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Abstract. We study the problem of designing prediction markets for
random variables with continuous or countably infinite outcomes on the
real line. Our interval betting languages allow traders to bet on any inter-
val of their choice. Both the call market mechanism and two automated
market maker mechanisms, logarithmic market scoring rule (LMSR) and
dynamic parimutuel markets (DPM), are generalized to handle interval
bets on continuous or countably infinite outcomes. We examine problems
associated with operating these markets. We show that the auctioneer’s
order matching problem for interval bets can be solved in polynomial
time for call markets. DPM can be generalized to deal with interval bets
on both countably infinite and continuous outcomes and remains to have
bounded loss. However, in a continuous-outcome DPM, a trader may in-
cur loss even if the true outcome is within her betting interval. The
LMSR market maker suffers from unbounded loss for both countably
infinite and continuous outcomes.

Key words: Prediction Markets, Combinatorial Prediction Markets,
Expressive Betting

1 Introduction

Prediction markets are speculative markets created for forecasting random vari-
ables. In practice, they have been shown to provide remarkably accurate proba-
bilistic forecasts [1, 2]. Existing prediction markets mainly focus on providing an
aggregated probability mass function for a random variable with finite outcomes
or discretized to have finite outcomes. For example, to predict the future printer
sales level, the value of which lies on the positive real line, Hewlett-Packard’s
sales prediction markets partition the range of the sales level into about 10 ex-
clusive intervals, each having an assigned Arrow-Debreu security that pays off $1
if and only if the future sales level falls into the corresponding interval [3]. The
price of each security represents the market probability that the sales level is
within the corresponding interval. The set of prices provides a probability mass
function for the discretized random variable.

However, many random variables of interest have continuous or countably
infinite outcome spaces. For example, the carbon dioxide emission level in a cer-
tain period of time can be thought of as a continuous random variable on the
positive real line; the printer sales level can be treated as a random variable with
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countably infinite outcomes, taking positive integer values. Discretizing such ran-
dom variables into finite outcomes can potentially hurt information aggregation,
as market participants may have information that can not be easily expressed
with the ex-ante specified discretization. It is desirable to provide more expres-
sive betting languages so that market participants can express their information
more accurately and preferably in the same way they possess it.

In this paper, we design and study prediction market mechanisms for pre-
dicting random variables with continuous or countably infinite outcomes on the
real line. We provide betting languages that allow market participants to bet
on any interval of their choice and create the security on the fly. We generalize
both the call market mechanism and two automated market maker mechanisms,
logarithmic market scoring rules (LMSR) [4] and dynamic parimutuel markets
(DPM) [5, 6], to handle interval bets on continuous or countably infinite out-
comes, and examine problems associated with operating these markets. We show
that the auctioneer’s order matching problem can be solved in polynomial time
for call markets. DPM can be generalized to deal with interval bets on both
countably infinite and continuous outcomes and remains to have bounded loss.
However, in a continuous-outcome DPM, a trader may incur loss even if the
interval she bets on includes the true outcome. The LMSR market maker suffers
from unbounded loss for both countably infinite and continuous outcomes. Due
to space constraints, the Appendix is omitted and available upon request.
Related Work. Our work is situated in the broad framework of designing
combinatorial prediction market mechanisms that provide more expressiveness
to market participants. Various betting languages for permutation combinatorics
have been studied for call markets, including subset betting and pair betting [7],
singleton betting [8], and proportional betting [9]. Fortnow et al. [10] analyzed
betting on Boolean combinatorics in call markets. For LMSR market makers,
Chen et al. [11] showed that computing the contract price is #P-hard for subset
betting, pair betting, and Boolean formulas of two events. In a tournament
setting, pricing in LMSR becomes tractable for some restricted Boolean betting
languages [12]. Yoopick is a combinatorial prediction market implementation of
LMSR that allows traders to bet on point spreads of their choice for sporting
events [13]. It is implemented as a LMSR with a large number of finite outcomes.
Agrawal et al. [14] proposed Quad-SCPM, which is a market maker mechanism
that has the same worst-case loss as a quadratic scoring rule market maker.
Quad-SCPM may be used for interval bets on countably infinite outcomes since
its worst-case loss does not increase with the size of the outcome space.

2 Background

In this section, we briefly introduce three market mechanisms that have been
used by prediction markets to predict random variables with finite outcomes.

2.1 Call Markets

A call market is an auctioneer mechanism, where the auctioneer (market insti-
tution) risklessly matches received orders. In a call market, participants submit



buy or sell orders for individual contracts. All orders are assembled at one time
in order to determine a market clearing price at which demand equals supply.
Buy orders whose bid prices are higher than the clearing price and sell orders
whose ask prices are lower than the clearing price are accepted. All transactions
occur at the market clearing price. Most call markets are bilateral — matching
buy and sell orders of the same contract. For multi-outcome events, call mar-
kets can be multilateral — allowing participants to submit orders on different
contracts and performing global order matching [15–18].

2.2 Logarithmic Market Scoring Rules

Let v be a random variable with N mutually exclusive and exhaustive outcomes.
A logarithmic market scoring rule (LMSR) [4, 19] is an automated market maker
that subsidizes trading to predict the likelihood of each outcome. An LMSR
market maker offers n contracts, each corresponding to one outcome and paying
$1 if the outcome is realized [4, 20]. Let qi be the total quantity of contract i
held by all traders combined, and let q be the vector of all quantities held. The
market maker utilizes a cost function C(q) = b log

∑N
j=1 e

qj/b that records the
total amount of money traders have spent. A trader that wants to buy any bundle
of contracts such that the total number of outstanding shares changes from q
to q̃ must pay C(q̃) − C(q) dollars. Negative quantities encode sell orders and
negative “payments” encode sale proceeds earned by the trader. At any time,
the instantaneous price of contract i is pi(q) = eqi/b∑N

j=1 e
qj/b , representing the cost

per share of purchasing an infinitesimal quantity. An LMSR is built upon the
logarithmic scoring rule, si(r) = b log(ri). It is known that if the market maker
starts the market with a uniform distribution its worst-case loss is bounded by
b logN .

2.3 Dynamic Parimutuel Markets

A dynamic parimutuel market (DPM) [5, 6] is a dynamic-cost variant of a pari-
mutuel market. From a trader’s perspective, DPM acts as a market maker in
a similar way to LMSR. There are N securities offered in the market, each
corresponding to an outcome of the random variable. The cost function of the
market maker, which captures the total money wagered in the market, is C(q) =

κ
√∑N

j=1 q
2
j , while the instantaneous price for contract i is pi(q) = κqi√∑N

j=1 q
2
j

,

where κ is a free parameter. Unlike in LMSR, the contract payoff in DPM is not
a fixed $1. If outcome i happens and the quantity vector at the end of the market

is q f , the payoff per share of the winning security is oi = C(q f )

qf
i

=
κ

√∑
j(q

f
j )2

qf
i

.
A nice property of DPM is that if a trader wagers on the correct outcome, she

is guaranteed to have non-negative profit, because pi is always less than or equal
to κ and oi is always greater than or equal to κ. Because the price functions
are not well-defined when q = 0, the market maker must begin with a non-zero
quantity vector q 0. Hence, the market maker’s loss is bounded by C(q 0).



3 Call Markets for Interval Betting

For a random variable X that has continuous or countably infinite outcomes
on the real line, we consider the betting language that allows traders to bet on
any interval (l, u) of their choice on the real line and create a security for the
interval on the fly. The security pays off $1 per share when the betting interval
contains the realized value of X. For countably infinite outcomes, the interval is
interpreted as a set of outcomes that lie within the interval.

Suppose that the range of X is (L, U) where L ∈ < ∪ {−∞} and U ∈ < ∪
{+∞}. Traders submit buy orders. Each order i ∈ O is defined by (bi, qi, li, ui),
where bi denotes the bid price for a unit share of the security on interval (li, ui),
and qi denotes the number of shares of the security to purchase at price bi. We
note li ≥ L and ui ≤ U . Given a set of orders O submitted to the auctioneer, the
auctioneer needs to decide which orders can be risklessly accepted. We consider
the auctioneer’s problem of finding an optimal match to maximize its worst-case
profit given a set of orders O.

We first define the state space S to be the partition of the range of X formed
by orders O. For any order i ∈ O, (li, ui) defines 2 boundary points of the
partition. Let A = (∪i∈Oli)∪{L} be the set of left ends of all intervals in O and
the left end of the range of X, and B = (∪i∈Oui)∪ {U} be the set of right ends
of all intervals in O and the right end of the range of X. We rank all elements of
A and B in order of increasing values, and denote the i-th element as ei. Clearly,
e1 = L and e|A|+|B| = U . We formally define the state space S as follows.

Definition 1. Let si ∈ S be the i-th element of the state space S for all 1 ≤
i ≤ (|A|+ |B| − 1). If ei = ei+1, then si = {ei}. Otherwise, si = (ei, ei+1] if both
ei ∈ A and ei+1 ∈ A; si = (ei, ei+1) if ei ∈ A and ei+1 ∈ B; si = [ei, ei+1] if
ei ∈ B and ei+1 ∈ A; and si = [ei, ei+1) if ei ∈ B and ei+1 ∈ B.

Because |S| = |A|+|B|−1, |A| ≤ |O|+1, and |B| ≤ |O|+1, we have |S| ≤ 2|O|+1.
With the definition of states given orders O, we formulate the auctioneer’s

optimal match problem as a linear program, analogous to the one used for per-
mutation betting [7].

Definition 2 (Optimal Match). Given a set of order O, choose xi ∈ [0, 1]
such that the following linear program is optimized.

max
xi,c

c (1)

s.t.
∑
i (bi − Ii(s))qixi ≥ c, ∀s ∈ S

0 ≤ xi ≤ 1, ∀i ∈ O

Ii(s) is the indicator variable for whether order i is winning in state s. Ii(s) = 1
if the order gets a payoff of $1 in s and Ii(s) = 0 otherwise. The variable c
represents the worst-case profit for the auctioneer, and xi ∈ [0, 1] represents the
fraction of order i ∈ O that is accepted. As the number of structural constraints
is at most 2|O|+1 and the number of variables is |O|, (1) can be solved efficiently.
We state it in the following theorem.



Theorem 3. For call markets, the auctioneer’s optimal order matching problem
for interval betting on countably infinite and continuous outcomes can be solved
in polynomial time.

Thus, if the optimal solution to (1) generates positive worst-case profit c, the
auctioneer accepts orders according to the solution. Otherwise, when c ≤ 0, the
auctioneer rejects all orders.

When there are few traders in the market, finding a counterpart to trade
in a call market may be hard and the market may suffer from the thin market
problem. Allowing traders to bet on different intervals further exacerbates the
problem by dividing traders’ attention among a large number of subsets of secu-
rities, making the likelihood of finding a multi-lateral match even more remote.
In addition, call markets are zero-sum games and hence are challenged by the
no-trade theorem [21]. In the next two sections, we examine market maker mech-
anisms, which not only provide infinite liquidity but also subsidize trading, for
interval betting.

4 Dynamic Parimutuel Markets for Interval Betting

For interval betting in DPMs, traders also create a security on the fly by choosing
an interval (l, u). However, the payoff of the security is not fixed to be $1. Instead,
each share of the security whose interval contains the realized value of the random
variable entitles its holder to an equal share of the total money in the market. We
generalize DPM to allow for (but not limited to) interval betting on countably
infinite and continuous outcomes. The problem that we consider is whether these
mechanisms still ensure the bounded loss of the market maker.

4.1 Infinite-Outcome DPM

We generalize DPM to allow for countably infinite outcomes, and call the re-
sulting mechanism infinite-outcome DPM. In an infinite-outcome DPM, the un-
derlying forecast variable can have countably infinite mutually exclusive and
exhaustive outcomes. Each state security corresponds to one potential outcome.
An interval bet often includes a set of state securities. The market maker keeps
track of the quantity vector of outstanding state securities, still denoted as q,
which is a vector of dimension ∞. The cost and price functions for the infinite-
outcome DPM are CI(q) = κ

√∑∞
j=1 q

2
j , and pIi (q) = κqi√∑∞

j=1 q
2
j

. The payoff

per winning security if outcome i happens is oIi =
κ

√∑∞
j=1(q

f
j )2

qf
i

.
The loss of the market maker in an infinite-outcome DPM is still her cost

to initiate the market. The market maker needs to choose an initial quantity
vector q0 such that her loss CI(q0) is finite. In practice, an infinite-outcome
DPM market maker can start with a quantity vector that has only finite positive
elements and all others are zeros, or use an infinite converging series. Whenever
a trader purchases a state security whose current price is zero or that has not



been purchased before, the market maker begins to track quantity and calculate
price for that security. Hence, infinite-outcome DPM can be operated as a finite-
outcome DPM that can add new state securities as needed. The market maker
does not need to record quantities and calculate prices for all infinite outcomes,
but only for those having outstanding shares. Infinite-outcome DPM maintains
the desirable price-payoff relationship of DPM — the payoff of a security is
always greater than or equal to κ and its price is always less than or equal to κ.

4.2 Continuous-Outcome DPM

We then generalize DPM to allow for continuous outcomes, and call the re-
sulting mechanism continuous-outcome DPM. The cost and price functions of a

continuous-outcome DPM are C = κ
√∫ +∞
−∞ q(y)2 d y and p(x) = κq(x)√∫ +∞

−∞ q(y)2 d y
.

A trader can buy δ shares of an interval (l, u). The market maker then increases
q(x) by δ for all x ∈ (l, u). The trader’s payment equals the change in value
of the cost function. However, strictly speaking, function p(x) does not repre-
sent price, but is better interpreted as a density function. The instantaneous
price for buying infinitely small amounts of the security for interval (l, u) is
p(l,u) =

∫ u
l
p(x)d x = κ

∫ u
l
q(x)d x√∫ +∞

−∞ q(y)2 d y
. If the realized value of the random vari-

able is x∗, each share of a security on any interval that contains x∗ has payoff

o(x∗) = C
qf (x∗)

=
κ

√∫ +∞
−∞ qf (y)2 d y

qf (x∗)
, where qf (y) is the number of outstanding

shares for securities whose interval contains y at the close of the market.
A continuous-outcome DPM market maker can choose an initial quantity

distribution q0(x) such that her loss is finite. However, the desirable price-payoff
relationship that holds for the original DPM no longer holds for continuous-
outcome DPM. A trader who bets on the correct outcome may still lose money.
Theorem 4 states the price-payoff relationship for continuous-outcome DPM.
Proof of the theorem is provided in Appendix A.

Theorem 4. The price per share for buying a security on interval (l, u) is al-
ways less than or equal to κ

√
u− l. If traders can bet on any non-empty open

interval, the payoff per share is bounded below by 0. If traders could bet only on
open intervals of size at least z, the payoff per share is bounded below by κ

√
2z

2 .

5 Logarithmic Market Scoring Rule for Interval Betting

For LMSR, we define the same interval betting language as in call markets. A
trader can create a security by specifying an interval (l, u) to bet on. If the
realized value of X falls into the interval, the security pays off $1 per share. We
generalize LMSR to allow countably infinite and continuous outcomes and study
whether the market maker still has bounded loss.

LMSR for finite outcomes can be extended to accommodate interval betting
on countably infinite outcomes simply by changing the summations in the price



and cost functions to include all countably infinite outcomes. However, as the
LMSR market maker’s worst-case loss is b logN , the market maker’s worst-case
loss is unbounded as N approaches ∞.

We generalize LMSR to accommodate continuous outcome spaces. A loga-
rithmic scoring rule for a continuous random variable is s(r(x)) = b log(r(x))
where x is the realized value for the random variable and r(x) is the reported
probability density function for the random variable evaluated at x. Using an
equation system similar to the one proposed by Chen and Pennock [20], we de-
rive the corresponding price and cost functions for the continuous logarithmic
scoring rule: C = b log(

∫ +∞
−∞ eq(y)/bd y), and p(x) = eq(x)/b∫ +∞

−∞ eq(y)/bd y
. Here, p(x)

does not represent price, but is best interpreted as a density function. The in-
stantaneous price for buying infinitely small amounts of the security for interval
(l, u) is

∫ u
l
p(x)d x. If the interval (l, u) contains the realized value, one share of

the security entitles its holder $1 payoff.
However, the worst-case loss is still unbounded for a continuous LMSR mar-

ket maker even with the restriction on the size of allowable intervals, as shown
by Theorem 5. Proof of the theorem is presented in Appendix B.
Theorem 5. A continuous logarithmic market scoring rule market maker has
unbounded worst-case loss, with or without the restriction that traders can bet
only on intervals of size at least z.

6 Conclusion and Future Directions
We study interval betting on random variables with continuous or countably
infinite outcomes for call markets, DPM, and LMSR. We show that the auction-
eer’s order matching problem in call markets can be solved in polynomial time
for interval bets. DPM can be generalized to handle both countably infinite and
continuous outcomes. Unfortunately, in a continuous-outcome DPM, a trader
may incur loss even if her betting interval contains the true outcome. LMSR
market makers, however, suffer from unbounded loss for both countably infinite
and continuous outcomes.

One important future direction is to design automated market maker mech-
anisms with desirable properties, especially bounded loss, when handling con-
tinuous outcome spaces. In particular, it may be fruitful to explore interval bets
with variable payoffs for outcomes within the interval. The interval contracts for
call markets and LMSR give the same payoff as long as the outcome falls within
the specified interval. Implicitly, this assumes that a trader’s prediction of the
random variable is a uniform distribution over the given interval. Alternatively,
it would be interesting to allow for the trader’s probability distribution of the
random variable to take other shapes over the given interval, and hence to allow
payoffs to vary correspondingly for outcomes within the interval.

References

1. Berg, J.E., Forsythe, R., Nelson, F.D., Rietz, T.A.: Results from a dozen years
of election futures markets research. In Plott, C.A., Smith, V., eds.: Handbook of
Experimental Economic Results. (2001)



2. Wolfers, J., Zitzewitz, E.: Prediction markets. Journal of Economic Perspective
18(2) (2004) 107–126

3. Chen, K.Y., Plott, C.R.: Information aggregation mechanisms: Concept, design
and implementation for a sales forecasting problem. Working paper No. 1131,
California Institute of Technology (2002)

4. Hanson, R.D.: Combinatorial information market design. Information Systems
Frontiers 5(1) (2003) 107–119

5. Pennock, D.M.: A dynamic pari-mutuel market for hedging, wagering, and infor-
mation aggregation. In: ACM Conference on Electronic Commerce (EC). (2004)

6. Mangold, B., Dooley, M., Dornfest, R., Flake, G.W., Hoffman, H., Kasturi, T.,
Pennock, D.M.: The tech buzz game. IEEE Computer 38(7) (2005) 94–97

7. Chen, Y., Fortnow, L., Nikolova, E., Pennock, D.M.: Betting on permutations. In:
ACM Conference on Electronic Commerce (EC). (2007) 326–335

8. Ghodsi, M., Mahini, H., Mirrokni, V.S., ZadiMoghaddam, M.: Permutation bet-
ting markets: singleton betting with extra information. In: ACM Conference on
Electronic Commerce (EC). (2008) 180–189

9. Agrawal, S., Wang, Z., Ye, Y.: Parimutuel betting on permutations. In: Lecture
Notes in Computer Science, The International Workshop on Internet and Network
Economics (WINE). (2008)

10. Fortnow, L., Kilian, J., Pennock, D.M., Wellman, M.P.: Betting boolean-style: A
framework for trading in securities based on logical formulas. Decision Support
Systems 39(1) (2004) 87–104

11. Chen, Y., Fortnow, L., Lambert, N., Pennock, D.M., Wortman, J.: Complexity
of combinatorial market makers. In: ACM Conference on Electronic Commerce
(EC). (2008) 190–199

12. Chen, Y., Goel, S., Pennock, D.M.: Pricing combinatorial markets for tournaments.
In: ACM Symposium on Theory of Computing (STOC). (2008) 305–314

13. Goel, S., Pennock, D., Reeves, D.M., Yu, C.: Yoopick: A combinatorial sports
prediction market. In: AAAI. (2008) 1880–1881

14. Agrawal, S., Delage, E., Peters, M., Wang, Z., Ye, Y.: A unified framework for dy-
namic pari-mutuel information market design. In: ACM Conference on Electronic
Commerce (EC). (2009) 255–264

15. Bossaerts, P., Fine, L., Ledyard, J.: Inducing liquidity in thin financial markets
through combined-value trading mechanisms. European Economic Review (46)
(2002) 1671–1695

16. Lange, J., Economides, N.: A parimutuel market microstructure for contingent
claims trading. NYU School of Business Discussion Paper No. EC-01-13 (2007)

17. Baron, K., Lange, J.: Parimutuel Applications in Finance: New Markets for New
Risks. Palgrave Macmillan (2005)

18. Peters, M., So, A.M.C., Ye, Y.: Pari-mutuel markets: Mechanisms and perfor-
mance. In: Lecture Notes in Computer Science, The International Workshop on
Internet and Network Economics (WINE). (2007) 82–95

19. Hanson, R.D.: Logarithmic market scoring rules for modular combinatorial infor-
mation aggregation. Journal of Prediction Markets 1(1) (2007) 1–15

20. Chen, Y., Pennock, D.M.: A utility framework for bounded-loss market makers.
In: Conference on Uncertainty in Artificial Intelligence (UAI 2007). (2007) 49–56

21. Milgrom, P., Stokey, N.L.: Information, trade and common knowledge. Journal of
Economic Theory 26(1) (1982) 17–27



A Proof of Theorem 4

Proof. By Cauchy-Schwarz inequality, we have(∫ u

l

q(x) d x
)2

≤
∫ u

l

q(x)2 d x
∫ u

l

12 d x = (u− l)
∫ u

l

q(x)2 d x.

Hence, ∫ u

l

q(x) d x ≤

√
(u− l)

∫ u

l

q(x)2 d x. (2)

The price of buying a security on interval (l, u) is then

p(l,u) =
κ
∫ u
l
q(x)d x√∫ +∞

−∞ q(y)2 d y
≤

κ
∫ u
l
q(x)d x√∫ u

l
q(y)2 d y

≤ κ
√
u− l.

Suppose the smallest partition that includes the true outcome x∗ at the end
of the market is (c, d). qf (x) = qf (x∗) for all x ∈ (c, d). Then, payoff per share
is

o(x∗) =
κ
√∫ +∞
−∞ qf (y)2 d y

qf (x∗)

≥
κ
√∫ d

c
qf (y)2 d y

qf (x∗)

=
κ
√
qf (x∗)2(d− c)
qf (x∗)

= κ
√
d− c . (3)

If traders can bet on any non-empty interval, (d − c) in (3) may approach 0.
Thus, payoff per share o(x∗) > 0.

If the market maker restricts that traders can only bet on intervals no smaller
than z, we consider the interval (d− z, c+ z) for the case of (d− c) < z. Because
(c, d) is the smallest partition that contains x∗,

qf (x∗) =

∫ d
c
qf (x) d x
d− c

. (4)

Any time when
∫ d
c
q(x) d x is increased by a, it must be the case that∫ c

d−z q(x) d x +
∫ c+z
d

q(x) d x is increased at least by a
d−c (z − (d− c)), because

the smallest interval size is z. Hence,∫ c

d−z
qf (x) d x+

∫ c+z

d

qf (x) d x ≥
∫ d
c
qf (x) d x
d− c

(z − (d− c)) .



Thus,

∫ c+z

d−z
qf (x) d x ≥

∫ d
c
qf (x) d x
d− c

(z − (d− c)) +
∫ d

c

qf (x) d x

=
z

d− c

∫ d

c

qf (x) d x. (5)

Payoff per share is

o(x∗) =
κ
√∫ +∞
−∞ qf (y)2 d y

qf (x∗)

=
κ(d− c)

√∫ +∞
−∞ qf (y)2 d y∫ d

c
qf (x) d x

≥
κ(d− c)

√∫ c+z
d−z q

f (y)2 d y∫ d
c
qf (x) d x

≥
κ(d− c)

∫ c+z
d−z q

f (y) d y√
(c+ z)− (d− z)

∫ d
c
qf (x) d x

≥
κ(d− c) z

d−c
∫ d
c
qf (y) d y√

(c+ z)− (d− z)
∫ d
c
qf (x) d x

=
κz√

2z − (d− c)

>
κ
√

2z
2

.

The second equality comes from (4). The fourth inequality is a result of applying
(2). Applying (5), we get the fifth inequality. Letting (d− c)→ 0, we obtain the
last inequality.

B Proof of Theorem 5

Proof. Let x∗ be the realized value of the random variable. Let p0(x∗) and pf (x∗)
be the initial and final price density for x∗. Then, the market maker’s loss is
b log pf (x∗)− b log p0(x∗).



Suppose the smallest partition that includes the true outcome x∗ at the end
of the market is (c, d). If traders can bet on any non-empty intervals,

pf (x∗) =
eq

f (x∗)/b∫ +∞
−∞ eqf (y)/bd y

≤ eq
f (x∗)/b∫ d

c
eqf (y)/bd y

=
eq

f (x∗)/b

(d− c) eqf (x∗)/b
=

1
d− c

.

As (d − c) approaches 0, 1
d−c approaches ∞. Hence, the worst-cast loss is not

bounded because b log pf (x∗) <∞.
If the smallest interval that traders can bet on is of size z, consider the

situation that (d− c) < z and traders buying equal shares of intervals (d− z, d)
and (c, c+ z). Then,

pf (x∗) =
eq

f (x∗)/b∫ +∞
−∞ eqf (y)/bd y

≤ eq
f (x∗)/b∫ c

d−z e
qf (y)/bd y +

∫ d
c
eqf (y)/bd y +

∫ c+z
d

eqf (y)/bd y

=
eq

f (x∗)/b

2(z − (d− c)) eqf (x∗)/2b + (d− c) eqf (x∗)/b

=
1

2(z − (d− c)) e−qf (x∗)/2b + (d− c)
.

When qf (x∗)→∞ and (d− c)→ 0, the pf (x∗) approaches to 0 according to the
above expression. Hence, the worst-case loss of the market maker is not bounded
because b log pf (x∗) <∞.


