Person: Farzan, Michael
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Farzan
First Name
Michael
Name
Farzan, Michael
3 results
Search Results
Now showing 1 - 3 of 3
Publication Evolution of a TRIM5-CypA Splice Isoform in Old World Monkeys(Public Library of Science, 2008) Newman, Ruchi M.; Hall, Laura R; Kirmaier, Andrea; Pozzi, Lu-Ann; Pery, Erez; Farzan, Michael; O'Neil, Shawn P.; Johnson, Welkin EricThe TRIM family proteins share a conserved arrangement of three adjacent domains, an N-terminal RING domain, followed by one or two B-boxes and a coiled-coil, which constitutes the tripartite-motif for which the family is named. However, the C-termini of TRIM proteins vary, and include at least nine evolutionarily distinct, unrelated protein domains. Antiviral restriction factor TRIM5α has a C-terminal B30.2/SPRY domain, which is the major determinant of viral target specificity. Here, we describe the evolution of a cyclophilin-A encoding exon downstream of the TRIM5 locus of Asian macaques. Alternative splicing gives rise to chimeric transcripts encoding the TRIM motif fused to a C-terminal CypA domain (TRIM5-CypA). We detected TRIM5-CypA chimeric transcripts in primary lymphocytes from two macaque species. These were derived in part from a CypA pseudogene in the TRIM5 locus, which is distinct from the previously described CypA insertion in TRIM5 of owl monkeys. The CypA insertion is linked to a mutation in the 3′ splice site upstream of exon 7, which may prevent or reduce expression of the α-isoform. All pig-tailed macaques (M. nemestrina) screened were homozygous for the CypA insertion. In contrast, the CypA-containing allele was present in 17% (17/101) of rhesus macaques (M. mulatta). The block to HIV-1 infection in lymphocytes from animals bearing the TRIM5-CypA allele was weaker than that in cells from wild type animals. HIV-1 infectivity remained significantly lower than SIV infectivity, but was not rescued by treatment with cyclosporine A. Thus, unlike owl monkey TRIMCyp, expression of the macaque TRIM5-CypA isoform does not result in increased restriction of HIV-1. Despite its distinct evolutionary origin, Macaca TRIM5-CypA has a similar domain arrangement and shares ∼80% amino-acid identity with the TRIMCyp protein of owl monkeys. The independent appearance of TRIM5-CypA chimeras in two primate lineages constitutes a remarkable example of convergent evolution. Based on the presence of the CypA insertion in separate macaque lineages, and its absence from sooty mangabeys, we estimate that the Macaca TRIM5-CypA variant appeared 5–10 million years ago in a common ancestor of the Asian macaques. Whether the formation of novel genes through alternative splicing has played a wider role in the evolution of the TRIM family remains to be investigated.Publication Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus(Public Library of Science, 2011) Radoshitzky, Sheli R.; Becker, Michelle M.; Chi, Xiaoli; Dong, Lian; Longobardi, Lindsay E.; Boltz, Dutch; Kuhn, Jens H.; Bavari, Sina; Denison, Mark R.; Baric, Ralph S.; Huang, I-Chueh; Bailey, Charles; Weyer, Jessica; Chiang, Jessica; Brass, Abraham L.; Ahmed, Asim; Elledge, Stephen; Choe, Hyeryun; Farzan, MichaelInterferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3) are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP1,2) of Marburg and Ebola filoviruses (MARV, EBOV). Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV) and entry mediated by the SARS-CoV spike (S) protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression.Publication Host-Species Transferrin Receptor 1 Orthologs are Cellular Receptors for Nonpathogenic New World Clade B Arenaviruses(Public Library of Science, 2009) Abraham, Jonathan; Kwong, Jo Ann; Albariño, César G.; Lu, Jiajie G.; Radoshitzky, Sheli R.; Salazar-Bravo, Jorge; Farzan, Michael; Spiropoulou, Christina F.; Choe, HyeryunThe ability of a New World (NW) clade B arenavirus to enter cells using human transferrin receptor 1 (TfR1) strictly correlates with its ability to cause hemorrhagic fever. Amapari (AMAV) and Tacaribe (TCRV), two nonpathogenic NW clade B arenaviruses that do not use human TfR1, are closely related to the NW arenaviruses that cause hemorrhagic fevers. Here we show that pseudotyped viruses bearing the surface glycoprotein (GP) of AMAV or TCRV can infect cells using the TfR1 orthologs of several mammalian species, including those of their respective natural hosts, the small rodent Neacomys spinosus and the fruit bat Artibeus jamaicensis. Mutation of one residue in human TfR1 makes it a functional receptor for TCRV, and mutation of four residues makes it a functional receptor for AMAV. Our data support an in vivo role for TfR1 in the replication of most, if not all, NW clade B arenaviruses, and suggest that with modest changes in their GPs the nonpathogenic arenaviruses could use human TfR1 and emerge as human pathogens.