Publication: Oxidoreductases in Lipoxin A4 Metabolic Inactivation. A Novel Role for 15-oxoprostaglandin 13-reductase/leukotriene B4 12-hydroxydehydrogenase in Inflammation
No Thumbnail Available
Open/View Files
Date
2000
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Society for Biochemistry and Molecular Biology
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Clish, Clary B., Bruce D. Levy, Nan Chiang, Hsin-Hsiung Tai, and Charles N. Serhan. 2000. “Oxidoreductases in Lipoxin A4Metabolic Inactivation.” Journal of Biological Chemistry 275 (33): 25372–80. https://doi.org/10.1074/jbc.m002863200.
Research Data
Abstract
The lipoxins (LX) are autacoids that act within a local inflammatory milieu to dampen neutrophil recruitment and promote resolution. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) and 15-oxoprostaglandin 13-reductase, also termed leukotriene B-4 12-hydroxydehydrogenase (PGR/LTB4DH), are two enzymatic activities appreciated for their roles in the metabolism of prostaglandins and LTB4. Here, we determined whether these oxidoreductases also catalyze the conversion of lipoxin A(4) (LXA(4)) and assessed the activities of these LXA(4) metabolites. 15-Oxo-LXA(4) was generated by incubating LXA(4) with 15-PGDH and NAD(+) for studies of its further conversion. PGR/LTB4DH catalyzed the NADH-dependent reduction of 15-oxo-LXA(4) to yield 13,14-dihydro-15-loxo-LXA(4). With NADH as a cofactor, 15-PGDH acted as a 15-carbonyl reductase and catalyzed the conversion of 13,14-dihydro-15-oxo-LXA(4) to 13,14-dihydro-LXA(4). Human polymorphonuclear leukocytes (PMN) exposed to native LXA(4), 15-oxo-LXA(4), or 13,14-dihydro-LXA(4) did not produce superoxide anions. At concentrations where LXA(4) and a metabolically stable LXA(4) analog potently inhibited leukotriene B-4-induced superoxide anion generation, the further metabolites were devoid of activity. Neither 15-oxo-LXA(4) nor 13,14-dihydro-LXA(4) effectively competed with H-3-labeled LXA(4) for specific binding to recombinant LXA(4) receptor (ALXR). In addition, introducing recombinant PGR/LTB4DH into a murine exudative model of inflammation increased PMN number by similar to 2-fold, suggesting that this enzyme participates in the regulation of PMN trafficking. These results establish the structures of LXA(4) further metabolites and indicate that conversion of LXA(4) to oxo- and dihydro- products represents a mode of LXA(4) inactivation in inflammation. Moreover, they suggest that these eicosanoid oxidoreductases have multifaceted roles controlling the levels of specific eicosanoids involved in the regulation of inflammation.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service