Topological Quantum Field Theories from Compact Lie Groups

View/ Open
Metadata
Show full item recordCitation
Freed, Daniel, Michael J. Hopkins, Jacob Alexander Lurie, and Constantin Teleman. 2010. Topological quantum field theories from compact lie groups. In A Celebration of the Mathematical Legacy of Raoul Bott, vol. 50 of CRM Proceedings and Lecture Notes, ed. P. Robert Kotiuga, 367-403. Providence, RI: American Mathematical Society.Abstract
It is a long-standing question to extend the definition of 3-dimensional Chern-Simons theory to one which associates values to 1-manifolds with boundary and to 0-manifolds. We provide a solution in case the gauge group is a torus. We also develop from different points of view an associated 4-dimensional invertible topological field theory which encodes the anomaly of Chern-Simons. Finite gauge groups are also revisited, and we describe a theory of "finite path integrals" as a general construction for a certain class of finite topological field theories. Topological pure gauge theories in lower dimension are presented as a warm-up.Other Sources
http://arxiv.org/abs/0905.0731v2Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAPCitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10009465
Collections
- FAS Scholarly Articles [17582]
Contact administrator regarding this item (to report mistakes or request changes)