Person:

O'Donnell, Christopher

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

O'Donnell

First Name

Christopher

Name

O'Donnell, Christopher

Search Results

Now showing 1 - 3 of 3
  • Publication

    Using Family-Based Imputation in Genome-Wide Association Studies with Large Complex Pedigrees: The Framingham Heart Study

    (Public Library of Science, 2012) Chen, Ming-Huei; Huang, Jie; Chen, Wei-Min; Larson, Martin G.; Fox, Caroline; Vasan, Ramachandran S.; Seshadri, Sudha; O'Donnell, Christopher; Yang, Qiong

    Imputation has been widely used in genome-wide association studies (GWAS) to infer genotypes of un-genotyped variants based on the linkage disequilibrium in external reference panels such as the HapMap and 1000 Genomes. However, imputation has only rarely been performed based on family relationships to infer genotypes of un-genotyped individuals. Using 8998 Framingham Heart Study (FHS) participants genotyped with Affymetrix 550K SNPs, we imputed genotypes of same set of SNPs for additional 3121 participants, most of whom were never genotyped due to lack of DNA sample. Prior to imputation, 122 pedigrees were too large to be handled by the imputation software Merlin. Therefore, we developed a novel pedigree splitting algorithm that can maximize the number of genotyped relatives for imputing each un-genotyped individual, while keeping new sub-pedigrees under a pre-specified size. In GWAS of four phenotypes available in FHS (Alzheimer disease, circulating levels of fibrinogen, high-density lipoprotein cholesterol, and uric acid), we compared results using genotyped individuals only with results using both genotyped and imputed individuals. We studied the impact of applying different imputation quality filtering thresholds on the association results and did not found a universal threshold that always resulted in a more significant p-value for previously identified loci. However most of these loci had a lower p-value when we only included imputed genotypes with with ≥60% SNP- and ≥50% person-specific imputation certainty. In summary, we developed a novel algorithm for splitting large pedigrees for imputation and found a plausible imputation quality filtering threshold based on FHS. Further examination may be required to generalize this threshold to other studies.

  • Publication

    Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease

    (Public Library of Science, 2014) Mäkinen, Ville-Petteri; Civelek, Mete; Meng, Qingying; Zhang, Bin; Zhu, Jun; Levian, Candace; Huan, Tianxiao; Segrè, Ayellet V.; Ghosh, Sujoy; Vivar, Juan; Nikpay, Majid; Stewart, Alexandre F. R.; Nelson, Christopher P.; Willenborg, Christina; Erdmann, Jeanette; Blakenberg, Stefan; O'Donnell, Christopher; März, Winfried; Laaksonen, Reijo; Epstein, Stephen E.; Kathiresan, Sekar; Shah, Svati H.; Hazen, Stanley L.; Reilly, Muredach P.; Lusis, Aldons J.; Samani, Nilesh J.; Schunkert, Heribert; Quertermous, Thomas; McPherson, Ruth; Yang, Xia; Assimes, Themistocles L.

    The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions.

  • Publication

    Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study

    (Public Library of Science, 2017) de Vries, Paul S.; Sabater-Lleal, Maria; Chasman, Daniel; Trompet, Stella; Ahluwalia, Tarunveer S.; Teumer, Alexander; Kleber, Marcus E.; Chen, Ming-Huei; Wang, Jie Jin; Attia, John R.; Marioni, Riccardo E.; Steri, Maristella; Weng, Lu-Chen; Pool, Rene; Grossmann, Vera; Brody, Jennifer A.; Venturini, Cristina; Tanaka, Toshiko; Rose, Lynda M.; Oldmeadow, Christopher; Mazur, Johanna; Basu, Saonli; Frånberg, Mattias; Yang, Qiong; Ligthart, Symen; Hottenga, Jouke J.; Rumley, Ann; Mulas, Antonella; de Craen, Anton J. M.; Grotevendt, Anne; Taylor, Kent D.; Delgado, Graciela E.; Kifley, Annette; Lopez, Lorna M.; Berentzen, Tina L.; Mangino, Massimo; Bandinelli, Stefania; Morrison, Alanna C.; Hamsten, Anders; Tofler, Geoffrey; de Maat, Moniek P. M.; Draisma, Harmen H. M.; Lowe, Gordon D.; Zoledziewska, Magdalena; Sattar, Naveed; Lackner, Karl J.; Völker, Uwe; McKnight, Barbara; Huang, Jie; Holliday, Elizabeth G.; McEvoy, Mark A.; Starr, John M.; Hysi, Pirro G.; Hernandez, Dena G.; Guan, Weihua; Rivadeneira, Fernando; McArdle, Wendy L.; Slagboom, P. Eline; Zeller, Tanja; Psaty, Bruce M.; Uitterlinden, André G.; de Geus, Eco J. C.; Stott, David J.; Binder, Harald; Hofman, Albert; Franco, Oscar H.; Rotter, Jerome I.; Ferrucci, Luigi; Spector, Tim D.; Deary, Ian J.; März, Winfried; Greinacher, Andreas; Wild, Philipp S.; Cucca, Francesco; Boomsma, Dorret I.; Watkins, Hugh; Tang, Weihong; Ridker, Paul; Jukema, Jan W.; Scott, Rodney J.; Mitchell, Paul; Hansen, Torben; O'Donnell, Christopher; Smith, Nicholas L.; Strachan, David P.; Dehghan, Abbas

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5×10−8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10−8), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development.