Network Sampling and Classification: An Investigation of Network Model Representations

DSpace/Manakin Repository

Network Sampling and Classification: An Investigation of Network Model Representations

Citable link to this page

 

 
Title: Network Sampling and Classification: An Investigation of Network Model Representations
Author: Airoldi, Edoardo Maria; Bai, Xue; Carley, Kathleen

Note: Order does not necessarily reflect citation order of authors.

Citation: Airoldi, Edoardo M., Xue Bai, and Kathleen M. Carley. 2011. Network sampling and classification: An investigation of network model representations. Decision Support Systems 51(3): 506-518.
Access Status: Full text of the requested work is not available in DASH at this time (“dark deposit”). For more information on dark deposits, see our FAQ.
Full Text & Related Files:
Abstract: Methods for generating a random sample of networks with desired properties are important tools for the analysis of social, biological, and information networks. Algorithm-based approaches to sampling networks have received a great deal of attention in recent literature. Most of these algorithms are based on simple intuitions that associate the full features of connectivity patterns with specific values of only one or two network metrics. Substantive conclusions are crucially dependent on this association holding true. However, the extent to which this simple intuition holds true is not yet known. In this paper, we examine the association between the connectivity patterns that a network sampling algorithm aims to generate and the connectivity patterns of the generated networks, measured by an existing set of popular network metrics. We find that different network sampling algorithms can yield networks with similar connectivity patterns. We also find that the alternative algorithms for the same connectivity pattern can yield networks with different connectivity patterns. We argue that conclusions based on simulated network studies must focus on the full features of the connectivity patterns of a network instead of on the limited set of network metrics for a specific network type. This fact has important implications for network data analysis: for instance, implications related to the way significance is currently assessed.
Published Version: doi:10.1016/j.dss.2011.02.014
Other Sources: http://www.people.fas.harvard.edu/~airoldi/
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10345119
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters