Holographic Detection of the Orbital Angular Momentum of Light With Plasmonic Photodiodes

DSpace/Manakin Repository

Holographic Detection of the Orbital Angular Momentum of Light With Plasmonic Photodiodes

Citable link to this page

 

 
Title: Holographic Detection of the Orbital Angular Momentum of Light With Plasmonic Photodiodes
Author: Capasso, Federico; Genevet, Patrice; Lin, Jiao; Kats, Mikhail A

Note: Order does not necessarily reflect citation order of authors.

Citation: Genevet, Patrice, Jiao Lin, Mikhail A. Kats, and Federico Capasso. 2012. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nature Communications 3(12): 1278.
Full Text & Related Files:
Abstract: Metallic components such as plasmonic gratings and plasmonic lenses are routinely used to convert free-space beams into propagating surface plasmon polaritons and vice versa. This generation of couplers handles relatively simple light beams, such as plane waves or Gaussian beams. Here we present a powerful generalization of this strategy to more complex wavefronts, such as vortex beams that carry orbital angular momentum, also known as topological charge. This approach is based on the principle of holography: the coupler is designed as the interference pattern of the incident vortex beam and focused surface plasmon polaritons. We have integrated these holographic plasmonic interfaces into commercial silicon photodiodes, and demonstrated that such devices can selectively detect the orbital angular momentum of light. This holographic approach is very general and can be used to selectively couple free-space beams into any type of surface wave, such as focused surface plasmon polaritons and plasmonic Airy beams.
Published Version: doi:10.1038/ncomms2293
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10140499
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters