, normalized and probe set expression values determined by the mas5 

algorithm. Probe sets were annotated to RefSeq gene IDs using GREAT [259] or DAVID [313, 

314]. Genes determined to be transformation regulated/differential were derived from siSCM 

treated samples comparing EtOH to TAM treatments with a P-value < 10
-4

 and with an absolute 

log2 fold change > 0.5. Those genes determined to be STAT3 and transformation regulated were 

determined by comparing EtOH to TAM samples under both siSCM and siSTAT3 conditions. 

Genes were selected as STAT3-independent if their differential expression was statistically 

insignificant upon siSTAT3 and had an absolute log2 fold change of < 0.5 upon siSTAT3. The 

number of STAT3-dependent and STAT3-independent genes does not equal the total number of 

genes considered differential by transformation as many genes could not be unambiguously 

defined as “dependent” or “independent”. 

Motif analysis of differentially regulated genes 

Differentially regulated genes were as above. The non-redundant gene set was used, retaining the 

probe set with the lowest P-value, and probe sets unable to be annotated to RefSeq IDs were not 

considered. The web based Pscan [265] was used to establish significantly enriched motifs, the 

settings were: H. sapiens, JASPAR, region about TSS -1000/+0 bp. 
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Differentially regulated TFs 

All probe set IDs that were differentially regulated during transformation (see above) were 

submitted to DAVID [313, 314] and probe sets annotated to the term “transcription factor 

activity” (GO:0003700) were selected. Normalized expression values for each gene are 

expressed as log2 fold change over siSCM 4 hr EtOH treated samples. Hierarchical clustering of 

the resultant expression matrix was carried out using the Pearson correlation and average linkage 

using the software package TMEV [368, 369]. Genes previously implicated in: “Tumorigenesis”, 

“Inflammatory response” and “Metabolic disease” were determined by IPA (Ingenuity Systems, 

2010; http://www.ingenuity.com); stem cells (“stem cell division” (GO:0017145), “stem cell 

development” (GO:0048864)) from the Gene Ontology Consortium (July 2012, [370]); and, 

circadian rhythm from [319]. 

Annotation of STAT3 sites to differentially expressed genes 

Differentially expressed genes were as above. Non-redundant probe sets were used, discarding 

the probe set with the highest P-value. “Promoter” regions are defined as -2500 bp to +500 bp 

from RefSeq TSS. “Upstream/downstream” regions are defined as +/- 50 kbp from the RefSeq 

TSS, excluding the promoter region. The number of transformation specific differential STAT3 

ChIP-Seq peaks were counted within these regions, normalized to peaks per 1 kbp, and plotted 

using a 1000 gene rolling mean performed using the zoo [371] package of R. 

Annotation of STAT3 sites to RefSeq TSSs 

STAT3 and NFYB (K562) peak summits, defined as the local maxima of read counts within a 

peak, were mapped to the nearest RefSeq TSS, incorporating strandedness, using an in-house 

script. Histograms were plotted using the R package ggplot2 [372] using 500 bp bins within a 

http://www.ingenuity.com/
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region of +/-10 kbp about the TSS centered at 0 bp. The frequency of sites is represented as the 

Gaussian smoothed kernel density estimate with a bandwidth of the standard deviation of the 

smoothing kernel, calculated using the density function in R. The percentage of STAT3 peaks in 

the proximal upstream region of RefSeq TSSs and located in distal intergenic regions (defined as 

not within the following RefSeq genic features: -10 kbp upstream of a TSS, +10 kbp downstream 

of a TTS, intronic, exonic, 5’ UTR or 3’ UTR), was calculated and compared to the percentage 

of the genome within each category. Significance was calculated using the single sided binomial 

test as implemented in the binom function in R. 

De novo motif discovery 

The top 10,000 (as ranked by P-value) STAT3 or FOS ChIP-Seq subpeak summit locations were 

determined and the sequence +/- 50 bp was extracted and repeat masked. A 5 order Markov 

model was used as the background set and was extracted from the repeat masked, non-redundant 

set of FAIRE-Seq cis-regulatory elements. Parallel MEME was run with the following settings: 

zoops, revcomp, minw = [4-26], and maxw = [6-30]. For STAT3 and FOS, the top motif 

corresponded to the respective known canonical motif. 
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CHAPTER 4: Discussion and future directions 

I will only discuss and comment on the broader findings and questions raised by the research 

within this dissertation in this section. Specific aspects of NF-Y and STAT3 biology have 

already been discussed within those respective chapters and here I want to highlight topics that 

are of a more general interest and to talk about future avenues of research. 

Transcription factors occupying closed chromatin residing DNA motifs 

The ability of NF-Y to access the CCAAT box within closed and transcriptionally repressive 

chromatin domains is truly intriguing. This finding is atypical when compared to many other 

TFs, both from research presented in this dissertation and from other studies in eukaryotes [373, 

374]. In eukaryotes, nucleosome occupancy is a major barrier to motif occupancy by their 

cognate TFs in vivo. Nucleosomes physically prevent the interaction between a TF and its DNA 

motif and in so doing restrict TF occupancy to regions of depleted nucleosome occupancy which 

are commonly found at promoters and enhancers in eukaryotes [375]. Cawley et al. [253] found 

that only ~1% of consensus DNA motifs for TP53 (p53), SP1 and MYC were bound in vivo in H. 

sapiens, and in yeast, Rap1 preferentially associates with promoters and not to non-coding 

regions which are nucleosome occupied [376]. In sharp contrast, prokaryotes do not contain 

histones and do not contain closed chromatin domains. Prokaryotes do possess histone-like DNA 

binding factors (Fis, H-NS, HU, IHF) that associate with DNA to form higher-order structures 

called nucleoids [377]. However, the E. coli genome is fully accessible to the DNA binding TF 

LexA [378], indicating that nucleoids do not prevent TF occupancy of DNA motifs in 

prokaryotes. 
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It has been known for close to 15 years that NF-Y can form hybrid NF-Y-nucleosomal-DNA 

complexes and that NF-Y-H3-H4 complexes exist in vitro, however, in vivo studies are lacking. 

From the data presented in this dissertation, it is clear that NF-Y can saturate its motifs within 

open chromatin, but also displays a remarkable ability to bind to CCAAT boxes in closed and 

inactive chromatin domains that lack detectable amounts of common transcription-dependent 

histone PTMs (e.g. H3 acetylation). This ability is probably due to the HFD subunits of NF-Y 

that allow either an interaction with H3-H4 in the context of nucleosomes, or the displacement of 

the local CCAAT box occupying nucleosome. The lack of an open regulatory element by FAIRE 

and the aforementioned in vitro findings support the former model, though this requires testing. 

 The technique of DNase I hypersensitivity followed by sequencing (DNase-Seq) is more 

sensitive than FAIRE-Seq in detecting open and accessible non-chromatin bound DNA. 

Moreover, when the sequencing depth reaches +500 million reads, the individually protected 

DNA bases within all open region across the entire genome become detectable, just as in 

traditional DNase I experiments analyzing a single locus. It would be interesting to compare the 

DNase I hypersensitivity pattern at NF-Y bound CCAAT boxes in both open and closed 

chromatin contexts to see if the NF-Y-DNA contacts are different. This could also be done using 

traditional DNase I assays at select loci, and has been done with reconstituted nucleosomes in 

vitro [83], however the ENCODE project is currently generating suitable DNase-Seq datasets 

and all that is required is the computational skill to analyze the data that is freely available. This 

could also be expanded to cover all TFs in which there are suitable ChIP-Seq datasets, a 

corresponding DNA motif of sufficient information quality. 

There is another related question that needs to be addressed: are H2A and H2B present at the 

NF-Y occupied CCAAT boxes within closed chromatin domains in vivo? To date only 
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nucleosome occupancy maps are available. To the best of my knowledge, no maps of individual 

histones, except for H2A.Z, exist for H. sapiens. It would be interesting to use ChIP-Seq to 

determine the occupancy of all four histones genome-wide in K562 cells. These datasets could 

then be used to ascertain if H3-H4 and/or H2A-H2B are depleted at NF-Y bound CCAAT boxes 

in closed chromatin in vivo. Obviously, this could be done in a more generic fashion to isolate 

regions of the genome in which the ratio of H3/H4 to H2A/H2B is disparate. Any DNA motifs 

enriched within these regions could be computationally determined and the associated TF(s) 

identified and confirmed by ChIP, potentially identifying hybrid TF-histone complexes, 

especially if the TF(s) have HFDs (such as NF-Y). 

 The ability of specific TFs to access their motifs within closed chromatin domains is a 

distinguishing feature of “pioneer” factors. Pioneer factors are TFs that have the ability to access 

their motifs in closed cis-regulatory elements before the arrival of cooperating TFs, chromatin 

remodelers and H3 acetylation and/or H3K4 methylation. During this dissertation, I identified 

NF-Y, USF1 and MAFK as factors that can access their motifs within closed, transcriptionally 

inactive chromatin domains. Surprisingly, the known pioneer factors, GATA1 and GATA2, had 

a limited ability to do this which requires explanation by the GATA scientific community. A 

second, critical, aspect of pioneer biology is their ability to open chromatin. The lack of GATA 

binding in non-modified-chromatin domains could be explained by GATA constitutively 

opening loci upon binding. Hence, pioneer factors may never be found present in closed 

transcriptionally inactive epigenetic domains. It is obvious that NF-Y, USF1 and MAFK do not 

always elicit open chromatin upon binding. This could be due to the lack of an initiating event(s). 

A genome-wide view of more pioneer factors would shed light on this issue. It is now possible to 

expand upon my method implemented here to use the continually growing TF, histone PTM 
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FAIRE and DNase I datasets available from ENCODE, and other sources, to computationally 

screen for “pioneer”-like factors. In fact, I have already computed the location of all known (> 

500) DNA binding site motifs genome-wide and screened them for occupancy to all TF ChIP-

Seq datasets (~150) available from ENCODE cell types in which chromatin states are, or can be, 

derived. Analysis of these datasets will provide invaluable insight into the chromatin context that 

determines TF access to DNA motifs in eukaryotes, how this varies by TF family type (HFD, 

bZip, Zn-finger, etc.) and, hopefully, reveal more “pioneer”-like TFs. As many pioneer factors 

are important for determining cell-type identity during development, this avenue of research 

could lead to defining new roles for well-known TFs. 

Why does the functional inactivation of a TF elicit a limited transcriptional response? 

In this dissertation, and in the dissertation of Annie Yang (Struhl Lab graduate student) [208], we 

mapped the location of NF-Y, STAT3 and TP63 (p63) genome-wide and also performed siRNA 

knockdown followed by genome-wide gene expression analysis. In all three cases, many more 

genes are bound by a TF than seem to be regulated by that TF. In the cases of STAT3 and TP63, 

the knockdown efficiency was > 90%. The most extreme example is that of STAT3, in which we 

also induced its expression. STAT3 is present in the vicinity of ~15,000 H. sapiens genes, 

however, STAT3 knockdown only affects the expression of 451 genes as far as we can detect. 

This raises the question: how does TF binding relate to gene expression? In the classic view of 

gene regulation, DNA motifs dictate TF occupancy and the presence of a bound TF (and its 

activation if required) dictates gene expression. This is the case in prokaryotes (see above). 

It seems obvious to assume that most of the TF binding events observed for NF-Y, STAT3 

and TP63 are non-functional, at least with respect to gene expression, but these sites are usually 

highly conserved which implies maintenance of a biological function. A simple explanation is 
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that gene regulation is dictated by cooperativity between multiple TFs (which we know is the 

case in eukaryotic systems) and therefore highly redundant, so loss of a single TF (e.g. by 

siRNA) does not affect transcriptional output in most cases, as the remaining TFs are still bound, 

functional and sufficient for transcription. This implies that the transcriptional outputs that are 

altered are unusually dependent on the specific TF activity that was perturbed. Another reason 

could be due to the insensitivity of detecting minor alterations in transcriptional output. A 10% 

change in RNA expression level could be biologically meaningful, but undetectable by gene 

expression microarrays and therefore those genes would be listed as “not affected” when they are 

actually false negatives. Another reason could be due to the requirement of post translation 

activating modifications required by a TF for it to act as a transactivator, but not for DNA 

binding. The TF CREB is a good example: CREB phosphorylation is not a prerequisite for DNA 

binding, but it is for transactivation [379] and the recruitment of coactivators. In this situation, 

large numbers of CREB binding sites could be functionally irrelevant for transcription as CREB 

is not activated. 

The lack of differentially active cis-regulatory elements during a phenotypic change 

When we tracked the location of active CREs throughout oncogenic transformation of mammary 

epithelial cells in tissue culture, we noticed a lack of the differential formation or loss of active 

CREs during the time course of differentiation. This has been noticed by other groups recently 

[380, 381]. This was surprising as previous studies incorporating FAIRE-Seq analysis of 

multiple cell lines showed that a great diversity in cis-element usage is common across cell 

types, with most of the differential cell type specific FAIRE sites being enhancers and not 

promoters [306]. It is well-known that embryonic stem cells contain globally open chromatin that 

becomes more restricted and transcriptionally repressive domains expand as cells differentiate 
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[382]. This process is driven by chromatin remodelers (e.g. CHD1, BAF, PRC1) and pioneer 

factors are also intimately involved. Many tissue specific TFs are pioneer factors, e.g. GATA4, 

FoxA1 [225], and can therefore access their motifs within closed chromatin to explicitly drive 

open chromatin formation, new CRE usage and gene expression patterns, thereby altering 

cellular phenotypes. 

The lack of differential CREs during massive phenotypic and transcriptional alterations 

raises an interesting observation: the cell’s library of functionally active CREs are static during 

transformation and are, therefore: 1) “recycled” to accommodate new phenotypes (e.g. 

transformed); and, 2) TFs, presumably ones that are not “pioneer”-like factors, function only 

within the pre-defined existing population of CREs to affect transcription. This observation can 

be extended to all TFs involved in SRC induced transformation of MCF10A-ER-Src cells: the 

CREs do not change during transformation, therefore, any regulatory protein that does change in 

activity can only work within the confines of the pre-existing population of CREs. There are 

multiple reasons for this phenomenon. STAT3 and NFκB, the two TFs that drive oncogenic 

transformation of MCF10A cells, are not known to have “pioneer” abilities, and therefore cannot 

create new open nucleosome free regions, even when their activities are functionally 

overexpressed (e.g. STAT3 phosphorylation). In this regard, new active CREs are not formed, 

even though large scale gene expression changes are happening. The cells, even though they 

have changed phenotype, are still mammary epithelial cells both before and after transformation 

(a comparison to gene expression datasets from other cell lines would be useful to show this). As 

such, they may not have undergone a differentiation process of the same magnitude as, let us say, 

bone marrow resident preosteoclast cells which undergo differentiation into giant, multi-
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nucleated, fused polykaryons, with astonishing apical/baso-lateral cell polarity, with a highly 

specialized function devoted absolutely to resorbing bone. 

The findings discussed here have important implications for the study of developmental 

biology, disease, and, in particular, cancer. Scientists trying to push pluripotent stem cells down 

specific cellular differentiation pathways by overexpressing specific combinations of TFs, or 

developmental biologists trying to decipher the combinatorial transcriptional network of cell 

differentiation pathways, have to consider that pioneer factors are required to act early during 

differentiation and that “regular” TFs are more important during the later stages of 

differentiation. Only pioneer factors can drive the differentiation of cell types and non-pioneer 

TFs can drive all other aspects of differentiation. Specifically derived from my findings with 

MCF10A cells, pioneer factors are unlikely candidates for critical oncogenic phenotypes such as 

metastasis, homing, proliferation, immune evasion, tumor growth, and invasion. None of these 

phenotypes require alterations in cell-type identity, which can only be driven by TFs with 

“pioneer” abilities. However, cancer stem cell populations may require pioneer factor activity to 

drive differentiation into non-stem cell cancer cells. 

The questions answered and raised by the work in this dissertation will push forward the 

field of NF-Y biology into new areas of experimentation. Likewise, the provocative finding that 

massive phenotypic and gene expression alterations can occur without changes in CRE usage 

will undoubtedly frame new questions for future research. 
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APPENDIX A: Supplemental Figures 
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Supplemental Figure 1: NF-Y ChIP-Seq 

A. Western blots of nuclear extracts from five cell lines probed with anti-NFYA and anti-NFYB 

antibodies. Arrows highlight doublet bands showing that both isoforms of NFYA and NFYB 

were detected. 

B. Immuno-precipitation Western blot (IP-WB) of nuclear extracts showing enrichment of 

NFYA and NFYB specific bands in the elution and depletion in the supernatant. An IgG 

antibody was used as control for non-specific binding. 

C. ChIP-QPCR results from anti-NFYA and anti-NFYB IPs performed in K562, GM12878 and 

HeLaS3, before sequencing, showing enrichment over an NF-Y non-bound control region. 

D. Representative loci showing NFYA, NFYB and input control ChIP-Seq data from K562, 

GM12878 and HeLaS3. Enrichment of reads at the HNRNPA1 and SON promoters were 

specific to NF-Y and not present in the input dataset. “GAPDH up.” and “TLE6 up.” were 

control regions not bound by NF-Y. Red bars indicate ChIP-QPCR primer locations. Blue 

bars under peaks show MACS called peak regions at the 10
-9

 P-value. RefSeq genes are 

illustrated. 

 

 

  



168 

 

Supplemental Figure 1 (Continued)  
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Supplemental Figure 2: CCAAT box frequency and saturation analysis 

A. Mean percentage of peaks with CCAAT boxes in K562 NFYB peaks called at specific P-

values. CCAAT boxes were called using FIMO at a P-value threshold of 10
-4

. Similarly sized 

random genomic regions have a CCAAT box rate of 8%. 

B. The percentage of peaks, from the K562 NFYB 10
-5

 peak list, that were successfully 

identified based on a random subsample of ChIP-Seq reads. 
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Supplemental Figure 3: ChIP-QPCR validation of NFYB binding in the absence of NFYA 

A. NFYB peaks with a high NFYB:NFYA read ratio were assayed by ChIP-QPCR. Selection 

criteria were: did not overlap an NFYA peak called at a lenient P-value threshold of 10
-5

; and 

hand-checked by observation of raw ChIP-Seq data and discarded if appreciable NFYA 

signal was present. A group of control targets that showed similar fold enrichments for 

NFYB as the test group were selected for comparison. The ratio of NFYB:NFYA reads is 

shown, and targets are sorted by ratio. The average of 2-4 biological replicates and their 

associated standard deviations are depicted. 

B. Distribution of normalized ratios of NFYB and NFYA ChIP-Seq read counts at NFYB peak 

regions. Reads were counted within a region spanning +/-100 bp from the summit of NFYB 

peaks and normalized to the total number of mapped reads. 
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Supplemental Figure 3 (Continued) 
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Supplemental Figure 4: NF-Y binds to many genes involved in transcription regulation 

A. and B. Transcription regulatory complexes, TFs, RNA Pol II general factors and chromatin 

associated factors and complexes whose members’ putative cis-regulatory domains were 

bound by NFYB. Dark and light green shading indicate NFYB binding within -5 kbp:+1 kbp 

TSS and -5 kbp:+1 kbp TSS plus up to +/-1 mbp extension, respectively. 

C. and D. Ingenuity Pathway Analysis, showing the TP53 (C) and TRAIL (D) signaling 

pathways. Gray shaded gene terms indicate that that gene’s putative cis-regulatory domain (-

5 kbp:+1 kbp TSS plus up to +/-1 mbp extension) was bound by NFYB in K562.  
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Supplemental Figure 4 (Continued) 
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Supplemental Figure 4 (Continued) 
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Supplemental Figure 4 (Continued) 
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Supplemental Figure 5: Annotation of NF-Y ChIP-Seq peaks to RefSeq gene features 

Percent occurrence of K562 NFYB peaks at RefSeq gene features compared to features in the 

entire genome. P-values are indicated. 
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Supplemental Figure 6: HeLaS3 NF-Y bound loci reside within 5 disparate epigenetic 

domains 

K-means clustering of HeLaS3 NFYB loci based on the distribution of histone PTMs, RNA 

Pol II, NFYB and NFYA ChIP-Seq reads within a region spanning +/-5 kbp from the summit 

of NFYB peaks (centered at 0 bp). Clustering was carried out on transformed rank 

normalized read counts. Raw read count intensity is depicted in red. Similar to Figure 3. 
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Supplemental Figure 7: NF-Y cell line specific sites are enriched for enhancers and 

function in cell-type specific biological processes 

A. Ratio of enhancer:promoter chromatin states in the GM12878 and K562 cell type specific 

NFYB binding sites and sites common to all three cell types (K562, GM12878 and HeLaS3). 

Peaks are considered unique to a cell line if they do not overlap a peak called at the lenient 

10
-5

 P-value threshold in the other two cell lines. 

B. Box plot showing the distance to the nearest RefSeq TSS of NFYB sites. Horizontal edges of 

the box represent the inter-quartile range. The middle bar represents the median value. Ends 

of the extensions represent the minimum and maximum datum within 1.5 x inter-quartile 

range. Outliers are represented as dots. P-values represent the significance of the difference 

in the median value calculated by the Wilcoxon rank sum test. 

C. Gene ontology analysis of cell type specific NFYB bound sites unique to K562, GM12878 

and HeLaS3. Only the top 10 terms with a fold enrichment > 2 are shown. Observed region 

hits correspond to the number of NFYB peaks within the regulatory regions of genes in that 

gene ontology term.  
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Supplemental Figure 7 (Continued) 
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Supplemental Figure 8: Functional inactivation of NFYA and correlation with ChIP-Seq 

NF-Y sites 

A. and B. Representative (A) semi-quantitative PCR and (B) Western blot analysis of an NFYA 

and scrambled control lentiviral shRNA knockdown in HeLaS3. A. Clear reduction in the 

mRNA for NFYA is apparent, whereas a control gene, GAPDH, was unaffected. CCNB1 and 

TOPOIIA are known NF-Y regulated genes and are included as positive controls. A reverse 

transcriptase negative control (RT-) is also shown. B. Membranes were blotted with anti-

NFYA or anti-Actin antibodies (control) and show a specific reduction in NFYA protein 

levels. 

C. NF-Y ChIP-Seq peaks were near differentially regulated genes. NFYA or NFYB peaks, 

excluding peaks that overlapped LTRs, were mapped to the nearest RefSeq TSS and the 

distance and associated differential gene expression upon shNFYA of that gene determined. 

Peaks are sorted based on differential gene expression and the median distance of a sliding 

200 peak window is shown. Inset, NFYB distance plot rescaled to show data points > 15 kbp. 

D. The most differentially regulated genes were associated with the highest fraction of TSSs 

bound by NFYA. The fraction (mean of 500 bp sliding window) of RefSeq TSSs with an 

NFYA or NFYB ChIP-Seq peak within the indicated range of the TSS, ranked according to 

differential gene expression upon shNFYA of the associated genes.  
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Supplemental Figure 8 (Continued) 
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Supplemental Figure 9: TFs have marked differences in their ability to bind their motif in 

closed chromatin 

The percentage of genome-wide computationally discovered TF binding site motif locations 

within non-modified-chromatin, PcG repressed and strong promoter chromatin states, 

FAIRE-Seq regions or the entire genome, that directly overlapped their respective TF sites 

plotted as a function of motif quality (right axes). Similar to Figure 5, B. 
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Supplemental Figure 10: NFYB significantly co-associates with many factors at promoters 

and enhancers 

A. The significance of co-association with NFYB at K562 strong promoter and enhancer 

chromatin states. The number of promoters and enhancers bound by NFYB and one of each 

individual chromatin associated proteins was assayed by a 2x2 contingency table approach. 

The significance of the observed overlap was determined by the Fisher exact test. Peak 

summits from the 10
-9

 peak lists were used to determine occupancy within a given region. 

B. Dendrograms depicting the correlation between chromatin associated factors at NFYB bound 

or NFYB non-bound promoters or enhancers in K562. All promoters and enhancers from the 

chromatin state maps where scored for the presence/absence of all chromatin associated 

factors and clustered (see Methods). NFYA and NFYB are indicated by arrows and the 

cluster they associate with is shaded in yellow. 

C. Multi-way overlaps between chromatin associated factors (RNA Pol II/III and associated 

general factors were not considered) at NFYB bound and NFYB non-bound strong promoters 

and all enhancers. Only the top 10 combinations are shown. The number and percentage of 

promoters or enhancers that were simultaneously bound by the indicated factor(s) are shown. 

Yellow shading represents FOS, which is highly prevalent at NFYB bound promoters.  
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Supplemental Figure 10 (Continued) 
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Supplemental Figure 10 (Continued) 
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Supplemental Figure 10 (Continued) 
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Supplemental Figure 11: NF-Y partners with FOS, USF1, USF2 and SP1 in non-modified-

chromatin domains 

A. K-means clustering of K562 NFYB loci from the non-modified-chromatin class (clusters D 

and J; Figure 3, A) based on the distribution of ChIP-Seq reads from chromatin associated 

factors within a region spanning +/-500 bp from the summit of NFYB peaks (centered at 0 

bp). Clustering was carried out on transformed rank normalized read counts. Raw read count 

intensity is depicted in red. 

B. De novo motif search of NFYB peaks in the non-modified-chromatin state. Only the top 5 

motifs are shown. The respective best match (P-value shown to right) to known motifs are 

shown on top of the discovered motifs. The percentage of NFYB sites containing the 

discovered motif is indicated to the right. In some instances the very similar Hap3 (yeast NF-

Y orthologue) motif was replaced by the NFYA motif which was second to Hap3 in all cases.  
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Supplemental Figure 11 (Continued)  
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APPENDIX B: A User’s Guide to the Encyclopedia of DNA Elements 

(ENCODE) 

AUTHOR CONTRIBUTIONS 

J.F. provided ChIP-Seq datasets as part of the Consortium’s effort. 
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APPENDIX C: An Integrated Encyclopedia of DNA Elements in the Human 

Genome 

AUTHOR CONTRIBUTIONS 

J.F. provided ChIP-Seq datasets as part of the Consortium’s effort.

 

  



212 

 

 

 

  



213 

 

 

  



214 

 

 

 

 

  



215 

 

  



216 

 

 

  



217 

 

  



218 

 

  



219 

 

 

  



220 

 

 

  



221 

 

 

  



222 

 

 

  



223 

 

 

  



224 

 

 

  



225 

 

 

  



226 

 

 

  



227 

 

 

 

  



228 

 

 

  



229 

 

 

  



230 

 

REFERENCES 

1. Li, X.Y., et al., Evolutionary variation of the CCAAT-binding transcription factor NF-Y. Nucleic 
Acids Res, 1992. 20(5): p. 1087-91. 

2. Dorn, A., et al., Conserved major histocompatibility complex class II boxes--X and Y--are 
transcriptional control elements and specifically bind nuclear proteins. Proc Natl Acad Sci U S A, 
1987. 84(17): p. 6249-53. 

3. Guarente, L., et al., Distinctly regulated tandem upstream activation sites mediate catabolite 
repression of the CYC1 gene of S. cerevisiae. Cell, 1984. 36(2): p. 503-11. 

4. Pinkham, J.L. and L. Guarente, Cloning and molecular analysis of the HAP2 locus: a global 
regulator of respiratory genes in Saccharomyces cerevisiae. Mol Cell Biol, 1985. 5(12): p. 3410-6. 

5. Hahn, S., et al., The HAP3 regulatory locus of Saccharomyces cerevisiae encodes divergent 
overlapping transcripts. Mol Cell Biol, 1988. 8(2): p. 655-63. 

6. McNabb, D.S., Y. Xing, and L. Guarente, Cloning of yeast HAP5: a novel subunit of a 
heterotrimeric complex required for CCAAT binding. Genes Dev, 1995. 9(1): p. 47-58. 

7. Forsburg, S.L. and L. Guarente, Identification and characterization of HAP4: a third component of 
the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev, 1989. 3(8): p. 1166-78. 

8. Sinha, S., et al., Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a 
protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci U 
S A, 1995. 92(5): p. 1624-8. 

9. Kim, C.G. and M. Sheffery, Physical characterization of the purified CCAAT transcription factor, 
alpha-CP1. J Biol Chem, 1990. 265(22): p. 13362-9. 

10. Bi, W., et al., DNA binding specificity of the CCAAT-binding factor CBF/NF-Y. J Biol Chem, 1997. 
272(42): p. 26562-72. 

11. de Silvio, A., C. Imbriano, and R. Mantovani, Dissection of the NF-Y transcriptional activation 
potential. Nucleic Acids Res, 1999. 27(13): p. 2578-84. 

12. Farina, A., et al., Down-regulation of cyclin B1 gene transcription in terminally differentiated 
skeletal muscle cells is associated with loss of functional CCAAT-binding NF-Y complex. 
Oncogene, 1999. 18(18): p. 2818-27. 

13. Gurtner, A., et al., Requirement for down-regulation of the CCAAT-binding activity of the NF-Y 
transcription factor during skeletal muscle differentiation. Mol Biol Cell, 2003. 14(7): p. 2706-15. 

14. Marziali, G., et al., The activity of the CCAAT-box binding factor NF-Y is modulated through the 
regulated expression of its A subunit during monocyte to macrophage differentiation: regulation 
of tissue-specific genes through a ubiquitous transcription factor. Blood, 1999. 93(2): p. 519-26. 

15. Bhattacharya, A., et al., The B subunit of the CCAAT box binding transcription factor complex 
(CBF/NF-Y) is essential for early mouse development and cell proliferation. Cancer Res, 2003. 
63(23): p. 8167-72. 

16. Yoshioka, Y., et al., Complex interference in the eye developmental pathway by Drosophila NF-
YA. Genesis, 2007. 45(1): p. 21-31. 

17. Dolfini, D., R. Gatta, and R. Mantovani, NF-Y and the transcriptional activation of CCAAT 
promoters. Crit Rev Biochem Mol Biol, 2012. 47(1): p. 29-49. 

18. Li, X.Y., et al., Intron-exon organization of the NF-Y genes. Tissue-specific splicing modifies an 
activation domain. J Biol Chem, 1992. 267(13): p. 8984-90. 

19. Coustry, F., S.N. Maity, and B. de Crombrugghe, Studies on transcription activation by the 
multimeric CCAAT-binding factor CBF. J Biol Chem, 1995. 270(1): p. 468-75. 



231 

 

20. Coustry, F., et al., The transcriptional activity of the CCAAT-binding factor CBF is mediated by two 
distinct activation domains, one in the CBF-B subunit and the other in the CBF-C subunit. J Biol 
Chem, 1996. 271(24): p. 14485-91. 

21. Mantovani, R., et al., Dominant negative analogs of NF-YA. J Biol Chem, 1994. 269(32): p. 20340-
6. 

22. Kim, I.S., et al., Determination of functional domains in the C subunit of the CCAAT-binding factor 
(CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both 
the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule. Mol Cell Biol, 1996. 16(8): 
p. 4003-13. 

23. Sinha, S., et al., Three classes of mutations in the A subunit of the CCAAT-binding factor CBF 
delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Mol 
Cell Biol, 1996. 16(1): p. 328-37. 

24. Zemzoumi, K., et al., NF-Y histone fold alpha1 helices help impart CCAAT specificity. J Mol Biol, 
1999. 286(2): p. 327-37. 

25. Romier, C., et al., The NF-YB/NF-YC structure gives insight into DNA binding and transcription 
regulation by CCAAT factor NF-Y. J Biol Chem, 2003. 278(2): p. 1336-45. 

26. Baxevanis, A.D., et al., A variety of DNA-binding and multimeric proteins contain the histone fold 
motif. Nucleic Acids Res, 1995. 23(14): p. 2685-91. 

27. Gusmaroli, G., C. Tonelli, and R. Mantovani, Regulation of the CCAAT-Binding NF-Y subunits in 
Arabidopsis thaliana. Gene, 2001. 264(2): p. 173-85. 

28. Zhou, Z., et al., Maneuver at the transcription start site: Mot1p and NC2 navigate TFIID/TBP to 
specific core promoter elements. Epigenetics, 2009. 4(1): p. 1-4. 

29. Gangloff, Y.G., et al., The histone fold is a key structural motif of transcription factor TFIID. 
Trends Biochem Sci, 2001. 26(4): p. 250-7. 

30. Nagy, Z. and L. Tora, Distinct GCN5/PCAF-containing complexes function as co-activators and are 
involved in transcription factor and global histone acetylation. Oncogene, 2007. 26(37): p. 5341-
57. 

31. Bolognese, F., et al., Cloning and characterization of the histone-fold proteins YBL1 and YCL1. 
Nucleic Acids Res, 2000. 28(19): p. 3830-8. 

32. Suganuma, T., et al., ATAC is a double histone acetyltransferase complex that stimulates 
nucleosome sliding. Nat Struct Mol Biol, 2008. 15(4): p. 364-72. 

33. Wang, Y.L., et al., Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-
like histone fold module that interacts with the TATA-binding protein. J Biol Chem, 2008. 
283(49): p. 33808-15. 

34. Arents, G. and E.N. Moudrianakis, The histone fold: a ubiquitous architectural motif utilized in 
DNA compaction and protein dimerization. Proc Natl Acad Sci U S A, 1995. 92(24): p. 11170-4. 

35. Bellorini, M., et al., CCAAT binding NF-Y-TBP interactions: NF-YB and NF-YC require short 
domains adjacent to their histone fold motifs for association with TBP basic residues. Nucleic 
Acids Res, 1997. 25(11): p. 2174-81. 

36. Suzuki, Y., et al., Identification and characterization of the potential promoter regions of 1031 
kinds of human genes. Genome Res, 2001. 11(5): p. 677-84. 

37. FitzGerald, P.C., et al., Clustering of DNA sequences in human promoters. Genome Res, 2004. 
14(8): p. 1562-74. 

38. Marino-Ramirez, L., et al., Statistical analysis of over-represented words in human promoter 
sequences. Nucleic Acids Res, 2004. 32(3): p. 949-58. 

39. Mantovani, R., A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res, 1998. 26(5): p. 
1135-43. 



232 

 

40. Bucher, P., Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements 
derived from 502 unrelated promoter sequences. J Mol Biol, 1990. 212(4): p. 563-78. 

41. Testa, A., et al., Chromatin immunoprecipitation (ChIP) on chip experiments uncover a 
widespread distribution of NF-Y binding CCAAT sites outside of core promoters. J Biol Chem, 
2005. 280(14): p. 13606-15. 

42. Ceribelli, M., et al., The histone-like NF-Y is a bifunctional transcription factor. Mol Cell Biol, 
2008. 28(6): p. 2047-58. 

43. Su, M., et al., Stereochemical analysis of the functional significance of the conserved inverted 
CCAAT and TATA elements in the rat bone sialoprotein gene promoter. J Biol Chem, 2006. 
281(15): p. 9882-90. 

44. Vilen, B.J., J.F. Penta, and J.P. Ting, Structural constraints within a trimeric transcriptional 
regulatory region. Constitutive and interferon-gamma-inducible expression of the HLA-DRA gene. 
J Biol Chem, 1992. 267(33): p. 23728-34. 

45. Vilen, B.J., J.P. Cogswell, and J.P. Ting, Stereospecific alignment of the X and Y elements is 
required for major histocompatibility complex class II DRA promoter function. Mol Cell Biol, 
1991. 11(5): p. 2406-15. 

46. Zhu, X.S., et al., Transcriptional scaffold: CIITA interacts with NF-Y, RFX, and CREB to cause 
stereospecific regulation of the class II major histocompatibility complex promoter. Mol Cell Biol, 
2000. 20(16): p. 6051-61. 

47. Linhoff, M.W., K.L. Wright, and J.P. Ting, CCAAT-binding factor NF-Y and RFX are required for in 
vivo assembly of a nucleoprotein complex that spans 250 base pairs: the invariant chain 
promoter as a model. Mol Cell Biol, 1997. 17(8): p. 4589-96. 

48. Linhart, C., et al., Deciphering transcriptional regulatory elements that encode specific cell cycle 
phasing by comparative genomics analysis. Cell Cycle, 2005. 4(12): p. 1788-97. 

49. Lucibello, F.C., et al., Periodic cdc25C transcription is mediated by a novel cell cycle-regulated 
repressor element (CDE). EMBO J, 1995. 14(1): p. 132-42. 

50. Liberati, C., et al., NF-Y binding to twin CCAAT boxes: role of Q-rich domains and histone fold 
helices. J Mol Biol, 1999. 285(4): p. 1441-55. 

51. Dolfini, D., et al., A perspective of promoter architecture from the CCAAT box. Cell Cycle, 2009. 
8(24): p. 4127-37. 

52. Karsenty, G., P. Golumbek, and B. de Crombrugghe, Point mutations and small substitution 
mutations in three different upstream elements inhibit the activity of the mouse alpha 2(I) 
collagen promoter. J Biol Chem, 1988. 263(27): p. 13909-15. 

53. Maity, S.N., et al., Selective activation of transcription by a novel CCAAT binding factor. Science, 
1988. 241(4865): p. 582-5. 

54. Dorn, A., et al., A multiplicity of CCAAT box-binding proteins. Cell, 1987. 50(6): p. 863-72. 
55. Ceribelli, M., et al., Repression of new p53 targets revealed by ChIP on chip experiments. Cell 

Cycle, 2006. 5(10): p. 1102-10. 
56. Farsetti, A., et al., Inhibition of ERalpha-mediated trans-activation of human coagulation factor 

XII gene by heteromeric transcription factor NF-Y. Endocrinology, 2001. 142(8): p. 3380-8. 
57. Murai-Takeda, A., et al., NF-YC functions as a corepressor of agonist-bound mineralocorticoid 

receptor. J Biol Chem, 2010. 285(11): p. 8084-93. 
58. Yun, J., et al., Cdk2-dependent phosphorylation of the NF-Y transcription factor and its 

involvement in the p53-p21 signaling pathway. J Biol Chem, 2003. 278(38): p. 36966-72. 
59. Ravasi, T., et al., An atlas of combinatorial transcriptional regulation in mouse and man. Cell, 

2010. 140(5): p. 744-52. 



233 

 

60. Poch, M.T., et al., Two distinct classes of CCAAT box elements that bind nuclear factor-Y/alpha-
actinin-4: potential role in human CYP1A1 regulation. Toxicol Appl Pharmacol, 2004. 199(3): p. 
239-50. 

61. Reed, B.D., et al., Genome-wide occupancy of SREBP1 and its partners NFY and SP1 reveals novel 
functional roles and combinatorial regulation of distinct classes of genes. PLoS Genet, 2008. 4(7): 
p. e1000133. 

62. Villard, J., et al., A functionally essential domain of RFX5 mediates activation of major 
histocompatibility complex class II promoters by promoting cooperative binding between RFX 
and NF-Y. Mol Cell Biol, 2000. 20(10): p. 3364-76. 

63. Caretti, G., et al., Dissection of functional NF-Y-RFX cooperative interactions on the MHC class II 
Ea promoter. J Mol Biol, 2000. 302(3): p. 539-52. 

64. Leimgruber, E., et al., Nucleosome eviction from MHC class II promoters controls positioning of 
the transcription start site. Nucleic Acids Res, 2009. 37(8): p. 2514-28. 

65. Wright, K.L., et al., CCAAT box binding protein NF-Y facilitates in vivo recruitment of upstream 
DNA binding transcription factors. EMBO J, 1994. 13(17): p. 4042-53. 

66. Kretsovali, A., et al., Involvement of CREB binding protein in expression of major 
histocompatibility complex class II genes via interaction with the class II transactivator. Mol Cell 
Biol, 1998. 18(11): p. 6777-83. 

67. Fontes, J.D., et al., Interactions between the class II transactivator and CREB binding protein 
increase transcription of major histocompatibility complex class II genes. Mol Cell Biol, 1999. 
19(1): p. 941-7. 

68. Mudhasani, R. and J.D. Fontes, The class II transactivator requires brahma-related gene 1 to 
activate transcription of major histocompatibility complex class II genes. Mol Cell Biol, 2002. 
22(14): p. 5019-26. 

69. Pattenden, S.G., et al., Interferon-gamma-induced chromatin remodeling at the CIITA locus is 
BRG1 dependent. EMBO J, 2002. 21(8): p. 1978-86. 

70. Jabrane-Ferrat, N., et al., MHC class II enhanceosome: how is the class II transactivator recruited 
to DNA-bound activators? Int Immunol, 2003. 15(4): p. 467-75. 

71. Wong, A.W., et al., CIITA-regulated plexin-A1 affects T-cell-dendritic cell interactions. Nat 
Immunol, 2003. 4(9): p. 891-8. 

72. Benoist, C. and D. Mathis, Regulation of major histocompatibility complex class-II genes: X, Y and 
other letters of the alphabet. Annu Rev Immunol, 1990. 8: p. 681-715. 

73. Frontini, M., et al., NF-Y recruitment of TFIID, multiple interactions with histone fold TAF(II)s. J 
Biol Chem, 2002. 277(8): p. 5841-8. 

74. Mantovani, R., et al., Monoclonal antibodies to NF-Y define its function in MHC class II and 
albumin gene transcription. EMBO J, 1992. 11(9): p. 3315-22. 

75. Duan, Z., G. Stamatoyannopoulos, and Q. Li, Role of NF-Y in in vivo regulation of the gamma-
globin gene. Mol Cell Biol, 2001. 21(9): p. 3083-95. 

76. Xie, X., et al., Structural similarity between TAFs and the heterotetrameric core of the histone 
octamer. Nature, 1996. 380(6572): p. 316-22. 

77. Birck, C., et al., Human TAF(II)28 and TAF(II)18 interact through a histone fold encoded by 
atypical evolutionary conserved motifs also found in the SPT3 family. Cell, 1998. 94(2): p. 239-49. 

78. Coustry, F., et al., The two activation domains of the CCAAT-binding factor CBF interact with the 
dTAFII110 component of the Drosophila TFIID complex. Biochem J, 1998. 331 ( Pt 1): p. 291-7. 

79. Jin, S. and K.W. Scotto, Transcriptional regulation of the MDR1 gene by histone acetyltransferase 
and deacetylase is mediated by NF-Y. Mol Cell Biol, 1998. 18(7): p. 4377-84. 



234 

 

80. Huang, W., et al., Trichostatin A induces transforming growth factor beta type II receptor 
promoter activity and acetylation of Sp1 by recruitment of PCAF/p300 to a Sp1.NF-Y complex. J 
Biol Chem, 2005. 280(11): p. 10047-54. 

81. Currie, R.A., NF-Y is associated with the histone acetyltransferases GCN5 and P/CAF. J Biol Chem, 
1998. 273(3): p. 1430-4. 

82. Motta, M.C., et al., Interactions of the CCAAT-binding trimer NF-Y with nucleosomes. J Biol 
Chem, 1999. 274(3): p. 1326-33. 

83. Caretti, G., M.C. Motta, and R. Mantovani, NF-Y associates with H3-H4 tetramers and octamers 
by multiple mechanisms. Mol Cell Biol, 1999. 19(12): p. 8591-603. 

84. Coustry, F., et al., CBF/NF-Y functions both in nucleosomal disruption and transcription activation 
of the chromatin-assembled topoisomerase IIalpha promoter. Transcription activation by 
CBF/NF-Y in chromatin is dependent on the promoter structure. J Biol Chem, 2001. 276(44): p. 
40621-30. 

85. Gatta, R. and R. Mantovani, NF-Y affects histone acetylation and H2A.Z deposition in cell cycle 
promoters. Epigenetics, 2011. 6(4): p. 526-34. 

86. Sun, F., et al., Nuclear factor Y is required for basal activation and chromatin accessibility of 
fibroblast growth factor receptor 2 promoter in osteoblast-like cells. J Biol Chem, 2009. 284(5): p. 
3136-47. 

87. Boucher, P.D., M.P. Piechocki, and R.N. Hines, Partial characterization of the human CYP1A1 
negatively acting transcription factor and mutational analysis of its cognate DNA recognition 
sequence. Mol Cell Biol, 1995. 15(9): p. 5144-51. 

88. Peng, Y. and N. Jahroudi, The NFY transcription factor inhibits von Willebrand factor promoter 
activation in non-endothelial cells through recruitment of histone deacetylases. J Biol Chem, 
2003. 278(10): p. 8385-94. 

89. Peng, Y. and N. Jahroudi, The NFY transcription factor functions as a repressor and activator of 
the von Willebrand factor promoter. Blood, 2002. 99(7): p. 2408-17. 

90. Gowri, P.M., et al., Recruitment of a repressosome complex at the growth hormone receptor 
promoter and its potential role in diabetic nephropathy. Mol Cell Biol, 2003. 23(3): p. 815-25. 

91. Hewetson, A. and B.S. Chilton, An Sp1-NF-Y/progesterone receptor DNA binding-dependent 
mechanism regulates progesterone-induced transcriptional activation of the rabbit 
RUSH/SMARCA3 gene. J Biol Chem, 2003. 278(41): p. 40177-85. 

92. Bernadt, C.T., et al., NF-Y behaves as a bifunctional transcription factor that can stimulate or 
repress the FGF-4 promoter in an enhancer-dependent manner. Gene Expr, 2005. 12(3): p. 193-
212. 

93. Deng, H., et al., Transcription factor NFY globally represses the expression of the C. elegans Hox 
gene Abdominal-B homolog egl-5. Dev Biol, 2007. 308(2): p. 583-92. 

94. Imbriano, C., et al., Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing 
G2/M promoters. Mol Cell Biol, 2005. 25(9): p. 3737-51. 

95. Harrow, J., et al., GENCODE: The reference human genome annotation for The ENCODE Project. 
Genome Res, 2012. 22(9): p. 1760-74. 

96. Vuorio, T., S.N. Maity, and B. de Crombrugghe, Purification and molecular cloning of the "A" 
chain of a rat heteromeric CCAAT-binding protein. Sequence identity with the yeast HAP3 
transcription factor. J Biol Chem, 1990. 265(36): p. 22480-6. 

97. Grskovic, M., et al., Systematic identification of cis-regulatory sequences active in mouse and 
human embryonic stem cells. PLoS Genet, 2007. 3(8): p. e145. 

98. Ge, Y., et al., Synergistic regulation of human cystathionine-beta-synthase-1b promoter by 
transcription factors NF-YA isoforms and Sp1. Biochim Biophys Acta, 2002. 1579(2-3): p. 73-80. 



235 

 

99. Zhu, J., et al., NF-Ya activates multiple hematopoietic stem cell (HSC) regulatory genes and 
promotes HSC self-renewal. Proc Natl Acad Sci U S A, 2005. 102(33): p. 11728-33. 

100. Sinha, S., et al., Chromosomal assignment and tissue expression of CBF-C/NFY-C, the third 
subunit of the mammalian CCAAT-binding factor. Genomics, 1996. 37(2): p. 260-3. 

101. Bellorini, M., et al., Cloning and expression of human NF-YC. Gene, 1997. 193(1): p. 119-25. 
102. Ceribelli, M., et al., NF-YC complexity is generated by dual promoters and alternative splicing. J 

Biol Chem, 2009. 284(49): p. 34189-200. 
103. Chen, F., et al., Repression of Smad2 and Smad3 transactivating activity by association with a 

novel splice variant of CCAAT-binding factor C subunit. Biochem J, 2002. 364(Pt 2): p. 571-7. 
104. Bolognese, F., et al., The cyclin B2 promoter depends on NF-Y, a trimer whose CCAAT-binding 

activity is cell-cycle regulated. Oncogene, 1999. 18(10): p. 1845-53. 
105. Yang, J., et al., A novel mechanism involving coordinated regulation of nuclear levels and 

acetylation of NF-YA and Bcl6 activates RGS4 transcription. J Biol Chem, 2010. 285(39): p. 29760-
9. 

106. Manni, I., et al., Posttranslational regulation of NF-YA modulates NF-Y transcriptional activity. 
Mol Biol Cell, 2008. 19(12): p. 5203-13. 

107. Li, Q., et al., Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive 
transcription from the Xenopus hsp70 promoter in vivo. EMBO J, 1998. 17(21): p. 6300-15. 

108. Chae, H.D., et al., Cdk2-dependent phosphorylation of the NF-Y transcription factor is essential 
for the expression of the cell cycle-regulatory genes and cell cycle G1/S and G2/M transitions. 
Oncogene, 2004. 23(23): p. 4084-8. 

109. Chan, Q.K., et al., Activation of GPR30 inhibits the growth of prostate cancer cells through 
sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G(2) 
cell-cycle arrest. Cell Death Differ, 2010. 17(9): p. 1511-23. 

110. Abate, C., et al., Redox regulation of fos and jun DNA-binding activity in vitro. Science, 1990. 
249(4973): p. 1157-61. 

