Person: Salloum, Shadi
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Salloum
First Name
Shadi
Name
Salloum, Shadi
Search Results
Now showing 1 - 2 of 2
Publication MicroRNA 130a Regulates both Hepatitis C Virus and Hepatitis B Virus Replication through a Central Metabolic Pathway(American Society for Microbiology, 2018) Duan, Xiaoqiong; Li, Shilin; Holmes, Jacinta; Tu, Zeng; Li, Yujia; Cai, Dachuan; Liu, Xiao; Li, Wenting; Yang, Chunhui; Jiao, Baihai; Schaefer, Esperance; Fusco, Dahlene; Salloum, Shadi; Chen, Limin; Lin, Wenyu; Chung, RaymondABSTRACT Hepatitis C virus (HCV) infection has been shown to regulate microRNA 130a (miR-130a) in patient biopsy specimens and in cultured cells. We sought to identify miR-130a target genes and to explore the mechanisms by which miR-130a regulates HCV and hepatitis B virus (HBV) replication. We used bioinformatics software, including miRanda, TargetScan, PITA, and RNAhybrid, to predict potential miR-130a target genes. miR-130a and its target genes were overexpressed or were knocked down by use of small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 guide RNA (gRNA). Selected gene mRNAs and their proteins, together with HCV replication in OR6 cells, HCV JFH1-infected Huh7.5.1 cells, and HCV JFH1-infected primary human hepatocytes (PHHs) and HBV replication in HepAD38 cells, HBV-infected NTCP-Huh7.5.1 cells, and HBV-infected PHHs, were measured by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting, respectively. We selected 116 predicted target genes whose expression was related to viral pathogenesis or immunity for qPCR validation. Of these, the gene encoding pyruvate kinase in liver and red blood cell (PKLR) was confirmed to be regulated by miR-130a overexpression. miR-130a overexpression (via a mimic) knocked down PKLR mRNA and protein levels. A miR-130a inhibitor and gRNA increased PKLR expression, HCV replication, and HBV replication, while miR-130a gRNA and PKLR overexpression increased HCV and HBV replication. Supplemental pyruvate increased HCV and HBV replication and rescued the inhibition of HCV and HBV replication by the miR-130a mimic and PKLR knockdown. We concluded that miR-130a regulates HCV and HBV replication through its targeting of PKLR and subsequent pyruvate production. Our data provide novel insights into key metabolic enzymatic pathway steps regulated by miR-130a, including the steps involving PKLR and pyruvate, which are subverted by HCV and HBV replication. IMPORTANCE: We identified that miR-130a regulates the target gene PKLR and its subsequent effect on pyruvate production. Pyruvate is a key intermediate in several metabolic pathways, and we identified that pyruvate plays a key role in regulation of HCV and HBV replication. This previously unrecognized, miRNA-regulated antiviral mechanism has implications for the development of host-directed strategies to interrupt the viral life cycle and prevent establishment of persistent infection for HCV, HBV, and potentially other viral infections.Publication Prolonged cenicriviroc therapy reduces hepatic fibrosis despite steatohepatitis in a diet‐induced mouse model of nonalcoholic steatohepatitis(John Wiley and Sons Inc., 2018) Kruger, Annie; Fuchs, Bryan; Masia, Ricard; Holmes, Jacinta; Salloum, Shadi; Sojoodi, Mozhdeh; Ferreira, Diego S.; Rutledge, Stephanie; Caravan, Peter; Alatrakchi, Nadia; Vig, Pam; Lefebvre, Eric; Chung, RaymondNonalcoholic steatohepatitis (NASH) is a progressive liver disease projected to become the leading cause of cirrhosis and liver transplantation in the next decade. Cenicriviroc (CVC), a dual chemokine receptor 2 and 5 antagonist, prevents macrophage trafficking and is under clinical investigation for the treatment of human NASH fibrosis. We assessed the efficacy and durability of short and prolonged CVC therapy in a diet‐induced mouse model of NASH, the choline deficient, L‐amino acid‐defined, high‐fat diet (CDAHFD) model. C57BL/6 mice received 4 or 14 weeks of standard chow or the CDAHFD. CVC (10 mg/kg/day and 30 mg/kg/day for 4 weeks and 20 mg/kg/day and 30 mg/kg/day for 14 weeks) was initiated simultaneously with the CDAHFD. At 4 and 14 weeks, livers were harvested for histology and flow cytometric analyses of intrahepatic immune cells. High‐dose CVC (30 mg/kg/day) therapy in CDAHFD mice for 4 or 14 weeks inhibited intrahepatic accumulation of Ly6Chigh bone marrow‐derived macrophages. Prolonged CVC therapy (14 weeks) yielded no significant differences in the total intrahepatic macrophage populations among treatment groups but increased the frequency of intrahepatic anti‐inflammatory macrophages in the high‐dose CVC group. Despite ongoing steatohepatitis, there was significantly less fibrosis in CDAHFD mice receiving high‐dose CVC for 14 weeks based on histologic and molecular markers, mirroring observations in human NASH CVC trials. CVC also directly inhibited the profibrotic gene signature of transforming growth factor‐β‐stimulated primary mouse hepatic stellate cells in vitro. Conclusion: CVC is a novel therapeutic agent that is associated with reduced fibrosis despite ongoing steatohepatitis. Its ability to alter intrahepatic macrophage populations and inhibit profibrogenic genes in hepatic stellate cells in NASH livers may contribute to its observed antifibrotic effect. (Hepatology Communications 2018;2:529‐545)