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ABSTRACT
Java applications often need to incorporate native-code com-
ponents for efficiency and for reusing legacy code. However,
it is well known that the use of native code defeats Java’s
security model. We describe the design and implementa-
tion of Robusta, a complete framework that provides safety
and security to native code in Java applications. Starting
from software-based fault isolation (SFI), Robusta isolates
native code into a sandbox where dynamic linking/loading
of libraries is supported and unsafe system modification and
confidentiality violations are prevented. It also mediates na-
tive system calls according to a security policy by connecting
to Java’s security manager. Our prototype implementation
of Robusta is based on Native Client and OpenJDK. Exper-
iments in this prototype demonstrate Robusta is effective
and efficient, with modest runtime overhead on a set of JNI
benchmark programs. Robusta can be used to sandbox na-
tive libraries used in Java’s system classes to prevent attack-
ers from exploiting bugs in the libraries. It can also enable
trustworthy execution of mobile Java programs with native
libraries. The design of Robusta should also be applicable
when other type-safe languages (e.g., C#, Python) want to
ensure safe interoperation with native libraries.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.2.12
[Software]: Software Engineering—Interoperability

General Terms
Security

1. INTRODUCTION
It is rare that a large software system is written in one sin-

gle programming language. Java programmers often find it
necessary to incorporate native-code components into their
applications. Frequently, they reuse a widely adopted soft-
ware library written in a different programming language
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for its maturity and for saving development time. Program-
mers may also implement performance-critical components
in low-level languages such as C or C++. For these reasons,
almost all Java applications include some native code. Even
Sun’s JDK 1.6 contains over 800,000 lines of C/C++ code
(compared to around two million lines of Java code).

On the other hand, the dangers posed by native code are
well understood. Most of the issues result from the fact that
native code is not subject to the control of the Java security
model. Any native code included in a Java application has
to be completely trusted. Granting the permission to allow
a Java program to load native code is equivalent to granting
all permissions to the program. As a result, Java program-
mers face the difficult dilemma of deciding whether or not to
include native code; a decision between security and other
practical considerations (e.g., efficiency). Often, security is
simply put aside.

The thrust of this project is to design a framework that
allows JVM administrators to constrain native code with
different trust levels, similar to how security of Java code
can be configured. We were greatly encouraged by the recent
successes of software-based fault isolation (SFI) on modern
CISC architectures [18] and in internet browsers [34]. SFI
provides a foundation for enforcing security on native code,
while sacrificing only modest efficiency.

Starting from SFI, we built Robusta1, which is a security
layer incorporated into the JVM for regulating native code.
Fig. 1 presents a high-level diagram showing the relationship
between the JVM and Robusta. As shown in the diagram,
Robusta provides a sandbox for untrusted native code; all
interactions between the native code and the rest of the sys-
tem are mediated by Robusta. Only interactions that obey
a given policy will be allowed.

Fig. 1 also presents two scenarios showing how Robusta
can improve Java’s security. First, Robusta can be used to
sandbox native libraries used in Java’s system classes. We
mentioned that there is already a large amount of trusted na-
tive C/C++ code that comprises a significant portion of the
Java Development Kit (JDK). Our previous study [31] found
126 software bugs in a subset of the total native code (38,000
lines), of which 59 were security critical. We believe most
of the native libraries used in the JDK can be managed by
Robusta, eliminating many undiscovered potential exploits.
For instance, the system classes under java.util.zip in-
voke the popular Zlib C library for performing compres-

1Coffee Robusta is a species of coffee. Its powerful flavor
gives it perceived “strength” and “finish”.



Figure 1: JVM and Robusta.

sion/decompression. As we will show, the Zlib C library
can be sandboxed by Robusta, removing it from the TCB.

Robusta can also allow mobile Java programs (Java ap-
plets) to utilize native libraries. Such an advance allows the
distribution of Java and native code together, which we term
a napplet2. In the vanilla JVM, the default policy for Java
applets is to disallow native code entirely, due to the inherent
security risks. Instead, Robusta allows Java administrators
to define a security policy for the native libraries within each
napplet. For example, suppose a napplet is downloaded from
a remote (untrusted) host and contains a fast mathematics
library as well as some Java code for the GUI. Robusta can
sandbox the napplet’s native code to prevent access to the
local file system or network.

The main contribution of this paper is the design and
implementation of Robusta, a framework that enables the
isolation and security configuration of JVM’s native code.
We propose solutions for many technical challenges in this
context, including dynamic linking/loading, sandboxing of
JNI functions, and accommodation of multithreading. We
also propose a novel architecture for security configuration
of native code, which reuses much of Java’s security infras-
tructure. Our prototype implementation in Sun’s OpenJDK
demonstrates the approach is practical and efficient.

The rest of the paper is organized as follows. We start in
Sec. 2 with a brief introduction to the background of Java-
native interoperation. We then present a high-level overview
of Robusta in Sec. 3. We describe the technical challenges
in isolating native code in the JVM and present our solu-
tions in Sec. 4. In Sec. 5, we describe how Robusta regulates
native system calls. We discuss our prototype implementa-

2napplet—a Native Applet

tion and evaluation results in Sec. 6, providing a guideline
of how to make the tradeoff between efficiency and security
in Robusta. Finally, we discuss related work, future work
and conclude.

2. BACKGROUND: JAVA-NATIVE INTER-
OPERATION

The Java Native Interface (JNI) [17] is Java’s mechanism
for interfacing with native code. A native method is declared
in a Java class by adding the native modifier. The following
code snippet of the Deflater class is extracted from Sun’s
JDK. It declares a native deflateBytes method. Once de-
clared, native methods are invoked in the same way as or-
dinary Java methods. In the example, the deflate Java
method invokes deflateBytes.

public class Deflater {

...

public synchronized int deflate

(byte[] b, int off, int len)

{ ...; return deflateBytes(b, off, len);}

private native int deflateBytes

(byte[] b, int off, int len);

static {System.loadLibrary(‘‘zip’’); ...;}

}

A native method is implemented in a native language such
as C, C++, or assembly code. The JDK implementation of
deflateBytes above invokes the popular Zlib C library for
the deflation (compression) operation. There is also a small
amount of native glue code between Java and the Zlib C
library. The glue code uses JNI functions to interact with
Java directly. Through these JNI functions, native code can
inspect, modify, and create Java objects, invoke Java meth-
ods, catch and throw Java exceptions, and so on.

3. ROBUSTA OVERVIEW
In this section, we discuss Robusta’s threat model, its

defenses, and the security policies that it enforces. Ro-
busta can enforce polices despite the attacks described in
the threat model. Details of Robusta’s defense mechanisms
are left to Sec. 4 and 5.

3.1 Threat model
Native code resides in the same address space as Java

code but is not constrained by the Java security model. It
poses the same kinds of threats to a Java environment as
any untrusted code does. We focus on the most vicious
kinds of attacks: system modification and privacy invasion.
Fig. 2 presents three ways in which these attacks can hap-
pen. Firstly, unconstrained native code can directly read-
/write any memory location in its address space, resulting
in possible destruction of the JVM state or leak of confiden-
tial information.

Secondly, abusive JNI calls can also cause integrity or
confidentiality violations. The JNI interface itself does not
mandate any safety checks and native code could deliber-
ately or unintentionally misuse the JNI interface, resulting
in unsafe modification of the JVM state or access to private
fields. For instance, native code can invoke setObjectField



Figure 2: Triple threats from native code.

to modify a field of an object to a value whose type is incom-
patible with the field’s declared type, resulting in so-called
type-confusion attacks [19]. As another example, through
getObjectField, native code can read any field of an object
even if it is a private field.

Finally, native code may issue OS system calls to cause
unsafe side effects such as overwriting security-sensitive files
or sending network packets.

3.2 Defenses in Robusta
Fig. 3 depicts how Robusta defends against the triple

threats discussed in the previous section. As a first step,
Robusta adopts SFI [33] to isolate untrusted native code
from the rest of the JVM. Native code is constrained within
a sandbox so that memory access and illegal control transfers
outside of the sandbox are disallowed. Robusta’s implemen-
tation builds upon Google’s Native Client (NaCl [34, 26]), a
state-of-the-art SFI tool. Robusta extends NaCl to support
secure dynamic linking/loading of native libraries, which is
necessary in the JVM context as Java classes are loaded dy-
namically. Robusta acts as an agent for the JVM to fulfill
tasks such as initialization of the sandbox, loading libraries,
and resolving symbols.

To prevent abusive JNI calls, Robusta sandboxes JNI calls
in the following way. First, all JNI calls are redirected to
JNI trampolines by a technique that provides“fake”interface
pointers to untrusted native code (details in Sec. 4). These
trampolines reside in an unmodifiable region at the begin-
ning of the sandbox. Trampolines are the only ways that
native code can escape the sandbox. The JNI trampolines
then invoke trusted JNI wrappers outside of the sandbox
to perform safety checks, preventing unsafe modification or
privacy invasion. Robusta also addresses several other is-
sues in the JNI interface, including direct pointers to Java
primitive arrays and calling Java methods from native code.

Finally, Robusta connects to Java’s security manager to
mediate native system calls. A system call issued by native
code is redirected to its corresponding system-call trampo-
line, which in turn invokes a trusted system-call wrapper.
The wrapper invokes the checkPermission method of Java’s
security manager to decide on the system call’s safety based
on a pre-defined security policy. This design enables Ro-
busta to place native code under the same runtime security

Figure 3: Defending against the triple threats in
Robusta.

restrictions as Java code and reuses much of Java’s policy-
driven security infrastructure.

3.3 Protection strength
The permission for loading native code implies AllPer-

mission in the original Java security model. By contrast,
Robusta gives JVM administrators the ability to configure
the security of native code. We next discuss what kinds of
security policies Robusta enforces despite attacks described
in the threat model.

Our discussion will be based on a lightweight formal no-
tation. We define a JVM state to be a pair, (s, h), where
s is a stack of method calls and h a heap. The heap is a
map from locations to Java objects. Native code has its
own world, including its heap, stack, I/O behavior, and so
on. Therefore, when considering both the JVM and native
code, a complete state is (s, h, w), where w is a native world.

JVM integrity. The integrity policy states that when na-
tive code makes a computation step from (s, h, w) to (s′, h′, w′),
the new Java state (s, h) should be consistent with the old
one (s′, h′). We define the consistency to be respect to Java’s
type system, with the help of the following two notions.

A well-typed Java heap is one where each heap object
is well typed according to its runtime type tag. A type-
preserving heap extension from h to h′, written as h ⊑ h′,
means that both h and h′ are well typed and objects in h
and h′ at the same location have the same type. Note that
h′ may have more objects than h and the definition does not
require the fields of objects at the same location to have the
same value. These two notions can be formalized precisely
based on a Java model [32].

Definition 1. Suppose one execution step in native code
brings a state (s, h, w) to (s′, h′, w′). Then the integrity of
the JVM is respected if s′ = s and h ⊑ h′.

That is, native code should not change the stack of the
JVM. Native code may perform type-preserving modifica-
tions to the Java heap (including type-preserving mutation
and allocation), and may make arbitrary changes to its own



world. Enforcing this integrity policy ensures that Java code
is type safe even after a native step, therefore preventing
type-confusion attacks.

JVM confidentiality. During runtime, the JVM provides
native code with a set of object references. Confidential-
ity is respected if native code accesses only objects reach-
able by those references and if the access-control modifiers
(e.g., private) of fields and methods are respected. This
is an intentional definition of confidentiality. It could also
be formalized extensionally following a relational approach.
Roughly, in a extensional formalization, confidentiality is
respected if native code behaves the same when given two
Java heaps whose public data are the same, but whose pri-
vate data may differ. This is similar to how information-flow
policies can be formalized in a relational setting. The for-
malization is beyond the scope of this paper.

Access control of system calls. Native code interacts
with the native system via system calls. A policy on system
calls defines which system calls native code is allowed to
access. For example, one policy can allow file accesses, but
deny network accesses. Given a policy P , when native code
makes a change to its own world from w to w′, that change
should respect P .

Robusta enforces JVM integrity and confidentiality poli-
cies through SFI and by embedding safety checks into JNI
calls wrappers. Robusta controls access to system calls by
consulting Java’s security manager in system-call wrappers.

4. ISOLATING NATIVE CODE
Robusta isolates native code into its own “address space”

so that it cannot damage the rest of the system. We discuss
how the isolation is achieved in four steps: (1) NaCl, the
basis of isolation; (2) secure dynamic linking/loading; (3)
various technical issues when incorporating NaCl into the
JVM context; and (4) how JNI calls are sandboxed.

4.1 The starting point: NaCl
SFI is the basis of Robusta and isolates untrusted native

code into a “user address space” within the JVM address
space. We will call the“user address space”the NaCl address
space. Without this low-level isolation, high-level security
policies cannot be meaningfully enforced on native code.

Robusta utilizes an industrial-strength SFI tool, Native
Client (NaCl [34, 26]). NaCl builds upon the ideas of pre-
vious SFI systems [33, 28, 4, 18, 5]. It is portable across
multiple architectures and operating systems. Its runtime
overhead is small due to clever uses of hardware features
(e.g., segment protection on x86-32). It reports an average
of 5% overhead on SPEC2000 for memory and jump protec-
tion (on x86-32). We next highlight a few technical aspects
of NaCl that are most relevant for the discussion of Robusta.

Sandboxing unsafe instructions. The NaCl address space
is separated into a non-writable code region and a non-
executable data region. NaCl disallows memory reads/writes
outside of the data region and control transfers outside of the
code region. This is achieved by segment protection or by
inserting instructions for masking addresses before memory
and control-transfer instructions. NaCl also enforces every
jump target to be jump aligned, following Pittsfield [18].
The restrictions ensure NaCl binaries can be reliably dis-

assembled for static verification and ensure that inserted
dynamic checks cannot be bypassed.

Trampolines and springboards. Trampolines are the
only ways through which untrusted code can escape the
sandbox. The NaCl runtime sets up system-call trampo-
lines during the loading of NaCl binaries and relies on OS
page protection to make the trampoline code immutable.
Springboards allow crossings in the opposite direction, from
trusted code to untrusted code.

NaCl toolchain. NaCl provides a modified GNU toolchain
for generating NaCl-compliant binaries and also provides
profiling and debugging support. System calls in generated
binary code are redirected to their corresponding trampo-
lines (at fixed addresses and are immutable).

A separate verifier. NaCl ships with a small verifier for
validating the safety of NaCl binaries. The verifier disassem-
bles NaCl binaries and uses static analysis to rule out unsafe
instructions. The separation between the NaCl toolchain
and the verifier reduces the size of the TCB; only the ver-
ifier needs to be trusted, and it is much smaller than the
toolchain.

4.2 Secure dynamic linking/loading
A native library is dynamically loaded into the JVM after

its associated Java class is loaded by a class loader. Before a
native method is invoked for the first time, the JVM dynam-
ically resolves the symbol that represents the native method
to an address in a native library.

NaCl supports only statically linked libraries. The NaCl
address space layout does not support dynamic linking/load-
ing because its code and data regions have no room for load-
ing extra libraries and also because its security configuration
requires all code to be known before execution.

Robusta generalizes NaCl to support dynamic linking/load-
ing in two steps. First, it adopts a new address space lay-
out that accommodates library code and data. Second, it
extends NaCl’s verification scheme to ensure the safety of
dynamically loaded code.

Address space layout. The prototype implementation of
Robusta adopted Seaborn’s suggestion [25] for a new layout
of the NaCl address space on Linux/x86-32. The layout is
shown in Fig. 4. This is a Harvard-style architecture, where
code and data are in separate regions. The x86 segment
registers cs and ds point to the beginning of the code and
the data region, respectively. Therefore, an address is inter-
preted differently depending on whether it is used as a code
or a data address. To avoid confusion, the layout does not
allow code and data pages to be mapped at the same ad-
dress. This is why, for example, (D1) in the code region and
(C1) in the data region are left unmapped. One downside
of this memory layout is that it wastes some memory.

The address-space layout is compatible with PIC (position-
independent code). PIC is used by dynamically loaded li-
braries in Linux and stipulates that the relative offset be-
tween code and data segments should be constant. To see
why the layout accommodates PIC, assume the beginning
address of library 1’s code is cs:x, and the beginning address
of library 1’s data is ds:y. As long as the offset between x

and y is kept unchanged, PIC is supported. That is, code is
oblivious to how hardware segments are configured.

Finally, note that the dynamic linker/loader (ld.so in



Unmapped page (64k) code region (cs) Unmapped (64k) data region (ds)

Trampolines (64k) | Unmapped (64k) |

ld.so code (LC) | Unmapped (LC) |

Unmapped (LD) | ld.so data (LD) |

Application code (C0) | Unmapped (C0) |

Unmapped (D0) | Application data (D0) |

Library 1 code (C1) | Unmapped (C1) |

Unmapped (D1) | Library 1 data (D1) |

Library 2 code (C2) | Unmapped (C2) |

Unmapped (D2) | Library 2 data (D2) |

Unmapped gap for expansion | Unmapped gap for expansion |

| Heap |

| Unmapped gap |

end of cs Stack end of ds

Figure 4: A layout of the NaCl address space for dynamic linking/loading.

Linux) is loaded into the address space to allow for possible
dlopen and dlsym requests from a NaCl application.

Secure dynamic loading. There are three main security
concerns for dynamically loaded code:

• Dynamic loading inserts into the code region new un-
trusted code, which must be verified before it can be
safely executed.

• Library images may be changed by an adversary after
verification. Precautionary measures must be taken to
ensure that the code to be executed is the same as the
one that was verified.

• Loading code into memory is not an atomic operation.
When one thread is loading a dynamic library, other
malicious threads could take advantage of a partially
loaded library and carry out an attack.

To address these concerns, Robusta adopts a novel solu-
tion based on the Non-eXecutable (NX) bit of page pro-
tection. The NX-bit support is available in mainstream pro-
cessors including Intel and AMD processors. Most operating
systems now support the NX-bit (see [2] for a survey).

Access permissions for memory pages include readable,
writable, and executable. Unmapped pages in the NaCl
address space are memory protected to be unreadable, un-
writable, and unexecutable. This prevents any access to
unmapped pages.

In Robusta, the process of loading a dynamic library through
dlopen is as follows:

(1) The dlopen request for a library is sent to ld.so, the
dynamic linker/loader. ld.so invokes the system call
mmap to map segments of the library’s image into the
NaCl address space.

(2) A mmap system call is redirected through the trampoline
mechanism of NaCl to a trusted mmap wrapper. The
wrapper checks to see if the requested region has been
occupied. If so, it reports failure to ld.so, which will
request another memory region to perform the memory
mapping.

(3) If the requested region, called R hereafter, is not occu-
pied and if the mapped segment in the library is a code

segment, the wrapper will first make R writable (but it
remains not readable and not executable) and will copy
the segment into R. Since R is not executable, other
threads cannot execute partially copied code.

(4) The wrapper marks R readable, unwritable and unex-
ecutuable. It then invokes NaCl’s verifier to check the
safety of the newly copied code. R is made readable
so that the verifier can read the code for verification.
Moreover, future changes to the library’s image do not
invalidate the verification result since the verification is
performed on the code that was copied in.

(5) Finally, if the verification succeeds, R is marked to be
readable and executable, but not writable. That is, R is
not executable until this stage, which prevents any code
from being executed before it is verified.

4.3 Incorporating NaCl into the JVM
Robusta is constructed as an intermediate layer between

the JVM and NaCl. Hooks are added to the JVM so that
whenever the JVM needs to interact with native code, execu-
tion transfers to the Robusta layer, which fulfills the required
operation. We next discuss how Robusta functions.

JVM initialization. When the JVM starts, Robusta con-
structs a NaCl sandbox. It reserves a memory region for
the NaCl address space and sets up a code and a data re-
gion. Page protection is configured so that the code region
is readable and executable, and the data region is readable
and writable.

Trusted trampolines are installed in the code region. These
trampolines include system-call trampolines and JNI tram-
polines, as well as a special trampoline called OutOfJail,
which is invoked when native code finishes execution.

Finally, the initialization of the sandbox loads the dy-
namic linker/loader (ld.so) into the NaCl address space. It
also loads a utility module, named dlWrappers, which pro-
vides a gateway for Robusta to access services housed within
the sandbox (see the following discussion). The dynamic
linker/loader and the utility module are not in the TCB be-
cause they are in the sandbox and the only way out of the
sandbox is through known safe exits (i.e., trampolines).

Only one sandbox is constructed for all native code be-
cause we are mainly concerned with protecting the JVM
from native code. However, there are situations where iso-
lating one native library from another is desired (e.g., when



napplets are downloaded from multiple websites that have
differing trust levels). We believe it is straightforward to
extend Robusta with support for multiple sandboxes.

Loading a native library and symbol resolution. When
the JVM decides to load a native sandboxed library, Robusta
checks if the security policy allows the operation (see Sec. 5).
If so, it invokes dlopen_wrapper in the utility module. The
wrapper then calls the actual dlopen method implemented
by the dynamic linker/loader, and propagates the resulting
handle back to the JVM through calling OutOfJail.3 Dy-
namic symbol resolution within sandboxed native libraries
follows a similar pattern. A service routine called
dlsym_wrapper invokes dlsym in the dynamic linker/loader
to resolve the symbol’s address, and propagates the resulting
address back to the JVM through OutOfJail.

Calling in and returning. When the JVM invokes a na-
tive method (e.g., as a result of executing an invokespecial

bytecode instruction), Robusta copies parameters from the
Java stack to the native stack in the sandbox and invokes
method_dispatch in the utility module with the address of
the native method as a parameter. method_dispatch then
invokes the native method and collects the return value be-
fore calling OutOfJail.

After a context switch outside of the sandbox through
OutOfJail, Robusta needs to continue the execution of the
JVM. It cannot trust native code for remembering the re-
turn information, including the return address and the reg-
ister state of the JVM. Instead, trusted code outside of the
sandbox uses setjmp for saving the state and longjmp for
restoring the state.

Through the JNI, native code can call Java methods. This
can result in a complicated “ping-pong” behavior between
Java and native methods. For example, suppose a Java
method mj calls a native method mc. The method mc may
call a second Java method m′

j . The method m′

j in turn may
call a second native method m′

c, and so on. The result-
ing call stack is a collection of interlaced Java and native
frames. To cope with the ping-pong behavior, Robusta as-
sociates the return information with a native frame so that
when a native frame is popped from the stack the return
information for that frame is used to continue the execution
of the JVM.

Multiple Java threads. In the case of multiple Java
threads, each Java thread begins life outside the sandbox
and may pass freely in and out each time it makes a native
call. Therefore, it is possible that multiple Java threads may
be inside the sandbox concurrently. To this end, Robusta
associates a natp structure with a Java thread.4 Since each
thread needs its own stack area while it is in the sandbox,
the natp structure remembers the location of that stack.
Other per-thread information is also in the natp structure.