111. Matthews, J.R., et al., Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction 
of a disulphide bond involving cysteine 62. Nucleic Acids Res, 1992. 20(15): p. 3821-30. 

112. Guehmann, S., et al., Reduction of a conserved Cys is essential for Myb DNA-binding. Nucleic 
Acids Res, 1992. 20(9): p. 2279-86. 

113. Wemmie, J.A., S.M. Steggerda, and W.S. Moye-Rowley, The Saccharomyces cerevisiae AP-1 
protein discriminates between oxidative stress elicited by the oxidants H2O2 and diamide. J Biol 
Chem, 1997. 272(12): p. 7908-14. 

114. Kuge, S., N. Jones, and A. Nomoto, Regulation of yAP-1 nuclear localization in response to 
oxidative stress. EMBO J, 1997. 16(7): p. 1710-20. 

115. Nakshatri, H., P. Bhat-Nakshatri, and R.A. Currie, Subunit association and DNA binding activity of 
the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J Biol Chem, 1996. 
271(46): p. 28784-91. 

116. Thon, M., et al., The CCAAT-binding complex coordinates the oxidative stress response in 
eukaryotes. Nucleic Acids Res, 2010. 38(4): p. 1098-113. 

117. Habib, S.L., Molecular mechanism of regulation of OGG1: tuberin deficiency results in 
cytoplasmic redistribution of transcriptional factor NF-YA. J Mol Signal, 2009. 4: p. 8. 

118. Habib, S.L., et al., Tuberin regulates the DNA repair enzyme OGG1. Am J Physiol Renal Physiol, 
2008. 294(1): p. F281-90. 

119. Lee, M.R., et al., Transcription factors NF-YA regulate the induction of human OGG1 following 
DNA-alkylating agent methylmethane sulfonate (MMS) treatment. J Biol Chem, 2004. 279(11): p. 
9857-66. 



236 

 

120. Frontini, M., et al., Cell cycle regulation of NF-YC nuclear localization. Cell Cycle, 2004. 3(2): p. 
217-22. 

121. Kahle, J., et al., Subunits of the heterotrimeric transcription factor NF-Y are imported into the 
nucleus by distinct pathways involving importin beta and importin 13. Mol Cell Biol, 2005. 
25(13): p. 5339-54. 

122. Steidl, S., et al., A single subunit of a heterotrimeric CCAAT-binding complex carries a nuclear 
localization signal: piggy back transport of the pre-assembled complex to the nucleus. J Mol Biol, 
2004. 342(2): p. 515-24. 

123. Goda, H., et al., Nuclear translocation of the heterotrimeric CCAAT binding factor of Aspergillus 
oryzae is dependent on two redundant localising signals in a single subunit. Arch Microbiol, 
2005. 184(2): p. 93-100. 

124. Tuncher, A., et al., The CCAAT-binding complex of eukaryotes: evolution of a second NLS in the 
HapB subunit of the filamentous fungus Aspergillus nidulans despite functional conservation at 
the molecular level between yeast, A.nidulans and human. J Mol Biol, 2005. 352(3): p. 517-33. 

125. Tabach, Y., et al., The promoters of human cell cycle genes integrate signals from two tumor 
suppressive pathways during cellular transformation. Mol Syst Biol, 2005. 1: p. 2005 0022. 

126. Scafoglio, C., et al., Comparative gene expression profiling reveals partially overlapping but 
distinct genomic actions of different antiestrogens in human breast cancer cells. J Cell Biochem, 
2006. 98(5): p. 1163-84. 

127. Niida, A., et al., Integrative bioinformatics analysis of transcriptional regulatory programs in 
breast cancer cells. BMC Bioinformatics, 2008. 9: p. 404. 

128. Jurchott, K., et al., Identification of Y-box binding protein 1 as a core regulator of MEK/ERK 
pathway-dependent gene signatures in colorectal cancer cells. PLoS Genet, 2010. 6(12): p. 
e1001231. 

129. Salvatore, G., et al., A cell proliferation and chromosomal instability signature in anaplastic 
thyroid carcinoma. Cancer Res, 2007. 67(21): p. 10148-58. 

130. Blum, R., et al., Molecular signatures of prostate stem cells reveal novel signaling pathways and 
provide insights into prostate cancer. PLoS One, 2009. 4(5): p. e5722. 

131. Calvo, A., et al., Molecular characterization of the Ggamma-globin-Tag transgenic mouse model 
of hormone refractory prostate cancer: comparison to human prostate cancer. Prostate, 2010. 
70(6): p. 630-45. 

132. Forsberg, E.C., et al., Molecular signatures of quiescent, mobilized and leukemia-initiating 
hematopoietic stem cells. PLoS One, 2010. 5(1): p. e8785. 

133. Goodarzi, H., O. Elemento, and S. Tavazoie, Revealing global regulatory perturbations across 
human cancers. Mol Cell, 2009. 36(5): p. 900-11. 

134. Sinha, S., et al., Systematic functional characterization of cis-regulatory motifs in human core 
promoters. Genome Res, 2008. 18(3): p. 477-88. 

135. Rhodes, D.R., et al., Mining for regulatory programs in the cancer transcriptome. Nat Genet, 
2005. 37(6): p. 579-83. 

136. Zhu, W., P.H. Giangrande, and J.R. Nevins, E2Fs link the control of G1/S and G2/M transcription. 
EMBO J, 2004. 23(23): p. 4615-26. 

137. Thomassen, M., Q. Tan, and T.A. Kruse, Gene expression meta-analysis identifies metastatic 
pathways and transcription factors in breast cancer. BMC Cancer, 2008. 8: p. 394. 

138. Akira, S., et al., Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related 
transcription factor involved in the gp130-mediated signaling pathway. Cell, 1994. 77(1): p. 63-
71. 



237 

 

139. Zhong, Z., Z. Wen, and J.E. Darnell, Jr., Stat3: a STAT family member activated by tyrosine 
phosphorylation in response to epidermal growth factor and interleukin-6. Science, 1994. 
264(5155): p. 95-8. 

140. Ivashkiv, L.B., Cytokines and STATs: how can signals achieve specificity? Immunity, 1995. 3(1): p. 
1-4. 

141. Becker, S., B. Groner, and C.W. Muller, Three-dimensional structure of the Stat3beta homodimer 
bound to DNA. Nature, 1998. 394(6689): p. 145-51. 

142. Guyer, N.B., et al., IFN-gamma induces a p91/Stat1 alpha-related transcription factor with 
distinct activation and binding properties. J Immunol, 1995. 155(7): p. 3472-80. 

143. Bergad, P.L., et al., Growth hormone induction of hepatic serine protease inhibitor 2.1 
transcription is mediated by a Stat5-related factor binding synergistically to two gamma-
activated sites. J Biol Chem, 1995. 270(42): p. 24903-10. 

144. Xu, X., Y.L. Sun, and T. Hoey, Cooperative DNA binding and sequence-selective recognition 
conferred by the STAT amino-terminal domain. Science, 1996. 273(5276): p. 794-7. 

145. Vinkemeier, U., et al., DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated 
Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem 
DNA sites. EMBO J, 1996. 15(20): p. 5616-26. 

146. Paulson, M., et al., Stat protein transactivation domains recruit p300/CBP through widely 
divergent sequences. J Biol Chem, 1999. 274(36): p. 25343-9. 

147. Wang, R., P. Cherukuri, and J. Luo, Activation of Stat3 sequence-specific DNA binding and 
transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem, 2005. 280(12): p. 
11528-34. 

148. Yuan, Z.L., et al., Stat3 dimerization regulated by reversible acetylation of a single lysine residue. 
Science, 2005. 307(5707): p. 269-73. 

149. Zhang, X., et al., Interacting regions in Stat3 and c-Jun that participate in cooperative 
transcriptional activation. Mol Cell Biol, 1999. 19(10): p. 7138-46. 

150. Schaefer, T.S., L.K. Sanders, and D. Nathans, Cooperative transcriptional activity of Jun and Stat3 
beta, a short form of Stat3. Proc Natl Acad Sci U S A, 1995. 92(20): p. 9097-101. 

151. Icardi, L., et al., The Sin3a repressor complex is a master regulator of STAT transcriptional 
activity. Proc Natl Acad Sci U S A, 2012. 109(30): p. 12058-63. 

152. Ray, S., et al., Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of 
transcription 3 (STAT3) nucleocytoplasmic distribution. Nucleic Acids Res, 2008. 36(13): p. 4510-
20. 

153. Lee, H., et al., Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters 
and inhibition by resveratrol results in demethylation. Proc Natl Acad Sci U S A, 2012. 109(20): p. 
7765-9. 

154. Shi, S., et al., Drosophila STAT is required for directly maintaining HP1 localization and 
heterochromatin stability. Nat Cell Biol, 2008. 10(4): p. 489-96. 

155. Shi, S., et al., JAK signaling globally counteracts heterochromatic gene silencing. Nat Genet, 
2006. 38(9): p. 1071-6. 

156. Timofeeva, O.A., et al., Mechanisms of unphosphorylated STAT3 transcription factor binding to 
DNA. J Biol Chem, 2012. 287(17): p. 14192-200. 

157. Yang, J., et al., Unphosphorylated STAT3 accumulates in response to IL-6 and activates 
transcription by binding to NFkappaB. Genes Dev, 2007. 21(11): p. 1396-408. 

158. Yoshida, Y., et al., Interleukin 1 activates STAT3/nuclear factor-kappaB cross-talk via a unique 
TRAF6- and p65-dependent mechanism. J Biol Chem, 2004. 279(3): p. 1768-76. 



238 

 

159. Yu, Z., W. Zhang, and B.C. Kone, Signal transducers and activators of transcription 3 (STAT3) 
inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear 
factor kappaB. Biochem J, 2002. 367(Pt 1): p. 97-105. 

160. Yang, J., et al., Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional 
regulation. Cancer Res, 2005. 65(3): p. 939-47. 

161. Aggarwal, B.B., et al., Signal transducer and activator of transcription-3, inflammation, and 
cancer: how intimate is the relationship? Ann N Y Acad Sci, 2009. 1171: p. 59-76. 

162. Yu, C.L., et al., Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by 
the Src oncoprotein. Science, 1995. 269(5220): p. 81-3. 

163. Turkson, J., et al., Requirement for Ras/Rac1-mediated p38 and c-Jun N-terminal kinase signaling 
in Stat3 transcriptional activity induced by the Src oncoprotein. Mol Cell Biol, 1999. 19(11): p. 
7519-28. 

164. Wen, Z., Z. Zhong, and J.E. Darnell, Jr., Maximal activation of transcription by Stat1 and Stat3 
requires both tyrosine and serine phosphorylation. Cell, 1995. 82(2): p. 241-50. 

165. Wen, Z. and J.E. Darnell, Jr., Mapping of Stat3 serine phosphorylation to a single residue (727) 
and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. 
Nucleic Acids Res, 1997. 25(11): p. 2062-7. 

166. Caldenhoven, E., et al., STAT3beta, a splice variant of transcription factor STAT3, is a dominant 
negative regulator of transcription. J Biol Chem, 1996. 271(22): p. 13221-7. 

167. Grivennikov, S.I. and M. Karin, Inflammation and oncogenesis: a vicious connection. Curr Opin 
Genet Dev, 2010. 20(1): p. 65-71. 

168. Borrello, M.G., D. Degl'Innocenti, and M.A. Pierotti, Inflammation and cancer: the oncogene-
driven connection. Cancer Lett, 2008. 267(2): p. 262-70. 

169. Croce, C.M., Oncogenes and cancer. N Engl J Med, 2008. 358(5): p. 502-11. 
170. Mantovani, A., et al., Cancer-related inflammation. Nature, 2008. 454(7203): p. 436-44. 
171. Mantovani, A., Cancer: Inflaming metastasis. Nature, 2009. 457(7225): p. 36-7. 
172. Grivennikov, S.I., F.R. Greten, and M. Karin, Immunity, inflammation, and cancer. Cell, 2010. 

140(6): p. 883-99. 
173. Muller, A., et al., Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001. 

410(6824): p. 50-6. 
174. Kim, S.Y., et al., Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of 

murine pulmonary metastases. Clin Exp Metastasis, 2008. 25(3): p. 201-11. 
175. Li, L. and P.E. Shaw, Autocrine-mediated activation of STAT3 correlates with cell proliferation in 

breast carcinoma lines. J Biol Chem, 2002. 277(20): p. 17397-405. 
176. DeArmond, D., et al., Autocrine-mediated ErbB-2 kinase activation of STAT3 is required for 

growth factor independence of pancreatic cancer cell lines. Oncogene, 2003. 22(49): p. 7781-95. 
177. Wei, D., et al., Stat3 activation regulates the expression of vascular endothelial growth factor 

and human pancreatic cancer angiogenesis and metastasis. Oncogene, 2003. 22(3): p. 319-29. 
178. Lee, S.O., et al., Interleukin-6 promotes androgen-independent growth in LNCaP human prostate 

cancer cells. Clin Cancer Res, 2003. 9(1): p. 370-6. 
179. Rebouissou, S., et al., Frequent in-frame somatic deletions activate gp130 in inflammatory 

hepatocellular tumours. Nature, 2009. 457(7226): p. 200-4. 
180. Rawat, R., et al., Constitutive activation of STAT3 is associated with the acquisition of an 

interleukin 6-independent phenotype by murine plasmacytomas and hybridomas. Blood, 2000. 
96(10): p. 3514-21. 

181. Jove, R., Preface: STAT signaling. Oncogene, 2000. 19(21): p. 2466-7. 
182. Bowman, T., et al., STATs in oncogenesis. Oncogene, 2000. 19(21): p. 2474-88. 



239 

 

183. The ENCODE Project Consortium, The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 
2004. 306(5696): p. 636-40. 

184. The ENCODE Project Consortium, A user's guide to the encyclopedia of DNA elements (ENCODE). 
PLoS Biol, 2011. 9(4): p. e1001046. 

185. The ENCODE Project Consortium, An integrated encyclopedia of DNA elements in the human 
genome. Nature, 2012. 489(7414): p. 57-74. 

186. Rando, O.J., Global patterns of histone modifications. Curr Opin Genet Dev, 2007. 17(2): p. 94-9. 
187. Felsenfeld, G., Chromatin as an essential part of the transcriptional mechanism. Nature, 1992. 

355(6357): p. 219-24. 
188. Hirschhorn, J.N., et al., Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by 

altering chromatin structure. Genes Dev, 1992. 6(12A): p. 2288-98. 
189. Kwon, H., et al., Nucleosome disruption and enhancement of activator binding by a human 

SW1/SNF complex. Nature, 1994. 370(6489): p. 477-81. 
190. Moazed, D., Small RNAs in transcriptional gene silencing and genome defence. Nature, 2009. 

457(7228): p. 413-20. 
191. Simon, J.A. and R.E. Kingston, Mechanisms of polycomb gene silencing: knowns and unknowns. 

Nat Rev Mol Cell Biol, 2009. 10(10): p. 697-708. 
192. Birney, E., et al., Identification and analysis of functional elements in 1% of the human genome 

by the ENCODE pilot project. Nature, 2007. 447(7146): p. 799-816. 
193. Hooft van Huijsduijnen, R.A., et al., Properties of a CCAAT box-binding protein. Nucleic Acids Res, 

1987. 15(18): p. 7265-82. 
194. Kim, C.G., et al., Promoter elements and erythroid cell nuclear factors that regulate alpha-globin 

gene transcription in vitro. Mol Cell Biol, 1990. 10(11): p. 5958-66. 
195. Imbriano, C., N. Gnesutta, and R. Mantovani, The NF-Y/p53 liaison: Well beyond repression. 

Biochim Biophys Acta, 2012. 1825(2): p. 131-9. 
196. Morachis, J.M., C.M. Murawsky, and B.M. Emerson, Regulation of the p53 transcriptional 

response by structurally diverse core promoters. Genes Dev, 2010. 24(2): p. 135-47. 
197. Hughes, R., et al., NF-Y is essential for expression of the proapoptotic bim gene in sympathetic 

neurons. Cell Death Differ, 2011. 18(6): p. 937-47. 
198. Khalil, A.M., et al., Many human large intergenic noncoding RNAs associate with chromatin-

modifying complexes and affect gene expression. Proc Natl Acad Sci U S A, 2009. 106(28): p. 
11667-72. 

199. Kozomara, A. and S. Griffiths-Jones, miRBase: integrating microRNA annotation and deep-
sequencing data. Nucleic Acids Res, 2011. 39(Database issue): p. D152-7. 

200. Fujita, P.A., et al., The UCSC Genome Browser database: update 2011. Nucleic Acids Res, 2011. 
39(Database issue): p. D876-82. 

201. He, S., et al., NONCODE v2.0: decoding the non-coding. Nucleic Acids Res, 2008. 36(Database 
issue): p. D170-2. 

202. Moqtaderi, Z., et al., Genomic binding profiles of functionally distinct RNA polymerase III 
transcription complexes in human cells. Nat Struct Mol Biol, 2010. 17(5): p. 635-40. 

203. Dorn, A., et al., B-cell control region at the 5' end of a major histocompatibility complex class II 
gene: sequences and factors. Mol Cell Biol, 1988. 8(10): p. 3975-87. 

204. Gilthorpe, J., et al., Spatially specific expression of Hoxb4 is dependent on the ubiquitous 
transcription factor NFY. Development, 2002. 129(16): p. 3887-99. 

205. Ernst, J., et al., Mapping and analysis of chromatin state dynamics in nine human cell types. 
Nature, 2011. 473(7345): p. 43-9. 

206. Gubler, U., et al., Coexpression of two distinct genes is required to generate secreted bioactive 
cytotoxic lymphocyte maturation factor. Proc Natl Acad Sci U S A, 1991. 88(10): p. 4143-7. 



240 

 

207. Wolf, S.F., et al., Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric 
cytokine with multiple biologic effects on T and natural killer cells. J Immunol, 1991. 146(9): p. 
3074-81. 

208. Yang, A., et al., Relationships between p63 binding, DNA sequence, transcription activity, and 
biological function in human cells. Mol Cell, 2006. 24(4): p. 593-602. 

209. Strub, T., et al., Essential role of microphthalmia transcription factor for DNA replication, mitosis 
and genomic stability in melanoma. Oncogene, 2011. 30(20): p. 2319-32. 

210. Martynova, E., et al., Gain-of-function p53 mutants have widespread genomic locations partially 
overlapping with p63. Oncotarget, 2012. 3(2): p. 132-43. 

211. Benachenhou, F., V. Blikstad, and J. Blomberg, The phylogeny of orthoretroviral long terminal 
repeats (LTRs). Gene, 2009. 448(2): p. 134-8. 

212. Benachenhou, F., et al., Evolutionary conservation of orthoretroviral long terminal repeats (LTRs) 
and ab initio detection of single LTRs in genomic data. PLoS One, 2009. 4(4): p. e5179. 

213. Bourque, G., Transposable elements in gene regulation and in the evolution of vertebrate 
genomes. Curr Opin Genet Dev, 2009. 19(6): p. 607-12. 

214. Graves, B.J., P.F. Johnson, and S.L. McKnight, Homologous recognition of a promoter domain 
common to the MSV LTR and the HSV tk gene. Cell, 1986. 44(4): p. 565-76. 

215. Dutta, A., M.Y. Stoeckle, and H. Hanafusa, Serum and v-src increase the level of a CCAAT-binding 
factor required for transcription from a retroviral long terminal repeat. Genes Dev, 1990. 4(2): p. 
243-54. 

216. Greuel, B.T., L. Sealy, and J.E. Majors, Transcriptional activity of the Rous sarcoma virus long 
terminal repeat correlates with binding of a factor to an upstream CCAAT box in vitro. Virology, 
1990. 177(1): p. 33-43. 

217. Faber, M. and L. Sealy, Rous sarcoma virus enhancer factor I is a ubiquitous CCAAT transcription 
factor highly related to CBF and NF-Y. J Biol Chem, 1990. 265(36): p. 22243-54. 

218. Scheef, G., et al., Transcriptional regulation of porcine endogenous retroviruses released from 
porcine and infected human cells by heterotrimeric protein complex NF-Y and impact of 
immunosuppressive drugs. J Virol, 2002. 76(24): p. 12553-63. 

219. Bourque, G., et al., Evolution of the mammalian transcription factor binding repertoire via 
transposable elements. Genome Res, 2008. 18(11): p. 1752-62. 

220. Kunarso, G., et al., Transposable elements have rewired the core regulatory network of human 
embryonic stem cells. Nat Genet, 2010. 42(7): p. 631-4. 

221. Yu, X., et al., The long terminal repeat (LTR) of ERV-9 human endogenous retrovirus binds to NF-Y 
in the assembly of an active LTR enhancer complex NF-Y/MZF1/GATA-2. J Biol Chem, 2005. 
280(42): p. 35184-94. 

222. Pi, W., et al., Long-range function of an intergenic retrotransposon. Proc Natl Acad Sci U S A, 
2010. 107(29): p. 12992-7. 

223. Maksakova, I.A., D.L. Mager, and D. Reiss, Keeping active endogenous retroviral-like elements in 
check: the epigenetic perspective. Cell Mol Life Sci, 2008. 65(21): p. 3329-47. 

224. Magnani, L., J. Eeckhoute, and M. Lupien, Pioneer factors: directing transcriptional regulators 
within the chromatin environment. Trends Genet, 2011. 27(11): p. 465-74. 

225. Zaret, K.S. and J.S. Carroll, Pioneer transcription factors: establishing competence for gene 
expression. Genes Dev, 2011. 25(21): p. 2227-41. 

226. Gurtner, A., et al., Transcription factor NF-Y induces apoptosis in cells expressing wild-type p53 
through E2F1 upregulation and p53 activation. Cancer Res, 2010. 70(23): p. 9711-20. 

227. Litovchick, L., et al., Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex 
represses human cell cycle-dependent genes in quiescence. Mol Cell, 2007. 26(4): p. 539-51. 



241 

 

228. Schmit, F., et al., LINC, a human complex that is related to pRB-containing complexes in 
invertebrates regulates the expression of G2/M genes. Cell Cycle, 2007. 6(15): p. 1903-13. 

229. Muller, G.A., et al., The CHR promoter element controls cell cycle-dependent gene transcription 
and binds the DREAM and MMB complexes. Nucleic Acids Res, 2012. 40(4): p. 1561-78. 

230. Muller, G.A. and K. Engeland, The central role of CDE/CHR promoter elements in the regulation 
of cell cycle-dependent gene transcription. FEBS J, 2010. 277(4): p. 877-93. 

231. Izumi, H., et al., Mechanism for the transcriptional repression by c-Myc on PDGF beta-receptor. J 
Cell Sci, 2001. 114(Pt 8): p. 1533-44. 

232. Kalra, I.S., et al., Kruppel-like Factor 4 activates HBG gene expression in primary erythroid cells. 
Br J Haematol, 2011. 154(2): p. 248-59. 

233. Evans, P.M., et al., Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription 
via modulation of histone acetylation. J Biol Chem, 2007. 282(47): p. 33994-4002. 

234. Yoon, H.S. and V.W. Yang, Requirement of Kruppel-like factor 4 in preventing entry into mitosis 
following DNA damage. J Biol Chem, 2004. 279(6): p. 5035-41. 

235. Oishi, Y., et al., SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in 
transcriptional programs of lipid metabolism involving PPAR-delta. Nat Med, 2008. 14(6): p. 656-
66. 

236. Turner, J. and M. Crossley, Cloning and characterization of mCtBP2, a co-repressor that 
associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO 
J, 1998. 17(17): p. 5129-40. 

237. van Vliet, J., J. Turner, and M. Crossley, Human Kruppel-like factor 8: a CACCC-box binding 
protein that associates with CtBP and represses transcription. Nucleic Acids Res, 2000. 28(9): p. 
1955-62. 

238. Schuierer, M., et al., Induction of AP-2alpha expression by adenoviral infection involves 
inactivation of the AP-2rep transcriptional corepressor CtBP1. J Biol Chem, 2001. 276(30): p. 
27944-9. 

239. West, A.G., et al., Recruitment of histone modifications by USF proteins at a vertebrate barrier 
element. Mol Cell, 2004. 16(3): p. 453-63. 

240. Huang, S., et al., USF1 recruits histone modification complexes and is critical for maintenance of 
a chromatin barrier. Mol Cell Biol, 2007. 27(22): p. 7991-8002. 

241. Li, X., et al., Chromatin boundaries require functional collaboration between the hSET1 and NURF 
complexes. Blood, 2011. 118(5): p. 1386-94. 

242. Prieto, C. and J. De Las Rivas, APID: Agile Protein Interaction DataAnalyzer. Nucleic Acids Res, 
2006. 34(Web Server issue): p. W298-302. 

243. Tiwari, V.K., et al., A chromatin-modifying function of JNK during stem cell differentiation. Nat 
Genet, 2012. 44(1): p. 94-100. 

244. Yoshida, H., et al., ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to 
the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol, 
2000. 20(18): p. 6755-67. 

245. Salsi, V., et al., Interactions between p300 and multiple NF-Y trimers govern cyclin B2 promoter 
function. J Biol Chem, 2003. 278(9): p. 6642-50. 

246. Schneider, T.D. and R.M. Stephens, Sequence logos: a new way to display consensus sequences. 
Nucleic Acids Res, 1990. 18(20): p. 6097-100. 

247. Langmead, B., et al., Ultrafast and memory-efficient alignment of short DNA sequences to the 
human genome. Genome Biol, 2009. 10(3): p. R25. 

248. Zhang, Y., et al., Model-based analysis of ChIP-Seq (MACS). Genome Biol, 2008. 9(9): p. R137. 
249. Jiang, H. and W.H. Wong, Statistical inferences for isoform expression in RNA-Seq. 

Bioinformatics, 2009. 25(8): p. 1026-32. 



242 

 

250. Jiang, H. and W.H. Wong, SeqMap: mapping massive amount of oligonucleotides to the genome. 
Bioinformatics, 2008. 24(20): p. 2395-6. 

251. You, F.M., et al., BatchPrimer3: a high throughput web application for PCR and sequencing 
primer design. BMC Bioinformatics, 2008. 9: p. 253. 

252. Aparicio, O., et al., Chromatin immunoprecipitation for determining the association of proteins 
with specific genomic sequences in vivo. Curr Protoc Mol Biol, 2005. Chapter 21: p. Unit 21 3. 

253. Cawley, S., et al., Unbiased mapping of transcription factor binding sites along human 
chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 2004. 116(4): 
p. 499-509. 

254. Benatti, P., et al., Specific inhibition of NF-Y subunits triggers different cell proliferation defects. 
Nucleic Acids Res, 2011. 39(13): p. 5356-68. 

255. Irizarry, R.A., et al., Exploration, normalization, and summaries of high density oligonucleotide 
array probe level data. Biostatistics, 2003. 4(2): p. 249-64. 

256. Gautier, L., et al., affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 
2004. 20(3): p. 307-15. 

257. Smyth, G.K., Linear models and empirical bayes methods for assessing differential expression in 
microarray experiments. Stat Appl Genet Mol Biol, 2004. 3: p. Article3. 

258. Smith, C.A., annaffy: Annotation tools for Affymetrix biological metadata. R package version 
1.24.0. 2010. 

259. McLean, C.Y., et al., GREAT improves functional interpretation of cis-regulatory regions. Nat 
Biotechnol, 2010. 28(5): p. 495-501. 

260. Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. 
Bioinformatics, 2010. 26(6): p. 841-2. 

261. Smit, A.F.A., R. Hubley, and P. Green, RepeatMasker Open-3.0. 1996-2010. 
262. Bailey, T.L. and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs 

in biopolymers. Proc Int Conf Intell Syst Mol Biol, 1994. 2: p. 28-36. 
263. Gupta, S., et al., Quantifying similarity between motifs. Genome Biol, 2007. 8(2): p. R24. 
264. Portales-Casamar, E., et al., JASPAR 2010: the greatly expanded open-access database of 

transcription factor binding profiles. Nucleic Acids Res, 2010. 38(Database issue): p. D105-10. 
265. Zambelli, F., G. Pesole, and G. Pavesi, Pscan: finding over-represented transcription factor 

binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res, 
2009. 37(Web Server issue): p. W247-52. 

266. Ye, T., et al., seqMINER: an integrated ChIP-seq data interpretation platform. Nucleic Acids Res, 
2011. 39(6): p. e35. 

267. Jurka, J., et al., Repbase Update, a database of eukaryotic repetitive elements. Cytogenet 
Genome Res, 2005. 110(1-4): p. 462-7. 

268. Grant, C.E., T.L. Bailey, and W.S. Noble, FIMO: scanning for occurrences of a given motif. 
Bioinformatics, 2011. 27(7): p. 1017-8. 

269. Suzuki, R. and H. Shimodaira, Pvclust: an R package for assessing the uncertainty in hierarchical 
clustering. Bioinformatics, 2006. 22(12): p. 1540-2. 

270. Carlson, J.M., D. Heckerman, and G. Shani, Estimating false discovery rates for contingency 
tables. Microsoft Research Technical Reports, 2009. MSR-TR-2009-53. 

271. Zhang, X., et al., Requirement of serine phosphorylation for formation of STAT-promoter 
complexes. Science, 1995. 267(5206): p. 1990-4. 

272. Chung, J., et al., STAT3 serine phosphorylation by ERK-dependent and -independent pathways 
negatively modulates its tyrosine phosphorylation. Mol Cell Biol, 1997. 17(11): p. 6508-16. 

273. Cao, X., et al., Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol Cell 
Biol, 1996. 16(4): p. 1595-603. 



243 

 

274. Chaturvedi, P., S. Sharma, and E.P. Reddy, Abrogation of interleukin-3 dependence of myeloid 
cells by the v-src oncogene requires SH2 and SH3 domains which specify activation of STATs. Mol 
Cell Biol, 1997. 17(6): p. 3295-304. 

275. Lu, Y., et al., Piwil2 suppresses p53 by inducing phosphorylation of signal transducer and 
activator of transcription 3 in tumor cells. PLoS One, 2012. 7(1): p. e30999. 

276. Chaturvedi, P., M.V. Reddy, and E.P. Reddy, Src kinases and not JAKs activate STATs during IL-3 
induced myeloid cell proliferation. Oncogene, 1998. 16(13): p. 1749-58. 

277. Garcia, R. and R. Jove, Activation of STAT transcription factors in oncogenic tyrosine kinase 
signaling. J Biomed Sci, 1998. 5(2): p. 79-85. 

278. Gouilleux-Gruart, V., et al., STAT-related transcription factors are constitutively activated in 
peripheral blood cells from acute leukemia patients. Blood, 1996. 87(5): p. 1692-7. 

279. Karras, J.G., et al., Signal transducer and activator of transcription-3 (STAT3) is constitutively 
activated in normal, self-renewing B-1 cells but only inducibly expressed in conventional B 
lymphocytes. J Exp Med, 1997. 185(6): p. 1035-42. 

280. Sartor, C.I., et al., Role of epidermal growth factor receptor and STAT-3 activation in autonomous 
proliferation of SUM-102PT human breast cancer cells. Cancer Res, 1997. 57(5): p. 978-87. 

281. Weber-Nordt, R.M., et al., Constitutive activation of STAT proteins in primary lymphoid and 
myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood, 1996. 
88(3): p. 809-16. 

282. Zhang, Q., et al., Activation of Jak/STAT proteins involved in signal transduction pathway 
mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous 
anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci U S A, 1996. 93(17): p. 
9148-53. 

283. Morikawa, T., et al., STAT3 expression, molecular features, inflammation patterns, and prognosis 
in a database of 724 colorectal cancers. Clin Cancer Res, 2011. 17(6): p. 1452-62. 

284. Bromberg, J.F., et al., Stat3 activation is required for cellular transformation by v-src. Mol Cell 
Biol, 1998. 18(5): p. 2553-8. 

285. Turkson, J., et al., Stat3 activation by Src induces specific gene regulation and is required for cell 
transformation. Mol Cell Biol, 1998. 18(5): p. 2545-52. 

286. Watson, C.J. and W.R. Miller, Elevated levels of members of the STAT family of transcription 
factors in breast carcinoma nuclear extracts. Br J Cancer, 1995. 71(4): p. 840-4. 

287. Berclaz, G., et al., EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int J 
Oncol, 2001. 19(6): p. 1155-60. 

288. Dolled-Filhart, M., et al., Tissue microarray analysis of signal transducers and activators of 
transcription 3 (Stat3) and phospho-Stat3 (Tyr705) in node-negative breast cancer shows nuclear 
localization is associated with a better prognosis. Clin Cancer Res, 2003. 9(2): p. 594-600. 

289. Iliopoulos, D., H.A. Hirsch, and K. Struhl, An epigenetic switch involving NF-kappaB, Lin28, Let-7 
MicroRNA, and IL6 links inflammation to cell transformation. Cell, 2009. 139(4): p. 693-706. 

290. Burke, W.M., et al., Inhibition of constitutively active Stat3 suppresses growth of human ovarian 
and breast cancer cells. Oncogene, 2001. 20(55): p. 7925-34. 

291. Garcia, R., et al., Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates 
in growth regulation of human breast carcinoma cells. Oncogene, 2001. 20(20): p. 2499-513. 

292. Dechow, T.N., et al., Requirement of matrix metalloproteinase-9 for the transformation of 
human mammary epithelial cells by Stat3-C. Proc Natl Acad Sci U S A, 2004. 101(29): p. 10602-7. 

293. Bromberg, J.F., et al., Stat3 as an oncogene. Cell, 1999. 98(3): p. 295-303. 
294. Hirsch, H.A., et al., A transcriptional signature and common gene networks link cancer with lipid 

metabolism and diverse human diseases. Cancer Cell, 2010. 17(4): p. 348-61. 



244 

 

295. Soule, H.D., et al., Isolation and characterization of a spontaneously immortalized human breast 
epithelial cell line, MCF-10. Cancer Res, 1990. 50(18): p. 6075-86. 

296. Aziz, N., H. Cherwinski, and M. McMahon, Complementation of defective colony-stimulating 
factor 1 receptor signaling and mitogenesis by Raf and v-Src. Mol Cell Biol, 1999. 19(2): p. 1101-
15. 

297. Iliopoulos, D., et al., STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of 
the epigenetic switch linking inflammation to cancer. Mol Cell, 2010. 39(4): p. 493-506. 

298. Iliopoulos, D., H.A. Hirsch, and K. Struhl, Metformin decreases the dose of chemotherapy for 
prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res, 
2011. 71(9): p. 3196-201. 

299. Hutchins, A.P., S. Poulain, and D. Miranda-Saavedra, Genome-wide analysis of STAT3 binding in 
vivo predicts effectors of the anti-inflammatory response in macrophages. Blood, 2012. 119(13): 
p. e110-9. 

300. Kwon, H., et al., Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional 
cooperation of STAT3 and IRF4 transcription factors. Immunity, 2009. 31(6): p. 941-52. 

301. Giresi, P.G., et al., FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates 
active regulatory elements from human chromatin. Genome Res, 2007. 17(6): p. 877-85. 

302. Nagy, P.L., et al., Genomewide demarcation of RNA polymerase II transcription units revealed by 
physical fractionation of chromatin. Proc Natl Acad Sci U S A, 2003. 100(11): p. 6364-9. 

303. Polach, K.J. and J. Widom, Mechanism of protein access to specific DNA sequences in chromatin: 
a dynamic equilibrium model for gene regulation. J Mol Biol, 1995. 254(2): p. 130-49. 

304. Solomon, M.J. and A. Varshavsky, Formaldehyde-mediated DNA-protein crosslinking: a probe for 
in vivo chromatin structures. Proc Natl Acad Sci U S A, 1985. 82(19): p. 6470-4. 

305. Brutlag, D., C. Schlehuber, and J. Bonner, Properties of formaldehyde-treated nucleohistone. 
Biochemistry, 1969. 8(8): p. 3214-8. 

306. Song, L., et al., Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that 
shape cell-type identity. Genome Res, 2011. 21(10): p. 1757-67. 

307. Guccione, E., et al., Myc-binding-site recognition in the human genome is determined by 
chromatin context. Nat Cell Biol, 2006. 8(7): p. 764-70. 

308. Ishihara, A., et al., Tenascin expression in cancer cells and stroma of human breast cancer and its 
prognostic significance. Clin Cancer Res, 1995. 1(9): p. 1035-41. 

309. Jahkola, T., et al., Tenascin-C expression in invasion border of early breast cancer: a predictor of 
local and distant recurrence. Br J Cancer, 1998. 78(11): p. 1507-13. 

310. Oskarsson, T., et al., Breast cancer cells produce tenascin C as a metastatic niche component to 
colonize the lungs. Nat Med, 2011. 17(7): p. 867-74. 

311. Nagaharu, K., et al., Tenascin C induces epithelial-mesenchymal transition-like change 
accompanied by SRC activation and focal adhesion kinase phosphorylation in human breast 
cancer cells. Am J Pathol, 2011. 178(2): p. 754-63. 

312. Ilunga, K., et al., Co-stimulation of human breast cancer cells with transforming growth factor-
beta and tenascin-C enhances matrix metalloproteinase-9 expression and cancer cell invasion. 
Int J Exp Pathol, 2004. 85(6): p. 373-9. 

313. Huang da, W., B.T. Sherman, and R.A. Lempicki, Bioinformatics enrichment tools: paths toward 
the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 2009. 37(1): p. 1-13. 

314. Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large 
gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57. 

315. Maemura, K., et al., CLIF, a novel cycle-like factor, regulates the circadian oscillation of 
plasminogen activator inhibitor-1 gene expression. J Biol Chem, 2000. 275(47): p. 36847-51. 



245 

 

316. Shi, S., et al., Circadian clock gene Bmal1 is not essential; functional replacement with its 
paralog, Bmal2. Curr Biol, 2010. 20(4): p. 316-21. 

317. Takahata, S., et al., Transcriptionally active heterodimer formation of an Arnt-like PAS protein, 
Arnt3, with HIF-1a, HLF, and clock. Biochem Biophys Res Commun, 1998. 248(3): p. 789-94. 

318. Loboda, A., et al., Diurnal variation of the human adipose transcriptome and the link to 
metabolic disease. BMC Med Genomics, 2009. 2: p. 7. 

319. Hughes, M.E., J.B. Hogenesch, and K. Kornacker, JTK_CYCLE: an efficient nonparametric 
algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms, 2010. 
25(5): p. 372-80. 

320. Seda, O., et al., A 14-gene region of rat chromosome 8 in SHR-derived polydactylous congenic 
substrain affects muscle-specific insulin resistance, dyslipidaemia and visceral adiposity. Folia 
Biol (Praha), 2005. 51(3): p. 53-61. 

321. Damiola, F., et al., Restricted feeding uncouples circadian oscillators in peripheral tissues from 
the central pacemaker in the suprachiasmatic nucleus. Genes Dev, 2000. 14(23): p. 2950-61. 

322. Glossop, N.R. and P.E. Hardin, Central and peripheral circadian oscillator mechanisms in flies and 
mammals. J Cell Sci, 2002. 115(Pt 17): p. 3369-77. 

323. Hastings, M.H., A.B. Reddy, and E.S. Maywood, A clockwork web: circadian timing in brain and 
periphery, in health and disease. Nat Rev Neurosci, 2003. 4(8): p. 649-61. 

324. Sahar, S. and P. Sassone-Corsi, Metabolism and cancer: the circadian clock connection. Nat Rev 
Cancer, 2009. 9(12): p. 886-96. 

325. Ozturk, N., et al., Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc Natl Acad 
Sci U S A, 2009. 106(8): p. 2841-6. 

326. Lee, J.H. and A. Sancar, Regulation of apoptosis by the circadian clock through NF-kappaB 
signaling. Proc Natl Acad Sci U S A, 2011. 108(29): p. 12036-41. 

327. Stevens, R.G., Light-at-night, circadian disruption and breast cancer: assessment of existing 
evidence. Int J Epidemiol, 2009. 38(4): p. 963-70. 

328. Stevens, R.G., Circadian disruption and breast cancer: from melatonin to clock genes. 
Epidemiology, 2005. 16(2): p. 254-8. 

329. Schernhammer, E.S., et al., Rotating night shifts and risk of breast cancer in women participating 
in the nurses' health study. J Natl Cancer Inst, 2001. 93(20): p. 1563-8. 

330. Hansen, J., Increased breast cancer risk among women who work predominantly at night. 
Epidemiology, 2001. 12(1): p. 74-7. 

331. Chen, S.T., et al., Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. 
Carcinogenesis, 2005. 26(7): p. 1241-6. 

332. Hoffman, A.E., et al., The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA 
damage response. Mol Cancer Res, 2008. 6(9): p. 1461-8. 

333. Sephton, S.E., et al., Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer 
Inst, 2000. 92(12): p. 994-1000. 

334. Mormont, M.C., et al., Marked 24-h rest/activity rhythms are associated with better quality of 
life, better response, and longer survival in patients with metastatic colorectal cancer and good 
performance status. Clin Cancer Res, 2000. 6(8): p. 3038-45. 

335. Ticher, A., et al., The pattern of hormonal circadian time structure (acrophase) as an assessor of 
breast-cancer risk. Int J Cancer, 1996. 65(5): p. 591-3. 

336. Gery, S., et al., The clock gene Per2 links the circadian system to the estrogen receptor. 
Oncogene, 2007. 26(57): p. 7916-20. 

337. Couse, J.F. and K.S. Korach, Estrogen receptor null mice: what have we learned and where will 
they lead us? Endocr Rev, 1999. 20(3): p. 358-417. 



246 

 

338. Shin, A., et al., Estrogen receptor alpha gene polymorphisms and breast cancer risk. Breast 
Cancer Res Treat, 2003. 80(1): p. 127-31. 

339. McGuire, W.L., Current status of estrogen receptors in human breast cancer. Cancer, 1975. 
36(2): p. 638-44. 

340. Cecon, E., et al., Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat 
pineal gland. Chronobiol Int, 2010. 27(1): p. 52-67. 

341. Chuang, J.I., et al., Effect of melatonin on NF-kappa-B DNA-binding activity in the rat spleen. Cell 
Biol Int, 1996. 20(10): p. 687-92. 

342. Kassed, C.A. and M. Herkenham, NF-kappaB p50-deficient mice show reduced anxiety-like 
behaviors in tests of exploratory drive and anxiety. Behav Brain Res, 2004. 154(2): p. 577-84. 

343. Monje, F.J., et al., Constant darkness induces IL-6-dependent depression-like behavior through 
the NF-kappaB signaling pathway. J Neurosci, 2011. 31(25): p. 9075-83. 

344. Iliopoulos, D., et al., Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression 
required for the formation and maintenance of cancer stem cells. Mol Cell, 2010. 39(5): p. 761-
72. 

345. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that 
originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7. 

346. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 
U S A, 2003. 100(7): p. 3983-8. 

347. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): 
p. 396-401. 

348. Matsui, W., et al., Characterization of clonogenic multiple myeloma cells. Blood, 2004. 103(6): p. 
2332-6. 

349. Li, C., et al., Identification of pancreatic cancer stem cells. Cancer Res, 2007. 67(3): p. 1030-7. 
350. Dalerba, P., et al., Phenotypic characterization of human colorectal cancer stem cells. Proc Natl 

Acad Sci U S A, 2007. 104(24): p. 10158-63. 
351. O'Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in 

immunodeficient mice. Nature, 2007. 445(7123): p. 106-10. 
352. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. 

Nature, 2007. 445(7123): p. 111-5. 
353. Milde-Langosch, K., The Fos family of transcription factors and their role in tumourigenesis. Eur J 

Cancer, 2005. 41(16): p. 2449-61. 
354. Miller, A.D., T. Curran, and I.M. Verma, c-fos protein can induce cellular transformation: a novel 

mechanism of activation of a cellular oncogene. Cell, 1984. 36(1): p. 51-60. 
355. Milde-Langosch, K., et al., The role of the AP-1 transcription factors c-Fos, FosB, Fra-1 and Fra-2 

in the invasion process of mammary carcinomas. Breast Cancer Res Treat, 2004. 86(2): p. 139-
52. 

356. Belguise, K., et al., FRA-1 expression level regulates proliferation and invasiveness of breast 
cancer cells. Oncogene, 2005. 24(8): p. 1434-44. 

357. Ayroldi, E., et al., Glucocorticoid-induced leucine zipper inhibits the Raf-extracellular signal-
regulated kinase pathway by binding to Raf-1. Mol Cell Biol, 2002. 22(22): p. 7929-41. 

358. Ayroldi, E., et al., GILZ mediates the antiproliferative activity of glucocorticoids by negative 
regulation of Ras signaling. J Clin Invest, 2007. 117(6): p. 1605-15. 

359. Ayroldi, E., et al., Modulation of T-cell activation by the glucocorticoid-induced leucine zipper 
factor via inhibition of nuclear factor kappaB. Blood, 2001. 98(3): p. 743-53. 

360. D'Adamio, F., et al., A new dexamethasone-induced gene of the leucine zipper family protects T 
lymphocytes from TCR/CD3-activated cell death. Immunity, 1997. 7(6): p. 803-12. 



247 

 

361. Ayroldi, E. and C. Riccardi, Glucocorticoid-induced leucine zipper (GILZ): a new important 
mediator of glucocorticoid action. FASEB J, 2009. 23(11): p. 3649-58. 

362. Beaulieu, E. and E.F. Morand, Role of GILZ in immune regulation, glucocorticoid actions and 
rheumatoid arthritis. Nat Rev Rheumatol, 2011. 7(6): p. 340-8. 

363. Barnes, P.J., Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond), 
1998. 94(6): p. 557-72. 

364. Beaulieu, E., et al., Glucocorticoid-induced leucine zipper is an endogenous antiinflammatory 
mediator in arthritis. Arthritis Rheum, 2010. 62(9): p. 2651-61. 

365. Yang, Y.H., et al., Annexin-1 regulates macrophage IL-6 and TNF via glucocorticoid-induced 
leucine zipper. J Immunol, 2009. 183(2): p. 1435-45. 

366. Cannarile, L., et al., Glucocorticoid-induced leucine zipper is protective in Th1-mediated models of 
colitis. Gastroenterology, 2009. 136(2): p. 530-41. 

367. Salmon-Divon, M., et al., PeakAnalyzer: genome-wide annotation of chromatin binding and 
modification loci. BMC Bioinformatics, 2010. 11: p. 415. 

368. Saeed, A.I., et al., TM4 microarray software suite. Methods Enzymol, 2006. 411: p. 134-93. 
369. Saeed, A.I., et al., TM4: a free, open-source system for microarray data management and 

analysis. Biotechniques, 2003. 34(2): p. 374-8. 
370. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology 

Consortium. Nat Genet, 2000. 25(1): p. 25-9. 
371. Zeileis, A. and G. Grothendieck, zoo: S3 Infrastructure for Regular and Irregular Time Series. 

Journal of Statistical Software, 2005. 14(6): p. 1-27. 
372. Wickham, H., ggplot2: Elegant Graphics for Data Analysis, ed. R. Gentleman, K. Hornik, and G. 

Parmigiani2009: Springer. 212. 
373. Li, X.Y., et al., The role of chromatin accessibility in directing the widespread, overlapping 

patterns of Drosophila transcription factor binding. Genome Biol, 2011. 12(4): p. R34. 
374. Thurman, R.E., et al., The accessible chromatin landscape of the human genome. Nature, 2012. 

489(7414): p. 75-82. 
375. Sekinger, E.A., Z. Moqtaderi, and K. Struhl, Intrinsic histone-DNA interactions and low 

nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol 
Cell, 2005. 18(6): p. 735-48. 

376. Lieb, J.D., et al., Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-
DNA association. Nat Genet, 2001. 28(4): p. 327-34. 

377. Dame, R.T., The role of nucleoid-associated proteins in the organization and compaction of 
bacterial chromatin. Mol Microbiol, 2005. 56(4): p. 858-70. 

378. Wade, J.T., et al., Genomic analysis of LexA binding reveals the permissive nature of the 
Escherichia coli genome and identifies unconventional target sites. Genes Dev, 2005. 19(21): p. 
2619-30. 

379. Hagiwara, M., et al., Coupling of hormonal stimulation and transcription via the cyclic AMP-
responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol Cell Biol, 1993. 
13(8): p. 4852-9. 

380. Wu, W., et al., Dynamics of the epigenetic landscape during erythroid differentiation after 
GATA1 restoration. Genome Res, 2011. 21(10): p. 1659-71. 

381. John, S., et al., Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. 
Nat Genet, 2011. 43(3): p. 264-8. 

382. Koh, F.M., et al., Parallel gateways to pluripotency: open chromatin in stem cells and 
development. Curr Opin Genet Dev, 2010. 20(5): p. 492-9. 

 

 


