Publication:
Limits on Isotropic Lorentz Violation in QED from Collider Physics

Thumbnail Image

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Hohensee, Michael A., Ralph Lehnert, David Forrest Phillips, and Ronald L. Walsworth. 2009. Limits on isotropic Lorentz violation in QED from collider physics. Physical Review-Series D 80(036010).

Research Data

Abstract

We consider the possibility that Lorentz violation can generate differences between the limiting velocities of light and charged matter. Such effects would lead to efficient vacuum Cherenkov radiation or rapid photon decay. The absence of such effects for 104.5 GeV electrons at the Large Electron Positron collider and for 300 GeV photons at the Tevatron therefore constrains this type of Lorentz breakdown. Within the context of the standard-model extension, these ideas imply an experimental bound at the level of -5.8 x 10^{-12} <= \tilde{\kappa}_{tr}-(4/3)c_e^{00} <= 1.2 x 10^{-11} tightening existing laboratory measurements by 3-4 orders of magnitude. Prospects for further improvements with terrestrial and astrophysical methods are discussed.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories