Finding Low-Energy Conformations of Lattice Protein Models by Quantum Annealing

DSpace/Manakin Repository

Finding Low-Energy Conformations of Lattice Protein Models by Quantum Annealing

Citable link to this page

 

 
Title: Finding Low-Energy Conformations of Lattice Protein Models by Quantum Annealing
Author: Perdomo-Ortiz, Alejandro; Dickson, Neil; Drew-Brook, Marshall; Rose, Geordie; Aspuru-Guzik, Alan

Note: Order does not necessarily reflect citation order of authors.

Citation: Perdomo-Ortiz, Alejandro, Neil Dickson, Marshall Drew-Brook, Geordie Rose, and Alán Aspuru-Guzik. 2012. Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2:571.
Full Text & Related Files:
Abstract: Lattice protein folding models are a cornerstone of computational biophysics. Although these models are a coarse grained representation, they provide useful insight into the energy landscape of natural proteins. Finding low-energy threedimensional structures is an intractable problem even in the simplest model, the Hydrophobic-Polar (HP) model. Description of protein-like properties are more accurately described by generalized models, such as the one proposed by Miyazawa and Jernigan (MJ), which explicitly take into account the unique interactions among all 20 amino acids. There is theoretical and experimental evidence of the advantage of solving classical optimization problems using quantum annealing over its classical analogue (simulated annealing). In this report, we present a benchmark implementation of quantum annealing for lattice protein folding problems (six different experiments up to 81 superconducting quantum bits). This first implementation of a biophysical problem paves the way towards studying optimization problems in biophysics and statistical mechanics using quantum devices.
Published Version: doi:10.1038/srep00571
Other Sources: http://arxiv.org/abs/1204.5485
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10288630
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters