Show simple item record

dc.contributor.authorShanmugasundararaj, Sivananthaperumal
dc.contributor.authorLehle, Simon
dc.contributor.authorYamodo, Herve I.
dc.contributor.authorHusain, S. Shaukat
dc.contributor.authorTseng, Claire
dc.contributor.authorNguyen, Khanh
dc.contributor.authorAddona, George H.
dc.contributor.authorMiller, Keith Wyatt
dc.date.accessioned2013-02-11T21:08:07Z
dc.date.issued2012
dc.identifier.citationShanmugasundararaj, Sivananthaperumal, Simon Lehle, Herve I. Yamodo, S. Shaukat Husain, Claire Tseng, Khanh Nguyen, George H. Addona, and Keith W. Miller. 2012. The location and nature of general anesthetic binding sites on the active conformation of firefly luciferase; A time resolved photolabeling study. PLoS ONE 7(1): e29854.en_US
dc.identifier.issn1932-6203en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:10288496
dc.description.abstractFirefly luciferase is one of the few soluble proteins that is acted upon by a wide variety of general anesthetics and alcohols; they inhibit the ATP–driven production of light. We have used time–resolved photolabeling to locate the binding sites of alcohols during the initial light output, some 200 ms after adding ATP. The photolabel 3-azioctanol inhibited the initial light output with an IC50 of 200 \(\mu\)M, close to its general anesthetic potency. Photoincorporation of [\(^3\)H]3-azioctanol into luciferase was saturable but weak. It was enhanced 200 ms after adding ATP but was negligible minutes later. Sequencing of tryptic digests by HPLC–MSMS revealed a similar conformation–dependence for photoincorporation of 3-azioctanol into Glu-313, a residue that lines the bottom of a deep cleft (vestibule) whose outer end binds luciferin. An aromatic diazirine analog of benzyl alcohol with broader side chain reactivity reported two sites. First, it photolabeled two residues in the vestibule, Ser-286 and Ile-288, both of which are implicated with Glu-313 in the conformation change accompanying activation. Second, it photolabeled two residues that contact luciferin, Ser-316 and Ser-349. Thus, time resolved photolabeling supports two mechanisms of action. First, an allosteric one, in which anesthetics bind in the vestibule displacing water molecules that are thought to be involved in light output. Second, a competitive one, in which anesthetics bind isosterically with luciferin. This work provides structural evidence that supports the competitive and allosteric actions previously characterized by kinetic studies.en_US
dc.language.isoen_USen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofdoi:10.1371/journal.pone.0029854en_US
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260189/pdf/en_US
dash.licenseLAA
dc.subjectbiologyen_US
dc.subjectbiochemistryen_US
dc.subjectproteinsen_US
dc.subjectchemistryen_US
dc.subjectmedicinal chemistryen_US
dc.subjectmedicineen_US
dc.subjectanesthesiologyen_US
dc.subjectdrugs and devicesen_US
dc.subjectneurologyen_US
dc.titleThe Location and Nature of General Anesthetic Binding Sites on the Active Conformation of Firefly Luciferase; A Time Resolved Photolabeling Studyen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalPLoS ONEen_US
dash.depositing.authorMiller, Keith Wyatt
dc.date.available2013-02-11T21:08:07Z
dc.identifier.doi10.1371/journal.pone.0029854*
dash.contributor.affiliatedMiller, Keith


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record