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The Motion of the Maximal Measure of a Polynomial

Curt McMullen

Harvard University, March 1985. Preliminary notes.

§1 Introduction

The maximal measure of a rational function is the measure with respect to which the periodic

points are uniformly distributed. It also coincides with the distribution of the inverse orbit of any

point, It is also the measure of maximum entropy. See Ljubic [L) for proofs of these fundamental

results,

In the case of a polynomial the maximal measure takes a particularly simple form, analyzed by

Brolin [B]. It is the hitting measure on the Julia set for Brownian motion initiated at infinity.

How does the maximal measure move as the polynomial varies analytically with a parameter?

We find that the measures move in a strongly continuous way when paired with harmonic or ana-

lytic functions, and weakly continuously when paired with arbitrary continuous functions. This is

suprising insofar as the Julia set (which is the smallest closed set supporting these measures) moves
in a spectacularly discontinuous fashion. The continuity properties of the maximal measure make
precise the empirical observation that computer drawings (based on a naive algorithm) have trouble

detecting these bifurcations.

To show that these results are the best possible we prove a transversality result for expanding
Julia sets which are quasicircles. This result implies that as € varies (through small values), the

maximal measures of z2 + ¢ are mutually singular. In fact we show that the conformal shapes of

the Julia sets } ¢ are all transverse -~ in the sense that the intersection of any two is geometrically
scattered (has no points of density), hence has measure zero with respect to any geometrically

well-distributed measure (such as the maximal measure or the appropriate Hausdorff measure).

What about families of rational maps? There is a natural proof to try to carry out, based on the
same idea as Ljubic's proof of the convergence of inverse orbits to the maximal measure. We give
a characterization of stability and show that to carry out this program, the family must already be
stable (in which case the proof Is easy). A more subtle proof requires analyzing the percentage by

which the original argument breaks down; here we show that even in the case of quadratic polyno-
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mials, the amount of spoilage is a fixed (nonzero) percentage (with a nice interpretation in terms

of the equilibrium measure on the Mandelbrot set).

§2 Continuous Motion for Polynomials.

We consider only quadratic polynomials of the form P.(z) = z2 - c. The maximal measure p = Be

(for ¢ # 0) can be defined as follows:

be () = lim 270 ) f(x)
n+o
PcN(x)=0
for any continuous function f on P, Thus u gives the average of f over the backward orbit of the
critical point (zero). In fact, any point could play the role of zero; all backward orbits have the

same asymptotic distribution.

Now suppose f(z) Is itself analytic (or indeed just harmonic). Then the same is true for each of
the finite sums appearing above. Since uc(f) is bounded by the supremum of f over the Julia set of
Pc, and since the Julia set itself remains in a compact set as c varies through a small ball, it is easy
to see that the finite sums are uniformly bounded analytic (harmonic) functions of c. The sums
converge pointwise and a normal families argument shows that limit is itself analytic or harmonic.
Then the derivate of uc(f) with respect to c is controlled by a bound on uc(f), which is (trivially)
bounded by the supremum of f on the Julia set of Pc.

To sum up, let A, denote the closed disk of radius r centered at 0, and let C(4,) (H(4,), resp.
A(4;)) denote the spaces of continuous functions on 4, (which are harmonic, resp. analytic) on its
interior. These are Banach spaces in the supremum norm. Let U denote an open subset of the
complex plane such that the Julia set of P is contained in A, whenever ¢ € U. Then c + y¢ def~

ines a map of U into the dual of any of these Banach spaces. We have skteched the proof of:

Proposition 2,1 As c varies in U, e varies continuously in the strong topology on H'(A,) (and
hence on A'(A,)).

Concretely, this means that when c and c' are close enough together, |uc(f) = uc(f)] < € for all
harmonic f with ||f||o < 1.
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It is interesting that the pairing of u. with polynomials can be described very concretely. Let

P(x) = Pc(x) = x2 - ¢, and let

Snk(c) = 2N l xkK

P(x)=0
Then for fixed k, Snk(c) + uc(xk) as n+=,
Proposition 2.2 Snk(c) = Smk(c} for all n and m > log,k. The stable value sk(c) = uc(xk)
satisfies
$O(c) =1

Sk(c) =0 if k is odd; and

S
S2k(c) = l ( k) $M(c) ck-m |

m
=0

(These formulas give an explicit recursive description of sk(c).)

The proof is to observe that

s2k(c) = 20 Y K2k = (1) ) (y+c)k
PM(x)=0 po= =0

To get weak continuity with respect to continuous functions, it is enough to understand the pair-
ing between u. and potentials (since every continuous function is uniformly near the sum of a har-
monic function and the convolution of log|z-w| with a C® function.) Here we use the description
of uc as the equilibrium measure. Namely, uc has the property that its convolution with the har-
monic kernel log|z-w| produces the Green's function G for the unbounded component of the com-
plement of the Julia set. G is the unique harmonic function which looks like Iog|z| near infinity
and is constant on the Julia set. Since the Julia set of a monic polynomial has capacity 1 (see [B]),
the Green's function in fact vanishes on the Julia set. (For a discussion of capacity, equilibrium

distribution and the Green's function, see Ahlfors [A]).

Now let f be the potential of a smooth charge distribution; i.e. f is obtained as the convolution
f(z) = Iog|z- *d¢w) where ¢ is a C® function with compact support. By changing the order of

integration we obtain



Proposition 2.3 The following identity holds:
I f(z) dug(z) = J Ge(w)o(w) dA(w)

where dA denotes two dimensional Lebesgue measure.

It is not too hard to check that G is a continuous fuction of ¢ and w. This was done (indepen-

dently) by Douady and Hubbard [DH]). Thus we have
Corollary 2.4 As c varies in U, uc varies continuously in the weak” topology on C*(A;).

Concretely, p.(f) is a continuous function of c for any fixed continuous function f. To prove
this, approximate f by a C® function with compact support, and write the smooth funciton as the
sum of a harmonic function and the convolution of log|z-w| with Af. Then it is enough to check
that the pairing with the potential defines a continuous function of ¢, and by 2.2 this follows from

continuity of G as a function of c.

§3. What About Rational Functions?

We now make a digression and discuss some ideas in families of rational maps. We do not prove
any general continuity results for the maximal measure of a rational map, and these results will

point out the stumbling blocks to one natural program of proof.

Recall that the Julia set of a rational map R is the set of z such that the iteraj_i_g_né <RM(z)> do
not form a normal family at z. We can give a similar description of the bifurcation set of a family
Ry depending holomorphically on a parameter A which varies in a complex manifold. Here the
family is stable at a point A if there is a bound on the period of the attracting cycles of maps

appearing in a neighborhood of X; otherwise A is a bifurcation point.

Let us assume (for simplicity) that the critical points of Ry are labelled by holomorphically vary-

ing functions c,(X), ses, Cu{A).

Proposotion 3.1 The bifurcation set of the family R, is exactly the set of parameter values A such

that the functions
{ci(r), Ry(ci(A)), Ry2(ci(r)), eee ; for i =1,2,...n}

do not form a normal family.
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Example The Mandelbrot set is the set of c such that {P."(0) : n = 0,1,2,...} does not form a
normal family, ‘

How might we try to prove continuity of the maximal measure in general? One way is to try to
find a point x, varying holomorphically in A, such that its backward orbit under R) can be labelled
by injective branches of the inverse iterates of R;, all defined on a fixed neighborhood of our ori-
ginal point A,. Then the Koebe distortion theorem gives control on the motion of these approxima-

tions to the maximal measure., This argument mimics one in Ljubic.

To make all these branches injective, we just have to assure that x) avoids the forward orbit of
the critical points of R3. When can we choose a holomorphically varying point avoiding these for-
ward orbits? It is easy to see that one such point can be used to cook up three such points, from
which it follows easily (by Montel) that the forward orbits of the critical points are a normal family
and the original A was a stable point of the family. Thus it is not possible to carry out this proce-
dure on the bifurcation set -- for example, on the boundary of the Mandelbrot set.

Corollary 3.2 Let c, be any point in the boundary of the Mandelbrot set. Then the forward orbits

of the critical point fill up the complex plane as c varies through any neighborhood of c,.

Perhaps, however (this is also part of Ljubic's argument), only a small percentage of the inverse
branches are spoiled by critical points. Suppose, for example, we take pre-images of zero in the
quadratic family, Then the nth pre-image meets the critical point again iff the critical point is
periodic with period dividing n.

Proposition 3.3 Let U be an open set in the c-plane, and let p, denote the number of values of c €
U for which P has a periodic critical point with period n. Then Pn/2" * W(U) where ¥ is the equi-

librium measure on the boundary of the Mandelbrot set.

This says that the percentage of spoiled branches tends to zero iff U is contained entirely in the
set of stable values of c. The proof uses the Douady-Hubbard theory of exterior angles on the

Mandelbrot set. Thus the equilibrium measure on the Mandelbrot set gives the asymptotic distribu-

tion of ¢ such that P, has a superattracting cycle.

On the other hand, this shows that the attempted argument for continuity of the maximal meas-

ure breaks down already for quadratic polynomials -- even though the result is true for this family!



84 )Julia Sets as Signatures
We now use the theory of expanding conformal dynamical systems to the following:

Proposition 4.1 For c#c' in the principal cardioid of the Mandelbrot set, the measures u. and uc

are mutually singular.

Here the principal cardiod (we'll denote it by C) is the set of values of c such that P¢ has an
attracting fixed point; and two measures are mutually singular if each one lives on a nullset of the
other. Thus any two measures are distance 2 apart in the strong topclogy on the dual of c(rPl), so

uc varies extremely discontinuously in this topology.
The result itself is perhaps less interesting than the theory of conformal shapes it motivates.

We sketch the proof, For ¢ € C, the Julia set ] of P is a quasicircle and P, is expanding on the
julia set. By the distortion lemma, any miniscule 'subsegment’ of ] can be blown up to some uni-
form size by a conformal map (an iterate of P.) with bounded distortion of distances. That is, the
blowing-up map is the composition of a quasi-isometry and a conformal dilation. The bound on the

distortion is independent of the starting size.

Now suppose i and u¢' are not mutually singular, Then one of the Julia sets, say )¢, meets )¢
in a set of positive measure with respect to uc. We will show that this implies that the curve )¢
follows the curve ). very closely somewhere. We may have to look at a very small piece of the
two curves to see this, but by using the expanding property described above we can apply the dyn-
amics on the two curves to blow the picture up to uniform size. Looking more closely, continuing
to blow up and passing to a limit, we conformally embed a neighborhood of a point in ). into a
neighborhood of a point in J¢'. Thus the 'conformal shapes' of some patch of these two curves
agree. Now a patch is almost as good as the whole curve because of self-similarity. Using the
dynamics, we show that this embedding is actually part of a conjugacy. The conjugacy, once
spread out by the dynamics, becomes a conformal map on the whole sphere and hence a Mobius

transformation. Then ¢ and ¢' must be equal.



-7 -

We now fill in some details. The maximal measure uc for ¢ € C is the same as the push-forward
of Lebesgue measure on S via the uniformizing map carrying the unit disk A onto the unbounded
component of the complement of the Julia set. When normalized to send 0 to « and 1 to the repel-
ling fixed point of P, this map is actually a conjugacy between P. and z+z2, Since Jc is a quasi-

circle, the map S + Jc is actually the restriction of a quasiconformal map.

To make a general statement, we define a quasiangular measure to be the pushforward of the

angular measure on s! under a quasiconformal map. A point e in a set E contained in a metric

space X is a point of geometric density if for any € there is a radius r such that E comes within er

of every point in B(e,r), the ball of radius r about e.

Proposition 4.2 Let e be a point of geometric density of a set E in s!, Let f be a quasiconformal
map. Then f(e) is a point of geometric density of f(E) in the quasicircle f(s1).

Corollary 4.3 A set of positive quasiangular measure contains points of geometric density in the
corresponding quasicircle. In particular, a set of positive measure for u. contains points of geome-

tric density in J .

The proof of 4.2 uses the fact that a quasiconformal map cannot take evenly spaced points and
unevenly spread them out (because, for instance, cross-ratios are not overly distorted.) Then the
usual Lebesgue density theorem shows sets of angular positive measure have points of geometric

density on S1, so the corollary is an easy consequence.

Note, for example, that the usual Cantor set has no points of geometric density. Thus 4.2 gives
another proof that the quasisymmetric image of the usual Cantor set always has linear measure 0,
(There are other Cantor sets of dim < 1 which can be expanded to full measure by quasisymmetric

functions. [M])

Another example of a quasiangular measures is provided by the Hausdorff measure ug, where 6§ =

dim(J¢). This follows from the distortion lemma, which implies for x € J¢, ug(B(x,r)) = rS,

Proposition 4.4 If two expanding quasicircles meet in a set of postive quasiangular measure with
respect to either, then there exists a conformal map of a neighborhood of a subsegment of one to a

subsegment of the other.



-8 -

The proof is to look at a point of geometric density of the intersection. Then along a subseg-
ment, the two quasicircles have to meet very frequently. Since they have bounded turning, this
implies they actually follow each other quite closely. We can blow this picture up to uniform size
by the dynamics on each curve. Put differently, we obtain a conformal map with domain and image
of size bounded below, and bounded distortion, which nearly carries one subsegment to another.,
Looking at points of higher and higher density, we obtain a family of such maps, which is normal
because the distortion is bounded. We pass to a subsequence such that the domain and range are

converging, and the limiting map is that claimed above.

Proposition 4.5 For J. and ] expanding quasicircles (i.e. ¢ and c' in the principal cardiod), there

is a conformal map of a subsegment of one to a subsegment of another iff c=c'.

This shows, in a falirly strong sense, that the dynamics can be recovered from the Julia set -- the

latter is a signature for the polynomial.

The idea of the proof it to use the conformal map to transport the self-similarities of ) . to those
of )¢« Either the similarities match up -- in which case the map establishes a conjugacy between
the dynamics -- or they generate a very generous group of similarities, and we show that the only
shape with that many conformal similarities is a real-analytic arc. In this case it is known that )
is real-analytic iff J. is a circle (in which case c=0). In fact, the existence of a map between
subsegments easily implies that the Hausdorff dimensions of ). and J' agree; and it is known that
the dimension of J. is one iff ¢=0; so the argument so far is already enough to prove that uc moves

discontinuously (in the strong topology) at c=0. Indeed this discussion establishes:

Proposition 4.6 If c#0, ). meets any real analytic arc in a set of linear measure zero and measure

zero with respect to any quasiangular measure on j.

This is an example of the 'transversality' we are describing. Another consequence is the follow-

ing curious result.

Corollary 4.7 Let w : Jo + IR be the linear projection of a Julia set onto the real axis, and let v be
the push-forward of the any quasiangular measure on } ¢ (such as the maximal measure or the Haus-

dorff measure). Then v has a continuous density on the image of .
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This just says that the fibers of n have zero measure (so v has no atoms). But the fiber is the

intersection of J . with a line,
Problem How smooth is v?

It should be possible, modulo some rather forbidding combinatorics, to make a sensible statement
like 4.5 in the context of general expanding conformal dynamical systems (not neccessarily even
coming from a rational map.) The combinatorics disappears when the endomorphism is replaced by
a group action, and we can make such a statement for expanding (i.e. convex cocompact) Kleinian
groups.

WJF:UDM‘;CW"
Proposition 4.8 Let T'y and I'), be convex cocompactf{(leinian groups, and let ¢ be a conformal map
of a patch of the limit set of one to a patch of the other. Then I'y and I'; are commensurable, ¢ is
the restriction of a Mobius transformation M and M establishes a conjugacy between two appropri-

ate subgroups of finite index.

To prove 4.6 we use some very special properties of P : the uniformizing map on the outside of
Jc and the primality of 2, for instance. The idea is to use the uniformizing maps and lift the con-
formal map between subsegments to a real-analytic map between subsegments of sl, Then it is not
hard to see that this analytic map is affine (6+af+b). We transport the dynamics of 6+20 via this
map, and study how it interacts with the original dynamics. These maps on s1 all descend to con-
formal similarities between patches of the Julia sets and in fact the circle is used mostly to clarify

the combinatorics.

As mentioned above, the similarities cannot be too rich unless the Julia set is a circle, and this

places strong enough restrictions on a and b to prove that the maps are conjugate.
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