A Quantum Information Approach to Ultrafast Spectroscopy

DSpace/Manakin Repository

A Quantum Information Approach to Ultrafast Spectroscopy

Citable link to this page


Title: A Quantum Information Approach to Ultrafast Spectroscopy
Author: Yuen-Zhou, Joel
Citation: Yuen-Zhou, Joel. 2012. A Quantum Information Approach to Ultrafast Spectroscopy. Doctoral dissertation, Harvard University.
Access Status: Full text of the requested work is not available in DASH at this time (“dark deposit”). For more information on dark deposits, see our FAQ.
Full Text & Related Files:
Abstract: In the first part of the dissertation, we develop a theoretical approach to analyze nonlinear spectroscopy experiments based on the formalism of quantum state (QST) and process tomography (QPT). In it, a quantum system is regarded as a black box which can be systematically tested in its performance, very much like an electric circuit is tested by sending a series of inputs and measuring the corresponding outputs, but in the quantum sense. We show how to collect a series of pump-probe or photon-echo experiments, and by varying polarizations and frequency components of the perturbations, reconstruct the quantum state (density matrix) of the probed system for a set of different initial conditions, hence simultaneously achieving QST and QPT. Furthermore, we establish the conditions under which a set of two-dimensional optical spectra also yield the desired results. Simulations of noisy experiments with inhomogeneous broadening show the feasibility of the protocol. A spin-off of this work is our suggestion of a witness that distinguishes between spectroscopic time-oscillations corresponding to vibronic only coherences against their electronic counterparts. We conclude by noting that the QST/QPT approach to nonlinear spectroscopy sheds light on the amount of quantum information contained in the output of an experiment, and hence, is a convenient theoretical and experimental paradigm even when the goal is not to perform a full QPT. In the second part of the thesis, we discuss a methodology to study the electronic dynamics of complex molecular systems, such as photosynthetic units, in the framework of time-dependent density functional theory (TD-DFT). By treating the electronic degrees of freedom as the system and the nuclear ones as the bath, we develop an open quantum systems (OQS) approach to TD-DFT. We formally extend the theoretical backbone of TD-DFT to OQS, and suggest a Markovian bath functional which can be readily included in electronic structure codes.
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10288373
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search