Publication:
Antimony-doped Tin(II) Sulfide Thin Films

Thumbnail Image

Date

2012-12-07

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Sinsermsuksakul, Prasert, Rupak Chakraborty, Sang Bok Kim, Steven M. Heald, Tonio Buonassisi, and Roy G. Gordon. Forthcoming. Antimony-doped tin(II) sulfide thin films. Chemistry of Materials.

Research Data

Abstract

Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin monosulfide (SnS) is a promising candidate for making absorber layers in scalable, inexpensive, and nontoxic solar cells. SnS has always been observed to be a p-type semiconductor. Doping SnS to form an n-type semiconductor would permit the construction of solar cells with p-n homojunctions. This paper reports doping SnS films with antimony, a potential n-type dopant. Small amounts of antimony \((\sim 1%)\) were found to greatly increase the electrical resistance of the SnS. The resulting intrinsic SnS(Sb) films could be used for the insulating layer in a p-i-n design for solar cells. Higher concentrations \((\sim 5%)\) of antimony did not convert the SnS(Sb) to low-resistivity n-type conductivity, but instead the films retain such a high resistance that the conductivity type could not be determined. Extended X-ray absorption fine structure analysis reveals that the highly doped films contain precipitates of a secondary phase that has chemical bonds characteristic of metallic antimony, rather than the antimony–sulfur bonds found in films with lower concentrations of antimony.

Description

Other Available Sources

Keywords

thin films, doping, semiconductor, tin sulfide, antimony

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories

Story
Antimony-doped Tin(II) Sulfide Thin Films… : DASH Story 2014-05-20
I was curious. Layperson, not commercial (yet at least, but still, mostly curiosity) or academic, and it's nice to be able to read this stuff. So I want to say thank you.