Lazy allocation of stacks. Each Java thread needs a na-
tive stack in the sandbox. However, not all Java threads
use native methods. Robusta avoids performance penalties
during Java thread creation by delaying the allocation of a
native stack until the first time a thread attempts to en-

3The wrapper is not strictly necessary, but provides a
convenient way of stringing together calls to dlopen and
OutOfJail.
4The natp structure is used by NaCl to store per-thread
information; Robusta piggybacks on it to store extra infor-
mation.

ter the sandbox. To create the stack, Robusta calls the
allocate_stack wrapper within the sandbox. It in turn
calls malloc to reserve a block of memory for the stack.

4.4 Sandboxing JNI calls
As we have discussed, abusive JNI calls may cause in-

tegrity and confidentiality violations. We next explain how
Robusta prevents abusive JNI calls.

The JNI interface pointer. Native methods access JNI
functions through an interface pointer. The interface pointer
points to a location that references a function table, as the
following diagram (Fig 11.3 [17]) displays:

For example, the C syntax “(*env)->f(...)” invokes a
JNI function f through the interface pointer env.

Robusta cannot pass the real interface pointer to native
code because all of the functions in the table are outside
the sandbox (the only way to exit the sandbox is through
trampolines). Robusta’s solution is to duplicate the inter-
face pointer structure in the sandbox except that the table
of JNI functions contains pointers to JNI trampolines. Ro-
busta then passes the duplicate structure’s location as a fake
JNI interface pointer to native code. When native code in-
vokes “(*env)->f(...)”, the control is transferred to the
JNI trampoline for f, which jumps outside of the sandbox
and invokes a trusted wrapper. The wrapper calls the real
interface function through the real interface pointer. In this
design, native code still uses the same syntax for invoking a
JNI function. Furthermore, the wrapper provides a natural
place for inserting safety checks that prevent abusive JNI
calls, as we will discuss.

One more complication arises when dealing with multiple
threads. The real interface pointer is a per-thread pointer,
but for efficiency Robusta’s fake interface pointer is shared
by all threads in the sandbox. This does not pose a problem
because the thread-local data in the interface structure is
used only by the JVM and not by native code. In order
to support the correct behavior, a JNI wrapper only needs
to look up the real interface pointer for a particular thread
from the natp structure.

JNI checking. Robusta inserts safety checks in its JNI
wrappers before the real JNI functions are invoked. These
checks are necessary to maintain the integrity and confi-
dentiality of the JVM. The inserted checks are similar to
what previous JNI checking systems perform, including Safe-
JNI [30] and Jinn [15]. For instance, when native code in-
vokes a Java method, Robusta checks that the type of each
parameter matches the Java method’s signature, preventing
type confusion attacks. Additionally, it verifies that exactly
the right number of parameters are provided. Robusta clas-
sifies the checks into two groups: integrity and confidential-



ity. For example, during a field-write JNI call, an integrity
check would ensure the new value is of the same type as the
target field. Similarly, a confidentiality check would ensure
private fields are not accessible.

Direct pointers to the Java heap. Java often needs to
pass references to an array of data to native code. The
JNI allows efficient access to primitive arrays (i.e., arrays
with primitive types such as int) and strings through di-
rect pointers to the Java heap. This kind of direct access
is enabled by a set of Get/Release JNI functions. For in-
stance, given a reference to a Java integer array, GetInt-
ArrayElements returns the address of the first element of
the array (or a copy, decided by the JVM). Native code is
then able to perform pointer arithmetic to access array el-
ements in the usual way. After native code is finished with
the array, ReleaseIntArrayElements releases the pointer.

Direct access to the JVM heap is dangerous and must
be prevented. To accommodate the Get/Release JNI func-
tions, Robusta performs a copy-in and copy-out operation
between the JVM heap and the sandbox’s heap. In par-
ticular, when GetIntArrayElements is invoked, its wrapper
allocates a buffer in the sandbox, copies the elements of the
array into the buffer, and returns the buffer’s address to na-
tive code. When ReleaseIntArrayElements is invoked, its
wrapper copies the buffer’s contents back into the original
Java array.

This technique redirects pointers referencing the JVM heap
to the sandbox area. It incurs the extra runtime overhead
of copying the referenced data in and out of the sandbox.
However, there is no need for dynamic bounds checking for
pointer accesses in the sandbox and thus compares favor-
ably to SafeJNI [30], where every array access comes with a
dynamic bounds check.

One optimization can be used to reduce the copy-in and
copy-out overhead. The implementation of GetIntArray-
Elements inside a JVM may already need to make a copy in
the JVM heap. In that case, we can change the implementa-
tion so that it makes a copy directly in the sandbox, avoid-
ing a second copying in its wrapper. If the JVM’s garbage
collector does not support pinning and is allowed to move
objects in the Java heap, then a copy operation is inevitable
because direct pointers to the array become invalid after the
GC moves the array. As it turns out, OpenJDK 1.7.0 always
makes a copy for GetIntArrayElements.

5. MANAGING NATIVE CODE SECURITY
The basic idea behind Robusta’s regulation of native sys-

tem calls is to consult Java’s security manager. The security
manager decides whether to deny a system call by referring
to a security policy. The benefit of this design is that a single
security mechanism regulates both Java and native code se-
curity and as a result it is sufficient to have a single, uniform
security policy for an entire application of mixed Java and
native code. This design also enables Robusta to reuse much
of the infrastructure provided by Java security, including its
policy-specification framework and enforcement mechanism;
only a minimum amount of extra code needs to be added to
make the idea work. We next discuss the major points in
our design.

