Person: Owen, Caroline
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Owen
First Name
Caroline
Name
Owen, Caroline
17 results
Search Results
Now showing 1 - 10 of 17
Publication Haploinsufficiency of Hedgehog interacting protein causes increased emphysema induced by cigarette smoke through network rewiring(BioMed Central, 2015) Lao, Taotao; Glass, Kimberly; Qiu, Weiliang; Polverino, Francesca; Gupta, Kushagra; Morrow, Jarrett; Mancini, John Dominic; Vuong, Linh; Perrella, Mark; Hersh, Craig; Owen, Caroline; Quackenbush, John; Yuan, Guo-Cheng; Silverman, Edwin; Zhou, XiaoboBackground: The HHIP gene, encoding Hedgehog interacting protein, has been implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS), and our subsequent studies identified a functional upstream genetic variant that decreased HHIP transcription. However, little is known about how HHIP contributes to COPD pathogenesis. Methods: We exposed Hhip haploinsufficient mice (Hhip+/-) to cigarette smoke (CS) for 6 months to model the biological consequences caused by CS in human COPD risk-allele carriers at the HHIP locus. Gene expression profiling in murine lungs was performed followed by an integrative network inference analysis, PANDA (Passing Attributes between Networks for Data Assimilation) analysis. Results: We detected more severe airspace enlargement in Hhip+/- mice vs. wild-type littermates (Hhip+/+) exposed to CS. Gene expression profiling in murine lungs suggested enhanced lymphocyte activation pathways in CS-exposed Hhip+/- vs. Hhip+/+ mice, which was supported by increased numbers of lymphoid aggregates and enhanced activation of CD8+ T cells after CS-exposure in the lungs of Hhip+/-mice compared to Hhip+/+ mice. Mechanistically, results from PANDA network analysis suggested a rewired and dampened Klf4 signaling network in Hhip+/- mice after CS exposure. Conclusions: In summary, HHIP haploinsufficiency exaggerated CS-induced airspace enlargement, which models CS-induced emphysema in human smokers carrying COPD risk alleles at the HHIP locus. Network modeling suggested rewired lymphocyte activation signaling circuits in the HHIP haploinsufficiency state. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0137-3) contains supplementary material, which is available to authorized users.Publication Mononuclear Phagocytes and Airway Epithelial Cells: Novel Sources of Matrix Metalloproteinase-8 (MMP-8) in Patients with Idiopathic Pulmonary Fibrosis(Public Library of Science, 2014) Craig, V; Polverino, Francesca; Laucho-Contreras, Maria E.; Shi, Yuanyuan; Liu, Yushi; Osorio, Juan C.; Tesfaigzi, Yohannes; Pinto-Plata, Victor Manuel; Gochuico, Bernadette R.; Rosas, Ivan; Owen, CarolineObjectives: Matrix metalloproteinase-8 (MMP-8) promotes lung fibrotic responses to bleomycin in mice. Although prior studies reported that MMP-8 levels are increased in plasma and bronchoalveolar lavage fluid (BALF) samples from IPF patients, neither the bioactive forms nor the cellular sources of MMP-8 in idiopathic pulmonary fibrosis (IPF) patients have been identified. It is not known whether MMP-8 expression is dys-regulated in IPF leukocytes or whether MMP-8 plasma levels correlate with IPF outcomes. Our goal was to address these knowledge gaps. Methods: We measured MMP-8 levels and forms in blood and lung samples from IPF patients versus controls using ELISAs, western blotting, and qPCR, and assessed whether MMP-8 plasma levels in 73 IPF patients correlate with rate of lung function decline and mortality. We used immunostaining to localize MMP-8 expression in IPF lungs. We quantified MMP-8 levels and forms in blood leukocytes from IPF patients versus controls. Results: IPF patients have increased BALF, whole lung, and plasma levels of soluble MMP-8 protein. Active MMP-8 is the main form elevated in IPF lungs. MMP-8 mRNA levels are increased in monocytes from IPF patients, but IPF patients and controls have similar levels of MMP-8 in PMNs. Surprisingly, macrophages and airway epithelial cells are the main cells expressing MMP-8 in IPF lungs. Plasma and BALF MMP-8 levels do not correlate with decline in lung function and/or mortality in IPF patients. Conclusion: Blood and lung MMP-8 levels are increased in IPF patients. Active MMP-8 is the main form elevated in IPF lungs. Surprisingly, blood monocytes, lung macrophages, and airway epithelial cells are the main cells in which MMP-8 is upregulated in IPF patients. Plasma and BALF MMP-8 levels are unlikely to serve as a prognostic biomarker for IPF patients. These results provide new information about the expression patterns of MMP-8 in IPF patients.Publication Idiopathic pulmonary fibrosis and coronary artery disease(BioMed Central, 2014) Cicchitto, Gaetano; Musella, Valentina; Acitorio, Maria; Capuano, Nicola; Fiorenzano, Giuseppe; Owen, Caroline; Polverino, Mario; Polverino, FrancescaIdiopathic pulmonary fibrosis (IPF) is defined as a chronic fibrosing interstitial disease of unknown cause, limited to the lungs, and associated with the histopathologic and/or radiologic pattern of usual interstitial pneumonia (UIP); it generally progresses into respiratory failure and death. Although progression of the disease is the most common cause of death, there are increasing reports of its association with other pathologies has been reported: e.g., IPF patients seem more susceptible to cardiovascular diseases. Therefore, other pathologies might also influence the natural course. In this paper, we describe a case of IPF and coronary artery disease (CAD). We emphasize the importance of cardiopulmonary exercise test (CPET) as a useful procedure to monitor disease progression in IPF patients. We also stress the importance of a careful analysis of variables measured for an accurate interpretation of the clinical picture and an improvement of the clinical management of patients. Moreover, we suggest that a careful assessment of CPET parameters may additionally help in the early detection of high cardiovascular ischemic risk.Publication Comparison of arterial and venous blood biomarker levels in chronic obstructive pulmonary disease(F1000Research, 2013) Kelly, Emer; Owen, Caroline; Abraham, Amadeus; Knowlton, David L; Celli, Bartolome; Pinto-Plata, Victor ManuelPurpose: The development of novel biomarkers is an unmet need in chronic obstructive pulmonary disease (COPD). Arterial blood comes directly from the lung and venous blood drains capillary beds of the organ or tissue supplied. We hypothesized that there would be a difference in levels of the biomarkers metalloproteinase 9 (MMP-9), vascular endothelial growth factor A (VEGF-A) and interleukin 6 (IL-6) in arterial compared with venous blood. Methods: Radial artery and brachial vein blood samples were taken simultaneously in each of 12 patients with COPD and seven controls with normal lung function. Circulating immunoreactive MMP-9, VEGF-A and IL-6 levels in serum were measured using quantitative enzyme-linked immunosorbent assays. Results were compared using a Student’s paired t test. The study was powered to determine whether significant differences in cytokine levels were present between paired arterial and venous blood samples. Results: In the 12 patients with COPD, four were female, and age ranged 53-85 years, mean age 69 years. Three patients in the control group were female, with age range 46-84 years, mean age 64.7 years. In the COPD group, three patients had mild, five moderate and four severe COPD. No significant difference was found between arterial and venous levels of MMP-9, VEGF-A or IL-6. Conclusions: In this pilot study, levels of the measured biomarkers in arterial compared with venous blood in both COPD patients and healthy controls did not differ. This suggests that as we continue to chase the elusive biomarker in COPD as a potential tool to measure disease activity, we should focus on venous blood for this purpose.Publication Adipose-derived stem cells weigh in as novel therapeutics for acute lung injury(BioMed Central, 2013) Gupta, Kushagra; Hergrueter, Anja; Owen, CarolineAcute lung injury is characterized by intense neutrophilic lung inflammation and increased alveolar-capillary barrier permeability leading to severe hypoxemia, and is associated with high mortality despite improvements in supportive care. There is an urgent need for effective therapies for acute lung injury. Zhang and colleagues tested the efficacy of adipose-derived stem cells in acute lung injury in mice. When adipose-derived stem cells were delivered to mice that had been challenged with lipopolysaccharide, they potently limited acute lung inflammation and injury in the mice, indicating that adipose-derived stem cells have therapeutic potential in acute lung injury in humans. Herein, we discuss the advantages and potential limitations of using adipose-derived stem cells as therapeutics for human acute lung injury.Publication Effects of sex hormones on bronchial reactivity during the menstrual cycle(BioMed Central, 2014) Matteis, Maria; Polverino, Francesca; Spaziano, Giuseppe; Roviezzo, Fiorentina; Santoriello, Carlo; Sullo, Nikol; Bucci, Maria Rosaria; Rossi, Francesco; Polverino, Mario; Owen, Caroline; D’Agostino, BrunoBackground: Many asthmatic women complain of symptom exacerbations in particular periods, i.e. during pregnancy and menstrual cycles (perimenstrual asthma: PMA)". The goal of this study was to study the effect of the luteal and follicular phases of the menstrual cycle on bronchial reactivity (BR) in a group of asthmatic women. Methods: For this purpose, 36 pre-menopausal women were enrolled and underwent testing for resting pulmonary function, measurement of the diffusing capacity of the lung for carbon monoxide (DLCO), and airway responsiveness to methacholine in the follicular and luteal phases of their menstrual cycles. We also measured plasma hormone levels and levels of cyclic adenosine monophosphate (cAMP; a mediator of bronchial smooth muscle contraction) and testosterone in induced sputum samples. Results: Our study showed that about 30% of the asthmatic women had decreased PC20FEV1.0 in the follicular phase of menstrual cycle with a significant correlation between PC20FEV1.0 and serum testosterone levels. Moreover, marked increases in sputum testosterone levels (mean = 2.6-fold increase) together with significant increases in sputum