Radiosensitization of Mammary Carcinoma Cells by Telomere Homolog Oligonucleotide Pretreatment

DSpace/Manakin Repository

Radiosensitization of Mammary Carcinoma Cells by Telomere Homolog Oligonucleotide Pretreatment

Citable link to this page


Title: Radiosensitization of Mammary Carcinoma Cells by Telomere Homolog Oligonucleotide Pretreatment
Author: Weng, Desheng; Cunin, Monique C; Song, Baizheng; Eller, Mark S; Gilchrest, Barbara A; Gong, Jianlin; Price, Brendan D.; Calderwood, Stuart K.

Note: Order does not necessarily reflect citation order of authors.

Citation: Weng, Desheng, Monique C. Cunin, Baizheng Song, Brendan D. Price, Mark S. Eller, Barbara A. Gilchrest, Stuart K. Calderwood, and Jianlin Gong. 2010. Radiosensitization of mammary carcinoma cells by telomere homolog oligonucleotide pretreatment. Breast Cancer Research 12(5): R71.
Full Text & Related Files:
Abstract: Introduction: Ionizing radiation (IR) is a widely used approach to cancer therapy, ranking second only to surgery in rate of utilization. Responses of cancer patients to radiotherapy depend in part on the intrinsic radiosensitivity of the tumor cells. Thus, promoting tumor cell sensitivity to IR could significantly enhance the treatment outcome and quality of life for patients. Methods: Mammary tumor cells were treated by a 16-base phosphodiester-linked oligonucleotide homologous to the telomere G-rich sequence TTAGGG (T-oligo: GGTTAGGTGTAGGTTT) or a control-oligo (the partial complement, TAACCCTAACCCTAAC) followed by IR. The inhibition of tumor cell growth in vitro was assessed by cell counting and clonogenic cell survival assay. The tumorigenesis of tumor cells after various treatments was measured by tumor growth in mice. The mechanism underlying the radiosensitization by T-oligo was explored by immunofluorescent determination of phosphorylated histone H2AX (\(\gamma\)H2AX) foci, \(\beta\)-galactosidase staining, comet and Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) assays. The efficacy of the combined treatment was assessed in a spontaneous murine mammary tumor model. Results: Pretreatment of tumor cells with T-oligo for 24 hours in vitro enhanced both senescence and apoptosis of irradiated tumor cells and reduced clonogenic potential. Radiosensitization by T-oligo was associated with increased formation and/or delayed resolution of \(\gamma\)H2AX DNA damage foci and fragmented DNA. T-oligo also caused radiosensitization in two in vivo mammary tumor models. Indeed, combined T-oligo and IR-treatment in vivo led to a substantial reduction in tumor growth. Of further significance, treatment with T-oligo and IR led to synergistic inhibition of the growth of spontaneous mammary carcinomas. Despite these profound antitumor properties, T-oligo and IR caused no detectable side effects under our experimental conditions. Conclusions: Pretreatment with T-oligo sensitizes mammary tumor cells to radiation in both in vitro and in vivo settings with minimal or no normal tissue side effects.
Published Version: doi://10.1186/bcr2639
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search