Macroporous Nanowire Nanoelectronic Scaffolds for Synthetic Tissues
Author
Tian, Bozhi
Dvir, Tal
Tsui, Jonathan H.
Qing, Quan
Published Version
https://doi.org/10.1038/nmat3404Metadata
Show full item recordCitation
Tian, Bozhi, Jia Liu, Tal Dvir, Lihua Jin, Jonathan H. Tsui, Quan Qing, Zhigang Suo, Robert S. Langer, Daniel Solomon Kohane, and Charles M. Lieber. 2012. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Materials 11(11): 986–994.Abstract
The development of three-dimensional (3D) synthetic biomaterials as structural and bioactive scaffolds is central to fields ranging from cellular biophysics to regenerative medicine. As of yet, these scaffolds cannot electrically probe the physicochemical and biological microenvironments throughout their 3D and macroporous interior, although this capability could have a marked impact in both electronics and biomaterials. Here, we address this challenge using macroporous, flexible and free-standing nanowire nanoelectronic scaffolds (nanoES), and their hybrids with synthetic or natural biomaterials. 3D macroporous nanoES mimic the structure of natural tissue scaffolds, and they were formed by self-organization of coplanar reticular networks with built-in strain and by manipulation of 2D mesh matrices. NanoES exhibited robust electronic properties and have been used alone or combined with other biomaterials as biocompatible extracellular scaffolds for 3D culture of neurons, cardiomyocytes and smooth muscle cells. Furthermore, we show the integrated sensory capability of the nanoES by real-time monitoring of the local electrical activity within 3D nanoES/cardiomyocyte constructs, the response of 3D-nanoES-based neural and cardiac tissue models to drugs, and distinct pH changes inside and outside tubular vascular smooth muscle constructs.Other Sources
http://europepmc.org/abstract/MED/22922448Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10364595
Collections
- FAS Scholarly Articles [18154]
Contact administrator regarding this item (to report mistakes or request changes)