cAMP concentrations (mean = 3.6-fold increases) were observed during the luteal phase of asthmatic patients, suggesting that testosterone contributes to the pathophysiology of PMA. We excluded the possibility that testosterone directly inhibits phosphodiesterase (PDE) activity as incubating PDE with testosterone in vitro did not reduce PDE catalytic activity. Conclusions: In conclusion, our data show that PC20FEV1.0 was decreased in the follicular phase of the menstrual cycle in about 30% of women and was associated with lower cAMP levels in sputum samples, which may contribute to bronchoconstriction. Our results also suggest a link between PMA and testosterone levels. However, whether these findings are of clinical significance in terms of the management of asthma or asthma worsening during the menstrual cycle needs further investigation.Publication Folliculin regulates cell–cell adhesion, AMPK, and mTORC1 in a cell‐type‐specific manner in lung‐derived cells(Wiley Periodicals, Inc., 2014) Khabibullin, Damir; Medvetz, Douglas A; Pinilla, Miguel; Hariharan, Venkatesh; Li, Chenggang; Hergrueter, Anja; Laucho Contreras, Maria; Zhang, Erik; Parkhitko, Andrey; Yu, Jane J; Owen, Caroline; Huang, Hayden; Baron, Rebecca; Henske, ElizabethAbstract Germline loss‐of‐function BHD mutations cause cystic lung disease and hereditary pneumothorax, yet little is known about the impact of BHD mutations in the lung. Folliculin (FLCN), the product of the Birt–Hogg–Dube (BHD) gene, has been linked to altered cell–cell adhesion and to the AMPK and mTORC1 signaling pathways. We found that downregulation of FLCN in human bronchial epithelial (HBE) cells decreased the phosphorylation of ACC, a marker of AMPK activation, while downregulation of FLCN in small airway epithelial (SAEC) cells increased the activity of phospho‐S6, a marker of mTORC1 activation, highlighting the cell type–dependent functions of FLCN. Cell–cell adhesion forces were significantly increased in FLCN‐deficient HBE cells, consistent with prior findings in FLCN‐deficient human kidney‐derived cells. To determine how these altered cell–cell adhesion forces impact the lung, we exposed mice with heterozygous inactivation of Bhd (similarly to humans with germline inactivation of one BHD allele) to mechanical ventilation at high tidal volumes. Bhd+/− mice exhibited a trend (P = 0.08) toward increased elastance after 6 h of ventilation at 24 cc/kg. Our results indicate that FLCN regulates the AMPK and mTORC1 pathways and cell–cell adhesion in a cell type–dependent manner. FLCN deficiency may impact the physiologic response to inflation‐induced mechanical stress, but further investigation is required. We hypothesize that FLCN‐dependent effects on signaling and cellular adhesion contribute to the pathogenesis of cystic lung disease in BHD patients.Publication Adam8 Limits the Development of Allergic Airway Inflammation in Mice(The American Association of Immunologists, 2013) Knolle, M. D.; Nakajima, T.; Hergrueter, A.; Gupta, K.; Polverino, Francesca; Craig, V; Fyfe, S. E.; Zahid, M.; Permaul, Perdita; Cernadas, Manuela; Montano, Giancarlo Vengco; Tesfaigzi, Y.; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, CarolineTo determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma.Publication Therapeutic monoclonal antibodies for respiratory diseases: Current challenges and perspectives, March 31 – April 1, 2016, Tours, France(Taylor & Francis, 2016) Desoubeaux, Guillaume; Reichert, Janice M.; Sleeman, Matthew; Reckamp, Karen L.; Ryffel, Bernhard; Adamczewski, Jörg P.; Sweeney, Theresa D.; Vanbever, Rita; Diot, Patrice; Owen, Caroline; Page, Clive; Lerondel, Stéphanie; Le Pape, Alain; Heuze-Vourc'h, NathalieABSTRACT Monoclonal antibody (mAb) therapeutics have tremendous potential to benefit patients with lung diseases, for which there remains substantial unmet medical need. To capture the current state of mAb research and development in the area of respiratory diseases, the Research Center of Respiratory Diseases (CEPR-INSERM U1100), the Laboratory of Excellence “MAbImprove,” the GDR 3260 “Antibodies and therapeutic targeting,” and the Grant Research program ARD2020 “Biotherapeutics” invited speakers from industry, academic and government organizations to present their recent research results at the Therapeutic Monoclonal Antibodies for Respiratory Diseases: Current challenges and perspectives congress held March 31 – April 1, 2016 in Tours, France.Publication Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice(Hindawi, 2017) Almeida-Reis, Rafael; Theodoro-Junior, Osmar A.; Oliveira, Bruno T. M.; Oliva, Leandro V.; Toledo-Arruda, Alessandra C.; Bonturi, Camila R.; Brito, Marlon V.; Lopes, Fernanda D. T. Q. S.; Prado, Carla M.; Florencio, Ariana C.; Martins, Mílton A.; Owen, Caroline; Leick, Edna A.; Oliva, Maria L. V.; Tibério, Iolanda F. L. C.Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods. C57BL/6 mice received intratracheal elastase (ELA group) or saline (SAL group). One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group). Controls received saline and BbCI (SALBC group). After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.