Person: Cantor, Harvey
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Cantor
First Name
Harvey
Name
Cantor, Harvey
9 results
Search Results
Now showing 1 - 9 of 9
Publication Negative selection, not receptor editing, is a physiological response of autoreactive thymocytes(The Rockefeller University Press, 2013) Kreslavsky, Taras; Kim, Hye-Jung; Koralov, Sergei B.; Ghitza, Dvora; Buch, Thorsten; Cantor, Harvey; Rajewsky, Klaus; von Boehmer, HaraldAntigen receptor editing—a process of secondary rearrangements of antigen receptor genes in autoreactive lymphocytes—is a well-established tolerance mechanism in B cells, whereas its role in T cells remains controversial. Here, we investigated this issue using a novel Tcra knock-in locus, which ensured appropriate timing of TCRα expression and allowed secondary rearrangements. Under these conditions the only response to self-antigen that could be unambiguously identified was negative selection of CD4/CD8 double positive thymocytes. No evidence could be obtained for antigen-induced TCR editing, whereas replacement of the transgenic TCRα chain by ongoing gene rearrangement occurred in some cells irrespective of the presence or absence of self-antigen.Publication Generation and Regulation of CD8+ Regulatory T Cells(Nature Publishing Group, 2008) Lu, Linrong; Cantor, HarveyResearch into the suppressive activity of CD4+FoxP3+ T regulatory cells (Treg) has defined a sublineage of CD4+ cells that contribute to self-tolerance and resistance to autoimmune disease. Much less attention has been given to the potential contribution of regulatory sublineages of CD8+ cells. Analysis of a small fraction of CD8+ cells that target autoreactive CD4+ cells through recognition of the MHC class Ib molecule Qa-1 in mouse and HLA-E in human has revitalized interest in CD8+ Treg. Here we summarize recent progress and future directions of research into the role of this CD8+ sublineage in resistance to autoimmune disease.Publication The effect of osteopontin and osteopontin-derived peptides on preterm brain injury(BioMed Central, 2014) Albertsson, Anna-Maj; Zhang, Xiaoli; Leavenworth, Jianmei; Bi, Dan; Nair, Syam; Qiao, Lili; Hagberg, Henrik; Mallard, Carina; Cantor, Harvey; Wang, XiaoyangBackground: Osteopontin (OPN) is a highly phosphorylated sialoprotein and a soluble cytokine that is widely expressed in a variety of tissues, including the brain. OPN and OPN-derived peptides have been suggested to have potential neuroprotective effects against ischemic brain injury, but their role in preterm brain injury is unknown. Methods: We used a hypoxia-ischemia (HI)-induced preterm brain injury model in postnatal day 5 mice. OPN and OPN-derived peptides were given intracerebroventricularly and intranasally before HI. Brain injury was evaluated at 7 days after the insults. Results: There was a significant increase in endogenous OPN mRNA and OPN protein in the mouse brain after the induction of HI at postnatal day 5. Administration of full-length OPN protein and thrombin-cleaved OPN did not affect preterm brain injury. This was demonstrated with both intracerebroventricular and intranasal administration of OPN as well as in OPN-deficient mice. Interestingly, both N134–153 and C154–198 OPN-derived peptides increased the severity of brain injury in this HI-induced preterm brain injury model. Conclusions: The neuroprotective effects of OPN are age-dependent, and, in contrast to the more mature brain, OPN-derived peptides potentiate injury in postnatal day 5 mice. Intranasal administration is an efficient way of delivering drugs to the central nervous system (CNS) in neonatal mice and is likely to be an easy and noninvasive method of drug delivery to the CNS in preterm infants.Publication The immune response after hypoxia-ischemia in a mouse model of preterm brain injury(BioMed Central, 2014) Albertsson, Anna-Maj; Bi, Dan; Duan, Luqi; Zhang, Xiaoli; Leavenworth, Jianmei; Qiao, Lili; Zhu, Changlian; Cardell, Susanna; Cantor, Harvey; Hagberg, Henrik; Mallard, Carina; Wang, XiaoyangBackground: Preterm brain injury consists primarily of periventricular leukomalacia accompanied by elements of gray-matter injury, and these injuries are associated with cerebral palsy and cognitive impairments. Inflammation is believed to be an important contributing factor to these injuries. The aim of this study was to examine the immune response in a postnatal day (PND) 5 mouse model of preterm brain injury induced by hypoxia-ischemia (HI) that is characterized by focal white and gray-matter injury. Methods: C57Bl/6 mice at PND 5 were subjected to unilateral HI induced by left carotid artery ligation and subsequent exposure to 10% O2 for 50 minutes, 70 minutes, or 80 minutes. At seven days post-HI, the white/gray-matter injury was examined. The immune responses in the brain after HI were examined at different time points after HI using RT-PCR and immunohistochemical staining. Results: HI for 70 minutes in PND 5 mice induced local white-matter injury with focal cortical injury and hippocampal atrophy, features that are similar to those seen in preterm brain injury in human infants. HI for 50 minutes resulted in a small percentage of animals being injured, and HI for 80 minutes produced extensive infarction in multiple brain areas. Various immune responses, including changes in transcription factors and cytokines that are associated with a T-helper (Th)1/Th17-type response, an increased number of CD4+ T-cells, and elevated levels of triggering receptor expressed on myeloid cells 2 (TREM-2) and its adaptor protein DNAX activation protein of 12 kDa (DAP12) were observed using the HI 70 minute preterm brain injury model. Conclusions: We have established a reproducible model of HI in PND 5 mice that produces consistent local white/gray-matter brain damage that is relevant to preterm brain injury in human infants. This model provides a useful tool for studying preterm brain injury. Both innate and adaptive immune responses are observed after HI, and these show a strong pro-inflammatory Th1/Th17-type bias. Such findings provide a critical foundation for future studies on the mechanism of preterm brain injury and suggest that blocking the Th1/Th17-type immune response might provide neuroprotection after preterm brain injury.Publication Reprogramming after Chromosome Transfer into Mouse Blastomeres(Elsevier BV, 2009) Egli, Dieter; Sandler, Vladislav M.; Shinohara, Mari L.; Cantor, Harvey; Eggan, KevinIt is well known that oocytes can reprogram differentiated cells, allowing animal cloning by nuclear transfer. We have recently shown that fertilized zygotes retain reprogramming activities [1], suggesting that such activities might also persist in cleavage-stage embryos. Here, we used chromosome transplantation techniques to investigate whether the blastomeres of two-cell-stage mouse embryos can reprogram more differentiated cells. When chromosomes from one of the two blastomeres were replaced with the chromosomes of an embryonic or CD4+ T lymphocyte donor cell, we observed nuclear reprogramming and efficient contribution of the manipulated cell to the developing blastocyst. Embryos produced by this method could be used to derive stem cell lines and also developed to term, generating mosaic ‘‘cloned’’ animals. These results demonstrate that blastomeres retain reprogramming activities and support the notion that discarded human preimplantation embryos may be useful recipients for the production of genetically tailored human embryonic stem cell lines.Publication MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection(Public Library of Science, 2017) Bian, Yao; Shang, Shaobin; Siddiqui, Sarah; Zhao, Jie; Joosten, Simone A.; Ottenhoff, Tom H. M.; Cantor, Harvey; Wang, Chyung-RuA number of nonclassical MHC Ib molecules recognizing distinct microbial antigens have been implicated in the immune response to Mycobacterium tuberculosis (Mtb). HLA-E has been identified to present numerous Mtb peptides to CD8+ T cells, with multiple HLA-E-restricted cytotoxic T lymphocyte (CTL) and regulatory T cell lines isolated from patients with active and latent tuberculosis (TB). In other disease models, HLA-E and its mouse homolog Qa-1 can act as antigen presenting molecules as well as regulators of the immune response. However, it is unclear what precise role(s) HLA-E/Qa-1 play in the immune response to Mtb. In this study, we found that murine Qa-1 can bind and present Mtb peptide antigens to CD8+ T effector cells during aerosol Mtb infection. Further, mice lacking Qa-1 (Qa-1-/-) were more susceptible to high-dose Mtb infection compared to wild-type controls, with higher bacterial burdens and increased mortality. The increased susceptibility of Qa-1-/- mice was associated with dysregulated T cells that were more activated and produced higher levels of pro-inflammatory cytokines. T cells from Qa-1-/- mice also had increased expression of inhibitory and apoptosis-associated cell surface markers such as CD94/NKG2A, KLRG1, PD-1, Fas-L, and CTLA-4. As such, they were more prone to cell death and had decreased capacity in promoting the killing of Mtb in infected macrophages. Lastly, comparing the immune responses of Qa-1 mutant knock-in mice deficient in either Qa-1-restricted CD8+ Tregs (Qa-1 D227K) or the inhibitory Qa-1-CD94/NKG2A interaction (Qa-1 R72A) with Qa-1-/- and wild-type controls indicated that both of these Qa-1-mediated mechanisms were involved in suppression of the immune response in Mtb infection. Our findings reveal that Qa-1 participates in the immune response to Mtb infection by presenting peptide antigens as well as regulating immune responses, resulting in more effective anti-Mtb immunity.Publication Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1(The Rockefeller University Press, 2017) Fu, Guotong; Xu, Qin; Qiu, Yuanjun; Jin, Xuexiao; Xu, Ting; Dong, Shunli; Wang, Jianli; Ke, Yuehai; Hu, Hu; Cao, Xuetao; Wang, Di; Cantor, Harvey; Gao, Xiang; Lu, LinrongT helper type 17 cells (Th17 cells) are major contributors to many autoimmune diseases. In this study, we demonstrate that the germinal center kinase family member MINK1 (misshapen/NIK-related kinase 1) negatively regulates Th17 cell differentiation. The suppressive effect of MINK1 on induction of Th17 cells is mediated by the inhibition of SMAD2 activation through direct phosphorylation of SMAD2 at the T324 residue. The importance of MINK1 to Th17 cell differentiation was strengthened in the animal model of experimental autoimmune encephalomyelitis (EAE). Moreover, we show that the reactive oxygen species (ROS) scavenger N-acetyl cysteine boosts Th17 cell differentiation in a MINK1-dependent manner and exacerbates the severity of EAE. Thus, we have not only established MINK1 as a critical regulator of Th17 cell differentiation, but also clarified that accumulation of ROS may limit the generation of Th17 cells. The contribution of MINK1 to ROS-regulated Th17 cell differentiation may suggest an important mechanism for the development of autoimmune diseases influenced by antioxidant dietary supplements.Publication A p85α–osteopontin axis couples the ICOS receptor to sustained Bcl-6 expression by follicular helper and regulatory T cells(2014) Leavenworth, Jianmei; Verbinnen, Bert; Yin, Jie; Huang, Huicong; Cantor, HarveyFollicular helper T (TFH) cells and follicular regulatory T (TFR) cells regulate the quantity and quality of humoral immunity. Although both cell types highly express the co-stimulatory receptor ICOS and require the transcription factor Bcl-6 for their differentiation, the ICOS-dependent pathways that coordinate their responses are not well understood. Here we report that ICOS activation in CD4+ T cells promotes the interaction of the p85α regulatory subunit of the signaling kinase PI3K and intracellular osteopontin (OPN-i), followed by nuclear translocation of OPN-i, interaction with Bcl-6 and protection of Bcl-6 from ubiquitin-dependent proteasome degradation. Post-translational protection of Bcl-6 expression by OPN-i is essential for sustained TFH and TFR cell responses and regulation of the germinal center B cell response to antigen. As such, the p85α–OPN-i axis represents a molecular bridge that couples ICOS activation to Bcl-6-dependent functional differentiation of TFH and TFR cells and suggests new therapeutic avenues to manipulate their responses.Publication Mechanism of EBV Inducing Anti-Tumour Immunity and Its Therapeutic Use(Springer Science and Business Media LLC, 2020-12-23) Choi, Il-Kyu; Wang, Zhe; Ke, Qiang; Hong, Min; Paul, Dereck W.; Fernandes, Stacey M.; Hu, Zhuting; Stevens, Jonathan; Guleria, Indira; Kim, Hye-Jung; Cantor, Harvey; Wucherpfennig, Kai; Brown, Jennifer R.; Ritz, Jerome; Zhang, BaochunTumour-associated antigens (TAAs) comprise a large collection of non-mutated cellular antigens recognized by T cells in human and murine cancers. Their potential as immunotherapy targets has been explored for over two decades, yet the genesis of TAA-specific T cells remains elusive. While tumour cells may be an important source of TAAs for T cell priming, several recent studies suggest that infection with some viruses including Epstein-Barr virus (EBV) and influenza virus can elicit T cell responses against abnormally expressed cellular antigens that function as TAAs. However, the cellular and molecular basis of such responses remains undefined. Here, we show that expression of the EBV signaling protein LMP1 in B cells provokes T cell responses to multiple TAAs. LMP1 signaling leads to overexpression of many cellular antigens previously shown to be TAAs, their presentation on MHC-I and -II (mainly through the endogenous pathway), and the upregulation of costimulatory ligands CD70 and OX40L, thereby inducing potent cytotoxic CD4+ and CD8+ T cell responses. These findings delineate a novel mechanism of infection-induced anti-tumour immunity. Furthermore, by ectopically expressing LMP1 in patient tumour B cells and thereby empowering them to prime T cells, we develop a general approach for rapid production of autologous cytotoxic CD4+ T cells against a broad array of endogenous tumour antigens, such as TAAs and neoantigens, for treating B-cell malignancies. This work stresses the need to revisit classical concepts concerning viral and tumour immunity, which will be critical to fully understand the impact of common infections on human health and to improve the rational design of immune approaches for cancers.