A security policy can grant the native libraries of an ap-
plication two kinds of permissions: mode permissions and
system-access permissions. Mode permissions specify whether

a native library can be loaded into the JVM and whether
it should be sandboxed. A Java application that has been
granted the “loadLibrary.libraryName” runtime permission
is allowed to load the library with libraryName in the un-
constrained mode. If the application has been granted the
“loadSNL.libraryName”permission, then the application can
load the library in the sandboxed mode (SNL stands for
Sandboxed Native Library). If there is no mode permission
granted for a Java application, then by default it is not al-
lowed to load a native library. The mode policy is enforced
during library-loading time in Robusta.

We note that although the policy specification for an ap-
plication allows a native library to be loaded in the sand-
boxed mode and another library in the unconstrained mode,
such a policy essentially grants all permissions to the ap-
plication because the unconstrained library can access any
resource freely. As in Java security, extreme care must be
taken to allow an application to load native libraries in the
unconstrained mode. On the other hand, mixing sandboxed
and unconstrained libraries might still be beneficial from the
point of view of isolating faults in the sandboxed libraries.

System-access permissions specify what system accesses
an application is allowed to perform. Robusta’s system-
access permissions are the same as those provided by Java
security. For instance, a policy can grant a Java applica-
tion the permission to read a given file, but restrict it from
writing to the file. Robusta can enforce such policies in the
native libraries of a Java application. The enforcement is
carried out in the following way:

• All system calls in the native library are redirected
to the system-call trampolines in the sandbox. The
system-call trampolines then invoke trusted system-
call wrappers outside of the sandbox.

• The system-call wrappers invoke the checkPermission
method of Java’s security manager after construct-
ing the necessary permission objects. For the pre-
vious example policy, the checkPermission method
will grant the access for a file read, but will throw
a SecurityException for a file write.

We next make a few clarifications. First, the above de-
sign does not impede on Java’s stack inspection. In the
presence of native method calls, the method-call stack con-
sists of a mixed Java and native frames. When the JVM
performs stack inspection, it can find the right protection
domain even for a native frame. Since a native frame is as-
sociated with a native method in a Java class, the JVM can
find the protection domain based on the class.

Second, Robusta disallows spawning native threads. The
reason is twofold. First, creating native threads is strongly
discouraged in the JNI [17] because the native thread model
may not match the Java thread model and the mismatch
may cause synchronization problems between Java and na-
tive code. Second, creating a native thread might enable
the new thread to have more privileges than the original na-
tive thread (unless something similar to protection-domain
inheritance in Java is supported [9]). For these two reaons,
native code should call back to Java to create new Java
threads, which is allowed in Robusta.

6. IMPLEMENTATION AND EVALUATION



In this section, we discuss the prototype implementation
and experimental evaluation of Robusta.

6.1 Prototype implementation
Our proof-of-concept implementation is based on Open-

JDK 1.7.0. Robusta is compiled separately from the Open-
JDK into a shared library that the OpenJDK loads during
runtime. Various hooks are added to the OpenJDK to invoke
routines defined in the Robusta library. For instance, a hook
is added so that, when the OpenJDK needs to load a native
library, the control is transferred to Robusta for loading the
library into the sandbox (if the library should be sandboxed
according to the policy). This design of minimizing changes
to the OpenJDK has the advantage of reducing the devel-
opment time of Robusta because OpenJDK’s re-compilation
delay is significant(at least 10 minutes).

We modified the execution of those bytecode instructions
that invoke a native method (e.g., invokespecial with a
native method ID) so that they invoke native code in the
sandbox. The JVM provides two implementations for the
execution engine, a default ASM template version and a
(slower) C++ version. In order to fully evaluate Robusta,
we integrated Robusta with the ASM template version.

Robusta’s implementation is small. It is comprised of
about 2,000 lines of C code, 7 JVM and 8 NaCl hooks,
and about 150 lines of C code for the utility module that
is loaded into the sandbox during initialization. Robusta
made few changes to the NaCl toolchain. One small modifi-
cation by Seaborn [25] made the linker generate PLT (Pro-
cedure Linkage Table) entries for dynamically linked code.
The same verifier in NaCl is used in Robusta for validating
code safety.

Robusta’s implementation is restricted to Linux and x86-
32. It has not yet dealt with portability, both from the
OS and ISA points of view. However, since NaCl has been
ported to multiple ISAs and OSes, we believe most of Ro-
busta will be portable. The memory layout for dynamic
loading in Robusta targets the ELF format on Linux and
needs adjustment for Windows’s PE format.

6.2 Experimental evaluation
To evaluate Robusta, we conducted experiments to test its

functionality and performance overhead. Experiments were
carried out on a Linux Ubuntu 8.1 box with Intel Core2 Duo
CPU at 2.26GHz. When evaluating performance overhead,
all experiments were run 10 times and the average is taken.

Functionality testing. We created a set of microbench-
marks for testing the functionality and testing the security
of Robusta. These microbenchmarks include programs for
passing parameters of various types and sizes from Java to
native code, programs for getting and setting fields of Java
objects, programs for accessing Java arrays, programs for
allocating Java objects and arrays, and programs for mak-
ing system calls. We also included programs for testing Ro-
busta’s effectiveness of preventing abusive JNI calls and pre-
venting unsafe system calls. These microbenchmarks were
fully evaluated before we conducted performance evaluation
on larger Java programs.

Runtime overhead. The runtime overhead of Robusta
can roughly be put into two classes. First, there is the SFI
cost. For NaCl, this is the cost of masking indirect jump
instructions and the cost of making the program properly

aligned at 32-byte blocks. The second class of runtime over-
head happens during context switches. In Robusta, the exe-
cution context may switch between the JVM and the sand-
box in a number of situations: when the JVM invokes a
native method, the context is switched into the sandbox;
when native code finishes execution, the context is switched
outside of the sandbox; when native code invokes a JNI call
or a system call, the context is switched outside of the sand-
box to invoke trusted wrappers and is then switched back
into the sandbox. Each context switch comes with the cost
of saving and restoring states, and other costs depending on
the kinds of context switches (e.g., the cost of safety checking
in JNI calls and the cost of invoking the security manager
in system calls).

The runtime overhead depends greatly on how many con-
text switches a program makes. If a program stays in the
sandbox for a long time without performing a context switch
(for example, those computationally intensive programs),
then the runtime overhead should be small; the overhead
would be similar to the overhead of NaCl, which has been
reported to incur 5% of overhead on SPEC2000. On the
other hand, if a program makes frequent context switches
between Java and native code, then there should be a signifi-
cant runtime overhead. Therefore, an interesting question is
to explore the relationship between the runtime overhead and
how frequent context switches happen. An answer helps to
understand what kinds of applications should be put under
the control of Robusta.

We compiled a set of medium-sized JNI programs, ex-
plained as follows.

• Java classes in java.util.zip invoke the popular Zlib
C library for performing general-purpose data com-
pression/decompression. We extracted from OpenJDK
the Java classes in java.util.zip, the Zlib 1.2.3 li-
brary, and the JNI glue code that links Zlib with Java.

• libec is a C library for elliptic curve cryptography.
OpenJDK provides JNI bindings for interfacing with
the library.

• Classes in java.lang.StrictMath invoke native meth-
ods implemented in fdlibm, the C“Freely Distributable
Math Library”. The library implements basic mathe-
matical functions such as sine, cosine, and tangent.

• libharu is an open-source PDF creation C library. As
it does not ship with JNI bindings, we created our own.

• We created JNI bindings to interface with the libjpeg
library, which provides JPEG compression.

Table 1 shows the code sizes of the benchmark programs.
For each program, the table lists its lines of Java code and
its lines of C code. The C code is divided into the category
of glue (JNI) code and the category of library C code.

The experiments were set up as follows:

• zip. Experiments were set up to compress files with
varying buffer sizes. The zip program compresses a file
by dividing the file into data segments of small sizes.
Its Java side passes a data segment through a buffer
to Zlib, which performs the compression and returns



Program Java LOC Glue/Library C LOC

zip 3,351 2,295/11,319
libec 2,689 416/19,049
libjpeg 31 96/20,346
libharu 188 114/120,959
StrictMath 1,128 153/8,505

Table 1: A set of benchmark programs and their
code sizes (reported by SLOCCount).

Program Robusta increase Context switches
(per millisecond)

zip (1KB) 9.64% 18.50
zip (2KB) 7.51% 9.93
zip (4KB) 5.22% 5.00
zip (8KB) 2.42% 2.34
zip (16KB) 1.40% 0.95
libec (112) 3.41% 5.80
libec (160) 2.82% 1.08
libec (224) 6.20% 0.46
libec (256) 2.55% 0.30
libec (384) -0.92% 0.06
libec (521) -0.24% 0.05
libec (571) 5.03% 0.03
libjpeg 3.80% 0.001
libharu 48.22% 68.85
StrictMath 729.48% 269.57

Table 2: Runtime overheads of Robusta for a set of
JNI programs.

the result to the Java side. Then the Java side passes
the next buffer of data to Zlib. Therefore, the number
of context switches differs significantly with different
buffer sizes. We tested the zip program with buffer
sizes 1KB, 2KB, 4KB, 8KB, and 16KB.

• libec. Experiments were set up to generate pairs of
public and private keys of varying sizes from random
seeds. We experimented with key sizes 112, 160, 224,
256, 384, 521 and 571.

• StrictMath. Experiments were set up to invoke li-
brary functions in the fdlibm math library repeatedly.

• libharu. Experiments were set up to generate a 100-
page PDF document from sample text.

• libjpeg. Experiments were set up to convert a 5Mb
bmp image into JPEG format.

Table 2 presents the experimental results for the bench-
mark programs. The numbers in the column of “Robusta
increase” were obtained in the following way. We first com-
piled the program through the GNU toolchain and ran it
in the vanilla OpenJDK. Let x1 denote the total runtime.
The program was then fed to the NaCl toolchain to produce
NaCl-compliant binaries and was run in Robusta. Let y1

be the total runtime in Robusta. With these measurements,
(y1 −x1)/x1 is the runtime overhead of Robusta over Open-
JDK and is the number in the “Robusta increase” column of
the result table.

Table 2 also shows the measurements for the context switch
intensity, or the number of context switches per millisecond.
As we can see from the table, the runtime overhead corre-
lates strongly with the context-switch intensity. In the zip

benchmark, as the context switch intensity decreases from
18.50 (with the buffer size 1KB) to 0.95 (with the buffer size
16KB), the performance overhead also decreases from 9.64%
to 1.40%. A similar story applies to the libec benchmark.
StrictMath is an extreme case. It makes around 270 con-
text switches per millisecond and its performance overhead
is significant. The high context switch intensity is due to the
fact that each native method call in this benchmark stays in
the sandbox very shortly.

The result table also shows some performance improve-
ments. We believe it is due to NaCl because in those cases
the context-switch intensity is low. NaCl reported perfor-
mance improvements for some SPEC2000 benchmark pro-
grams because of positive interactions between alignment
and processor microarchitectures.

In general, the results show that Robusta is best used
for applications that do not have intensive levels of context
switching. For those applications where it is possible to
control context-switch intensity (such as zip), we suggest
increasing the amount of time that the applications stay in
the sandbox before switching out.

Robusta’s runtime overhead compares favorably to Safe-
JNI [30], which reports 63% performance overhead for the
zip benchmark with the 16KB buffer size. The reason is
that SafeJNI performs array bounds checking for every ac-
cess to the buffer passed from Java to native code, while it
is unnecessary in Robusta thanks to SFI.5 Robusta’s run-
time overhead also compares favorably to reimplementation
of native libraries in Java code. SafeJNI reported that the
runtime overhead of a pure Java implementation of the Zlib
library (jzlib-1.0.5) is 74%.

