Publication:
In vivo imaging of specific drug target binding at subcellular resolution

No Thumbnail Available

Date

2014

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Research (part of Springer Nature)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Dubach, J. M., C. Vinegoni, R. Mazitschek, P. Fumene Feruglio, L. A. Cameron, and R. Weissleder. 2014. “In Vivo Imaging of Specific Drug–target Binding at Subcellular Resolution.” Nature Communications 5 (1). https://doi.org/10.1038/ncomms4946.

Research Data

Abstract

The possibility of measuring binding of small-molecule drugs to desired targets in live cells could provide a better understanding of drug action. However, current approaches mostly yield static data, require lysis or rely on indirect assays and thus often provide an incomplete understanding of drug action. Here, we present a multiphoton fluorescence anisotropy microscopy live cell imaging technique to measure and map drug-target interaction in real time at subcellular resolution. This approach is generally applicable using any fluorescently labelled drug and enables high-resolution spatial and temporal mapping of bound and unbound drug distribution. To illustrate our approach we measure intracellular target engagement of the chemotherapeutic Olaparib, a poly(ADP-ribose) polymerase inhibitor, in live cells and within a tumour in vivo. These results are the first generalizable approach to directly measure drug-target binding in vivo and present a promising tool to enhance understanding of drug activity.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories