Show simple item record

dc.contributor.authorBrandes, Aaron
dc.contributor.authorLun, Desmond S.
dc.contributor.authorIp, Kuhn
dc.contributor.authorZucker, Jeremy Daniel Hofeld
dc.contributor.authorColijn, Caroline
dc.contributor.authorWeiner, Brian
dc.contributor.authorGalagan, James E.
dc.date.accessioned2013-03-08T18:13:05Z
dc.date.issued2012
dc.identifier.citationBrandes, Aaron, Desmond S. Lun, Kuhn Ip, Jeremy Zucker, Caroline Colijn, Brian Weiner, and James E. Galagan. 2012. Inferring carbon sources from gene expression profiles using metabolic flux models. PLoS ONE 7(5): e36947.en_US
dc.identifier.issn1932-6203en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:10381378
dc.description.abstractBackground: Bacteria have evolved the ability to efficiently and resourcefully adapt to changing environments. A key means by which they optimize their use of available nutrients is through adjustments in gene expression with consequent changes in enzyme activity. We report a new method for drawing environmental inferences from gene expression data. Our method prioritizes a list of candidate carbon sources for their compatibility with a gene expression profile using the framework of flux balance analysis to model the organism’s metabolic network. Principal Findings: For each of six gene expression profiles for Escherichia coli grown under differing nutrient conditions, we applied our method to prioritize a set of eighteen different candidate carbon sources. Our method ranked the correct carbon source as one of the top three candidates for five of the six expression sets when used with a genome-scale model. The correct candidate ranked fifth in the remaining case. Additional analyses show that these rankings are robust with respect to biological and measurement variation, and depend on specific gene expression, rather than general expression level. The gene expression profiles are highly adaptive: simulated production of biomass averaged 94.84% of maximum when the in silico carbon source matched the in vitro source of the expression profile, and 65.97% when it did not. Conclusions: Inferences about a microorganism’s nutrient environment can be made by integrating gene expression data into a metabolic framework. This work demonstrates that reaction flux limits for a model can be computed which are realistic in the sense that they affect in silico growth in a manner analogous to that in which a microorganism’s alteration of gene expression is adaptive to its nutrient environment.en_US
dc.language.isoen_USen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofdoi:10.1371/journal.pone.0036947en_US
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351459/pdf/en_US
dash.licenseLAA
dc.subjectBiologyen_US
dc.subjectBiochemistryen_US
dc.subjectBiochemistry Simulationsen_US
dc.subjectEnzymesen_US
dc.subjectMetabolismen_US
dc.subjectComputational Biologyen_US
dc.subjectMolecular Geneticsen_US
dc.subjectGene Expressionen_US
dc.subjectBiochemical Simulationsen_US
dc.subjectMetabolic Networksen_US
dc.subjectMicroarraysen_US
dc.subjectSystems Biologyen_US
dc.subjectGeneticsen_US
dc.subjectMicrobiologyen_US
dc.subjectBacterial Pathogensen_US
dc.subjectEscherichia Colien_US
dc.subjectModel Organismsen_US
dc.subjectProkaryotic Modelsen_US
dc.subjectMolecular Cell Biologyen_US
dc.subjectComputer Scienceen_US
dc.subjectAlgorithmsen_US
dc.subjectComputer Modelingen_US
dc.subjectComputerized Simulationsen_US
dc.subjectMedicineen_US
dc.subjectInfectious Diseasesen_US
dc.subjectBacterial Diseasesen_US
dc.subjectZoonosesen_US
dc.subjectSocial and Behavioral Sciencesen_US
dc.subjectEconomicsen_US
dc.subjectOperations Researchen_US
dc.subjectMathematical Optimizationen_US
dc.titleInferring Carbon Sources from Gene Expression Profiles Using Metabolic Flux Modelsen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalPLoS ONEen_US
dash.depositing.authorZucker, Jeremy Daniel Hofeld
dc.date.available2013-03-08T18:13:05Z
dc.identifier.doi10.1371/journal.pone.0036947*
dash.contributor.affiliatedGalagan, James E.
dash.contributor.affiliatedZucker, Jeremy Daniel Hofeld


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record