7. RELATED WORK
There has been a rich tradition of computer-security re-

search aiming to isolate untrusted code from a trusted envi-
ronment. Operating systems have long used hardware-based
protection to isolate one process from another. Nooks [29]
isolates device drivers from kernel code, and Xax [3] isolates
web applications from browsers. Robusta follows a software-
based approach [33, 28, 4, 5, 18, 34, 26]. Robusta shows SFI
can serve as a basis for efficiently isolating native libraries
in a type-safe language (Java), even in the case that the
two sides communicate through a tight interface (the JNI).
In terms of mediating system calls, Robusta is related to a
number of previous efforts such as systrace [24] and many
others (e.g., [8, 11, 7]). The difference of Robusta is that
it delegates the job to Java’s security manager. This is a
general strategy of how system calls in native code can be
handled in language virtual machines.

Klinkoff et al. designed a sandboxing mechanism for pro-
tecting managed code and .NET runtime from unmanaged
code [13]. Although in a different context, their system ad-
dresses similar security problems as Robusta does. Their
system puts unmanaged code into a separate process and

5We assume a“ensure, but don’t check”strategy [18]. When
an out-of-bound access happens, the access is re-routed to
an address within the sandbox. Bounds checking would be
required if it is necessary to abort execution.



seems to suffer from high performance overhead due to inter-
process communication. In addition, system calls in unman-
aged code are intercepted and regulated by a kernel add-on.
By contrast, Robusta is a more-efficient security mechanism
thanks to SFI and it is a pure user-space module.

An alternative approach to achieving safety in Java-native
interoperation requires native code to be compiled from a
type-safe low-level language, such as Cyclone [12]. The com-
piler can produce binaries in the form of Proof-Carrying
Code [22] or Typed Assembly Languages [21], whose safety
can be independently verified at the code consumer’s site.
This approach can avoid some of the runtime overhead in
Robusta and is profitable for performance-critical native code.
On the flip side, rewriting legacy code in type-safe languages
requires a large amount of effort and does not address the
issue of safe interoperation between Java and native code.

The JNI does not mandate any checking of native meth-
ods. Native methods are notoriously unsafe and is a rich
source of software errors. Recent studies have reported hun-
dreds of interface bugs in JNI programs [6, 31, 14]. A num-
ber of systems are designed to improve and find misuses of
the JNI interface. They can be classified into three cat-
egories: (1) Jeannie [10] is a new interface language that
allows programmers to mix Java with C code and a Jean-
nie program is then compiled into JNI code by the Jeannie
compiler. (2) Several recent systems employ static analysis
to identify specific classes of errors in JNI code [6, 32, 14,
16]. (3) Jinn [15] generates dynamic checks at the language
boundary to find interface errors. These systems have over-
all improved the JNI’s safety by reducing errors in the JNI
code, but they are not designed to guarantee a security pol-
icy. SafeJNI [30] is in spirit closest to Robusta in that they
both protect Java from untrusted native code. However,
SafeJNI is based on CCured [23], which performs source-
code rewriting for security, while Robusta is based on SFI.

The Joe-E system [20] by Mettler et al. designs a Java
subset which aims at the development of secure software sys-
tems. To reason about the security capabilities possessed
by a Joe-E class, its verifier rejects many potentially un-
safe Java features. This includes the use of native methods,
which could escalate the capabilities of Joe-E classes. We be-
lieve the features provided by Robusta can enable systems
such as Joe-E to extend their security reach to native code.
It would be interesting to combine Joe-E and Robusta.

8. FUTURE WORK
We plan to explore what portions of native libraries in

Java’s system classes can be put under the control of Ro-
busta. There are 800,000 lines of C/C++ code in Sun’s
JDK 1.6. We expect Robusta should be able to sandbox
most of JDK’s system libraries, as we have demonstrated
for zip and libec. However, it is possible that not all na-
tive libraries for system classes are suitable for Robusta be-
cause of restrictions related to functionality or performance.
Some system native libraries may need direct accesses to
the JVM state. For instance, a security manager accesses
JVM’s method-call stack directly. Some system classes’ na-
tive libraries may cross the boundary between the Java and
native worlds so often that putting them into a sandbox
would have a significant performance penalty for the JVM;
in these cases, perhaps a combination of Robusta and static
verification is beneficial.

We are developing a napplet mechanism for Robusta, which

will allow the distribution of both a Java applet and its re-
quired native libraries in a single package (in the spirit of
a standard JAR file). Robusta’s sandbox will then prevent
any abusive native code in the napplet from harming the
host system.

We plan to explore techniques for stronger security poli-
cies within Robusta. Robusta already prevents code-injection
attacks in native libraries because all code is statically veri-
fied before execution and no memory region is both writable
and executable (there invariants are also maintained during
dynamic loading). On the other hand, it does not prevent
exploits of vulnerabilities using code snippets already in the
code region (e.g., return-to-libc attacks or return-oriented
programming [27]). Control-Flow Integrity (CFI, [1]) can
foil a large number of attacks that are based on illegal control
transfers. Given an untrusted module, CFI predetermines
its control-flow graph. The control-flow graph serves as a
specification of the legal control flow allowed in the module
and CFI inserts runtime checks to enforce the specification.
We are in the process of incorporating CFI into Robusta.

The only major portability issue limiting Robusta from
Windows and other platforms is the lack of NaCl support
for dynamic loading. Recent work on NaCl technology has
begun to address this problem, and we plan on examining
this issue from Robusta’s standpoint as well.

9. CONCLUSIONS
Native code has always been the security dark corner of

Java security. Although powerful, native code in Java appli-
cations poses serious security threats. We have discussed the
design and implementation of Robusta, which protects the
JVM from native code while incurring modest runtime over-
head. Robusta is especially suitable for applications without
intense context switching between Java and native code. It
provides a migration path for moving the 800,000 lines of na-
tive code outside of the JDK, and for enabling mobile Java
programs with native libraries.
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